Upload 3 files
Browse files- chmloader.py +287 -0
- output/chm.tif +0 -0
- output/clipped_chm.tif +0 -0
chmloader.py
ADDED
|
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import geopandas as gpd
|
| 3 |
+
from osgeo import gdal
|
| 4 |
+
import rasterio
|
| 5 |
+
from rasterio.mask import mask
|
| 6 |
+
import numpy as np
|
| 7 |
+
from rasterio.warp import calculate_default_transform, reproject, Resampling
|
| 8 |
+
from pyproj import CRS
|
| 9 |
+
|
| 10 |
+
def build_chm_srcs(target, tiles_zip='tiles/tiles.zip', local_chm_dir='chm_tiles'):
|
| 11 |
+
"""
|
| 12 |
+
Get the S3 paths to the CHM tiles that cover a given target area. Download missing tiles from S3 if necessary.
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
target: GeoDataFrame or GeoSeries representing the target area.
|
| 16 |
+
tiles_zip: Path to the zip file containing the tiles.
|
| 17 |
+
local_chm_dir: Directory where CHM tiles are stored locally.
|
| 18 |
+
|
| 19 |
+
Returns:
|
| 20 |
+
list: A list of paths to the CHM tiles that cover the target area.
|
| 21 |
+
"""
|
| 22 |
+
# Load the tiles from the zip file
|
| 23 |
+
gtiles = gpd.read_file(f'/vsizip/{tiles_zip}')
|
| 24 |
+
|
| 25 |
+
# Transform the target area to match the tiles' CRS
|
| 26 |
+
t_ext = target.to_crs(gtiles.crs).total_bounds
|
| 27 |
+
|
| 28 |
+
# Filter the tiles that intersect with the target area
|
| 29 |
+
filtered_tiles = gtiles.cx[t_ext[0]:t_ext[2], t_ext[1]:t_ext[3]]
|
| 30 |
+
|
| 31 |
+
# Construct paths to the CHM files using GDAL's /vsis3/ to access S3 without credentials
|
| 32 |
+
s3_paths = [
|
| 33 |
+
f'/vsis3/dataforgood-fb-data/forests/v1/alsgedi_global_v6_float/chm/{tile}.tif' for tile in filtered_tiles['tile']
|
| 34 |
+
]
|
| 35 |
+
|
| 36 |
+
return s3_paths
|
| 37 |
+
|
| 38 |
+
def warp_util(srcs, target, res, filename, gdalwarp_options, gdal_config_options):
|
| 39 |
+
"""
|
| 40 |
+
A gdalwarp utility function.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
srcs (list): The source files to warp.
|
| 44 |
+
target: GeoDataFrame or GeoSeries representing the target area to warp to.
|
| 45 |
+
res (float or tuple): The resolution of the target area.
|
| 46 |
+
filename (str): The filename to save the warped data to.
|
| 47 |
+
gdalwarp_options (list): Options to pass to gdalwarp.
|
| 48 |
+
gdal_config_options (dict): GDAL configuration options to set before running gdalwarp.
|
| 49 |
+
|
| 50 |
+
Returns:
|
| 51 |
+
str: The path to the warped file.
|
| 52 |
+
"""
|
| 53 |
+
# Set GDAL configuration options
|
| 54 |
+
for key, value in gdal_config_options.items():
|
| 55 |
+
gdal.SetConfigOption(key, value)
|
| 56 |
+
|
| 57 |
+
# Calculate resolution if not provided
|
| 58 |
+
if res is None:
|
| 59 |
+
bbox = target.total_bounds
|
| 60 |
+
xmin, ymin, xmax, ymax = bbox
|
| 61 |
+
res_x = 1.0
|
| 62 |
+
res_y = 1.0
|
| 63 |
+
dim_x = int((xmax - xmin) / res_x)
|
| 64 |
+
dim_y = int((ymax - ymin) / res_y)
|
| 65 |
+
else:
|
| 66 |
+
if isinstance(res, (int, float)):
|
| 67 |
+
res_x = res
|
| 68 |
+
res_y = res
|
| 69 |
+
elif isinstance(res, (tuple, list)) and len(res) == 2:
|
| 70 |
+
res_x, res_y = res
|
| 71 |
+
else:
|
| 72 |
+
raise ValueError("Resolution must be a single value or a tuple of two values.")
