--- license: apache-2.0 base_model: - Qwen/Qwen2.5-Coder-7B-Instruct - lightblue/Karasu-DPO-7B tags: - merge - mergekit - dare_ties - japanese - coding --- # DARE-TIES Merged Model (Ratio: 0.3) This is a merged model created using the DARE_TIES method with mergekit. ## Base Models - **Qwen/Qwen2.5-Coder-7B-Instruct** (Weight: 0.7) - **lightblue/Karasu-DPO-7B** (Weight: 0.3) ## Merge Method - **Method**: DARE_TIES - **Density**: 0.5 - **Data Type**: bfloat16 ## Purpose This model aims to enhance Japanese code generation capabilities while maintaining English coding performance. ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("noirchan/DARE-TIES-Qwen2.5-Coder-Karasu-0.3") model = AutoModelForCausalLM.from_pretrained("noirchan/DARE-TIES-Qwen2.5-Coder-Karasu-0.3") ``` ## Evaluation This model is part of a systematic evaluation of different merge ratios to find the optimal balance between Japanese language capabilities and code generation performance.