Update README.md
Browse files
README.md
CHANGED
|
@@ -124,7 +124,7 @@ model-index:
|
|
| 124 |
metrics:
|
| 125 |
- name: Test WER
|
| 126 |
type: wer
|
| 127 |
-
value:
|
| 128 |
- task:
|
| 129 |
name: Automatic Speech Recognition
|
| 130 |
type: automatic-speech-recognition
|
|
@@ -138,7 +138,7 @@ model-index:
|
|
| 138 |
metrics:
|
| 139 |
- name: Test WER
|
| 140 |
type: wer
|
| 141 |
-
value:
|
| 142 |
pipeline_tag: automatic-speech-recognition
|
| 143 |
license: apache-2.0
|
| 144 |
---
|
|
@@ -306,7 +306,7 @@ This code snippet shows how to evaluate **openai/whisper-tiny** on LibriSpeech's
|
|
| 306 |
>>> result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"])
|
| 307 |
|
| 308 |
>>> print("WER:", wer(result["text"], result["transcription"]))
|
| 309 |
-
0.
|
| 310 |
```
|
| 311 |
|
| 312 |
|
|
|
|
| 124 |
metrics:
|
| 125 |
- name: Test WER
|
| 126 |
type: wer
|
| 127 |
+
value: 0.07547098647858638
|
| 128 |
- task:
|
| 129 |
name: Automatic Speech Recognition
|
| 130 |
type: automatic-speech-recognition
|
|
|
|
| 138 |
metrics:
|
| 139 |
- name: Test WER
|
| 140 |
type: wer
|
| 141 |
+
value: 0.17145720661094513
|
| 142 |
pipeline_tag: automatic-speech-recognition
|
| 143 |
license: apache-2.0
|
| 144 |
---
|
|
|
|
| 306 |
>>> result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"])
|
| 307 |
|
| 308 |
>>> print("WER:", wer(result["text"], result["transcription"]))
|
| 309 |
+
0.07547098647858638
|
| 310 |
```
|
| 311 |
|
| 312 |
|