lzy337 commited on
Commit
6648043
·
verified ·
1 Parent(s): 04b604d

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
chat_template.jinja ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system
2
+ You are a helpful assistant.<|im_end|>
3
+ {% endif %}<|im_start|>{{ message['role'] }}
4
+ {% if message['content'] is string %}{{ message['content'] }}<|im_end|>
5
+ {% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>
6
+ {% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant
7
+ {% endif %}
config.json ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2_5_VLForConditionalGeneration"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "image_token_id": 151655,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 128000,
14
+ "max_window_layers": 70,
15
+ "model_type": "qwen2_5_vl",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 36,
18
+ "num_key_value_heads": 2,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": {
21
+ "mrope_section": [
22
+ 16,
23
+ 24,
24
+ 24
25
+ ],
26
+ "rope_type": "default",
27
+ "type": "default"
28
+ },
29
+ "rope_theta": 1000000.0,
30
+ "sliding_window": 32768,
31
+ "text_config": {
32
+ "architectures": [
33
+ "Qwen2_5_VLForConditionalGeneration"
34
+ ],
35
+ "attention_dropout": 0.0,
36
+ "bos_token_id": 151643,
37
+ "eos_token_id": 151645,
38
+ "hidden_act": "silu",
39
+ "hidden_size": 2048,
40
+ "image_token_id": null,
41
+ "initializer_range": 0.02,
42
+ "intermediate_size": 11008,
43
+ "max_position_embeddings": 128000,
44
+ "max_window_layers": 70,
45
+ "model_type": "qwen2_5_vl_text",
46
+ "num_attention_heads": 16,
47
+ "num_hidden_layers": 36,
48
+ "num_key_value_heads": 2,
49
+ "rms_norm_eps": 1e-06,
50
+ "rope_scaling": {
51
+ "mrope_section": [
52
+ 16,
53
+ 24,
54
+ 24
55
+ ],
56
+ "rope_type": "default",
57
+ "type": "default"
58
+ },
59
+ "rope_theta": 1000000.0,
60
+ "sliding_window": 32768,
61
+ "tie_word_embeddings": true,
62
+ "torch_dtype": "bfloat16",
63
+ "use_cache": false,
64
+ "use_sliding_window": false,
65
+ "video_token_id": null,
66
+ "vision_end_token_id": 151653,
67
+ "vision_start_token_id": 151652,
68
+ "vision_token_id": 151654,
69
+ "vocab_size": 151936
70
+ },
71
+ "torch_dtype": "bfloat16",
72
+ "transformers_version": "4.52.4",
73
+ "use_cache": false,
74
+ "use_sliding_window": false,
75
+ "video_token_id": 151656,
76
+ "vision_config": {
77
+ "depth": 32,
78
+ "fullatt_block_indexes": [
79
+ 7,
80
+ 15,
81
+ 23,
82
+ 31
83
+ ],
84
+ "hidden_act": "silu",
85
+ "hidden_size": 1280,
86
+ "in_channels": 3,
87
+ "in_chans": 3,
88
+ "initializer_range": 0.02,
89
+ "intermediate_size": 3420,
90
+ "model_type": "qwen2_5_vl",
91
+ "num_heads": 16,
92
+ "out_hidden_size": 2048,
93
+ "patch_size": 14,
94
+ "spatial_merge_size": 2,
95
+ "spatial_patch_size": 14,
96
+ "temporal_patch_size": 2,
97
+ "tokens_per_second": 2,
98
+ "torch_dtype": "bfloat16",
99
+ "window_size": 112
100
+ },
101
+ "vision_end_token_id": 151653,
102
+ "vision_start_token_id": 151652,
103
+ "vision_token_id": 151654,
104
+ "vocab_size": 151936
105
+ }
generation_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attn_implementation": "flash_attention_2",
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "pad_token_id": 151643,
10
+ "repetition_penalty": 1.05,
11
+ "temperature": 0.1,
12
+ "top_k": 1,
13
+ "top_p": 0.001,
14
+ "transformers_version": "4.52.4"
15
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cecd72533dcc8885706c9e68cfcff1b39adc467d1c8fb4198ef1de8b6a208a9e
3
+ size 4997750760
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43464c7d60494ffe964010171f11c7902d1766db662c95635f9261c4273fe750
3
+ size 3133917248
model.safetensors.index.json ADDED
@@ -0,0 +1,832 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 8131575808
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.norm.weight": "model-00002-of-00002.safetensors",
441
+ "visual.blocks.0.attn.proj.bias": "model-00001-of-00002.safetensors",
442
+ "visual.blocks.0.attn.proj.weight": "model-00001-of-00002.safetensors",
443
+ "visual.blocks.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
444
+ "visual.blocks.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
445
+ "visual.blocks.0.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
446
+ "visual.blocks.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
447
+ "visual.blocks.0.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
448
+ "visual.blocks.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
449
+ "visual.blocks.0.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
450
+ "visual.blocks.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
451
+ "visual.blocks.0.norm1.weight": "model-00001-of-00002.safetensors",
452
+ "visual.blocks.0.norm2.weight": "model-00001-of-00002.safetensors",
453
+ "visual.blocks.1.attn.proj.bias": "model-00001-of-00002.safetensors",
454
+ "visual.blocks.1.attn.proj.weight": "model-00001-of-00002.safetensors",
455
+ "visual.blocks.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
456
+ "visual.blocks.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
457
+ "visual.blocks.1.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
458
+ "visual.blocks.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
459
+ "visual.blocks.1.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
460
+ "visual.blocks.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
461
+ "visual.blocks.1.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
462
+ "visual.blocks.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
463
+ "visual.blocks.1.norm1.weight": "model-00001-of-00002.safetensors",
464
+ "visual.blocks.1.norm2.weight": "model-00001-of-00002.safetensors",
465
+ "visual.blocks.10.attn.proj.bias": "model-00001-of-00002.safetensors",
466
+ "visual.blocks.10.attn.proj.weight": "model-00001-of-00002.safetensors",
467
+ "visual.blocks.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
468
+ "visual.blocks.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
469
+ "visual.blocks.10.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
470
+ "visual.blocks.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
471
+ "visual.blocks.10.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
472
+ "visual.blocks.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
473
+ "visual.blocks.10.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
474
+ "visual.blocks.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
475
+ "visual.blocks.10.norm1.weight": "model-00001-of-00002.safetensors",
476
+ "visual.blocks.10.norm2.weight": "model-00001-of-00002.safetensors",
477
+ "visual.blocks.11.attn.proj.bias": "model-00001-of-00002.safetensors",
478
+ "visual.blocks.11.attn.proj.weight": "model-00001-of-00002.safetensors",
479
+ "visual.blocks.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
480
+ "visual.blocks.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
481
+ "visual.blocks.11.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
482
+ "visual.blocks.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
483
+ "visual.blocks.11.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
