|
|
import os |
|
|
import warnings |
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
|
import transformers |
|
|
from torch import nn |
|
|
from torch.nn import CrossEntropyLoss |
|
|
from transformers import AutoModel, AutoModelForCausalLM, GenerationConfig |
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
from transformers.modeling_utils import PreTrainedModel |
|
|
from transformers.utils import logging |
|
|
|
|
|
from .configuration import NemotronH_Nano_VL_V2_Config |
|
|
from .modeling_nemotron_h import NemotronHForCausalLM |
|
|
from .evs import EfficientVideoSampling |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
""" |
|
|
The following code is adapted from the |
|
|
https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B/blob/main/modeling_internvl_chat.py repository |
|
|
|
|
|
The chat function is adapted to handle NVLM 1-D tile-tagging design for dynamic high-resolution images. |
|
|
""" |
|
|
|
|
|
|
|
|
class SquaredReLU(nn.Module): |
|
|
def forward(self, x): |
|
|
return torch.pow(torch.nn.functional.relu(x), 2) |
|
|
|
|
|
|
|
|
class RMSNorm(nn.Module): |
|
|
def __init__(self, hidden_size, eps=1e-5): |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.eps = eps |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.eps) |
|
|
return (self.weight.to(torch.float32) * hidden_states).to(input_dtype) |
|
|
|
|
|
|
|
|
def version_cmp(v1, v2, op='eq'): |
|
|
import operator |
|
|
|
|
|
from packaging import version |
|
|
op_func = getattr(operator, op) |
|
|
return op_func(version.parse(v1), version.parse(v2)) |
|
|
|
|
|
|
|
|
class NemotronH_Nano_VL_V2(PreTrainedModel): |
|
|
config_class = NemotronH_Nano_VL_V2_Config |
|
|
main_input_name = 'pixel_values' |
|
|
_supports_flash_attn_2 = True |
|
|
_no_split_modules = ['NemotronHBlock'] |
|
|
|
|
|
def __init__(self, config: NemotronH_Nano_VL_V2_Config): |
|
|
super().__init__(config) |
|
|
|
|
|
assert version_cmp(transformers.__version__, '4.36.2', 'ge') |
|
|
image_size = config.force_image_size |
|
|
patch_size = config.patch_size |
|
|
self.patch_size = patch_size |
|
|
self.template = config.template |
|
|
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) |
|
|
self.downsample_ratio = config.downsample_ratio |
|
|
self.ps_version = config.ps_version |
|
|
self.image_tag_type = config.image_tag_type |
|
|
self.img_context_token_id = config.img_context_token_id |
|
|
self.video_context_token_id = config.video_context_token_id |
|
|
|
|
|
logger.info(f'num_image_token: {self.num_image_token}') |
|
|
logger.info(f'ps_version: {self.ps_version}') |
|
|
|
|
|
self.language_model = AutoModelForCausalLM.from_config(config.llm_config, trust_remote_code=True) |
|
|
self.vision_model = AutoModel.from_config(config.vision_config, trust_remote_code=True) |
|
|
self.vision_model.model._initialize_weights = self.vision_model.model._init_weights |
|
|
self.vision_model.radio_model.make_preprocessor_external() |
|
|
self.vision_model = self.vision_model.to(self.language_model.config.torch_dtype) |
|
|
|
|
|
self.drop_vision_class_token = True |
|
|
|
|
|
|
|
|
|
|
|
vit_hidden_size = config.vit_hidden_size |
|
|
vision_projection_hidden_size = config.projector_hidden_size |
|
|
llm_hidden_size = config.llm_config.hidden_size |
|
|
|
|
|
self.video_pruning_rate = config.video_pruning_rate |
|
|
|
|
|
self.mlp1 = nn.Sequential( |
|
|
RMSNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, eps=1e-5), |
|
|
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, vision_projection_hidden_size, bias=False), |
|
|
SquaredReLU(), |
|
|
nn.Linear(vision_projection_hidden_size, llm_hidden_size, bias=False) |
|
|
) |
|
|
self.mlp1 = self.mlp1.to(self.language_model.config.torch_dtype) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
pixel_values: torch.FloatTensor, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
image_flags: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
inputs_embeds = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
|
|
|
|
image_flags = image_flags.squeeze(-1) |
|
|
|
|
|
B, N, C = inputs_embeds.shape |
|
|
inputs_embeds = inputs_embeds.reshape(B * N, C) |
|
|
|
|
|
input_ids = input_ids.reshape(B * N) |
|
|
selected = (input_ids == self.img_context_token_id) |
|
|
|
|
|
vit_batch_size = pixel_values.shape[0] |
|
|
vit_embeds = self.extract_feature(pixel_values) |
|
|
|
|
|
del pixel_values |
|
|
|
|
|
if torch.distributed.get_rank() == 0: |
|
|
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}') |
|
|
|
|
|
vit_embeds = vit_embeds[image_flags == 1] |
|
|
try: |
|
|
inputs_embeds[selected] = inputs_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C) |
|
|
except Exception as e: |
|
|
vit_embeds = vit_embeds.reshape(-1, C) |
|
|
print(f'warning: {e}, inputs_embeds[selected].shape={inputs_embeds[selected].shape}, ' |
|
|
f'vit_embeds.shape={vit_embeds.shape}') |
|
|
n_token = selected.sum() |
|
|
inputs_embeds[selected] = inputs_embeds[selected] * 0.0 + vit_embeds[:n_token] |
