Upload 8 files
Browse files- config.json +31 -0
- log_bs32_lr3e-05_20221118_065016_906968.txt +0 -0
- pytorch_model.bin +3 -0
- result.txt +278 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
config.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/home.local/jianwei/workspace/archive/SparseOptimizer/output/Layer_7_12_Hid_160_768_Head_10_12_IMRatio_3.5",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertForSequenceClassification"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"embedding_size": 160,
|
| 9 |
+
"finetuning_task": "sst2",
|
| 10 |
+
"gradient_checkpointing": false,
|
| 11 |
+
"hidden_act": "gelu",
|
| 12 |
+
"hidden_dropout_prob": 0.1,
|
| 13 |
+
"hidden_size": 160,
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 560,
|
| 16 |
+
"layer_norm_eps": 1e-12,
|
| 17 |
+
"max_position_embeddings": 512,
|
| 18 |
+
"model_type": "bert",
|
| 19 |
+
"num_attention_heads": 10,
|
| 20 |
+
"num_hidden_layers": 7,
|
| 21 |
+
"output_intermediate": true,
|
| 22 |
+
"output_past": true,
|
| 23 |
+
"pad_token_id": 0,
|
| 24 |
+
"position_embedding_type": "absolute",
|
| 25 |
+
"problem_type": "single_label_classification",
|
| 26 |
+
"torch_dtype": "float32",
|
| 27 |
+
"transformers_version": "4.17.0",
|
| 28 |
+
"type_vocab_size": 2,
|
| 29 |
+
"use_cache": true,
|
| 30 |
+
"vocab_size": 30522
|
| 31 |
+
}
|
log_bs32_lr3e-05_20221118_065016_906968.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:006f2260d1a1e296e8ad12c6b2f9928914b37550e8a92b9b95c27bca8e91e843
|
| 3 |
+
size 34299149
|
result.txt
ADDED
|
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{'accuracy': 0.4908256880733945}
|
| 2 |
+
{'accuracy': 0.4908256880733945}
|
| 3 |
+
{'accuracy': 0.5355504587155964}
|
| 4 |
+
{'accuracy': 0.5091743119266054}
|
| 5 |
+
{'accuracy': 0.5091743119266054}
|
| 6 |
+
{'accuracy': 0.6284403669724771}
|
| 7 |
+
{'accuracy': 0.7236238532110092}
|
| 8 |
+
{'accuracy': 0.7385321100917431}
|
| 9 |
+
{'accuracy': 0.7568807339449541}
|
| 10 |
+
{'accuracy': 0.7637614678899083}
|
| 11 |
+
{'accuracy': 0.7752293577981652}
|
| 12 |
+
{'accuracy': 0.7717889908256881}
|
| 13 |
+
{'accuracy': 0.7752293577981652}
|
| 14 |
+
{'accuracy': 0.7798165137614679}
|
| 15 |
+
{'accuracy': 0.7821100917431193}
|
| 16 |
+
{'accuracy': 0.7775229357798165}
|
| 17 |
+
{'accuracy': 0.7993119266055045}
|
| 18 |
+
{'accuracy': 0.7993119266055045}
|
| 19 |
+
{'accuracy': 0.801605504587156}
|
| 20 |
+
{'accuracy': 0.8096330275229358}
|
| 21 |
+
{'accuracy': 0.8084862385321101}
|
| 22 |
+
{'accuracy': 0.819954128440367}
|
| 23 |
+
{'accuracy': 0.8142201834862385}
|
| 24 |
+
{'accuracy': 0.819954128440367}
|
| 25 |
+
{'accuracy': 0.8245412844036697}
|
| 26 |
+
{'accuracy': 0.8291284403669725}
|
| 27 |
+
{'accuracy': 0.8291284403669725}
|
| 28 |
+
{'accuracy': 0.8176605504587156}
|
| 29 |
+
{'accuracy': 0.8245412844036697}
|
| 30 |
+
{'accuracy': 0.8084862385321101}
