File size: 1,669 Bytes
ae7179b
2340534
bdb6d4f
2340534
 
bdb6d4f
 
fc78ec6
 
 
ae7179b
 
fc78ec6
 
ae7179b
fc78ec6
ae7179b
fc78ec6
 
bdb6d4f
 
ae7179b
fc78ec6
ae7179b
fc78ec6
ae7179b
fc78ec6
ae7179b
fc78ec6
ae7179b
fc78ec6
ae7179b
fc78ec6
ae7179b
fc78ec6
ae7179b
fc78ec6
ae7179b
fc78ec6
 
 
 
 
 
 
bdb6d4f
 
fc78ec6
ae7179b
fc78ec6
ae7179b
fc78ec6
 
bdb6d4f
 
 
 
ae7179b
 
fc78ec6
ae7179b
fc78ec6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
base_model: facebook/wav2vec2-large-960h
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-base-cv-demo-google-colab
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-cv-demo-google-colab

This model is a fine-tuned version of [facebook/wav2vec2-large-960h](https://huggingface.co/facebook/wav2vec2-large-960h) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3575
- Wer: 0.2805

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 8.951         | 0.7126 | 300  | 3.0660          | 1.0    |
| 3.0514        | 1.4252 | 600  | 2.9228          | 1.0    |
| 2.7598        | 2.1378 | 900  | 0.7960          | 0.5544 |
| 0.7975        | 2.8504 | 1200 | 0.3575          | 0.2805 |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1