484
+ "visual.blocks.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
485
+ "visual.blocks.11.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
486
+ "visual.blocks.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
487
+ "visual.blocks.11.norm1.weight": "model-00001-of-00002.safetensors",
488
+ "visual.blocks.11.norm2.weight": "model-00001-of-00002.safetensors",
489
+ "visual.blocks.12.attn.proj.bias": "model-00001-of-00002.safetensors",
490
+ "visual.blocks.12.attn.proj.weight": "model-00001-of-00002.safetensors",
491
+ "visual.blocks.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
492
+ "visual.blocks.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
493
+ "visual.blocks.12.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
494
+ "visual.blocks.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
495
+ "visual.blocks.12.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
496
+ "visual.blocks.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
497
+ "visual.blocks.12.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
498
+ "visual.blocks.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
499
+ "visual.blocks.12.norm1.weight": "model-00001-of-00002.safetensors",
500
+ "visual.blocks.12.norm2.weight": "model-00001-of-00002.safetensors",
501
+ "visual.blocks.13.attn.proj.bias": "model-00001-of-00002.safetensors",
502
+ "visual.blocks.13.attn.proj.weight": "model-00001-of-00002.safetensors",
503
+ "visual.blocks.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
504
+ "visual.blocks.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
505
+ "visual.blocks.13.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
506
+ "visual.blocks.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
507
+ "visual.blocks.13.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
508
+ "visual.blocks.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
509
+ "visual.blocks.13.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
510
+ "visual.blocks.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
511
+ "visual.blocks.13.norm1.weight": "model-00001-of-00002.safetensors",
512
+ "visual.blocks.13.norm2.weight": "model-00001-of-00002.safetensors",
513
+ "visual.blocks.14.attn.proj.bias": "model-00001-of-00002.safetensors",
514
+ "visual.blocks.14.attn.proj.weight": "model-00001-of-00002.safetensors",
515
+ "visual.blocks.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
516
+ "visual.blocks.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
517
+ "visual.blocks.14.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
518
+ "visual.blocks.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
519
+ "visual.blocks.14.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
520
+ "visual.blocks.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
521
+ "visual.blocks.14.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
522
+ "visual.blocks.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
523
+ "visual.blocks.14.norm1.weight": "model-00001-of-00002.safetensors",
524
+ "visual.blocks.14.norm2.weight": "model-00001-of-00002.safetensors",
525
+ "visual.blocks.15.attn.proj.bias": "model-00001-of-00002.safetensors",
526
+ "visual.blocks.15.attn.proj.weight": "model-00001-of-00002.safetensors",
527
+ "visual.blocks.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
528
+ "visual.blocks.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
529
+ "visual.blocks.15.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
530
+ "visual.blocks.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
531
+ "visual.blocks.15.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
532
+ "visual.blocks.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
533
+ "visual.blocks.15.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
534
+ "visual.blocks.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
535
+ "visual.blocks.15.norm1.weight": "model-00001-of-00002.safetensors",
536
+ "visual.blocks.15.norm2.weight": "model-00001-of-00002.safetensors",
537
+ "visual.blocks.16.attn.proj.bias": "model-00001-of-00002.safetensors",
538
+ "visual.blocks.16.attn.proj.weight": "model-00001-of-00002.safetensors",
539
+ "visual.blocks.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
540
+ "visual.blocks.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
541
+ "visual.blocks.16.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
542
+ "visual.blocks.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
543
+ "visual.blocks.16.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
544
+ "visual.blocks.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
545
+ "visual.blocks.16.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
546
+ "visual.blocks.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
547
+ "visual.blocks.16.norm1.weight": "model-00001-of-00002.safetensors",
548
+ "visual.blocks.16.norm2.weight": "model-00001-of-00002.safetensors",
549
+ "visual.blocks.17.attn.proj.bias": "model-00001-of-00002.safetensors",
550
+ "visual.blocks.17.attn.proj.weight": "model-00001-of-00002.safetensors",
551
+ "visual.blocks.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
552
+ "visual.blocks.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
553
+ "visual.blocks.17.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
554
+ "visual.blocks.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
555
+ "visual.blocks.17.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
556
+ "visual.blocks.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
557
+ "visual.blocks.17.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
558
+ "visual.blocks.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
559
+ "visual.blocks.17.norm1.weight": "model-00001-of-00002.safetensors",
560
+ "visual.blocks.17.norm2.weight": "model-00001-of-00002.safetensors",
561
+ "visual.blocks.18.attn.proj.bias": "model-00001-of-00002.safetensors",
562
+ "visual.blocks.18.attn.proj.weight": "model-00001-of-00002.safetensors",
563
+ "visual.blocks.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
564
+ "visual.blocks.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
565
+ "visual.blocks.18.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
566
+ "visual.blocks.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
567
+ "visual.blocks.18.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
568
+ "visual.blocks.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
569
+ "visual.blocks.18.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
570
+ "visual.blocks.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
571
+ "visual.blocks.18.norm1.weight": "model-00001-of-00002.safetensors",
572
+ "visual.blocks.18.norm2.weight": "model-00001-of-00002.safetensors",
573
+ "visual.blocks.19.attn.proj.bias": "model-00001-of-00002.safetensors",
574
+ "visual.blocks.19.attn.proj.weight": "model-00001-of-00002.safetensors",
575
+ "visual.blocks.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
576
+ "visual.blocks.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
