Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,47 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
- tr
|
| 6 |
+
tags:
|
| 7 |
+
- traffic
|
| 8 |
+
- sign
|
| 9 |
+
- trafficsign
|
| 10 |
+
- detection
|
| 11 |
+
- yolo8
|
| 12 |
+
- object
|
| 13 |
+
- recognition
|
| 14 |
+
---
|
| 15 |
+
# 🚦 Traffic Sign Recognition ML Model (YOLOv8)
|
| 16 |
+
|
| 17 |
+
## 🧠 Model Summary
|
| 18 |
+
|
| 19 |
+
This machine learning model is developed to **detect and classify traffic signs** using the **YOLOv8 (You Only Look Once v8)** object detection architecture. Trained on a dataset containing over **30,000 labeled images of traffic signs**, this model can accurately identify a wide variety of road signs for use in autonomous driving, smart city solutions, and advanced driver-assistance systems (ADAS).
|
| 20 |
+
|
| 21 |
+
- **Architecture**: YOLOv8
|
| 22 |
+
- **Task**: Object Detection & Multi-class Classification
|
| 23 |
+
- **Dataset**: 30,000+ labeled traffic sign images
|
| 24 |
+
- **Fine-tunable**: ✅ Yes
|
| 25 |
+
- **License**: MIT
|
| 26 |
+
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
## 🚀 Usage Example
|
| 30 |
+
|
| 31 |
+
```python
|
| 32 |
+
from ultralytics import YOLO
|
| 33 |
+
|
| 34 |
+
# Load the trained YOLOv8 model
|
| 35 |
+
model = YOLO("path/to/best.pt") # Replace with actual model path
|
| 36 |
+
|
| 37 |
+
# Run inference on a test image
|
| 38 |
+
results = model("path/to/traffic_image.jpg")
|
| 39 |
+
|
| 40 |
+
# Visualize results
|
| 41 |
+
results.show()
|
| 42 |
+
|
| 43 |
+
# Access predictions
|
| 44 |
+
for r in results:
|
| 45 |
+
boxes = r.boxes
|
| 46 |
+
for box in boxes:
|
| 47 |
+
print(f"Class: {int(box.cls[0])}, Confidence: {box.conf[0]:.2f}")
|