# NPU支持 作者: [chuanzhubin](https://github.com/chuanzhubin) ## 环境准备 实验环境:8 * 昇腾910B3 64G (设备由[@chuanzhubin](https://github.com/chuanzhubin)提供, 感谢对modelscope和swift的支持~) ```shell # 创建新的conda虚拟环境(可选) conda create -n swift-npu python=3.10 -y conda activate swift-npu # 设置pip全局镜像 (可选,加速下载) pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/ pip install ms-swift -U # 安装torch-npu pip install torch-npu decorator # 如果你想要使用deepspeed (控制显存占用,训练速度会有一定下降) pip install deepspeed ``` 测试环境是否安装正确,NPU能否被正常加载: ```python from transformers.utils import is_torch_npu_available import torch print(is_torch_npu_available()) # True print(torch.npu.device_count()) # 8 print(torch.randn(10, device='npu:0')) ``` 查看NPU的P2P连接,这里看到每个NPU都通过7条HCCS与其他NPU互联 ```shell (valle) root@valle:~/src# npu-smi info -t topo NPU0 NPU1 NPU2 NPU3 NPU4 NPU5 NPU6 NPU7 CPU Affinity NPU0 X HCCS HCCS HCCS HCCS HCCS HCCS HCCS 144-167 NPU1 HCCS X HCCS HCCS HCCS HCCS HCCS HCCS 144-167 NPU2 HCCS HCCS X HCCS HCCS HCCS HCCS HCCS 96-119 NPU3 HCCS HCCS HCCS X HCCS HCCS HCCS HCCS 96-119 NPU4 HCCS HCCS HCCS HCCS X HCCS HCCS HCCS 0-23 NPU5 HCCS HCCS HCCS HCCS HCCS X HCCS HCCS 0-23 NPU6 HCCS HCCS HCCS HCCS HCCS HCCS X HCCS 48-71 NPU7 HCCS HCCS HCCS HCCS HCCS HCCS HCCS X 48-71 Legend: X = Self SYS = Path traversing PCIe and NUMA nodes. Nodes are connected through SMP, such as QPI, UPI. PHB = Path traversing PCIe and the PCIe host bridge of a CPU. PIX = Path traversing a single PCIe switch PXB = Path traversing multiple PCIe switches HCCS = Connection traversing HCCS. NA = Unknown relationship. ``` 查看NPU状态, npu-smi命令详解可以查看[官方文档](https://support.huawei.com/enterprise/zh/doc/EDOC1100079287/10dcd668) ```shell (valle) root@valle:~/src# npu-smi info +------------------------------------------------------------------------------------------------+ | npu-smi 24.1.rc1.b030 Version: 24.1.rc1.b030 | +---------------------------+---------------+----------------------------------------------------+ | NPU Name | Health | Power(W) Temp(C) Hugepages-Usage(page)| | Chip | Bus-Id | AICore(%) Memory-Usage(MB) HBM-Usage(MB) | +===========================+===============+====================================================+ | 0 910B3 | OK | 101.8 43 0 / 0 | | 0 | 0000:C1:00.0 | 0 0 / 0 3318 / 65536 | +===========================+===============+====================================================+ | 1 910B3 | OK | 92.0 39 0 / 0 | | 0 | 0000:C2:00.0 | 0 0 / 0 3314 / 65536 | +===========================+===============+====================================================+ | 2 910B3 | OK | 102.0 40 0 / 0 | | 0 | 0000:81:00.0 | 0 0 / 0 3314 / 65536 | +===========================+===============+====================================================+ | 3 910B3 | OK | 99.8 40 0 / 0 | | 0 | 0000:82:00.0 | 0 0 / 0 3314 / 65536 | +===========================+===============+====================================================+ | 4 910B3 | OK | 98.6 45 0 / 0 | | 0 | 0000:01:00.0 | 0 0 / 0 3314 / 65536 | +===========================+===============+====================================================+ | 5 910B3 | OK | 99.7 44 0 / 0 | | 0 | 0000:02:00.0 | 0 0 / 0 3314 / 65536 | +===========================+===============+====================================================+ | 6 910B3 | OK | 103.8 45 0 / 0 | | 0 | 0000:41:00.0 | 0 0 / 0 3314 / 65536 | +===========================+===============+====================================================+ | 7 910B3 | OK | 98.2 44 0 / 0 | | 0 | 0000:42:00.0 | 0 0 / 0 3315 / 65536 | +===========================+===============+====================================================+ ``` ## 微调 以下介绍LoRA的微调, 全参数微调设置参数`--train_type full`即可. | 模型大小 | NPU数量 | deepspeed类型 | 最大显存占用量 | |------|-------|-------------|-----------| | 7B | 1 | None | 1 * 28 GB | | 7B | 4 | None | 4 * 22 GB | | 7B | 4 | zero2 | 4 * 28 GB | | 7B | 4 | zero3 | 4 * 22 GB | | 7B | 8 | None | 8 * 22 GB | | 14B | 1 | None | 1 * 45 GB | | 14B | 8 | None | 8 * 51 GB | | 14B | 8 | zero2 | 8 * 49 GB | | 14B | 8 | zero3 | 8 * 31 GB | ### 单卡训练 通过如下命令启动单卡微调: (注意: 如果微调期间出现nan的情况, 请设置`--torch_dtype float32`.) ```shell # 实验环境: 昇腾910B3 # 显存需求: 28 GB # 运行时长: 8小时 ASCEND_RT_VISIBLE_DEVICES=0 \ swift sft \ --model Qwen/Qwen2-7B-Instruct \ --dataset AI-ModelScope/blossom-math-v2 \ --num_train_epochs 5 \ --train_type lora \ --output_dir output \ --learning_rate 1e-4 \ --gradient_accumulation_steps 16 \ --save_steps 100 \ --eval_steps 100 ``` ### 数据并行训练 我们使用其中的4卡进行ddp训练 ```shell # 实验环境: 4 * 昇腾910B3 # 显存需求: 4 * 22 GB # 运行时长: 2小时 NPROC_PER_NODE=4 \ ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 \ swift sft \ --model Qwen/Qwen2-7B-Instruct \ --dataset AI-ModelScope/blossom-math-v2 \ --num_train_epochs 5 \ --train_type lora \ --output_dir output \ ... ``` ### Deepspeed训练 ZeRO2: ```shell # 实验环境: 4 * 昇腾910B3 # 显存需求: 4 * 28GB # 运行时长: 3.5小时 NPROC_PER_NODE=4 \ ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 \ swift sft \ --model Qwen/Qwen2-7B-Instruct \ --dataset AI-ModelScope/blossom-math-v2 \ --num_train_epochs 5 \ --train_type lora \ --output_dir output \ --deepspeed zero2 \ ... ``` ZeRO3: ```shell # 实验环境: 4 * 昇腾910B3 # 显存需求: 4 * 22 GB # 运行时长: 8.5小时 NPROC_PER_NODE=4 \ ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 \ swift sft \ --model Qwen/Qwen2-7B-Instruct \ --dataset AI-ModelScope/blossom-math-v2 \ --num_train_epochs 5 \ --train_type lora \ --output_dir output \ --deepspeed zero3 \ ... ``` ## 推理 原始模型: ```shell ASCEND_RT_VISIBLE_DEVICES=0 swift infer \ --model Qwen/Qwen2-7B-Instruct \ --stream true --max_new_tokens 2048 ``` LoRA微调后: ```shell ASCEND_RT_VISIBLE_DEVICES=0 swift infer \ --adapters xxx/checkpoint-xxx --load_data_args true \ --stream true --max_new_tokens 2048 # merge-lora并推理 ASCEND_RT_VISIBLE_DEVICES=0 swift export --adapters xx/checkpoint-xxx --merge_lora true ASCEND_RT_VISIBLE_DEVICES=0 swift infer \ --model xxx/checkpoint-xxx-merged --load_data_args true \ --stream true --max_new_tokens 2048 ``` ## 部署 NPU不支持使用vllm进行推理/部署加速, 但是可以使用原生pytorch进行部署. 原始模型: ```shell ASCEND_RT_VISIBLE_DEVICES=0 swift deploy --model Qwen/Qwen2-7B-Instruct --max_new_tokens 2048 ``` LoRA微调后: ```shell ASCEND_RT_VISIBLE_DEVICES=0 swift deploy --adapters xxx/checkpoint-xxx --max_new_tokens 2048 # merge-lora并推理 ASCEND_RT_VISIBLE_DEVICES=0 swift export --adapters xx/checkpoint-xxx --merge_lora true ASCEND_RT_VISIBLE_DEVICES=0 swift deploy --model xxx/checkpoint-xxx-merged --max_new_tokens 2048 ```