|
| 31 |
+
{'accuracy': 0.8279816513761468}
|
| 32 |
+
{'accuracy': 0.823394495412844}
|
| 33 |
+
{'accuracy': 0.8142201834862385}
|
| 34 |
+
{'accuracy': 0.8188073394495413}
|
| 35 |
+
{'accuracy': 0.8279816513761468}
|
| 36 |
+
{'accuracy': 0.8302752293577982}
|
| 37 |
+
{'accuracy': 0.8371559633027523}
|
| 38 |
+
{'accuracy': 0.8027522935779816}
|
| 39 |
+
{'accuracy': 0.8394495412844036}
|
| 40 |
+
{'accuracy': 0.8428899082568807}
|
| 41 |
+
{'accuracy': 0.841743119266055}
|
| 42 |
+
{'accuracy': 0.8474770642201835}
|
| 43 |
+
{'accuracy': 0.8463302752293578}
|
| 44 |
+
{'accuracy': 0.8325688073394495}
|
| 45 |
+
{'accuracy': 0.8474770642201835}
|
| 46 |
+
{'accuracy': 0.8486238532110092}
|
| 47 |
+
{'accuracy': 0.8509174311926605}
|
| 48 |
+
{'accuracy': 0.8474770642201835}
|
| 49 |
+
{'accuracy': 0.8451834862385321}
|
| 50 |
+
{'accuracy': 0.8577981651376146}
|
| 51 |
+
{'accuracy': 0.8440366972477065}
|
| 52 |
+
{'accuracy': 0.8520642201834863}
|
| 53 |
+
{'accuracy': 0.8600917431192661}
|
| 54 |
+
{'accuracy': 0.8600917431192661}
|
| 55 |
+
{'accuracy': 0.8474770642201835}
|
| 56 |
+
{'accuracy': 0.856651376146789}
|
| 57 |
+
{'accuracy': 0.856651376146789}
|
| 58 |
+
{'accuracy': 0.8589449541284404}
|
| 59 |
+
{'accuracy': 0.8497706422018348}
|
| 60 |
+
{'accuracy': 0.8623853211009175}
|
| 61 |
+
{'accuracy': 0.8681192660550459}
|
| 62 |
+
{'accuracy': 0.8589449541284404}
|
| 63 |
+
{'accuracy': 0.8486238532110092}
|
| 64 |
+
{'accuracy': 0.8681192660550459}
|
| 65 |
+
{'accuracy': 0.8635321100917431}
|
| 66 |
+
{'accuracy': 0.8463302752293578}
|
| 67 |
+
{'accuracy': 0.856651376146789}
|
| 68 |
+
{'accuracy': 0.8623853211009175}
|
| 69 |
+
{'accuracy': 0.8360091743119266}
|
| 70 |
+
{'accuracy': 0.8577981651376146}
|
| 71 |
+
{'accuracy': 0.8577981651376146}
|
| 72 |
+
{'accuracy': 0.8635321100917431}
|
| 73 |
+
{'accuracy': 0.8646788990825688}
|
| 74 |
+
{'accuracy': 0.841743119266055}
|
| 75 |
+
{'accuracy': 0.8509174311926605}
|
| 76 |
+
{'accuracy': 0.8646788990825688}
|
| 77 |
+
{'accuracy': 0.856651376146789}
|
| 78 |
+
{'accuracy': 0.8497706422018348}
|
| 79 |
+
{'accuracy': 0.8600917431192661}
|
| 80 |
+
{'accuracy': 0.8577981651376146}
|
| 81 |
+
{'accuracy': 0.8635321100917431}
|
| 82 |
+
{'accuracy': 0.8635321100917431}
|
| 83 |
+
{'accuracy': 0.8612385321100917}
|
| 84 |
+
{'accuracy': 0.8520642201834863}
|
| 85 |
+
{'accuracy': 0.8600917431192661}
|
| 86 |
+
{'accuracy': 0.8635321100917431}
|
| 87 |
+
{'accuracy': 0.8463302752293578}
|
| 88 |
+
{'accuracy': 0.8497706422018348}
|
| 89 |
+
{'accuracy': 0.8474770642201835}
|
| 90 |
+
{'accuracy': 0.8555045871559633}
|
| 91 |
+
{'accuracy': 0.8577981651376146}
|
| 92 |
+
{'accuracy': 0.8635321100917431}
|
| 93 |
+
{'accuracy': 0.8635321100917431}
|
| 94 |
+
{'accuracy': 0.8577981651376146}
|
| 95 |
+
{'accuracy': 0.8394495412844036}
|
| 96 |
+
{'accuracy': 0.8405963302752294}
|
