| import os | |
| kwargs = { | |
| 'per_device_train_batch_size': 5, | |
| 'save_steps': 5, | |
| 'gradient_accumulation_steps': 1, | |
| 'num_train_epochs': 1, | |
| } | |
| def test_train_eval_loop(): | |
| os.environ['CUDA_VISIBLE_DEVICES'] = '0,2' | |
| from swift.llm import sft_main, TrainArguments | |
| sft_main( | |
| TrainArguments( | |
| model='Qwen/Qwen2.5-0.5B-Instruct', | |
| dataset=['AI-ModelScope/alpaca-gpt4-data-zh#100'], | |
| target_modules=['all-linear', 'all-embedding'], | |
| modules_to_save=['all-embedding', 'all-norm'], | |
| eval_strategy='steps', | |
| eval_steps=5, | |
| per_device_eval_batch_size=5, | |
| eval_use_evalscope=True, | |
| eval_datasets=['gsm8k'], | |
| eval_datasets_args={'gsm8k': { | |
| 'few_shot_num': 0 | |
| }}, | |
| eval_limit=10, | |
| report_to=['wandb'], | |
| **kwargs)) | |
| if __name__ == '__main__': | |
| test_train_eval_loop() | |