It discusses the latest trends in OCR models, the multilingual support offered by modern OCR systems, their unique capabilities, OCR benchmark model comparisons, transformer-based implementations, and strategies for streamlining transformers compatibility.
Implemented DeepSeek-OCR to support the latest transformers on the strangervisionhf page. The page includes the model weights and corrected configuration, which fix the issues and allow transformers inference to run smoothly.🤗🔥
✅Supports the latest transformers ✅You can also opt out of the attention implementation if needed. ✅Supports torch version 2.6.0 or higher ✅torch version cuda: 12.4
If you are interested in experimenting with new things and streamlining compatibility, the strangervisionhf organization is open for you, and you can join the community.
Introducing Gliese-OCR-7B-Post2.0-final, a document content-structure retrieval VLM designed for content extraction (OCR), summarization, and document visual question answering. This is the fourth and final model in the Camel Doc OCR VLM series, following Gliese-OCR-7B-Post1.0. The model delivers superior accuracy across a wide range of document types, including scanned PDFs, handwritten pages, structured forms, and analytical reports.🚀🤗
deepseek-ai/DeepSeek-OCR is out! 🔥 my take ⤵️ > pretty insane it can parse and re-render charts in HTML > it uses CLIP and SAM features concatenated, so better grounding > very efficient per vision tokens/performance ratio > covers 100 languages
Now you can try all the latest state-of-the-art multimodal vision-language models from the Qwen3-VL series demo on Hugging Face Spaces — including 4B, 8B, and 30B (Instruct, 4B-Thinking) variants. I’ve also uploaded the weights for the Abliterated variants of these models, up to 30B parameters. Check out the Spaces and model links below! 🤗🔥
Note: This is version 1.0 of the Abliteration of the Qwen3-VL series of models. It may perform sub-optimally in some cases. If you encounter any issues, please open a discussion.
Introducing Image-Guard-2.0, an experimental, lightweight vision-language encoder model with a size of 0.1B (<100M parameters), trained on SigLIP2 (siglip2-base-patch16-224). Designed for multi-label image classification tasks, this model functions as an image safety system, serving as an image guard or moderator across a wide range of categories, from anime to realistic imagery.
It also performs strict moderation and filtering of artificially synthesized content, demonstrating strong detection and handling of explicit images. Image-Guard-2.0 delivers robust performance in streamlined scenarios, ensuring reliable and effective classification across diverse visual inputs.
The demo of Qwen3-VL-30B-A3B-Instruct, the next-generation and powerful vision-language model in the Qwen series, delivers comprehensive upgrades across the board — including superior text understanding and generation, deeper visual perception and reasoning, extended context length, enhanced spatial and video dynamics comprehension, and stronger agent interaction capabilities. 🤗🔥