| 97 |
+
{'accuracy': 0.838302752293578}
|
| 98 |
+
{'accuracy': 0.8532110091743119}
|
| 99 |
+
{'accuracy': 0.8497706422018348}
|
| 100 |
+
{'accuracy': 0.8532110091743119}
|
| 101 |
+
{'accuracy': 0.8440366972477065}
|
| 102 |
+
{'accuracy': 0.8497706422018348}
|
| 103 |
+
{'accuracy': 0.8405963302752294}
|
| 104 |
+
{'accuracy': 0.8463302752293578}
|
| 105 |
+
{'accuracy': 0.8589449541284404}
|
| 106 |
+
{'accuracy': 0.8543577981651376}
|
| 107 |
+
{'accuracy': 0.8360091743119266}
|
| 108 |
+
{'accuracy': 0.8371559633027523}
|
| 109 |
+
{'accuracy': 0.8486238532110092}
|
| 110 |
+
{'accuracy': 0.8543577981651376}
|
| 111 |
+
{'accuracy': 0.8497706422018348}
|
| 112 |
+
{'accuracy': 0.8451834862385321}
|
| 113 |
+
{'accuracy': 0.8463302752293578}
|
| 114 |
+
{'accuracy': 0.8474770642201835}
|
| 115 |
+
{'accuracy': 0.8268348623853211}
|
| 116 |
+
{'accuracy': 0.8497706422018348}
|
| 117 |
+
{'accuracy': 0.8589449541284404}
|
| 118 |
+
{'accuracy': 0.8474770642201835}
|
| 119 |
+
{'accuracy': 0.8577981651376146}
|
| 120 |
+
{'accuracy': 0.8612385321100917}
|
| 121 |
+
{'accuracy': 0.8623853211009175}
|
| 122 |
+
{'accuracy': 0.8600917431192661}
|
| 123 |
+
{'accuracy': 0.8589449541284404}
|
| 124 |
+
{'accuracy': 0.8520642201834863}
|
| 125 |
+
{'accuracy': 0.8509174311926605}
|
| 126 |
+
{'accuracy': 0.8612385321100917}
|
| 127 |
+
{'accuracy': 0.8520642201834863}
|
| 128 |
+
{'accuracy': 0.856651376146789}
|
| 129 |
+
{'accuracy': 0.8704128440366973}
|
| 130 |
+
{'accuracy': 0.8520642201834863}
|
| 131 |
+
{'accuracy': 0.8371559633027523}
|
| 132 |
+
{'accuracy': 0.8451834862385321}
|
| 133 |
+
{'accuracy': 0.8635321100917431}
|
| 134 |
+
{'accuracy': 0.8623853211009175}
|
| 135 |
+
{'accuracy': 0.8520642201834863}
|
| 136 |
+
{'accuracy': 0.8497706422018348}
|
| 137 |
+
{'accuracy': 0.8451834862385321}
|
| 138 |
+
{'accuracy': 0.8612385321100917}
|
| 139 |
+
{'accuracy': 0.8623853211009175}
|
| 140 |
+
{'accuracy': 0.8635321100917431}
|
| 141 |
+
{'accuracy': 0.856651376146789}
|
| 142 |
+
{'accuracy': 0.856651376146789}
|
| 143 |
+
{'accuracy': 0.8302752293577982}
|
| 144 |
+
{'accuracy': 0.8612385321100917}
|
| 145 |
+
{'accuracy': 0.8463302752293578}
|
| 146 |
+
{'accuracy': 0.8589449541284404}
|
| 147 |
+
{'accuracy': 0.8486238532110092}
|
| 148 |
+
{'accuracy': 0.8658256880733946}
|
| 149 |
+
{'accuracy': 0.8635321100917431}
|
| 150 |
+
{'accuracy': 0.8532110091743119}
|
| 151 |
+
{'accuracy': 0.8612385321100917}
|
| 152 |
+
{'accuracy': 0.8555045871559633}
|
| 153 |
+
{'accuracy': 0.8428899082568807}
|
| 154 |
+
{'accuracy': 0.8646788990825688}
|
| 155 |
+
{'accuracy': 0.8623853211009175}
|
| 156 |
+
{'accuracy': 0.8623853211009175}
|
| 157 |
+
{'accuracy': 0.856651376146789}
|
| 158 |
+
{'accuracy': 0.8612385321100917}
|
| 159 |
+
{'accuracy': 0.8635321100917431}
|
| 160 |
+
{'accuracy': 0.8543577981651376}
|
| 161 |
+
{'accuracy': 0.8577981651376146}
