new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 31

ARPO:End-to-End Policy Optimization for GUI Agents with Experience Replay

Training large language models (LLMs) as interactive agents for controlling graphical user interfaces (GUIs) presents a unique challenge to optimize long-horizon action sequences with multimodal feedback from complex environments. While recent works have advanced multi-turn reinforcement learning (RL) for reasoning and tool-using capabilities in LLMs, their application to GUI-based agents remains relatively underexplored due to the difficulty of sparse rewards, delayed feedback, and high rollout costs. In this paper, we investigate end-to-end policy optimization for vision-language-based GUI agents with the aim of improving performance on complex, long-horizon computer tasks. We propose Agentic Replay Policy Optimization (ARPO), an end-to-end RL approach that augments Group Relative Policy Optimization (GRPO) with a replay buffer to reuse the successful experience across training iterations. To further stabilize the training process, we propose a task selection strategy that filters tasks based on baseline agent performance, allowing the agent to focus on learning from informative interactions. Additionally, we compare ARPO with offline preference optimization approaches, highlighting the advantages of policy-based methods in GUI environments. Experiments on the OSWorld benchmark demonstrate that ARPO achieves competitive results, establishing a new performance baseline for LLM-based GUI agents trained via reinforcement learning. Our findings underscore the effectiveness of reinforcement learning for training multi-turn, vision-language GUI agents capable of managing complex real-world UI interactions. Codes and models:https://github.com/dvlab-research/ARPO.git.

  • 5 authors
·
May 22

Agentic Reinforced Policy Optimization

Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks. In realistic reasoning scenarios, LLMs can often utilize external tools to assist in task-solving processes. However, current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions. To bridge this gap, we propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents. Through preliminary experiments, we observe that LLMs tend to exhibit highly uncertain behavior, characterized by an increase in the entropy distribution of generated tokens, immediately following interactions with external tools. Motivated by this observation, ARPO incorporates an entropy-based adaptive rollout mechanism, dynamically balancing global trajectory sampling and step-level sampling, thereby promoting exploration at steps with high uncertainty after tool usage. By integrating an advantage attribution estimation, ARPO enables LLMs to internalize advantage differences in stepwise tool-use interactions. Our experiments across 13 challenging benchmarks in computational reasoning, knowledge reasoning, and deep search domains demonstrate ARPO's superiority over trajectory-level RL algorithms. Remarkably, ARPO achieves improved performance using only half of the tool-use budget required by existing methods, offering a scalable solution for aligning LLM-based agents with real-time dynamic environments. Our code and datasets are released at https://github.com/dongguanting/ARPO

  • 14 authors
·
Jul 26 8

Agentic Entropy-Balanced Policy Optimization

Recently, Agentic Reinforcement Learning (Agentic RL) has made significant progress in incentivizing the multi-turn, long-horizon tool-use capabilities of web agents. While mainstream agentic RL algorithms autonomously explore high-uncertainty tool-call steps under the guidance of entropy, excessive reliance on entropy signals can impose further constraints, leading to the training collapse. In this paper, we delve into the challenges caused by entropy and propose the Agentic Entropy-Balanced Policy Optimization (AEPO), an agentic RL algorithm designed to balance entropy in both the rollout and policy update phases. AEPO comprises two core components: (1) a dynamic entropy-balanced rollout mechanism that adaptively allocate global and branch sampling budget through entropy pre-monitoring, while imposing a branch penalty on consecutive high-entropy tool-call steps to prevent over-branching issues; and (2) Entropy-Balanced Policy Optimization that inserts a stop-gradient operation into the high-entropy clipping term to preserve and properly rescale gradients on high-entropy tokens, while incorporating entropy-aware advantage estimation to prioritize learning on high-uncertainty tokens. Results across 14 challenging datasets show that AEPO consistently outperforms 7 mainstream RL algorithms. With just 1K RL samples, Qwen3-14B with AEPO achieves impressive results: 47.6% on GAIA, 11.2% on Humanity's Last Exam, and 43.0% on WebWalker for Pass@1; 65.0% on GAIA, 26.0% on Humanity's Last Exam, and 70.0% on WebWalker for Pass@5. Further analysis reveals that AEPO improves rollout sampling diversity while maintaining stable policy entropy, facilitating scalable web agent training.

