zhiyucheng's picture
add files
abf93d0 unverified
import os
import warnings
from typing import List, Optional, Tuple, Union
import torch
import transformers
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import AutoModel, AutoModelForCausalLM, GenerationConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .configuration import NemotronH_Nano_VL_V2_Config
from .modeling_nemotron_h import NemotronHForCausalLM
from .evs import EfficientVideoSampling
logger = logging.get_logger(__name__)
"""
The following code is adapted from the
https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B/blob/main/modeling_internvl_chat.py repository
The chat function is adapted to handle NVLM 1-D tile-tagging design for dynamic high-resolution images.
"""
class SquaredReLU(nn.Module):
def forward(self, x):
return torch.pow(torch.nn.functional.relu(x), 2)
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-5):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.eps = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
return (self.weight.to(torch.float32) * hidden_states).to(input_dtype)
def version_cmp(v1, v2, op='eq'):
import operator
from packaging import version
op_func = getattr(operator, op)
return op_func(version.parse(v1), version.parse(v2))
class NemotronH_Nano_VL_V2(PreTrainedModel):
config_class = NemotronH_Nano_VL_V2_Config
main_input_name = 'pixel_values'
_supports_flash_attn_2 = True
_no_split_modules = ['NemotronHBlock']
def __init__(self, config: NemotronH_Nano_VL_V2_Config):
super().__init__(config)
assert version_cmp(transformers.__version__, '4.36.2', 'ge')
image_size = config.force_image_size
patch_size = config.patch_size
self.patch_size = patch_size
self.template = config.template
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
self.downsample_ratio = config.downsample_ratio
self.ps_version = config.ps_version
self.image_tag_type = config.image_tag_type
self.img_context_token_id = config.img_context_token_id
self.video_context_token_id = config.video_context_token_id
logger.info(f'num_image_token: {self.num_image_token}')
logger.info(f'ps_version: {self.ps_version}')
self.language_model = AutoModelForCausalLM.from_config(config.llm_config, trust_remote_code=True)
self.vision_model = AutoModel.from_config(config.vision_config, trust_remote_code=True)
self.vision_model.model._initialize_weights = self.vision_model.model._init_weights # WAR for transformers issue 38358
self.vision_model.radio_model.make_preprocessor_external()
self.vision_model = self.vision_model.to(self.language_model.config.torch_dtype)
self.drop_vision_class_token = True
# Construct the vision projection.
# Default
vit_hidden_size = config.vit_hidden_size
vision_projection_hidden_size = config.projector_hidden_size
llm_hidden_size = config.llm_config.hidden_size
self.video_pruning_rate = config.video_pruning_rate
self.mlp1 = nn.Sequential(
RMSNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, eps=1e-5),
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, vision_projection_hidden_size, bias=False),
SquaredReLU(),
nn.Linear(vision_projection_hidden_size, llm_hidden_size, bias=False)
)
self.mlp1 = self.mlp1.to(self.language_model.config.torch_dtype)
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_flags: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
inputs_embeds = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is None:
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
image_flags = image_flags.squeeze(-1)
B, N, C = inputs_embeds.shape
inputs_embeds = inputs_embeds.reshape(B * N, C)
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
vit_batch_size = pixel_values.shape[0]
vit_embeds = self.extract_feature(pixel_values)
del pixel_values
if torch.distributed.get_rank() == 0:
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
vit_embeds = vit_embeds[image_flags == 1]
try:
inputs_embeds[selected] = inputs_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
except Exception as e:
vit_embeds = vit_embeds.reshape(-1, C)
print(f'warning: {e}, inputs_embeds[selected].shape={inputs_embeds[selected].shape}, '
f'vit_embeds.shape={vit_embeds.shape}')
n_token = selected.sum()
inputs_embeds[selected] = inputs_embeds[selected] * 0.0 + vit_embeds[:n_token]
del vit_embeds
inputs_embeds = inputs_embeds.reshape(B, N, C)
outputs = self.language_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def pixel_shuffle(self, x, scale_factor=0.5):
n, w, h, c = x.size()
# N, W, H, C --> N, W, H * scale, C // scale
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
x = x.permute(0, 2, 1, 3).contiguous()
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
int(c / (scale_factor * scale_factor)))
if self.ps_version == 'v1':
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
'which results in a transposed image.')