|
|
|
|
|
del vit_embeds |
|
|
|
|
|
inputs_embeds = inputs_embeds.reshape(B, N, C) |
|
|
|
|
|
outputs = self.language_model( |
|
|
inputs_embeds=inputs_embeds, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
) |
|
|
logits = outputs.logits |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
|
|
loss_fct = CrossEntropyLoss() |
|
|
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) |
|
|
shift_labels = shift_labels.view(-1) |
|
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
|
|
if not return_dict: |
|
|
output = (logits,) + outputs[1:] |
|
|
return (loss,) + output if loss is not None else output |
|
|
|
|
|
return CausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|
|
|
def pixel_shuffle(self, x, scale_factor=0.5): |
|
|
n, w, h, c = x.size() |
|
|
|
|
|
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) |
|
|
|
|
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
|
|
|
|
x = x.view(n, int(h * scale_factor), int(w * scale_factor), |
|
|
int(c / (scale_factor * scale_factor))) |
|
|
if self.ps_version == 'v1': |
|
|
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, " |
|
|
'which results in a transposed image.') |
|
|
else: |
|
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
|
return x |
|
|
|
|
|
def extract_feature(self, pixel_values): |
|
|
vit_embeds = self.vision_model(pixel_values).features |
|
|
vit_embeds = vit_embeds.to(dtype=torch.bfloat16) |
|
|
h = w = int(vit_embeds.shape[1] ** 0.5) |
|
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) |
|
|
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio) |
|
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) |
|
|
vit_embeds = self.mlp1(vit_embeds) |
|
|
return vit_embeds |
|
|
|
|
|
@torch.no_grad() |
|
|
def generate( |
|
|
self, |
|
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
|
pixel_values_videos: Optional[torch.FloatTensor] = None, |
|
|
input_ids: Optional[torch.FloatTensor] = None, |
|
|
attention_mask: Optional[torch.LongTensor] = None, |
|
|
generation_config: Optional[GenerationConfig] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
**generate_kwargs, |
|
|
) -> torch.LongTensor: |
|
|
assert self.img_context_token_id is not None |
|
|
if pixel_values is not None or pixel_values_videos is not None: |
|
|
image_vit_embeds, video_vit_embeds = None, None |
|
|
if pixel_values is not None: |
|
|
pixel_values = pixel_values.to(dtype=self.vision_model.config.torch_dtype) |
|
|
image_vit_embeds = self.extract_feature(pixel_values) |
|
|
if pixel_values_videos is not None: |
|
|
pixel_values_videos = pixel_values_videos.to(dtype=self.vision_model.config.torch_dtype) |
|
|
video_vit_embeds = self.extract_feature(pixel_values_videos) |
|
|
inputs_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
|
B, N, C = inputs_embeds.shape |
|
|
inputs_embeds = inputs_embeds.reshape(B * N, C) |
|
|
input_ids_copy = input_ids.reshape(B * N) |
|
|
if image_vit_embeds is not None: |
|
|
image_mask = (input_ids_copy == self.img_context_token_id) |
|
|
assert image_mask.sum() != 0 |
|
|
inputs_embeds[image_mask] = image_vit_embeds.reshape(-1, C).to(inputs_embeds.device, inputs_embeds.dtype) |
|
|
if video_vit_embeds is not None: |
|
|
if B > 1: |
|
|
raise NotImplementedError("Video is not supported for batch size > 1") |
|
|
video_mask = (input_ids_copy == self.video_context_token_id) |
|
|
assert video_mask.sum() != 0 |
|
|
inputs_embeds[video_mask] = video_vit_embeds.reshape(-1, C).to(inputs_embeds.device, inputs_embeds.dtype) |
|
|
if video_vit_embeds is not None and self.video_pruning_rate > 0: |
|
|
h = w = int(video_vit_embeds.shape[1] ** 0.5) |
|
|
evs_mask = EfficientVideoSampling.compute_retention_mask( |
|
|
video_embeds=video_vit_embeds, |
|
|
thw=(video_vit_embeds.shape[0], h, w), |
|
|
spatial_merge_size=1, |
|
|
q=self.video_pruning_rate, |
|
|
) |
|
|
print(f"pruning rate: {self.video_pruning_rate}, EVS mask: {evs_mask.sum().item()} tokens retained out of {evs_mask.numel()} total video tokens ({evs_mask.sum().item() / evs_mask.numel() * 100:.2f}%)") |
|
|
|
|
|
retention_mask = torch.ones_like(input_ids_copy, dtype=torch.bool) |
|
|
retention_mask[video_mask] = evs_mask.view(-1) |
|
|
inputs_embeds = inputs_embeds[retention_mask].unsqueeze(0) |
|
|
if attention_mask is not None: |
|
|
attention_mask = attention_mask[:, retention_mask].contiguous() |
|
|
if input_ids is not None: |
|
|
input_ids = input_ids[:, retention_mask].contiguous() |
|
|
else: |
|
|
inputs_embeds = inputs_embeds.reshape(B, N, C) |
|
|
else: |
|
|
inputs_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
|
|
|
|
|
|
|
outputs = self.language_model.generate( |
|
|
input_ids=input_ids, |
|
|
inputs_embeds=inputs_embeds, |
|
|
attention_mask=attention_mask, |
|
|
generation_config=generation_config, |
|
|
output_hidden_states=output_hidden_states, |
|
|
use_cache=True, |
|
|
|
|
|
|
|
|
**generate_kwargs, |
|
|
) |
|
|
|
|
|
return outputs |
|
|
|