Jinawei commited on
Commit
816604f
·
1 Parent(s): 5b5c5b2

Upload 8 files

Browse files
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home.local/jianwei/workspace/archive/SparseOptimizer/output/Layer_7_12_Hid_160_768_Head_10_12_IMRatio_3.5",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "embedding_size": 160,
9
+ "finetuning_task": "sst2",
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 160,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 560,
16
+ "layer_norm_eps": 1e-12,
17
+ "max_position_embeddings": 512,
18
+ "model_type": "bert",
19
+ "num_attention_heads": 10,
20
+ "num_hidden_layers": 7,
21
+ "output_intermediate": true,
22
+ "output_past": true,
23
+ "pad_token_id": 0,
24
+ "position_embedding_type": "absolute",
25
+ "problem_type": "single_label_classification",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.17.0",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
log_bs32_lr3e-05_20221118_065016_906968.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:006f2260d1a1e296e8ad12c6b2f9928914b37550e8a92b9b95c27bca8e91e843
3
+ size 34299149
result.txt ADDED
@@ -0,0 +1,278 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {'accuracy': 0.4908256880733945}
2
+ {'accuracy': 0.4908256880733945}
3
+ {'accuracy': 0.5355504587155964}
4
+ {'accuracy': 0.5091743119266054}
5
+ {'accuracy': 0.5091743119266054}
6
+ {'accuracy': 0.6284403669724771}
7
+ {'accuracy': 0.7236238532110092}
8
+ {'accuracy': 0.7385321100917431}
9
+ {'accuracy': 0.7568807339449541}
10
+ {'accuracy': 0.7637614678899083}
11
+ {'accuracy': 0.7752293577981652}
12
+ {'accuracy': 0.7717889908256881}
13
+ {'accuracy': 0.7752293577981652}
14
+ {'accuracy': 0.7798165137614679}
15
+ {'accuracy': 0.7821100917431193}
16
+ {'accuracy': 0.7775229357798165}
17
+ {'accuracy': 0.7993119266055045}
18
+ {'accuracy': 0.7993119266055045}
19
+ {'accuracy': 0.801605504587156}
20
+ {'accuracy': 0.8096330275229358}
21
+ {'accuracy': 0.8084862385321101}
22
+ {'accuracy': 0.819954128440367}
23
+ {'accuracy': 0.8142201834862385}
24
+ {'accuracy': 0.819954128440367}
25
+ {'accuracy': 0.8245412844036697}
26
+ {'accuracy': 0.8291284403669725}
27
+ {'accuracy': 0.8291284403669725}
28
+ {'accuracy': 0.8176605504587156}
29
+ {'accuracy': 0.8245412844036697}
30
+ {'accuracy': 0.8084862385321101}
31
+ {'accuracy': 0.8279816513761468}
32
+ {'accuracy': 0.823394495412844}
33
+ {'accuracy': 0.8142201834862385}
34
+ {'accuracy': 0.8188073394495413}
35
+ {'accuracy': 0.8279816513761468}
36
+ {'accuracy': 0.8302752293577982}
37
+ {'accuracy': 0.8371559633027523}
38
+ {'accuracy': 0.8027522935779816}
39
+ {'accuracy': 0.8394495412844036}
40
+ {'accuracy': 0.8428899082568807}
41
+ {'accuracy': 0.841743119266055}
42
+ {'accuracy': 0.8474770642201835}
43
+ {'accuracy': 0.8463302752293578}
44
+ {'accuracy': 0.8325688073394495}
45
+ {'accuracy': 0.8474770642201835}
46
+ {'accuracy': 0.8486238532110092}
47
+ {'accuracy': 0.8509174311926605}
48
+ {'accuracy': 0.8474770642201835}
49
+ {'accuracy': 0.8451834862385321}
50
+ {'accuracy': 0.8577981651376146}
51
+ {'accuracy': 0.8440366972477065}
52
