--- base_model: ibm-granite/granite-4.0-micro library_name: transformers pipeline_tag: text-generation license: apache-2.0 language: - en tags: - medical - instruction-tuned - jepa-llm - grpo - dpo-like - personas - mergekit - arcee-fusion - openmed - gguf - q8 - q4 - q2 --- # openmed-community/granite-4.0-micro-OpenMed-GGUF **Granite 4.0 Micro (≈3B) tuned for medical education & instruction following.** Recipe: **JEPA-LLM SFT on medmcqa-hard + personas augmentation → GRPO on medmcqa-hard**; finalized with **Arcee Fusion** merge back into the IBM base. > ⚠️ **Medical safety** > This model is **not** a clinician and may hallucinate. **Do not** use for diagnosis or treatment. Use under qualified medical supervision only. --- ## TL;DR - **Base:** [`ibm-granite/granite-4.0-micro`](https://huggingface.co/ibm-granite/granite-4.0-micro) — 3B long-context instruct model (Apache-2.0). Includes a structured chat template and tool-calling examples. - **Training (high-level):** 1) **JEPA-LLM SFT (400 steps, bs=64)** on **`mkurman/medmcqa-hard`** plus **instruction-following personas** from **`allenai/tulu-3-sft-personas-instruction-following`**. 2) **GRPO** (group-relative PPO) on **`mkurman/medmcqa-hard`**, bs **64/128**, **8 generations per item** (critic-free RL optimizing verifiable correctness). 3) **Model merge:** **Arcee MergeKit** with `merge_method: arcee_fusion` to preserve base calibration while keeping domain gains. - **Infra:** Trained/evaluated on **AMD Instinct MI300X** via **Hot AISLE** credits — thanks! --- ## What’s inside ### 1) JEPA-LLM stage (supervised) - **JEPA-LLM** objective, see repo: [mkurman/jepa-llm](https://github.com/mkurman/jepa-llm), used as an auxiliary signal during SFT to bias toward stable, representation-level learning rather than pure next-token fitting; run for **400 steps** on **MedMCQA-hard** with **Personas augmentation** from **Tulu-3 personas** (adds constraint-following behaviors and improves coverage of IFEval-style requirements). ### 2) GRPO stage (reinforcement learning) - **GRPO** replaces the critic with group baselines, enabling efficient multi-sample training; we generate **8 candidates per item** and reward answer correctness / format checks. ### 3) Merge & finalize - **Arcee Fusion** in **MergeKit** to selectively fuse with the original Granite 4.0 Micro (avoids over-averaging from naive merges and tends to keep base calibration). --- ## Intended use & limitations **Intended:** medical **research**, concept review, exam-style Q&A, instruction-following research, and tool-augmented demos. **Out of scope:** autonomous clinical decisions, prescription generation, or guideline updates without retrieval/RAG. --- ## Results | Metric | granite-4.0-micro-OpenMed | granite-4.0-micro | | ----------------------------| -------------------------: | ------------------------: | | mmlu | **63.17** | 62.48 | | leaderboard_mmlu_pro | **33.06** | 32.78 | | leaderboard_ifeval | granite-4.0-micro-OpenMed | granite-4.0-micro | | ----------------------------| -------------------------: | ------------------------: | | inst_level_loose_acc | **85.97** | 85.25 | | inst_level_strict_acc | **84.05** | 82.97 | | prompt_level_loose_acc | **79.67** | 78.74 | | prompt_level_strict_acc | **77.45** | 76.16 | **Author’s harness notes:** EleutherAI `lm-evaluation-harness` with Granite’s chat template and batch size 8. --- ## Quickstart (Transformers) ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "openmed-community/granite-4.0-micro-OpenMed" tok = AutoTokenizer.from_pretrained(model_id, use_fast=True) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto") messages = [ {"role": "system", "content": "You are a careful medical assistant. Cite sources and warn this is not medical advice."}, {"role": "user", "content": "Cellulitis vs erysipelas: give 3 bullet differences and 1 caution."} ] prompt = tok.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) inputs = tok(prompt, return_tensors="pt").to(model.device) out = model.generate(**inputs, max_new_tokens=256, do_sample=False) print(tok.decode(out[0], skip_special_tokens=True)) ```` > **Tool-calling:** Granite’s card includes function-calling examples; > --- ## Reproduce key evals (example) ```bash # Classic MMLU (5-shot typical) lm_eval --model hf \ --model_args pretrained=openmed-community/granite-4.0-micro-OpenMed,parallelize=True \ --tasks mmlu --batch_size 8 --apply-chat-template # MMLU-Pro (10-choice, harder) lm_eval --model hf \ --model_args pretrained=openmed-community/granite-4.0-micro-OpenMed,parallelize=True \ --tasks leaderboard_mmlu_pro --batch_size 8 --apply-chat-template # IFEVAL (verifiable instruction following) lm_eval --model hf \ --model_args pretrained=openmed-community/granite-4.0-micro-OpenMed,parallelize=True \ --tasks leaderboard_ifeval --batch_size 8 --apply-chat-template ``` --- ## Data & training notes * **MedMCQA-Hard (train split)** for domain supervision and RL rewards;. * **Tulu-3 personas** for instruction-following with constraint taxonomy inspired by IFEVAL. * **JEPA-LLM**: based on the emerging **LLM-JEPA** objective (representation-space training). See the paper for context and motivation. * **GRPO**: efficient for multi-sample training. * **Privacy:** no PHI to the best of our knowledge; please report issues. --- ## Commentary on results > **Why gains are modest:** Granite-4.0-Micro is already a **well-calibrated, strongly aligned** 3B instruct model with robust instruction-following and tool-use out of the box. In that regime, **headroom on popular benchmarks is limited**, and naive tuning often **degrades** base behaviors (calibration, safety, IF). The combination used here—**JEPA-LLM** (to stabilize representations), **personas SFT** (to preserve IF constraints), **GRPO** with **verifiable rewards**, and **Arcee Fusion**—appears to **nudge** the model to measurable improvements **without sacrificing** base calibration, but the effect sizes remain small, which is consistent with Granite’s strong baseline. In short: *we’re operating near the model’s alignment ceiling; targeted gains are possible, sweeping jumps are unlikely without larger capacity or richer supervision.* --- ## Acknowledgments * **IBM Granite** team for the base model & docs (Apache-2.0). * **AllenAI Tulu-3** for personas datasets. * **Arcee** for MergeKit and **Arcee Fusion**. * **Hot Aisle** for MI300X credits :heart:, link: [https://hotaisle.xyz/](https://hotaisle.xyz/). --- ## Citation * IBM Granite 4.0 Micro model card [1](https://huggingface.co/ibm-granite/granite-4.0-micro). * MedMCQA-Hard [2](https://huggingface.co/datasets/mkurman/medmcqa-hard). * Tulu-3 personas dataset [3](https://huggingface.co/datasets/allenai/tulu-3-sft-personas-instruction-following). * LLM-JEPA paper [4](https://arxiv.org/abs/2509.14252) and our implementation repository [5](https://github.com/mkurman/jepa-llm). * MergeKit & Arcee Fusion [6](https://github.com/arcee-ai/mergekit).