Update README.md
Browse files
README.md
CHANGED
|
@@ -8,6 +8,7 @@ tags:
|
|
| 8 |
- transformers
|
| 9 |
datasets:
|
| 10 |
- tarudesu/ViHealthQA
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
# nampham1106/bkcare-embedding
|
|
@@ -18,19 +19,24 @@ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentence
|
|
| 18 |
|
| 19 |
## Usage (Sentence-Transformers)
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
pip install -U sentence-transformers
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
Then you can use the model like this:
|
| 28 |
|
| 29 |
```python
|
| 30 |
from sentence_transformers import SentenceTransformer
|
| 31 |
-
|
|
|
|
| 32 |
|
| 33 |
model = SentenceTransformer('nampham1106/bkcare-embedding')
|
|
|
|
| 34 |
embeddings = model.encode(sentences)
|
| 35 |
print(embeddings)
|
| 36 |
```
|
|
@@ -43,7 +49,7 @@ Without [sentence-transformers](https://www.SBERT.net), you can use the model li
|
|
| 43 |
```python
|
| 44 |
from transformers import AutoTokenizer, AutoModel
|
| 45 |
import torch
|
| 46 |
-
|
| 47 |
|
| 48 |
#Mean Pooling - Take attention mask into account for correct averaging
|
| 49 |
def mean_pooling(model_output, attention_mask):
|
|
@@ -53,12 +59,13 @@ def mean_pooling(model_output, attention_mask):
|
|
| 53 |
|
| 54 |
|
| 55 |
# Sentences we want sentence embeddings for
|
| 56 |
-
sentences = [
|
| 57 |
|
| 58 |
# Load model from HuggingFace Hub
|
| 59 |
tokenizer = AutoTokenizer.from_pretrained('nampham1106/bkcare-embedding')
|
| 60 |
model = AutoModel.from_pretrained('nampham1106/bkcare-embedding')
|
| 61 |
|
|
|
|
| 62 |
# Tokenize sentences
|
| 63 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
| 64 |
|
|
|
|
| 8 |
- transformers
|
| 9 |
datasets:
|
| 10 |
- tarudesu/ViHealthQA
|
| 11 |
+
license: mit
|
| 12 |
---
|
| 13 |
|
| 14 |
# nampham1106/bkcare-embedding
|
|
|
|
| 19 |
|
| 20 |
## Usage (Sentence-Transformers)
|
| 21 |
|
| 22 |
+
### Installation <a name="install1"></a>
|
| 23 |
+
- Install `sentence-transformers`:
|
| 24 |
+
|
| 25 |
+
- `pip install -U sentence-transformers`
|
| 26 |
+
|
| 27 |
+
- Install `pyvi` to word segment:
|
| 28 |
+
- `pip install pyvi`
|
| 29 |
+
### Example usage <a name="usage1"></a>
|
| 30 |
|
| 31 |
Then you can use the model like this:
|
| 32 |
|
| 33 |
```python
|
| 34 |
from sentence_transformers import SentenceTransformer
|
| 35 |
+
from pyvi.ViTokenizer import tokenize
|
| 36 |
+
sentences = ["Đang chích ngừa viêm gan B có chích ngừa Covid-19 được không?", "Nếu anh / chị đang tiêm ngừa vaccine phòng_bệnh viêm_gan B , anh / chị vẫn có_thể tiêm phòng vaccine phòng Covid-19 , tuy_nhiên vaccine Covid-19 phải được tiêm cách trước và sau mũi vaccine viêm gan B tối_thiểu là 14 ngày ."]
|
| 37 |
|
| 38 |
model = SentenceTransformer('nampham1106/bkcare-embedding')
|
| 39 |
+
sentences = [tokenize(sentence) for sentence in sentences]
|
| 40 |
embeddings = model.encode(sentences)
|
| 41 |
print(embeddings)
|
| 42 |
```
|
|
|
|
| 49 |
```python
|
| 50 |
from transformers import AutoTokenizer, AutoModel
|
| 51 |
import torch
|
| 52 |
+
from pyvi.ViTokenizer import tokenize
|
| 53 |
|
| 54 |
#Mean Pooling - Take attention mask into account for correct averaging
|
| 55 |
def mean_pooling(model_output, attention_mask):
|
|
|
|
| 59 |
|
| 60 |
|
| 61 |
# Sentences we want sentence embeddings for
|
| 62 |
+
sentences = ["Đang chích ngừa viêm gan B có chích ngừa Covid-19 được không?", "Nếu anh / chị đang tiêm ngừa vaccine phòng_bệnh viêm_gan B , anh / chị vẫn có_thể tiêm phòng vaccine phòng Covid-19 , tuy_nhiên vaccine Covid-19 phải được tiêm cách trước và sau mũi vaccine viêm gan B tối_thiểu là 14 ngày ."]
|
| 63 |
|
| 64 |
# Load model from HuggingFace Hub
|
| 65 |
tokenizer = AutoTokenizer.from_pretrained('nampham1106/bkcare-embedding')
|
| 66 |
model = AutoModel.from_pretrained('nampham1106/bkcare-embedding')
|
| 67 |
|
| 68 |
+
sentences = [tokenize(sentence) for sentence in sentences]
|
| 69 |
# Tokenize sentences
|
| 70 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
| 71 |
|