577
+ "visual.blocks.19.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
578
+ "visual.blocks.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
579
+ "visual.blocks.19.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
580
+ "visual.blocks.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
581
+ "visual.blocks.19.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
582
+ "visual.blocks.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
583
+ "visual.blocks.19.norm1.weight": "model-00001-of-00002.safetensors",
584
+ "visual.blocks.19.norm2.weight": "model-00001-of-00002.safetensors",
585
+ "visual.blocks.2.attn.proj.bias": "model-00001-of-00002.safetensors",
586
+ "visual.blocks.2.attn.proj.weight": "model-00001-of-00002.safetensors",
587
+ "visual.blocks.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
588
+ "visual.blocks.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
589
+ "visual.blocks.2.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
590
+ "visual.blocks.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
591
+ "visual.blocks.2.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
592
+ "visual.blocks.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
593
+ "visual.blocks.2.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
594
+ "visual.blocks.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
595
+ "visual.blocks.2.norm1.weight": "model-00001-of-00002.safetensors",
596
+ "visual.blocks.2.norm2.weight": "model-00001-of-00002.safetensors",
597
+ "visual.blocks.20.attn.proj.bias": "model-00001-of-00002.safetensors",
598
+ "visual.blocks.20.attn.proj.weight": "model-00001-of-00002.safetensors",
599
+ "visual.blocks.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
600
+ "visual.blocks.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
601
+ "visual.blocks.20.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
602
+ "visual.blocks.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
603
+ "visual.blocks.20.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
604
+ "visual.blocks.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
605
+ "visual.blocks.20.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
606
+ "visual.blocks.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
607
+ "visual.blocks.20.norm1.weight": "model-00001-of-00002.safetensors",
608
+ "visual.blocks.20.norm2.weight": "model-00001-of-00002.safetensors",
609
+ "visual.blocks.21.attn.proj.bias": "model-00001-of-00002.safetensors",
610
+ "visual.blocks.21.attn.proj.weight": "model-00001-of-00002.safetensors",
611
+ "visual.blocks.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
612
+ "visual.blocks.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
613
+ "visual.blocks.21.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
614
+ "visual.blocks.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
615
+ "visual.blocks.21.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
616
+ "visual.blocks.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
617
+ "visual.blocks.21.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
618
+ "visual.blocks.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
619
+ "visual.blocks.21.norm1.weight": "model-00001-of-00002.safetensors",
620
+ "visual.blocks.21.norm2.weight": "model-00001-of-00002.safetensors",
621
+ "visual.blocks.22.attn.proj.bias": "model-00001-of-00002.safetensors",
622
+ "visual.blocks.22.attn.proj.weight": "model-00001-of-00002.safetensors",
623
+ "visual.blocks.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
624
+ "visual.blocks.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
625
+ "visual.blocks.22.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
626
+ "visual.blocks.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
627
+ "visual.blocks.22.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
628
+ "visual.blocks.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
629
+ "visual.blocks.22.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
630
+ "visual.blocks.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
631
+ "visual.blocks.22.norm1.weight": "model-00001-of-00002.safetensors",
632
+ "visual.blocks.22.norm2.weight": "model-00001-of-00002.safetensors",
633
+ "visual.blocks.23.attn.proj.bias": "model-00001-of-00002.safetensors",
634
+ "visual.blocks.23.attn.proj.weight": "model-00001-of-00002.safetensors",
635
+ "visual.blocks.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
636
+ "visual.blocks.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
637
+ "visual.blocks.23.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
638
+ "visual.blocks.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
639
+ "visual.blocks.23.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
640
+ "visual.blocks.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
641
+ "visual.blocks.23.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
642
+ "visual.blocks.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
643
+ "visual.blocks.23.norm1.weight": "model-00001-of-00002.safetensors",
644
+ "visual.blocks.23.norm2.weight": "model-00001-of-00002.safetensors",
645
+ "visual.blocks.24.attn.proj.bias": "model-00001-of-00002.safetensors",
646
+ "visual.blocks.24.attn.proj.weight": "model-00001-of-00002.safetensors",
647
+ "visual.blocks.24.attn.qkv.bias": "model-00001-of-00002.safetensors",
648
+ "visual.blocks.24.attn.qkv.weight": "model-00001-of-00002.safetensors",
649
+ "visual.blocks.24.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
650
+ "visual.blocks.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
651
+ "visual.blocks.24.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
652
+ "visual.blocks.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
653
+ "visual.blocks.24.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
654
+ "visual.blocks.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
655
+ "visual.blocks.24.norm1.weight": "model-00001-of-00002.safetensors",
656
+ "visual.blocks.24.norm2.weight": "model-00001-of-00002.safetensors",
657
+ "visual.blocks.25.attn.proj.bias": "model-00001-of-00002.safetensors",
658
+ "visual.blocks.25.attn.proj.weight": "model-00001-of-00002.safetensors",
659
+ "visual.blocks.25.attn.qkv.bias": "model-00001-of-00002.safetensors",
660
+ "visual.blocks.25.attn.qkv.weight": "model-00001-of-00002.safetensors",
661
+ "visual.blocks.25.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
662
+ "visual.blocks.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
663
+ "visual.blocks.25.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
664
+ "visual.blocks.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
665
+ "visual.blocks.25.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
666
+ "visual.blocks.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
667
+ "visual.blocks.25.norm1.weight": "model-00001-of-00002.safetensors",
668
+ "visual.blocks.25.norm2.weight": "model-00001-of-00002.safetensors",
669
+ "visual.blocks.26.attn.proj.bias": "model-00001-of-00002.safetensors",
670