|
| 73 |
+
bbox = target.total_bounds
|
| 74 |
+
xmin, ymin, xmax, ymax = bbox
|
| 75 |
+
dim_x = int((xmax - xmin) / res_x)
|
| 76 |
+
dim_y = int((ymax - ymin) / res_y)
|
| 77 |
+
|
| 78 |
+
te_srs = target.crs.to_string()
|
| 79 |
+
|
| 80 |
+
# Add translation extent, target SRS, and output dimensions to gdalwarp options
|
| 81 |
+
gdalwarp_options += [
|
| 82 |
+
"-te", str(xmin), str(ymin), str(xmax), str(ymax),
|
| 83 |
+
"-t_srs", te_srs,
|
| 84 |
+
"-ts", str(dim_x), str(dim_y)
|
| 85 |
+
]
|
| 86 |
+
|
| 87 |
+
# Perform the warp operation
|
| 88 |
+
gdal.Warp(
|
| 89 |
+
filename, srcs, options=gdalwarp_options
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
# Reset GDAL configuration options to their defaults after the operation
|
| 93 |
+
for key in gdal_config_options.keys():
|
| 94 |
+
gdal.SetConfigOption(key, None)
|
| 95 |
+
|
| 96 |
+
return filename
|
| 97 |
+
|
| 98 |
+
def download_chm(target, chm="tolan", res=None, filename="output_chm.tif", gdalwarp_options=None, gdal_config_options=None):
|
| 99 |
+
"""
|
| 100 |
+
Download Canopy Height Model (CHM) data by mosaicking relevant CHM tiles.
|
| 101 |
+
|
| 102 |
+
Args:
|
| 103 |
+
target: GeoDataFrame or GeoSeries representing the target area.
|
| 104 |
+
chm (str): The CHM dataset to download (currently only 'tolan').
|
| 105 |
+
res (float): The resolution of the CHM data to download in meters.
|
| 106 |
+
filename (str): The filename to save the downloaded CHM data to.
|
| 107 |
+
gdalwarp_options (list): Options to pass to gdalwarp.
|
| 108 |
+
gdal_config_options (dict): GDAL configuration options to set before running gdalwarp.
|
| 109 |
+
|
| 110 |
+
Returns:
|
| 111 |
+
str: The path to the downloaded CHM data.
|
| 112 |
+
"""
|
| 113 |
+
print("downloading CHM")
|
| 114 |
+
if gdalwarp_options is None:
|
| 115 |
+
gdalwarp_options = ["-r", "bilinear", "-overwrite"]
|
| 116 |
+
if gdal_config_options is None:
|
| 117 |
+
gdal_config_options = {
|
| 118 |
+
"GDAL_CACHEMAX": "512",
|
| 119 |
+
"GDAL_HTTP_MULTIPLEX": "YES",
|
| 120 |
+
"VSI_CACHE": "TRUE",
|
| 121 |
+
"AWS_NO_SIGN_REQUEST": "YES"
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
+
# Generate the paths to the source CHM tiles
|
| 125 |
+
srcs = build_chm_srcs(target)
|
| 126 |
+
|
| 127 |
+
# Warp and mosaic the CHM tiles into a single output file
|
| 128 |
+
chm_raster_path = warp_util(srcs, target, res, filename, gdalwarp_options, gdal_config_options)
|
| 129 |
+
|
| 130 |
+
return chm_raster_path
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
# Ensure the NoData Handling is Correct
|
| 134 |
+
# def clip_and_remove_zeros(tif_path, boundary, output_tif_path=None, nodata_value=None, save=False):
|
| 135 |
+
# with rasterio.open(tif_path) as src:
|
| 136 |
+
# out_image, out_transform = mask(src, boundary.geometry, crop=True)
|
| 137 |
+
# profile = src.profile.copy()
|
| 138 |
+
|
| 139 |
+
# # Determine the NoData value
|
| 140 |
+
# if nodata_value is None:
|
| 141 |
+
# if src.nodata is not None:
|
| 142 |
+
# nodata_value = src.nodata
|
| 143 |
+
# else:
|
| 144 |
+
# nodata_value = 0 # Set default NoData value
|
| 145 |
+
|
| 146 |
+
# # Mask out NoData values
|
| 147 |
+
# out_image = out_image.squeeze()
|
| 148 |
+
# out_image = np.ma.masked_equal(out_image, nodata_value)
|
| 149 |
+
|
| 150 |
+
# # Update profile for saving, if needed
|
| 151 |
+
# profile.update({
|
| 152 |
+
# 'dtype': src.dtypes[0],
|
| 153 |
+
# 'count': 1,
|
| 154 |
+
# 'nodata': nodata_value,
|
| 155 |
+
# 'compress': 'deflate'
|
| 156 |
+
# })
|
| 157 |
+
|
| 158 |
+
# if save and output_tif_path:
|
| 159 |
+
# with rasterio.open(output_tif_path, 'w', **profile) as dst:
|
| 160 |
+
# dst.write(out_image, 1)
|
| 161 |
+
|
| 162 |
+
# return out_image, out_transform, profile
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def reproject_to_utm(tif_path):
|
| 166 |
+
"""Reproject the raster file to UTM and save it with the same name."""
