Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,44 +1,39 @@
|
|
| 1 |
---
|
|
|
|
| 2 |
base_model:
|
| 3 |
-
- Qwen/Qwen2.5-Coder-7B-Instruct
|
| 4 |
-
- lightblue/Karasu-DPO-7B
|
| 5 |
-
library_name: transformers
|
| 6 |
tags:
|
| 7 |
-
-
|
| 8 |
-
-
|
| 9 |
-
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
-
# dare_ties_merged_0.3
|
| 12 |
-
|
| 13 |
-
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
|
| 14 |
|
| 15 |
-
|
| 16 |
-
### Merge Method
|
| 17 |
|
| 18 |
-
This
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
|
|
|
| 26 |
|
| 27 |
-
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
base_model: Qwen/Qwen2.5-Coder-7B-Instruct
|
| 32 |
-
models:
|
| 33 |
-
- model: Qwen/Qwen2.5-Coder-7B-Instruct
|
| 34 |
-
parameters:
|
| 35 |
-
weight: 0.7
|
| 36 |
-
density: 0.5
|
| 37 |
-
- model: lightblue/Karasu-DPO-7B
|
| 38 |
-
parameters:
|
| 39 |
-
weight: 0.3
|
| 40 |
-
density: 0.5
|
| 41 |
-
parameters:
|
| 42 |
-
int8_mask: true
|
| 43 |
-
dtype: bfloat16
|
| 44 |
```
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
base_model:
|
| 4 |
+
- Qwen/Qwen2.5-Coder-7B-Instruct
|
| 5 |
+
- lightblue/Karasu-DPO-7B
|
|
|
|
| 6 |
tags:
|
| 7 |
+
- merge
|
| 8 |
+
- mergekit
|
| 9 |
+
- dare_ties
|
| 10 |
+
- japanese
|
| 11 |
+
- coding
|
| 12 |
---
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
# DARE-TIES Merged Model (Ratio: 0.3)
|
|
|
|
| 15 |
|
| 16 |
+
This is a merged model created using the DARE_TIES method with mergekit.
|
| 17 |
|
| 18 |
+
## Base Models
|
| 19 |
+
- **Qwen/Qwen2.5-Coder-7B-Instruct** (Weight: 0.7)
|
| 20 |
+
- **lightblue/Karasu-DPO-7B** (Weight: 0.3)
|
| 21 |
|
| 22 |
+
## Merge Method
|
| 23 |
+
- **Method**: DARE_TIES
|
| 24 |
+
- **Density**: 0.5
|
| 25 |
+
- **Data Type**: bfloat16
|
| 26 |
|
| 27 |
+
## Purpose
|
| 28 |
+
This model aims to enhance Japanese code generation capabilities while maintaining English coding performance.
|
| 29 |
|
| 30 |
+
## Usage
|
| 31 |
+
```python
|
| 32 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 33 |
|
| 34 |
+
tokenizer = AutoTokenizer.from_pretrained("noirchan/DARE-TIES-Qwen2.5-Coder-Karasu-0.3")
|
| 35 |
+
model = AutoModelForCausalLM.from_pretrained("noirchan/DARE-TIES-Qwen2.5-Coder-Karasu-0.3")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
```
|
| 37 |
+
|
| 38 |
+
## Evaluation
|
| 39 |
+
This model is part of a systematic evaluation of different merge ratios to find the optimal balance between Japanese language capabilities and code generation performance.
|