+ {'accuracy': 0.8520642201834863}
53
+ {'accuracy': 0.8600917431192661}
54
+ {'accuracy': 0.8600917431192661}
55
+ {'accuracy': 0.8474770642201835}
56
+ {'accuracy': 0.856651376146789}
57
+ {'accuracy': 0.856651376146789}
58
+ {'accuracy': 0.8589449541284404}
59
+ {'accuracy': 0.8497706422018348}
60
+ {'accuracy': 0.8623853211009175}
61
+ {'accuracy': 0.8681192660550459}
62
+ {'accuracy': 0.8589449541284404}
63
+ {'accuracy': 0.8486238532110092}
64
+ {'accuracy': 0.8681192660550459}
65
+ {'accuracy': 0.8635321100917431}
66
+ {'accuracy': 0.8463302752293578}
67
+ {'accuracy': 0.856651376146789}
68
+ {'accuracy': 0.8623853211009175}
69
+ {'accuracy': 0.8360091743119266}
70
+ {'accuracy': 0.8577981651376146}
71
+ {'accuracy': 0.8577981651376146}
72
+ {'accuracy': 0.8635321100917431}
73
+ {'accuracy': 0.8646788990825688}
74
+ {'accuracy': 0.841743119266055}
75
+ {'accuracy': 0.8509174311926605}
76
+ {'accuracy': 0.8646788990825688}
77
+ {'accuracy': 0.856651376146789}
78
+ {'accuracy': 0.8497706422018348}
79
+ {'accuracy': 0.8600917431192661}
80
+ {'accuracy': 0.8577981651376146}
81
+ {'accuracy': 0.8635321100917431}
82
+ {'accuracy': 0.8635321100917431}
83
+ {'accuracy': 0.8612385321100917}
84
+ {'accuracy': 0.8520642201834863}
85
+ {'accuracy': 0.8600917431192661}
86
+ {'accuracy': 0.8635321100917431}
87
+ {'accuracy': 0.8463302752293578}
88
+ {'accuracy': 0.8497706422018348}
89
+ {'accuracy': 0.8474770642201835}
90
+ {'accuracy': 0.8555045871559633}
91
+ {'accuracy': 0.8577981651376146}
92
+ {'accuracy': 0.8635321100917431}
93
+ {'accuracy': 0.8635321100917431}
94
+ {'accuracy': 0.8577981651376146}
95
+ {'accuracy': 0.8394495412844036}
96
+ {'accuracy': 0.8405963302752294}
97
+ {'accuracy': 0.838302752293578}
98
+ {'accuracy': 0.8532110091743119}
99
+ {'accuracy': 0.8497706422018348}
100
+ {'accuracy': 0.8532110091743119}
101
+ {'accuracy': 0.8440366972477065}
102
+ {'accuracy': 0.8497706422018348}
103
+ {'accuracy': 0.8405963302752294}
104
+ {'accuracy': 0.8463302752293578}
105
+ {'accuracy': 0.8589449541284404}
106
+ {'accuracy': 0.8543577981651376}
107
+ {'accuracy': 0.8360091743119266}
108
+ {'accuracy': 0.8371559633027523}
109
+ {'accuracy': 0.8486238532110092}
110
+ {'accuracy': 0.8543577981651376}
111
+ {'accuracy': 0.8497706422018348}
112
+ {'accuracy': 0.8451834862385321}
113
+ {'accuracy': 0.8463302752293578}
114
+ {'accuracy': 0.8474770642201835}
115
+ {'accuracy': 0.8268348623853211}
116
+ {'accuracy': 0.8497706422018348}
117
+ {'accuracy': 0.8589449541284404}
118
+ {'accuracy': 0.8474770642201835}
119
+ {'accuracy': 0.8577981651376146}
120
+ {'accuracy': 0.8612385321100917}
121
+ {'accuracy': 0.8623853211009175}
122
+ {'accuracy': 0.8600917431192661}
123
+ {'accuracy': 0.8589449541284404}
124
+ {'accuracy': 0.8520642201834863}
125
+ {'accuracy': 0.8509174311926605}
126
+ {'accuracy': 0.8612385321100917}
127
+ {'accuracy': 0.8520642201834863}
128
+ {'accuracy': 0.856651376146789}
129
+ {'accuracy': 0.8704128440366973}
130
+ {'accuracy': 0.8520642201834863}
131
+ {'accuracy': 0.8371559633027523}
132
+ {'accuracy': 0.8451834862385321}
133
