import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' kwargs = { 'per_device_train_batch_size': 2, 'save_steps': 5, 'gradient_accumulation_steps': 4, 'num_train_epochs': 1, } def test_llm(): from swift.llm import rlhf_main, RLHFArguments, infer_main, InferArguments result = rlhf_main( RLHFArguments( rlhf_type='kto', model='Qwen/Qwen2-7B-Instruct', dataset=['AI-ModelScope/ultrafeedback-binarized-preferences-cleaned-kto#100'], **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True)) def test_mllm(): from swift.llm import rlhf_main, RLHFArguments, infer_main, InferArguments result = rlhf_main( RLHFArguments( rlhf_type='kto', model='Qwen/Qwen2-VL-7B-Instruct', dataset=['AI-ModelScope/ultrafeedback-binarized-preferences-cleaned-kto#100'], **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True)) if __name__ == '__main__': # test_llm() test_mllm()