+ "visual.blocks.26.attn.proj.weight": "model-00001-of-00002.safetensors",
671
+ "visual.blocks.26.attn.qkv.bias": "model-00001-of-00002.safetensors",
672
+ "visual.blocks.26.attn.qkv.weight": "model-00001-of-00002.safetensors",
673
+ "visual.blocks.26.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
674
+ "visual.blocks.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
675
+ "visual.blocks.26.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
676
+ "visual.blocks.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
677
+ "visual.blocks.26.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
678
+ "visual.blocks.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
679
+ "visual.blocks.26.norm1.weight": "model-00001-of-00002.safetensors",
680
+ "visual.blocks.26.norm2.weight": "model-00001-of-00002.safetensors",
681
+ "visual.blocks.27.attn.proj.bias": "model-00001-of-00002.safetensors",
682
+ "visual.blocks.27.attn.proj.weight": "model-00001-of-00002.safetensors",
683
+ "visual.blocks.27.attn.qkv.bias": "model-00001-of-00002.safetensors",
684
+ "visual.blocks.27.attn.qkv.weight": "model-00001-of-00002.safetensors",
685
+ "visual.blocks.27.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
686
+ "visual.blocks.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
687
+ "visual.blocks.27.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
688
+ "visual.blocks.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
689
+ "visual.blocks.27.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
690
+ "visual.blocks.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
691
+ "visual.blocks.27.norm1.weight": "model-00001-of-00002.safetensors",
692
+ "visual.blocks.27.norm2.weight": "model-00001-of-00002.safetensors",
693
+ "visual.blocks.28.attn.proj.bias": "model-00001-of-00002.safetensors",
694
+ "visual.blocks.28.attn.proj.weight": "model-00001-of-00002.safetensors",
695
+ "visual.blocks.28.attn.qkv.bias": "model-00001-of-00002.safetensors",
696
+ "visual.blocks.28.attn.qkv.weight": "model-00001-of-00002.safetensors",
697
+ "visual.blocks.28.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
698
+ "visual.blocks.28.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
699
+ "visual.blocks.28.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
700
+ "visual.blocks.28.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
701
+ "visual.blocks.28.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
702
+ "visual.blocks.28.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
703
+ "visual.blocks.28.norm1.weight": "model-00001-of-00002.safetensors",
704
+ "visual.blocks.28.norm2.weight": "model-00001-of-00002.safetensors",
705
+ "visual.blocks.29.attn.proj.bias": "model-00001-of-00002.safetensors",
706
+ "visual.blocks.29.attn.proj.weight": "model-00001-of-00002.safetensors",
707
+ "visual.blocks.29.attn.qkv.bias": "model-00001-of-00002.safetensors",
708
+ "visual.blocks.29.attn.qkv.weight": "model-00001-of-00002.safetensors",
709
+ "visual.blocks.29.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
710
+ "visual.blocks.29.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
711
+ "visual.blocks.29.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
712
+ "visual.blocks.29.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
713
+ "visual.blocks.29.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
714
+ "visual.blocks.29.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
715
+ "visual.blocks.29.norm1.weight": "model-00001-of-00002.safetensors",
716
+ "visual.blocks.29.norm2.weight": "model-00001-of-00002.safetensors",
717
+ "visual.blocks.3.attn.proj.bias": "model-00001-of-00002.safetensors",
718
+ "visual.blocks.3.attn.proj.weight": "model-00001-of-00002.safetensors",
719
+ "visual.blocks.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
720
+ "visual.blocks.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
721
+ "visual.blocks.3.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
722
+ "visual.blocks.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
723
+ "visual.blocks.3.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
724
+ "visual.blocks.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
725
+ "visual.blocks.3.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
726
+ "visual.blocks.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
727
+ "visual.blocks.3.norm1.weight": "model-00001-of-00002.safetensors",
728
+ "visual.blocks.3.norm2.weight": "model-00001-of-00002.safetensors",
729
+ "visual.blocks.30.attn.proj.bias": "model-00001-of-00002.safetensors",
730
+ "visual.blocks.30.attn.proj.weight": "model-00001-of-00002.safetensors",
731
+ "visual.blocks.30.attn.qkv.bias": "model-00001-of-00002.safetensors",
732
+ "visual.blocks.30.attn.qkv.weight": "model-00001-of-00002.safetensors",
733
+ "visual.blocks.30.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
734
+ "visual.blocks.30.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
735
+ "visual.blocks.30.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
736
+ "visual.blocks.30.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
737
+ "visual.blocks.30.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
738
+ "visual.blocks.30.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
739
+ "visual.blocks.30.norm1.weight": "model-00001-of-00002.safetensors",
740
+ "visual.blocks.30.norm2.weight": "model-00001-of-00002.safetensors",
741
+ "visual.blocks.31.attn.proj.bias": "model-00001-of-00002.safetensors",
742
+ "visual.blocks.31.attn.proj.weight": "model-00001-of-00002.safetensors",
743
+ "visual.blocks.31.attn.qkv.bias": "model-00001-of-00002.safetensors",
744
+ "visual.blocks.31.attn.qkv.weight": "model-00001-of-00002.safetensors",
745
+ "visual.blocks.31.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
746
+ "visual.blocks.31.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
747
+ "visual.blocks.31.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
748
+ "visual.blocks.31.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
749
+ "visual.blocks.31.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
750
+ "visual.blocks.31.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
751
+ "visual.blocks.31.norm1.weight": "model-00001-of-00002.safetensors",
752
+ "visual.blocks.31.norm2.weight": "model-00001-of-00002.safetensors",
753
+ "visual.blocks.4.attn.proj.bias": "model-00001-of-00002.safetensors",
754
+ "visual.blocks.4.attn.proj.weight": "model-00001-of-00002.safetensors",
755
+ "visual.blocks.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
756
+ "visual.blocks.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
757
+ "visual.blocks.4.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
758
+ "visual.blocks.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
759
+ "visual.blocks.4.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
760
+ "visual.blocks.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
761
+ "visual.blocks.4.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
762
+ "visual.blocks.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