+ {'accuracy': 0.8635321100917431}
134
+ {'accuracy': 0.8623853211009175}
135
+ {'accuracy': 0.8520642201834863}
136
+ {'accuracy': 0.8497706422018348}
137
+ {'accuracy': 0.8451834862385321}
138
+ {'accuracy': 0.8612385321100917}
139
+ {'accuracy': 0.8623853211009175}
140
+ {'accuracy': 0.8635321100917431}
141
+ {'accuracy': 0.856651376146789}
142
+ {'accuracy': 0.856651376146789}
143
+ {'accuracy': 0.8302752293577982}
144
+ {'accuracy': 0.8612385321100917}
145
+ {'accuracy': 0.8463302752293578}
146
+ {'accuracy': 0.8589449541284404}
147
+ {'accuracy': 0.8486238532110092}
148
+ {'accuracy': 0.8658256880733946}
149
+ {'accuracy': 0.8635321100917431}
150
+ {'accuracy': 0.8532110091743119}
151
+ {'accuracy': 0.8612385321100917}
152
+ {'accuracy': 0.8555045871559633}
153
+ {'accuracy': 0.8428899082568807}
154
+ {'accuracy': 0.8646788990825688}
155
+ {'accuracy': 0.8623853211009175}
156
+ {'accuracy': 0.8623853211009175}
157
+ {'accuracy': 0.856651376146789}
158
+ {'accuracy': 0.8612385321100917}
159
+ {'accuracy': 0.8635321100917431}
160
+ {'accuracy': 0.8543577981651376}
161
+ {'accuracy': 0.8577981651376146}
162
+ {'accuracy': 0.8658256880733946}
163
+ {'accuracy': 0.856651376146789}
164
+ {'accuracy': 0.8658256880733946}
165
+ {'accuracy': 0.8635321100917431}
166
+ {'accuracy': 0.8646788990825688}
167
+ {'accuracy': 0.8681192660550459}
168
+ {'accuracy': 0.8612385321100917}
169
+ {'accuracy': 0.8692660550458715}
170
+ {'accuracy': 0.8589449541284404}
171
+ {'accuracy': 0.8635321100917431}
172
+ {'accuracy': 0.8555045871559633}
173
+ {'accuracy': 0.8497706422018348}
174
+ {'accuracy': 0.8394495412844036}
175
+ {'accuracy': 0.8577981651376146}
176
+ {'accuracy': 0.8669724770642202}
177
+ {'accuracy': 0.8635321100917431}
178
+ {'accuracy': 0.8727064220183486}
179
+ {'accuracy': 0.8520642201834863}
180
+ {'accuracy': 0.8405963302752294}
181
+ {'accuracy': 0.8600917431192661}
182
+ {'accuracy': 0.8543577981651376}
183
+ {'accuracy': 0.8577981651376146}
184
+ {'accuracy': 0.856651376146789}
185
+ {'accuracy': 0.8543577981651376}
186
+ {'accuracy': 0.8612385321100917}
187
+ {'accuracy': 0.8589449541284404}
188
+ {'accuracy': 0.8440366972477065}
189
+ {'accuracy': 0.8532110091743119}
190
+ {'accuracy': 0.8371559633027523}
191
+ {'accuracy': 0.8543577981651376}
192
+ {'accuracy': 0.8589449541284404}
193
+ {'accuracy': 0.8440366972477065}
194
+ {'accuracy': 0.8486238532110092}
195
+ {'accuracy': 0.8486238532110092}
196
+ {'accuracy': 0.8451834862385321}
197
+ {'accuracy': 0.8589449541284404}
198
+ {'accuracy': 0.856651376146789}
199
+ {'accuracy': 0.8623853211009175}
200
+ {'accuracy': 0.8658256880733946}
201
+ {'accuracy': 0.8509174311926605}
202
+ {'accuracy': 0.8532110091743119}
203
+ {'accuracy': 0.8623853211009175}
204
+ {'accuracy': 0.8600917431192661}
205
+ {'accuracy': 0.8577981651376146}
206
+ {'accuracy': 0.8532110091743119}
207
+ {'accuracy': 0.8325688073394495}
208
+ {'accuracy': 0.8555045871559633}
209
+ {'accuracy': 0.8635321100917431}
210
+ {'accuracy': 0.8440366972477065}
211
+ {'accuracy': 0.8486238532110092}
212
+ {'accuracy': 0.8543577981651376}
213