|
| 162 |
+
{'accuracy': 0.8658256880733946}
|
| 163 |
+
{'accuracy': 0.856651376146789}
|
| 164 |
+
{'accuracy': 0.8658256880733946}
|
| 165 |
+
{'accuracy': 0.8635321100917431}
|
| 166 |
+
{'accuracy': 0.8646788990825688}
|
| 167 |
+
{'accuracy': 0.8681192660550459}
|
| 168 |
+
{'accuracy': 0.8612385321100917}
|
| 169 |
+
{'accuracy': 0.8692660550458715}
|
| 170 |
+
{'accuracy': 0.8589449541284404}
|
| 171 |
+
{'accuracy': 0.8635321100917431}
|
| 172 |
+
{'accuracy': 0.8555045871559633}
|
| 173 |
+
{'accuracy': 0.8497706422018348}
|
| 174 |
+
{'accuracy': 0.8394495412844036}
|
| 175 |
+
{'accuracy': 0.8577981651376146}
|
| 176 |
+
{'accuracy': 0.8669724770642202}
|
| 177 |
+
{'accuracy': 0.8635321100917431}
|
| 178 |
+
{'accuracy': 0.8727064220183486}
|
| 179 |
+
{'accuracy': 0.8520642201834863}
|
| 180 |
+
{'accuracy': 0.8405963302752294}
|
| 181 |
+
{'accuracy': 0.8600917431192661}
|
| 182 |
+
{'accuracy': 0.8543577981651376}
|
| 183 |
+
{'accuracy': 0.8577981651376146}
|
| 184 |
+
{'accuracy': 0.856651376146789}
|
| 185 |
+
{'accuracy': 0.8543577981651376}
|
| 186 |
+
{'accuracy': 0.8612385321100917}
|
| 187 |
+
{'accuracy': 0.8589449541284404}
|
| 188 |
+
{'accuracy': 0.8440366972477065}
|
| 189 |
+
{'accuracy': 0.8532110091743119}
|
| 190 |
+
{'accuracy': 0.8371559633027523}
|
| 191 |
+
{'accuracy': 0.8543577981651376}
|
| 192 |
+
{'accuracy': 0.8589449541284404}
|
| 193 |
+
{'accuracy': 0.8440366972477065}
|
| 194 |
+
{'accuracy': 0.8486238532110092}
|
| 195 |
+
{'accuracy': 0.8486238532110092}
|
| 196 |
+
{'accuracy': 0.8451834862385321}
|
| 197 |
+
{'accuracy': 0.8589449541284404}
|
| 198 |
+
{'accuracy': 0.856651376146789}
|
| 199 |
+
{'accuracy': 0.8623853211009175}
|
| 200 |
+
{'accuracy': 0.8658256880733946}
|
| 201 |
+
{'accuracy': 0.8509174311926605}
|
| 202 |
+
{'accuracy': 0.8532110091743119}
|
| 203 |
+
{'accuracy': 0.8623853211009175}
|
| 204 |
+
{'accuracy': 0.8600917431192661}
|
| 205 |
+
{'accuracy': 0.8577981651376146}
|
| 206 |
+
{'accuracy': 0.8532110091743119}
|
| 207 |
+
{'accuracy': 0.8325688073394495}
|
| 208 |
+
{'accuracy': 0.8555045871559633}
|
| 209 |
+
{'accuracy': 0.8635321100917431}
|
| 210 |
+
{'accuracy': 0.8440366972477065}
|
| 211 |
+
{'accuracy': 0.8486238532110092}
|
| 212 |
+
{'accuracy': 0.8543577981651376}
|
| 213 |
+
{'accuracy': 0.8509174311926605}
|
| 214 |
+
{'accuracy': 0.8612385321100917}
|
| 215 |
+
{'accuracy': 0.8612385321100917}
|
| 216 |
+
{'accuracy': 0.8612385321100917}
|
| 217 |
+
{'accuracy': 0.8635321100917431}
|
| 218 |
+
{'accuracy': 0.8509174311926605}
|
| 219 |
+
{'accuracy': 0.8612385321100917}
|
| 220 |
+
{'accuracy': 0.8635321100917431}
|
| 221 |
+
{'accuracy': 0.8577981651376146}
|
| 222 |
+
{'accuracy': 0.8577981651376146}
|
| 223 |
+
{'accuracy': 0.8635321100917431}
|
| 224 |
+
{'accuracy': 0.8577981651376146}
|
| 225 |
+
{'accuracy': 0.8612385321100917}
|
| 226 |
+