763
+ "visual.blocks.4.norm1.weight": "model-00001-of-00002.safetensors",
764
+ "visual.blocks.4.norm2.weight": "model-00001-of-00002.safetensors",
765
+ "visual.blocks.5.attn.proj.bias": "model-00001-of-00002.safetensors",
766
+ "visual.blocks.5.attn.proj.weight": "model-00001-of-00002.safetensors",
767
+ "visual.blocks.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
768
+ "visual.blocks.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
769
+ "visual.blocks.5.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
770
+ "visual.blocks.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
771
+ "visual.blocks.5.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
772
+ "visual.blocks.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
773
+ "visual.blocks.5.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
774
+ "visual.blocks.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
775
+ "visual.blocks.5.norm1.weight": "model-00001-of-00002.safetensors",
776
+ "visual.blocks.5.norm2.weight": "model-00001-of-00002.safetensors",
777
+ "visual.blocks.6.attn.proj.bias": "model-00001-of-00002.safetensors",
778
+ "visual.blocks.6.attn.proj.weight": "model-00001-of-00002.safetensors",
779
+ "visual.blocks.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
780
+ "visual.blocks.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
781
+ "visual.blocks.6.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
782
+ "visual.blocks.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
783
+ "visual.blocks.6.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
784
+ "visual.blocks.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
785
+ "visual.blocks.6.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
786
+ "visual.blocks.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
787
+ "visual.blocks.6.norm1.weight": "model-00001-of-00002.safetensors",
788
+ "visual.blocks.6.norm2.weight": "model-00001-of-00002.safetensors",
789
+ "visual.blocks.7.attn.proj.bias": "model-00001-of-00002.safetensors",
790
+ "visual.blocks.7.attn.proj.weight": "model-00001-of-00002.safetensors",
791
+ "visual.blocks.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
792
+ "visual.blocks.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
793
+ "visual.blocks.7.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
794
+ "visual.blocks.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
795
+ "visual.blocks.7.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
796
+ "visual.blocks.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
797
+ "visual.blocks.7.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
798
+ "visual.blocks.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
799
+ "visual.blocks.7.norm1.weight": "model-00001-of-00002.safetensors",
800
+ "visual.blocks.7.norm2.weight": "model-00001-of-00002.safetensors",
801
+ "visual.blocks.8.attn.proj.bias": "model-00001-of-00002.safetensors",
802
+ "visual.blocks.8.attn.proj.weight": "model-00001-of-00002.safetensors",
803
+ "visual.blocks.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
804
+ "visual.blocks.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
805
+ "visual.blocks.8.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
806
+ "visual.blocks.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
807
+ "visual.blocks.8.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
808
+ "visual.blocks.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
809
+ "visual.blocks.8.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
810
+ "visual.blocks.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
811
+ "visual.blocks.8.norm1.weight": "model-00001-of-00002.safetensors",
812
+ "visual.blocks.8.norm2.weight": "model-00001-of-00002.safetensors",
813
+ "visual.blocks.9.attn.proj.bias": "model-00001-of-00002.safetensors",
814
+ "visual.blocks.9.attn.proj.weight": "model-00001-of-00002.safetensors",
815
+ "visual.blocks.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
816
+ "visual.blocks.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
817
+ "visual.blocks.9.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
818
+ "visual.blocks.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
819
+ "visual.blocks.9.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
820
+ "visual.blocks.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
821
+ "visual.blocks.9.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
822
+ "visual.blocks.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
823
+ "visual.blocks.9.norm1.weight": "model-00001-of-00002.safetensors",
824
+ "visual.blocks.9.norm2.weight": "model-00001-of-00002.safetensors",
825
+ "visual.merger.ln_q.weight": "model-00001-of-00002.safetensors",
826
+ "visual.merger.mlp.0.bias": "model-00001-of-00002.safetensors",
827
+ "visual.merger.mlp.0.weight": "model-00001-of-00002.safetensors",
828
+ "visual.merger.mlp.2.bias": "model-00001-of-00002.safetensors",
829
+ "visual.merger.mlp.2.weight": "model-00001-of-00002.safetensors",
830
+ "visual.patch_embed.proj.weight": "model-00001-of-00002.safetensors"
831
+ }
832
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": null,
3
+ "data_format": "channels_first",
4
+ "default_to_square": true,
5
+ "device": null,
6
+ "do_center_crop": null,
7
+ "do_convert_rgb": true,
8
+ "do_normalize": true,
9
+ "do_rescale": true,
10
+ "do_resize": true,
11
+ "image_mean": [
12
+ 0.48145466,
13
+ 0.4578275,
14
+ 0.40821073
15
+ ],
16
+ "image_processor_type": "Qwen2VLImageProcessorFast",
17
+ "image_std": [
18
+ 0.26862954,
19
+ 0.26130258,
20
+ 0.27577711
21
+ ],
22
+ "input_data_format": null,
23
+ "max_pixels": 2116800,
24
+ "merge_size": 2,
25
+ "min_pixels": 12544,
26
+ "patch_size": 14,
27
+ "processor_class": "Qwen2_5_VLProcessor",
28
+ "resample": 3,
29
+ "rescale_factor": 0.00392156862745098,
30
+ "return_tensors": null,
31
+ "size": {
32
+ "longest_edge": 2116800,
33
+ "shortest_edge": 12544
34
+ },
35
+ "temporal_patch_size": 2
36
+ }
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f72ab717a438d3bb8b144eca84eff95e75f2c24b740ce8169d3457c3cf51671
3
+ size 1465
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ae8594f633daa21dc0e04606279856d0ccb8abb64bb7a5a93e72531fb12b9d9
3
+ size 11421890
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "clean_up_tokenization_spaces": false,
199
+ "eos_token": "<|im_end|>",
200
+ "errors": "replace",
201
+ "extra_special_tokens": {},
202
+ "model_max_length": 8192,
203
+ "pad_token": "<|endoftext|>",
204
+ "padding_side": "right",
205
+ "processor_class": "Qwen2_5_VLProcessor",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
trainer_state.json ADDED
@@ -0,0 +1,790 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 2.0,
6
+ "eval_steps": 500,
7
+ "global_step": 1088,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.01838235294117647,
14
+ "grad_norm": 4.980741500854492,
15
+ "learning_rate": 8.256880733944956e-07,
16
+ "loss": 0.4373,
17
+ "step": 10
18
+ },
19
+ {
20
+ "epoch": 0.03676470588235294,
21
+ "grad_norm": 1.1804918050765991,
22
+ "learning_rate": 1.743119266055046e-06,
23
+ "loss": 0.3921,
24
+ "step": 20
25
+ },
26
+ {
27
+ "epoch": 0.05514705882352941,
28
+ "grad_norm": 0.9609614610671997,
29
+ "learning_rate": 2.6605504587155968e-06,
30
+ "loss": 0.3541,
31
+ "step": 30
32
+ },
33
+ {
34
+ "epoch": 0.07352941176470588,
35
+ "grad_norm": 0.8202292323112488,
36
+ "learning_rate": 3.5779816513761473e-06,
37
+ "loss": 0.3062,
38
+ "step": 40
39
+ },
40
+ {
41
+ "epoch": 0.09191176470588236,
42
+ "grad_norm": 0.839361846446991,
43
+ "learning_rate": 4.4954128440366975e-06,
44
+ "loss": 0.2999,
45
+ "step": 50
46
+ },
47
+ {
48
+ "epoch": 0.11029411764705882,
49
+ "grad_norm": 0.6450493335723877,
50
+ "learning_rate": 5.412844036697248e-06,
51
+ "loss": 0.2592,
52
+ "step": 60
53
+ },
54
+ {
55
+ "epoch": 0.12867647058823528,
56
+ "grad_norm": 0.8965937495231628,
57
+ "learning_rate": 6.330275229357799e-06,
58
+ "loss": 0.3104,
59
+ "step": 70
60
+ },
61
+ {
62
+ "epoch": 0.14705882352941177,
63
+ "grad_norm": 0.7927365899085999,
64
+ "learning_rate": 7.247706422018349e-06,
65
+ "loss": 0.2719,
66
+ "step": 80
67
+ },
68
+ {
69
+ "epoch": 0.16544117647058823,
70
+ "grad_norm": 1.1923980712890625,
71
+ "learning_rate": 8.1651376146789e-06,
72
+ "loss": 0.2705,
73
+ "step": 90
74
+ },
75
+ {
76
+ "epoch": 0.18382352941176472,
77
+ "grad_norm": 0.7955174446105957,
78
+ "learning_rate": 9.08256880733945e-06,
79
+ "loss": 0.276,
80
+ "step": 100
81
+ },
82
+ {
83
+ "epoch": 0.20220588235294118,
84
+ "grad_norm": 0.9915638566017151,
85
+ "learning_rate": 1e-05,
86
+ "loss": 0.2757,
87
+ "step": 110
88
+ },
89
+ {
90
+ "epoch": 0.22058823529411764,
91
+ "grad_norm": 1.160922646522522,
92
+ "learning_rate": 9.99742583072674e-06,
93
+ "loss": 0.2652,
94
+ "step": 120
95
+ },
96
+ {
97
+ "epoch": 0.23897058823529413,
98
+ "grad_norm": 0.896353542804718,
99
+ "learning_rate": 9.98970597344593e-06,
100
+ "loss": 0.2949,
101
+ "step": 130
102
+ },
103
+ {
104
+ "epoch": 0.25735294117647056,
105
+ "grad_norm": 0.6837694048881531,
106
+ "learning_rate": 9.976848377045343e-06,
107
+ "loss": 0.247,
108
+ "step": 140
109
+ },
110
+ {
111
+ "epoch": 0.2757352941176471,
112
+ "grad_norm": 0.7046304941177368,
113
+ "learning_rate": 9.958866280576803e-06,
114
+ "loss": 0.2403,
115
+ "step": 150
116
+ },
117
+ {
118
+ "epoch": 0.29411764705882354,
119
+ "grad_norm": 0.8753547072410583,
120
+ "learning_rate": 9.935778199624394e-06,
121
+ "loss": 0.2597,
122
+ "step": 160
123
+ },
124
+ {
125
+ "epoch": 0.3125,
126
+ "grad_norm": 0.8226246237754822,
127
+ "learning_rate": 9.90760790723954e-06,
128
+ "loss": 0.2574,
129
+ "step": 170
130
+ },
131
+ {
132
+ "epoch": 0.33088235294117646,
133
+ "grad_norm": 0.820383608341217,
134
+ "learning_rate": 9.874384409462673e-06,
135
+ "loss": 0.2652,
136
+ "step": 180
137
+ },
138
+ {
139
+ "epoch": 0.3492647058823529,
140
+ "grad_norm": 0.7547650337219238,
141
+ "learning_rate": 9.836141915456646e-06,
142
+ "loss": 0.2522,
143
+ "step": 190
144
+ },
145
+ {
146
+ "epoch": 0.36764705882352944,
147
+ "grad_norm": 0.72496497631073,
148
+ "learning_rate": 9.792919802282656e-06,
149
+ "loss": 0.2536,
150
+ "step": 200
151
+ },
152
+ {
153
+ "epoch": 0.3860294117647059,
154
+ "grad_norm": 0.8042762279510498,
155
+ "learning_rate": 9.744762574354967e-06,
156
+ "loss": 0.2482,
157
+ "step": 210
158
+ },
159
+ {
160
+ "epoch": 0.40441176470588236,
161
+ "grad_norm": 0.7786635756492615,
162
+ "learning_rate": 9.691719817616148e-06,
163
+ "loss": 0.2167,
164
+ "step": 220
165
+ },
166
+ {
167
+ "epoch": 0.4227941176470588,
168
+ "grad_norm": 0.8994752764701843,
169
+ "learning_rate": 9.633846148480024e-06,
170
+ "loss": 0.2359,
171
+ "step": 230
172
+ },
173
+ {
174
+ "epoch": 0.4411764705882353,
175
+ "grad_norm": 0.7100334763526917,
176
+ "learning_rate": 9.571201157594925e-06,
177
+ "loss": 0.231,
178
+ "step": 240
179
+ },
180
+ {
181
+ "epoch": 0.45955882352941174,
182
+ "grad_norm": 0.6736875176429749,
183
+ "learning_rate": 9.503849348485112e-06,
184
+ "loss": 0.2596,
185
+ "step": 250
186
+ },
187
+ {
188
+ "epoch": 0.47794117647058826,
189
+ "grad_norm": 0.8927339315414429,
190
+ "learning_rate": 9.431860071133592e-06,
191
+ "loss": 0.2653,
192
+ "step": 260
193
+ },
194
+ {
195
+ "epoch": 0.4963235294117647,
196
+ "grad_norm": 0.7796552181243896,
197
+ "learning_rate": 9.355307450574666e-06,
198
+ "loss": 0.2423,
199
+ "step": 270
200
+ },
201
+ {
202
+ "epoch": 0.5147058823529411,
203
+ "grad_norm": 0.8039178252220154,
204
+ "learning_rate": 9.27427031056979e-06,
205
+ "loss": 0.2497,
206
+ "step": 280
207
+ },
208
+ {
209
+ "epoch": 0.5330882352941176,
210
+ "grad_norm": 0.8636899590492249,
211
+ "learning_rate": 9.188832092445281e-06,
212
+ "loss": 0.249,
213
+ "step": 290
214
+ },
215
+ {
216
+ "epoch": 0.5514705882352942,
217
+ "grad_norm": 0.6733593940734863,
218
+ "learning_rate": 9.09908076917548e-06,
219
+ "loss": 0.2415,
220
+ "step": 300
221
+ },
222
+ {
223
+ "epoch": 0.5698529411764706,
224
+ "grad_norm": 0.6637346148490906,
225
+ "learning_rate": 9.00510875479983e-06,
226
+ "loss": 0.2207,
227
+ "step": 310
228
+ },
229
+ {
230
+ "epoch": 0.5882352941176471,
231
+ "grad_norm": 0.6064783930778503,
232
+ "learning_rate": 8.907012809267107e-06,
233
+ "loss": 0.2559,
234
+ "step": 320
235
+ },
236
+ {
237
+ "epoch": 0.6066176470588235,
238
+ "grad_norm": 0.8090744018554688,
239
+ "learning_rate": 8.804893938804839e-06,
240
+ "loss": 0.2446,
241
+ "step": 330
242
+ },
243
+ {
244
+ "epoch": 0.625,
245
+ "grad_norm": 0.639586865901947,
246
+ "learning_rate": 8.698857291916456e-06,
247
+ "loss": 0.2277,
248
+ "step": 340
249
+ },
250
+ {
251
+ "epoch": 0.6433823529411765,
252
+ "grad_norm": 0.695817768573761,
253
+ "learning_rate": 8.58901205111326e-06,
254
+ "loss": 0.2669,
255
+ "step": 350
256
+ },
257
+ {
258
+ "epoch": 0.6617647058823529,
259
+ "grad_norm": 0.8129636645317078,
260
+ "learning_rate": 8.475471320492728e-06,
261
+ "loss": 0.2233,
262
+ "step": 360
263
+ },
264
+ {
265
+ "epoch": 0.6801470588235294,
266
+ "grad_norm": 0.6946842074394226,
267
+ "learning_rate": 8.35835200927887e-06,
268
+ "loss": 0.2359,
269
+ "step": 370
270
+ },
271
+ {
272
+ "epoch": 0.6985294117647058,
273
+ "grad_norm": 0.4986434280872345,
274
+ "learning_rate": 8.237774711444575e-06,
275
+ "loss": 0.2144,
276
+ "step": 380
277
+ },
278
+ {
279
+ "epoch": 0.7169117647058824,
280
+ "grad_norm": 0.7395103573799133,
281
+ "learning_rate": 8.113863581539905e-06,
282
+ "loss": 0.231,
283
+ "step": 390
284
+ },
285
+ {
286
+ "epoch": 0.7352941176470589,
287
+ "grad_norm": 0.643147349357605,
288
+ "learning_rate": 7.986746206854143e-06,
289
+ "loss": 0.2324,
290
+ "step": 400
291
+ },
292
+ {
293
+ "epoch": 0.7536764705882353,
294
+ "grad_norm": 0.6714458465576172,
295
+ "learning_rate": 7.856553476043294e-06,
296
+ "loss": 0.2401,
297
+ "step": 410
298
+ },
299
+ {
300
+ "epoch": 0.7720588235294118,
301
+ "grad_norm": 0.8807610273361206,
302
+ "learning_rate": 7.723419444358261e-06,
303
+ "loss": 0.2445,
304
+ "step": 420
305
+ },
306
+ {
307
+ "epoch": 0.7904411764705882,
308
+ "grad_norm": 0.8745494484901428,
309
+ "learning_rate": 7.5874811956124805e-06,
310
+ "loss": 0.2574,
311
+ "step": 430
312
+ },
313
+ {
314
+ "epoch": 0.8088235294117647,
315
+ "grad_norm": 0.6509207487106323,
316
+ "learning_rate": 7.4488787010311425e-06,
317
+ "loss": 0.2179,
318
+ "step": 440
319
+ },
320
+ {
321
+ "epoch": 0.8272058823529411,
322
+ "grad_norm": 0.680579423904419,
323
+ "learning_rate": 7.3077546751273494e-06,
324
+ "loss": 0.2246,
325
+ "step": 450
326
+ },
327
+ {
328
+ "epoch": 0.8455882352941176,
329
+ "grad_norm": 0.6059340834617615,
330
+ "learning_rate": 7.164254428753581e-06,
331
+ "loss": 0.2352,
332
+ "step": 460
333
+ },
334
+ {
335
+ "epoch": 0.8639705882352942,
336
+ "grad_norm": 0.7696027755737305,
337
+ "learning_rate": 7.018525719479805e-06,
338
+ "loss": 0.2517,
339
+ "step": 470
340
+ },
341
+ {
342
+ "epoch": 0.8823529411764706,
343
+ "grad_norm": 0.7263879179954529,
344
+ "learning_rate": 6.870718599452279e-06,
345
+ "loss": 0.2282,
346
+ "step": 480
347
+ },
348
+ {
349
+ "epoch": 0.9007352941176471,
350
+ "grad_norm": 0.7986669540405273,
351
+ "learning_rate": 6.7209852608897005e-06,
352
+ "loss": 0.238,
353
+ "step": 490
354
+ },
355
+ {
356
+ "epoch": 0.9191176470588235,
357
+ "grad_norm": 0.7858214974403381,
358
+ "learning_rate": 6.569479879375795e-06,
359
+ "loss": 0.2461,
360
+ "step": 500
361
+ },
362
+ {
363
+ "epoch": 0.9375,
364
+ "grad_norm": 0.5920738577842712,
365
+ "learning_rate": 6.416358455109695e-06,
366
+ "loss": 0.2452,
367
+ "step": 510
368
+ },
369
+ {
370
+ "epoch": 0.9558823529411765,
371
+ "grad_norm": 0.6721693277359009,
372
+ "learning_rate": 6.261778652277565e-06,
373
+ "loss": 0.2225,
374
+ "step": 520
375
+ },
376
+ {
377
+ "epoch": 0.9742647058823529,
378
+ "grad_norm": 0.8532955646514893,
379
+ "learning_rate": 6.105899636710895e-06,
380
+ "loss": 0.2449,
381
+ "step": 530
382
+ },
383
+ {
384
+ "epoch": 0.9926470588235294,
385
+ "grad_norm": 0.7130278944969177,
386
+ "learning_rate": 5.948881911998572e-06,
387
+ "loss": 0.2111,
388
+ "step": 540
389
+ },
390
+ {
391
+ "epoch": 1.0110294117647058,
392
+ "grad_norm": 0.6958662271499634,
393
+ "learning_rate": 5.790887154221521e-06,
394
+ "loss": 0.2243,
395
+ "step": 550
396
+ },
397
+ {
398
+ "epoch": 1.0294117647058822,
399
+ "grad_norm": 0.7343012094497681,
400
+ "learning_rate": 5.632078045480065e-06,
401
+ "loss": 0.2013,
402
+ "step": 560
403
+ },
404
+ {
405
+ "epoch": 1.0477941176470589,
406
+ "grad_norm": 0.7366646528244019,
407
+ "learning_rate": 5.472618106385415e-06,
408
+ "loss": 0.2045,
409
+ "step": 570
410
+ },
411
+ {
412
+ "epoch": 1.0661764705882353,
413
+ "grad_norm": 0.500787615776062,
414
+ "learning_rate": 5.31267152768779e-06,
415
+ "loss": 0.2004,
416
+ "step": 580
417
+ },
418
+ {
419
+ "epoch": 1.0845588235294117,
420
+ "grad_norm": 0.6535488367080688,
421
+ "learning_rate": 5.152403001214483e-06,
422
+ "loss": 0.203,
423
+ "step": 590
424
+ },
425
+ {
426
+ "epoch": 1.1029411764705883,
427
+ "grad_norm": 0.8450496196746826,
428
+ "learning_rate": 4.991977550292028e-06,
429
+ "loss": 0.2002,
430
+ "step": 600
431
+ },
432
+ {
433
+ "epoch": 1.1213235294117647,
434
+ "grad_norm": 0.8866769671440125,
435
+ "learning_rate": 4.831560359826985e-06,
436
+ "loss": 0.2179,
437
+ "step": 610
438
+ },
439
+ {
440
+ "epoch": 1.1397058823529411,
441
+ "grad_norm": 0.8293766975402832,
442
+ "learning_rate": 4.671316606220394e-06,
443
+ "loss": 0.2025,
444
+ "step": 620
445
+ },
446
+ {
447
+ "epoch": 1.1580882352941178,
448
+ "grad_norm": 0.7488539218902588,
449
+ "learning_rate": 4.511411287290964e-06,
450
+ "loss": 0.2119,
451
+ "step": 630
452
+ },
453
+ {
454
+ "epoch": 1.1764705882352942,
455
+ "grad_norm": 0.6722701191902161,
456
+ "learning_rate": 4.35200905238214e-06,
457
+ "loss": 0.2063,
458
+ "step": 640
459
+ },
460
+ {
461
+ "epoch": 1.1948529411764706,
462
+ "grad_norm": 0.7874387502670288,
463
+ "learning_rate": 4.193274032828e-06,
464
+ "loss": 0.1826,
465
+ "step": 650
466
+ },
467
+ {
468
+ "epoch": 1.213235294117647,
469
+ "grad_norm": 0.6973450779914856,
470
+ "learning_rate": 4.035369672952516e-06,
471
+ "loss": 0.1919,
472
+ "step": 660
473
+ },
474
+ {
475
+ "epoch": 1.2316176470588236,
476
+ "grad_norm": 0.5885277390480042,
477
+ "learning_rate": 3.8784585617762084e-06,
478
+ "loss": 0.2193,
479
+ "step": 670
480
+ },
481
+ {
482
+ "epoch": 1.25,
483
+ "grad_norm": 0.8693950772285461,
484
+ "learning_rate": 3.7227022656034873e-06,
485
+ "loss": 0.2069,
486
+ "step": 680
487
+ },
488
+ {
489
+ "epoch": 1.2683823529411764,
490
+ "grad_norm": 0.747329592704773,
491
+ "learning_rate": 3.568261161663042e-06,
492
+ "loss": 0.2188,
493
+ "step": 690
494
+ },
495
+ {
496
+ "epoch": 1.2867647058823528,
497
+ "grad_norm": 0.7728601098060608,
498
+ "learning_rate": 3.4152942729725896e-06,
499
+ "loss": 0.2019,
500
+ "step": 700
501
+ },
502
+ {
503
+ "epoch": 1.3051470588235294,
504
+ "grad_norm": 0.676393449306488,
505
+ "learning_rate": 3.263959104598009e-06,
506
+ "loss": 0.2036,
507
+ "step": 710
508
+ },
509
+ {
510
+ "epoch": 1.3235294117647058,
511
+ "grad_norm": 0.6831977963447571,
512
+ "learning_rate": 3.114411481475455e-06,
513
+ "loss": 0.2052,
514
+ "step": 720
515
+ },
516
+ {
517
+ "epoch": 1.3419117647058822,
518
+ "grad_norm": 0.5936601161956787,
519
+ "learning_rate": 2.966805387963463e-06,
520
+ "loss": 0.2003,
521
+ "step": 730
522
+ },
523
+ {
524
+ "epoch": 1.3602941176470589,
525
+ "grad_norm": 0.6197609901428223,
526
+ "learning_rate": 2.821292809290217e-06,
527
+ "loss": 0.1894,
528
+ "step": 740
529
+ },
530
+ {
531
+ "epoch": 1.3786764705882353,
532
+ "grad_norm": 0.4961455464363098,
533
+ "learning_rate": 2.678023575059274e-06,
534
+ "loss": 0.1873,
535
+ "step": 750
536
+ },
537
+ {
538
+ "epoch": 1.3970588235294117,
539
+ "grad_norm": 0.8226666450500488,
540
+ "learning_rate": 2.5371452049748603e-06,
541
+ "loss": 0.2247,
542
+ "step": 760
543
+ },
544
+ {
545
+ "epoch": 1.4154411764705883,
546
+ "grad_norm": 0.623539388179779,
547
+ "learning_rate": 2.3988027569455895e-06,
548
+ "loss": 0.1846,
549
+ "step": 770
550
+ },
551
+ {
552
+ "epoch": 1.4338235294117647,
553
+ "grad_norm": 0.6834192276000977,
554
+ "learning_rate": 2.2631386777230248e-06,
555
+ "loss": 0.1829,
556
+ "step": 780
557
+ },
558
+ {
559
+ "epoch": 1.4522058823529411,
560
+ "grad_norm": 0.9627503156661987,
561
+ "learning_rate": 2.130292656228856e-06,
562
+ "loss": 0.1813,
563
+ "step": 790
564
+ },
565
+ {
566
+ "epoch": 1.4705882352941178,
567
+ "grad_norm": 0.5110943913459778,
568
+ "learning_rate": 2.0004014797217207e-06,
569
+ "loss": 0.193,
570
+ "step": 800
571
+ },
572
+ {
573
+ "epoch": 1.4889705882352942,
574
+ "grad_norm": 0.6010143756866455,
575
+ "learning_rate": 1.873598892951795e-06,
576
+ "loss": 0.208,
577
+ "step": 810
578
+ },
579
+ {
580
+ "epoch": 1.5073529411764706,
581
+ "grad_norm": 0.8185718655586243,
582
+ "learning_rate": 1.7500154604481312e-06,
583
+ "loss": 0.2006,
584
+ "step": 820
585
+ },
586
+ {
587
+ "epoch": 1.5257352941176472,
588
+ "grad_norm": 0.6126958131790161,
589
+ "learning_rate": 1.629778432080586e-06,
590
+ "loss": 0.1746,
