import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' kwargs = { 'per_device_train_batch_size': 2, 'per_device_eval_batch_size': 2, 'save_steps': 50, 'gradient_accumulation_steps': 4, 'num_train_epochs': 1, } def test_reg_llm(): from swift.llm import TrainArguments, sft_main, infer_main, InferArguments result = sft_main( TrainArguments( model='Qwen/Qwen2.5-1.5B-Instruct', train_type='lora', num_labels=1, dataset=['sentence-transformers/stsb:reg#200'], **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, metric='acc')) def test_reg_mllm(): from swift.llm import TrainArguments, sft_main, infer_main, InferArguments # OpenGVLab/InternVL2-1B result = sft_main( TrainArguments( model='Qwen/Qwen2-VL-2B-Instruct', train_type='lora', num_labels=1, dataset=['sentence-transformers/stsb:reg#200'], **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, metric='acc')) if __name__ == '__main__': # test_reg_llm() test_reg_mllm()