{'accuracy': 0.8463302752293578}
|
| 227 |
+
{'accuracy': 0.8612385321100917}
|
| 228 |
+
{'accuracy': 0.8577981651376146}
|
| 229 |
+
{'accuracy': 0.8555045871559633}
|
| 230 |
+
{'accuracy': 0.8646788990825688}
|
| 231 |
+
{'accuracy': 0.8222477064220184}
|
| 232 |
+
{'accuracy': 0.8532110091743119}
|
| 233 |
+
{'accuracy': 0.8600917431192661}
|
| 234 |
+
{'accuracy': 0.8589449541284404}
|
| 235 |
+
{'accuracy': 0.8612385321100917}
|
| 236 |
+
{'accuracy': 0.8520642201834863}
|
| 237 |
+
{'accuracy': 0.856651376146789}
|
| 238 |
+
{'accuracy': 0.8577981651376146}
|
| 239 |
+
{'accuracy': 0.8532110091743119}
|
| 240 |
+
{'accuracy': 0.8509174311926605}
|
| 241 |
+
{'accuracy': 0.8497706422018348}
|
| 242 |
+
{'accuracy': 0.8646788990825688}
|
| 243 |
+
{'accuracy': 0.8646788990825688}
|
| 244 |
+
{'accuracy': 0.8543577981651376}
|
| 245 |
+
{'accuracy': 0.856651376146789}
|
| 246 |
+
{'accuracy': 0.8543577981651376}
|
| 247 |
+
{'accuracy': 0.8520642201834863}
|
| 248 |
+
{'accuracy': 0.8612385321100917}
|
| 249 |
+
{'accuracy': 0.8348623853211009}
|
| 250 |
+
{'accuracy': 0.856651376146789}
|
| 251 |
+
{'accuracy': 0.8509174311926605}
|
| 252 |
+
{'accuracy': 0.8555045871559633}
|
| 253 |
+
{'accuracy': 0.8497706422018348}
|
| 254 |
+
{'accuracy': 0.8543577981651376}
|
| 255 |
+
{'accuracy': 0.8589449541284404}
|
| 256 |
+
{'accuracy': 0.856651376146789}
|
| 257 |
+
{'accuracy': 0.8509174311926605}
|
| 258 |
+
{'accuracy': 0.8486238532110092}
|
| 259 |
+
{'accuracy': 0.8497706422018348}
|
| 260 |
+
{'accuracy': 0.8486238532110092}
|
| 261 |
+
{'accuracy': 0.8440366972477065}
|
| 262 |
+
{'accuracy': 0.8555045871559633}
|
| 263 |
+
{'accuracy': 0.8555045871559633}
|
| 264 |
+
{'accuracy': 0.8451834862385321}
|
| 265 |
+
{'accuracy': 0.8543577981651376}
|
| 266 |
+
{'accuracy': 0.856651376146789}
|
| 267 |
+
{'accuracy': 0.8555045871559633}
|
| 268 |
+
{'accuracy': 0.8577981651376146}
|
| 269 |
+
{'accuracy': 0.8532110091743119}
|
| 270 |
+
{'accuracy': 0.8428899082568807}
|
| 271 |
+
{'accuracy': 0.8555045871559633}
|
| 272 |
+
{'accuracy': 0.8520642201834863}
|
| 273 |
+
{'accuracy': 0.8153669724770642}
|
| 274 |
+
{'accuracy': 0.8532110091743119}
|
| 275 |
+
{'accuracy': 0.8577981651376146}
|
| 276 |
+
{'accuracy': 0.8463302752293578}
|
| 277 |
+
{'accuracy': 0.8486238532110092}
|
| 278 |
+
{'accuracy': 0.841743119266055}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "do_basic_tokenize": true, "model_max_length": 512, "name_or_path": "/home.local/jianwei/workspace/archive/SparseOptimizer/output/Layer_7_12_Hid_160_768_Head_10_12_IMRatio_3.5", "never_split": null, "special_tokens_map_file": "/home.local/jianwei/.cache/huggingface/transformers/b680d52711d2451bbd6c6b1700365d6d731977c1357ae86bd7227f61145d3be2.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d", "tokenizer_class": "BertTokenizer"}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|