|
| 167 |
+
with rasterio.open(tif_path) as src:
|
| 168 |
+
# Get the CRS of the file
|
| 169 |
+
crs = src.crs
|
| 170 |
+
print(f"Original CRS of the TIFF file: {crs}")
|
| 171 |
+
|
| 172 |
+
if crs.is_geographic:
|
| 173 |
+
# Calculate the center point of the raster
|
| 174 |
+
center_lon, center_lat = (src.bounds.left + src.bounds.right) / 2, (src.bounds.bottom + src.bounds.top) / 2
|
| 175 |
+
print(f"Center of the raster: Longitude={center_lon}, Latitude={center_lat}")
|
| 176 |
+
|
| 177 |
+
# Determine UTM zone
|
| 178 |
+
utm_zone = int((center_lon + 180) // 6) + 1
|
| 179 |
+
hemisphere = 'north' if center_lat >= 0 else 'south'
|
| 180 |
+
|
| 181 |
+
# Define the UTM CRS
|
| 182 |
+
if hemisphere == 'north':
|
| 183 |
+
epsg_code = 32600 + utm_zone # UTM zone for Northern Hemisphere
|
| 184 |
+
else:
|
| 185 |
+
epsg_code = 32700 + utm_zone # UTM zone for Southern Hemisphere
|
| 186 |
+
|
| 187 |
+
utm_crs = CRS.from_epsg(epsg_code)
|
| 188 |
+
print(f"Determined UTM CRS: EPSG:{epsg_code}")
|
| 189 |
+
|
| 190 |
+
elif crs.is_projected:
|
| 191 |
+
# If CRS is already projected, attempt to retrieve its EPSG code
|
| 192 |
+
try:
|
| 193 |
+
epsg_code = crs.to_epsg() # Extract EPSG code
|
| 194 |
+
if epsg_code is not None:
|
| 195 |
+
print(f"The CRS is already projected. EPSG code: {epsg_code}")
|
| 196 |
+
utm_crs = CRS.from_epsg(epsg_code)
|
| 197 |
+
else:
|
| 198 |
+
# Fallback to using the WKT representation if EPSG is None
|
| 199 |
+
utm_crs = crs
|
| 200 |
+
print(f"The CRS is projected but has no EPSG code. Using WKT: {crs.to_wkt()}")
|
| 201 |
+
except Exception as e:
|
| 202 |
+
print(f"Unable to determine EPSG code or WKT: {e}")
|
| 203 |
+
utm_crs = crs
|
| 204 |
+
else:
|
| 205 |
+
print("The CRS type could not be determined or is not geographic.")