+ {'accuracy': 0.8509174311926605}
214
+ {'accuracy': 0.8612385321100917}
215
+ {'accuracy': 0.8612385321100917}
216
+ {'accuracy': 0.8612385321100917}
217
+ {'accuracy': 0.8635321100917431}
218
+ {'accuracy': 0.8509174311926605}
219
+ {'accuracy': 0.8612385321100917}
220
+ {'accuracy': 0.8635321100917431}
221
+ {'accuracy': 0.8577981651376146}
222
+ {'accuracy': 0.8577981651376146}
223
+ {'accuracy': 0.8635321100917431}
224
+ {'accuracy': 0.8577981651376146}
225
+ {'accuracy': 0.8612385321100917}
226
+ {'accuracy': 0.8463302752293578}
227
+ {'accuracy': 0.8612385321100917}
228
+ {'accuracy': 0.8577981651376146}
229
+ {'accuracy': 0.8555045871559633}
230
+ {'accuracy': 0.8646788990825688}
231
+ {'accuracy': 0.8222477064220184}
232
+ {'accuracy': 0.8532110091743119}
233
+ {'accuracy': 0.8600917431192661}
234
+ {'accuracy': 0.8589449541284404}
235
+ {'accuracy': 0.8612385321100917}
236
+ {'accuracy': 0.8520642201834863}
237
+ {'accuracy': 0.856651376146789}
238
+ {'accuracy': 0.8577981651376146}
239
+ {'accuracy': 0.8532110091743119}
240
+ {'accuracy': 0.8509174311926605}
241
+ {'accuracy': 0.8497706422018348}
242
+ {'accuracy': 0.8646788990825688}
243
+ {'accuracy': 0.8646788990825688}
244
+ {'accuracy': 0.8543577981651376}
245
+ {'accuracy': 0.856651376146789}
246
+ {'accuracy': 0.8543577981651376}
247
+ {'accuracy': 0.8520642201834863}
248
+ {'accuracy': 0.8612385321100917}
249
+ {'accuracy': 0.8348623853211009}
250
+ {'accuracy': 0.856651376146789}
251
+ {'accuracy': 0.8509174311926605}
252
+ {'accuracy': 0.8555045871559633}
253
+ {'accuracy': 0.8497706422018348}
254
+ {'accuracy': 0.8543577981651376}
255
+ {'accuracy': 0.8589449541284404}
256
+ {'accuracy': 0.856651376146789}
257
+ {'accuracy': 0.8509174311926605}
258
+ {'accuracy': 0.8486238532110092}
259
+ {'accuracy': 0.8497706422018348}
260
+ {'accuracy': 0.8486238532110092}
261
+ {'accuracy': 0.8440366972477065}
262
+ {'accuracy': 0.8555045871559633}
263
+ {'accuracy': 0.8555045871559633}
264
+ {'accuracy': 0.8451834862385321}
265
+ {'accuracy': 0.8543577981651376}
266
+ {'accuracy': 0.856651376146789}
267
+ {'accuracy': 0.8555045871559633}
268
+ {'accuracy': 0.8577981651376146}
269
+ {'accuracy': 0.8532110091743119}
270
+ {'accuracy': 0.8428899082568807}
271
+ {'accuracy': 0.8555045871559633}
272
+ {'accuracy': 0.8520642201834863}
273
+ {'accuracy': 0.8153669724770642}
274
+ {'accuracy': 0.8532110091743119}
275
+ {'accuracy': 0.8577981651376146}
276
+ {'accuracy': 0.8463302752293578}
277
+ {'accuracy': 0.8486238532110092}
278
+ {'accuracy': 0.841743119266055}
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "do_basic_tokenize": true, "model_max_length": 512, "name_or_path": "/home.local/jianwei/workspace/archive/SparseOptimizer/output/Layer_7_12_Hid_160_768_Head_10_12_IMRatio_3.5", "never_split": null, "special_tokens_map_file": "/home.local/jianwei/.cache/huggingface/transformers/b680d52711d2451bbd6c6b1700365d6d731977c1357ae86bd7227f61145d3be2.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d", "tokenizer_class": "BertTokenizer"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff