--- language: en license: apache-2.0 model_name: rcnn-ilsvrc13-8.onnx tags: - validated - vision - classification - rcnn_ilsvrc13 --- # R-CNN ILSVRC13 |Model |Download |Download (with sample test data)| ONNX version |Opset version| | ------------- | ------------- | ------------- | ------------- | ------------- | |R-CNN ILSVRC13| [32 MB](model/rcnn-ilsvrc13-3.onnx) | [231 MB](model/rcnn-ilsvrc13-3.tar.gz) | 1.1 | 3| |R-CNN ILSVRC13| [32 MB](model/rcnn-ilsvrc13-6.onnx) | [231 MB](model/rcnn-ilsvrc13-6.tar.gz) | 1.1.2 | 6| |R-CNN ILSVRC13| [32 MB](model/rcnn-ilsvrc13-7.onnx) | [231 MB](model/rcnn-ilsvrc13-7.tar.gz) | 1.2 | 7| |R-CNN ILSVRC13| [32 MB](model/rcnn-ilsvrc13-8.onnx) | [231 MB](model/rcnn-ilsvrc13-8.tar.gz) | 1.3 | 8| |R-CNN ILSVRC13| [32 MB](model/rcnn-ilsvrc13-9.onnx) | [231 MB](model/rcnn-ilsvrc13-9.tar.gz) | 1.4 | 9| ## Description R-CNN is a convolutional neural network for detection. This model was made by transplanting the R-CNN SVM classifiers into a fc-rcnn classification layer. ### Paper [Rich feature hierarchies for accurate object detection and semantic segmentation](https://arxiv.org/abs/1311.2524) ### Dataset [ILSVRC2013](http://www.image-net.org/challenges/LSVRC/2013/) ## Source Caffe BVLC R-CNN ILSVRC13 ==> Caffe2 R-CNN ILSVRC13 ==> ONNX R-CNN ILSVRC13 ## Model input and output ### Input ``` data_0: float[1, 3, 224, 224] ``` ### Output ``` fc-rcnn_1: float[1, 200] ``` ### Pre-processing steps ### Post-processing steps ### Sample test data random generated sampe test data: - test_data_set_0 - test_data_set_1 - test_data_set_2 - test_data_set_3 - test_data_set_4 - test_data_set_5 ## Results/accuracy on test set On the 200-class ILSVRC2013 detection dataset, R-CNN’s mAP is 31.4%. ## License [BSD-3](LICENSE)