else:
x = x.permute(0, 2, 1, 3).contiguous()
return x
def extract_feature(self, pixel_values):
vit_embeds = self.vision_model(pixel_values).features
vit_embeds = vit_embeds.to(dtype=torch.bfloat16)
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
vit_embeds = self.mlp1(vit_embeds)
return vit_embeds
@torch.no_grad()
def generate(
self,
pixel_values: Optional[torch.FloatTensor] = None,
pixel_values_videos: Optional[torch.FloatTensor] = None,
input_ids: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
generation_config: Optional[GenerationConfig] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**generate_kwargs,
) -> torch.LongTensor:
assert self.img_context_token_id is not None
if pixel_values is not None or pixel_values_videos is not None:
image_vit_embeds, video_vit_embeds = None, None
if pixel_values is not None:
pixel_values = pixel_values.to(dtype=self.vision_model.config.torch_dtype)
image_vit_embeds = self.extract_feature(pixel_values)
if pixel_values_videos is not None:
pixel_values_videos = pixel_values_videos.to(dtype=self.vision_model.config.torch_dtype)
video_vit_embeds = self.extract_feature(pixel_values_videos)
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
B, N, C = inputs_embeds.shape
inputs_embeds = inputs_embeds.reshape(B * N, C)
input_ids_copy = input_ids.reshape(B * N)
if image_vit_embeds is not None:
image_mask = (input_ids_copy == self.img_context_token_id)
assert image_mask.sum() != 0
inputs_embeds[image_mask] = image_vit_embeds.reshape(-1, C).to(inputs_embeds.device, inputs_embeds.dtype)
if video_vit_embeds is not None:
if B > 1:
raise NotImplementedError("Video is not supported for batch size > 1")
video_mask = (input_ids_copy == self.video_context_token_id)
assert video_mask.sum() != 0
inputs_embeds[video_mask] = video_vit_embeds.reshape(-1, C).to(inputs_embeds.device, inputs_embeds.dtype)
if video_vit_embeds is not None and self.video_pruning_rate > 0: # EVS
h = w = int(video_vit_embeds.shape[1] ** 0.5) # assumption here (and everywhere else) is that shape is square
evs_mask = EfficientVideoSampling.compute_retention_mask(
video_embeds=video_vit_embeds,
thw=(video_vit_embeds.shape[0], h, w),
spatial_merge_size=1, # we already work on vision embeddings, so no downsampling to follow
q=self.video_pruning_rate,
)
print(f"pruning rate: {self.video_pruning_rate}, EVS mask: {evs_mask.sum().item()} tokens retained out of {evs_mask.numel()} total video tokens ({evs_mask.sum().item() / evs_mask.numel() * 100:.2f}%)")
retention_mask = torch.ones_like(input_ids_copy, dtype=torch.bool)
retention_mask[video_mask] = evs_mask.view(-1)
inputs_embeds = inputs_embeds[retention_mask].unsqueeze(0) # adding batch=1
if attention_mask is not None:
attention_mask = attention_mask[:, retention_mask].contiguous()
if input_ids is not None:
input_ids = input_ids[:, retention_mask].contiguous()
else:
inputs_embeds = inputs_embeds.reshape(B, N, C)
else:
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
# print(f"DEBUG: input_ids shape: {input_ids.shape}")
# print(f"DEBUG: input text: {self._tokenizer.decode(input_ids[0])}")
outputs = self.language_model.generate(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
generation_config=generation_config,
output_hidden_states=output_hidden_states,
use_cache=True,
# return_dict_in_generate=True,
# output_scores=True,
**generate_kwargs,
)
return outputs