|
| 206 |
+
return tif_path # No reprojection needed, return the original path
|
| 207 |
+
|
| 208 |
+
# Prepare output path (same as input to overwrite)
|
| 209 |
+
output_path = tif_path
|
| 210 |
+
|
| 211 |
+
# Calculate the transform and dimensions for the reprojected image
|
| 212 |
+
transform, width, height = calculate_default_transform(
|
| 213 |
+
src.crs, utm_crs, src.width, src.height, *src.bounds
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
# Define the output profile for the new UTM raster
|
| 217 |
+
profile = src.profile.copy()
|
| 218 |
+
profile.update({
|
| 219 |
+
'crs': utm_crs,
|
| 220 |
+
'transform': transform,
|
| 221 |
+
'width': width,
|
| 222 |
+
'height': height
|
| 223 |
+
})
|
| 224 |
+
|
| 225 |
+
# Reproject the raster to UTM
|
| 226 |
+
with rasterio.open(output_path, 'w', **profile) as dst:
|
| 227 |
+
for i in range(1, src.count + 1):
|
| 228 |
+
reproject(
|
| 229 |
+
source=rasterio.band(src, i),
|
| 230 |
+
destination=rasterio.band(dst, i),
|
| 231 |
+
src_transform=src.transform,
|
| 232 |
+
src_crs=src.crs,
|
| 233 |
+
dst_transform=transform,
|
| 234 |
+
dst_crs=utm_crs,
|
| 235 |
+
resampling=Resampling.nearest
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
print(f"Reprojected file saved as: {output_path}")
|
| 239 |
+
return output_path # Return the path of the reprojected file
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
def clip_and_remove_zeros(tif_path, boundary, output_tif_path=None, nodata_value=None, save=False):
|
| 243 |
+
# Reproject the raster to UTM if necessary
|
| 244 |
+
reprojected_path = reproject_to_utm(tif_path)
|
| 245 |
+
|
| 246 |
+
# Open the reprojected raster file
|
| 247 |
+
with rasterio.open(reprojected_path) as src:
|
| 248 |
+
# Check if the CRS is UTM
|
| 249 |
+
if src.crs.is_projected and src.crs.to_epsg() and (32601 <= src.crs.to_epsg() <= 32660 or 32701 <= src.crs.to_epsg() <= 32760):
|
| 250 |
+
print(f"The raster is in UTM CRS: EPSG:{src.crs.to_epsg()}")
|
| 251 |
+
else:
|
| 252 |
+
print("Warning: The raster is not in a UTM CRS or its CRS could not be determined to be UTM.")
|
| 253 |
+
|
| 254 |
+
# Ensure the boundary is in the same CRS as the raster
|
| 255 |
+
if boundary.crs != src.crs:
|
| 256 |
+
print(f"Reprojecting boundary to match raster CRS: {src.crs}")
|
| 257 |
+
boundary = boundary.to_crs(src.crs)
|
| 258 |
+
|
| 259 |
+
# Clip the raster using the boundary geometry
|
| 260 |
+
out_image, out_transform = mask(src, boundary.geometry, crop=True)
|
| 261 |
+
profile = src.profile.copy()
|
| 262 |
+
|
| 263 |
+
# Determine the NoData value
|
| 264 |
+
if nodata_value is None:
|
| 265 |
+
if src.nodata is not None:
|
| 266 |
+
nodata_value = src.nodata
|
| 267 |
+
else:
|
| 268 |
+
nodata_value = 0 # Set default NoData value
|
| 269 |
+
|
| 270 |
+
# Mask out NoData values
|
| 271 |
+
out_image = out_image.squeeze()
|
| 272 |
+
out_image = np.ma.masked_equal(out_image, nodata_value)
|
| 273 |
+
|
| 274 |
+
# Update profile for saving, if needed
|
| 275 |
+
profile.update({
|
| 276 |
+
'dtype': src.dtypes[0],
|
| 277 |
+
'count': 1,
|
| 278 |
+
'nodata': nodata_value,
|
| 279 |
+
'compress': 'deflate'
|
| 280 |
+
})
|
| 281 |
+
|
| 282 |
+
if save and output_tif_path:
|
| 283 |
+
with rasterio.open(output_tif_path, 'w', **profile) as dst:
|
| 284 |
+
dst.write(out_image, 1)
|
| 285 |
+
|
| 286 |
+
return out_image, out_transform, profile
|
| 287 |
+
|
output/chm.tif
ADDED
|
|
output/clipped_chm.tif
ADDED
|
|