591
+ "step": 830
592
+ },
593
+ {
594
+ "epoch": 1.5441176470588234,
595
+ "grad_norm": 0.5845675468444824,
596
+ "learning_rate": 1.513011612034726e-06,
597
+ "loss": 0.2013,
598
+ "step": 840
599
+ },
600
+ {
601
+ "epoch": 1.5625,
602
+ "grad_norm": 0.8226555585861206,
603
+ "learning_rate": 1.3998352313346768e-06,
604
+ "loss": 0.2159,
605
+ "step": 850
606
+ },
607
+ {
608
+ "epoch": 1.5808823529411766,
609
+ "grad_norm": 0.8147032856941223,
610
+ "learning_rate": 1.2903658240450989e-06,
611
+ "loss": 0.2234,
612
+ "step": 860
613
+ },
614
+ {
615
+ "epoch": 1.5992647058823528,
616
+ "grad_norm": 0.7199397683143616,
617
+ "learning_rate": 1.184716107279837e-06,
618
+ "loss": 0.1798,
619
+ "step": 870
620
+ },
621
+ {
622
+ "epoch": 1.6176470588235294,
623
+ "grad_norm": 0.6966183185577393,
624
+ "learning_rate": 1.0829948651407374e-06,
625
+ "loss": 0.1886,
626
+ "step": 880
627
+ },
628
+ {
629
+ "epoch": 1.6360294117647058,
630
+ "grad_norm": 0.614043116569519,
631
+ "learning_rate": 9.85306836706184e-07,
632
+ "loss": 0.1908,
633
+ "step": 890
634
+ },
635
+ {
636
+ "epoch": 1.6544117647058822,
637
+ "grad_norm": 0.8714206218719482,
638
+ "learning_rate": 8.917526081846411e-07,
639
+ "loss": 0.1956,
640
+ "step": 900
641
+ },
642
+ {
643
+ "epoch": 1.6727941176470589,
644
+ "grad_norm": 0.7226178050041199,
645
+ "learning_rate": 8.024285093442874e-07,
646
+ "loss": 0.1845,
647
+ "step": 910
648
+ },
649
+ {
650
+ "epoch": 1.6911764705882353,
651
+ "grad_norm": 0.6284250020980835,
652
+ "learning_rate": 7.17426514325359e-07,
653
+ "loss": 0.204,
654
+ "step": 920
655
+ },
656
+ {
657
+ "epoch": 1.7095588235294117,
658
+ "grad_norm": 0.6917927265167236,
659
+ "learning_rate": 6.36834146937354e-07,
660
+ "loss": 0.1878,
661
+ "step": 930
662
+ },
663
+ {
664
+ "epoch": 1.7279411764705883,
665
+ "grad_norm": 0.5628108382225037,
666
+ "learning_rate": 5.607343905385898e-07,
667
+ "loss": 0.1668,
668
+ "step": 940
669
+ },
670
+ {
671
+ "epoch": 1.7463235294117647,
672
+ "grad_norm": 0.8957297801971436,
673
+ "learning_rate": 4.892056025909148e-07,
674
+ "loss": 0.2103,
675
+ "step": 950
676
+ },
677
+ {
678
+ "epoch": 1.7647058823529411,
679
+ "grad_norm": 0.6452038288116455,
680
+ "learning_rate": 4.2232143397756607e-07,
681
+ "loss": 0.1933,
682
+ "step": 960
683
+ },
684
+ {
685
+ "epoch": 1.7830882352941178,
686
+ "grad_norm": 1.0203959941864014,
687
+ "learning_rate": 3.6015075316722605e-07,
688
+ "loss": 0.21,
689
+ "step": 970
690
+ },
691
+ {
692
+ "epoch": 1.8014705882352942,
693
+ "grad_norm": 0.696893572807312,
694
+ "learning_rate": 3.02757575302392e-07,
695
+ "loss": 0.1955,
696
+ "step": 980
697
+ },
698
+ {
699
+ "epoch": 1.8198529411764706,
700
+ "grad_norm": 0.7462745904922485,
701
+ "learning_rate": 2.5020099628504603e-07,
702
+ "loss": 0.1765,
703
+ "step": 990
704
+ },
705
+ {
706
+ "epoch": 1.8382352941176472,
707
+ "grad_norm": 0.6422279477119446,
708
+ "learning_rate": 2.0253513192751374e-07,
709
+ "loss": 0.1964,
710
+ "step": 1000
711
+ },
712
+ {
713
+ "epoch": 1.8566176470588234,
714
+ "grad_norm": 0.6333200931549072,
715
+ "learning_rate": 1.5980906223115933e-07,
716
+ "loss": 0.1917,
717
+ "step": 1010
718
+ },
719
+ {
720
+ "epoch": 1.875,
721
+ "grad_norm": 0.6655058264732361,
722
+ "learning_rate": 1.220667808502951e-07,
723
+ "loss": 0.197,
724
+ "step": 1020
725
+ },
726
+ {
727
+ "epoch": 1.8933823529411766,
728
+ "grad_norm": 0.4924130141735077,
729
+ "learning_rate": 8.934714979333403e-08,
730
+ "loss": 0.2033,
731
+ "step": 1030
732
+ },
733
+ {
734
+ "epoch": 1.9117647058823528,
735
+ "grad_norm": 0.6515531539916992,
736
+ "learning_rate": 6.168385940783727e-08,
737
+ "loss": 0.1886,
738
+ "step": 1040
739
+ },
740
+ {
741
+ "epoch": 1.9301470588235294,
742
+ "grad_norm": 0.5237254500389099,
743
+ "learning_rate": 3.910539369064603e-08,
744
+ "loss": 0.1924,
745
+ "step": 1050
746
+ },
747
+ {
748
+ "epoch": 1.9485294117647058,
749
+ "grad_norm": 0.8416038751602173,
750
+ "learning_rate": 2.1635000958836748e-08,
751
+ "loss": 0.1904,
752
+ "step": 1060
753
+ },
754
+ {
755
+ "epoch": 1.9669117647058822,
756
+ "grad_norm": 0.604259729385376,
757
+ "learning_rate": 9.290669911672934e-09,
758
+ "loss": 0.194,
759
+ "step": 1070
760
+ },
761
+ {
762
+ "epoch": 1.9852941176470589,
763
+ "grad_norm": 0.6746427416801453,
764
+ "learning_rate": 2.085111108227067e-09,
765
+ "loss": 0.1885,
766
+ "step": 1080
767
+ }
768
+ ],
769
+ "logging_steps": 10,
770
+ "max_steps": 1088,
771
+ "num_input_tokens_seen": 0,
772
+ "num_train_epochs": 2,
773
+ "save_steps": 500,
774
+ "stateful_callbacks": {
775
+ "TrainerControl": {
776
+ "args": {
777
+ "should_epoch_stop": false,
778
+ "should_evaluate": false,
779
+ "should_log": false,
780
+ "should_save": true,
781
+ "should_training_stop": true
782
+ },
783
+ "attributes": {}
784
+ }
785
+ },
786
+ "total_flos": 1.1729409604948328e+19,
787
+ "train_batch_size": 4,
788
+ "trial_name": null,
789
+ "trial_params": null
790
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcdbc6558c2c3cc6ad458991aeb720de3b042aa327c0b08c40b842ee75c477a8
3
+ size 8017
video_preprocessor_config.json ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_kwargs_names": [
3
+ "do_convert_rgb",
4
+ "do_resize",
5
+ "size",
6
+ "size_divisor",
7
+ "default_to_square",
8
+ "resample",
9
+ "do_rescale",
10
+ "rescale_factor",
11
+ "do_normalize",
12
+ "image_mean",
13
+ "image_std",
14
+ "do_pad",
15
+ "do_center_crop",
16
+ "crop_size",
17
+ "data_format",
18
+ "input_data_format",
19
+ "device",
20
+ "min_pixels",
21
+ "max_pixels",
22
+ "patch_size",
23
+ "temporal_patch_size",
24
+ "merge_size"
25
+ ],
26
+ "crop_size": null,
27
+ "data_format": "channels_first",
28
+ "default_to_square": true,
29
+ "device": null,
30
+ "do_center_crop": null,
31
+ "do_convert_rgb": true,
32
+ "do_normalize": true,
33
+ "do_pad": null,
34
+ "do_rescale": true,
35
+ "do_resize": true,
36
+ "image_mean": [
37
+ 0.48145466,
38
+ 0.4578275,
39
+ 0.40821073
40
+ ],
41
+ "image_processor_type": "Qwen2VLImageProcessor",
42
+ "image_std": [
43
+ 0.26862954,
44
+ 0.26130258,
45
+ 0.27577711
46
+ ],
47
+ "input_data_format": null,
48
+ "max_pixels": 2116800,
49
+ "merge_size": 2,
50
+ "min_pixels": 12544,
51
+ "model_valid_processing_keys": [
52
+ "do_convert_rgb",
53
+ "do_resize",
54
+ "size",
55
+ "size_divisor",
56
+ "default_to_square",
57
+ "resample",
58
+ "do_rescale",
59
+ "rescale_factor",
60
+ "do_normalize",
61
+ "image_mean",
62
+ "image_std",
63
+ "do_pad",
64
+ "do_center_crop",
65
+ "crop_size",
66
+ "data_format",
67
+ "input_data_format",
68
+ "device",
69
+ "min_pixels",
70
+ "max_pixels",
71
+ "patch_size",
72
+ "temporal_patch_size",
73
+ "merge_size"
74
+ ],
75
+ "patch_size": 14,
76
+ "processor_class": "Qwen2_5_VLProcessor",
77
+ "resample": 3,
78
+ "rescale_factor": 0.00392156862745098,
79
+ "size": {
80
+ "longest_edge": 2116800,
81
+ "shortest_edge": 12544
82
+ },
83
+ "size_divisor": null,
84
+ "temporal_patch_size": 2,
85
+ "video_processor_type": "Qwen2VLVideoProcessor"
86
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)