Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
model_name: candy-8.onnx
|
| 5 |
+
tags:
|
| 6 |
+
- validated
|
| 7 |
+
- vision
|
| 8 |
+
- style_transfer
|
| 9 |
+
- fast_neural_style
|
| 10 |
+
---
|
| 11 |
+
<!--- SPDX-License-Identifier: BSD-3-Clause -->
|
| 12 |
+
|
| 13 |
+
# Fast Neural Style Transfer
|
| 14 |
+
|
| 15 |
+
## Use-cases
|
| 16 |
+
This artistic style transfer model mixes the content of an image with the style of another image. Examples of the styles can be seen [in this PyTorch example](https://github.com/pytorch/examples/tree/master/fast_neural_style#models).
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
## Description
|
| 20 |
+
The model uses the method described in [Perceptual Losses for Real-Time Style Transfer and Super-Resolution](https://arxiv.org/abs/1603.08155) along with [Instance Normalization](https://arxiv.org/pdf/1607.08022.pdf).
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
## Model
|
| 24 |
+
|Model |Download |Download (with sample test data)|ONNX version|Opset version|
|
| 25 |
+
|-------------|:--------------|:--------------|:--------------|:--------------|
|
| 26 |
+
|Mosaic|[6.6 MB](model/mosaic-9.onnx) | [7.2 MB](model/mosaic-9.tar.gz)|1.4|9|
|
| 27 |
+
|Candy|[6.6 MB](model/candy-9.onnx) | [7.2 MB](model/candy-9.tar.gz)|1.4|9|
|
| 28 |
+
|Rain Princess|[6.6 MB](model/rain-princess-9.onnx) |[7.2 MB](model/rain-princess-9.tar.gz)|1.4|9|
|
| 29 |
+
|Udnie|[6.6 MB](model/udnie-9.onnx) | [7.2 MB](model/udnie-9.tar.gz)|1.4|9|
|
| 30 |
+
|Pointilism|[6.6 MB](model/pointilism-9.onnx) | [7.2 MB](model/pointilism-9.tar.gz)|1.4|9|
|
| 31 |
+
|Mosaic|[6.6 MB](model/mosaic-8.onnx) | [7.2 MB](model/mosaic-8.tar.gz)|1.4|8|
|
| 32 |
+
|Candy|[6.6 MB](model/candy-8.onnx) | [7.2 MB](model/candy-8.tar.gz)|1.4|8|
|
| 33 |
+
|Rain Princess|[6.6 MB](model/rain-princess-8.onnx) |[7.2 MB](model/rain-princess-8.tar.gz)|1.4|8|
|
| 34 |
+
|Udnie|[6.6 MB](model/udnie-8.onnx) | [7.2 MB](model/udnie-8.tar.gz)|1.4|8|
|
| 35 |
+
|Pointilism|[6.6 MB](model/pointilism-8.onnx) | [7.2 MB](model/pointilism-8.tar.gz)|1.4|8|
|
| 36 |
+
<hr>
|
| 37 |
+
|
| 38 |
+
## Inference
|
| 39 |
+
Refer to [style-transfer-ort.ipynb](dependencies/style-transfer-ort.ipynb) for detailed preprocessing and postprocessing.
|
| 40 |
+
|
| 41 |
+
### Input to model
|
| 42 |
+
The input to the model are 3-channel RGB images. The images have to be loaded in a range of [0, 255]. If running into memory issues, try resizing the image by increasing the scale number.
|
| 43 |
+
|
| 44 |
+
### Preprocessing steps
|
| 45 |
+
```
|
| 46 |
+
from PIL import Image
|
| 47 |
+
import numpy as np
|
| 48 |
+
|
| 49 |
+
# loading input and resize if needed
|
| 50 |
+
image = Image.open("PATH TO IMAGE")
|
| 51 |
+
size_reduction_factor = 1
|
| 52 |
+
image = image.resize((int(image.size[0] / size_reduction_factor), int(image.size[1] / size_reduction_factor)), Image.ANTIALIAS)
|
| 53 |
+
|
| 54 |
+
# Preprocess image
|
| 55 |
+
x = np.array(image).astype('float32')
|
| 56 |
+
x = np.transpose(x, [2, 0, 1])
|
| 57 |
+
x = np.expand_dims(x, axis=0)
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
### Output of model
|
| 61 |
+
The converted ONNX model outputs a NumPy float32 array of shape [1, 3, ‘height’, ‘width’]. The height and width of the output image are the same as the height and width of the input image.
|
| 62 |
+
|
| 63 |
+
### Postprocessing steps
|
| 64 |
+
```
|
| 65 |
+
result = np.clip(result, 0, 255)
|
| 66 |
+
result = result.transpose(1,2,0).astype("uint8")
|
| 67 |
+
img = Image.fromarray(result)
|
| 68 |
+
```
|
| 69 |
+
<hr>
|
| 70 |
+
|
| 71 |
+
## Dataset (Train and validation)
|
| 72 |
+
The original fast neural style model is from [pytorch/examples/fast_neural_style](https://github.com/pytorch/examples/tree/master/fast_neural_style). All models are trained using the [COCO 2014 Training images dataset](http://cocodataset.org/#download) [80K/13GB].
|
| 73 |
+
<hr>
|
| 74 |
+
|
| 75 |
+
## Training
|
| 76 |
+
Refer to [pytorch/examples/fast_neural_style](https://github.com/pytorch/examples/tree/master/fast_neural_style) for training details in PyTorch. Refer to [conversion.ipynb](dependencies/conversion.ipynb) to learn how the PyTorch models are converted to ONNX format.
|
| 77 |
+
<hr>
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
## References
|
| 81 |
+
Original style transfer model in PyTorch: <https://github.com/pytorch/examples/tree/master/fast_neural_style>
|
| 82 |
+
<hr>
|
| 83 |
+
|
| 84 |
+
## Contributors
|
| 85 |
+
[Jennifer Wang](https://github.com/jennifererwangg)
|
| 86 |
+
<hr>
|
| 87 |
+
|
| 88 |
+
## License
|
| 89 |
+
BSD-3-Clause
|
| 90 |
+
<hr>
|
| 91 |
+
|