Learn the Ropes, Then Trust the Wins: Self-imitation with Progressive Exploration for Agentic Reinforcement Learning

Reinforcement learning (RL) is the dominant paradigm for sharpening strategic tool use capabilities of LLMs on long-horizon, sparsely-rewarded agent tasks, yet it faces a fundamental challenge of exploration-exploitation trade-off. Existing studies stimulate exploration through the lens of policy entropy, but such mechanical entropy maximization is prone to RL training instability due to the multi-turn distribution shifting. In this paper, we target the progressive exploration-exploitation balance under the guidance of the agent own experiences without succumbing to either entropy collapsing or runaway divergence. We propose SPEAR, a curriculum-based self-imitation learning (SIL) recipe for training agentic LLMs. It extends the vanilla SIL framework, where a replay buffer stores self-generated promising trajectories for off-policy update, by gradually steering the policy evolution within a well-balanced range of entropy across stages. Specifically, our approach incorporates a curriculum to manage the exploration process, utilizing intrinsic rewards to foster skill-level exploration and facilitating action-level exploration through SIL. At first, the auxiliary tool call reward plays a critical role in the accumulation of tool-use skills, enabling broad exposure to the unfamiliar distributions of the environment feedback with an upward entropy trend. As training progresses, self-imitation gets strengthened to exploit existing successful patterns from replayed experiences for comparative action-level exploration, accelerating solution iteration without unbounded entropy growth. To further stabilize training, we recalibrate the advantages of experiences in the replay buffer to address the potential policy drift. Reugularizations such as the clipping of tokens with high covariance between probability and advantage are introduced to the trajectory-level entropy control to curb over-confidence.

tencent Tencent
·
Sep 26 4

XRPO: Pushing the limits of GRPO with Targeted Exploration and Exploitation

Reinforcement learning algorithms such as GRPO have driven recent advances in large language model (LLM) reasoning. While scaling the number of rollouts stabilizes training, existing approaches suffer from limited exploration on challenging prompts and leave informative feedback signals underexploited, due to context-independent rollout allocation across prompts (e.g., generating 16 rollouts per prompt) and relying heavily on sparse rewards. This paper presents XRPO(eXplore - eXploit GRPO), a unified framework that recasts policy optimization through the principled lens of rollout exploration-exploitation. To enhance exploration, XRPO introduces a mathematically grounded rollout allocator that adaptively prioritizes prompts with higher potential for uncertainty reduction. It further addresses stagnation on zero-reward prompts through an in-context seeding strategy that injects curated exemplars, steering the model into more difficult reasoning trajectories. To strengthen exploitation, XRPO develops a group-relative, novelty-aware advantage sharpening mechanism that leverages sequence likelihoods to amplify low-probability yet correct responses, thereby extending the policy's reach beyond sparse rewards. Experiments across diverse math and coding benchmarks on both reasoning and non-reasoning models demonstrate that XRPO outperforms existing advances (e.g., GRPO and GSPO) up to 4% pass@1 and 6% cons@32, while accelerating training convergence by up to 2.7X.

  • 5 authors
·
Oct 8

URPO: A Unified Reward & Policy Optimization Framework for Large Language Models

Large-scale alignment pipelines typically pair a policy model with a separately trained reward model whose parameters remain frozen during reinforcement learning (RL). This separation creates a complex, resource-intensive pipeline and suffers from a performance ceiling due to a static reward signal. We propose a novel framework, Unified Reward & Policy Optimization (URPO), that unifies instruction-following ("player") and reward modeling ("referee") within a single model and a single training phase. Our method recasts all alignment data-including preference pairs, verifiable reasoning, and open-ended instructions-into a unified generative format optimized by a single Group-Relative Policy Optimization (GRPO) loop. This enables the model to learn from ground-truth preferences and verifiable logic while simultaneously generating its own rewards for open-ended tasks. Experiments on the Qwen2.5-7B model demonstrate URPO's superiority. Our unified model significantly outperforms a strong baseline using a separate generative reward model, boosting the instruction-following score on AlpacaEval from 42.24 to 44.84 and the composite reasoning average from 32.66 to 35.66. Furthermore, URPO cultivates a superior internal evaluator as a byproduct of training, achieving a RewardBench score of 85.15 and surpassing the dedicated reward model it replaces (83.55). By eliminating the need for a separate reward model and fostering a co-evolutionary dynamic between generation and evaluation, URPO presents a simpler, more efficient, and more effective path towards robustly aligned language models.

  • 4 authors
·
Jul 23

DeepTravel: An End-to-End Agentic Reinforcement Learning Framework for Autonomous Travel Planning Agents

Travel planning (TP) agent has recently worked as an emerging building block to interact with external tools and resources for travel itinerary generation, ensuring enjoyable user experience. Despite its benefits, existing studies rely on hand craft prompt and fixed agent workflow, hindering more flexible and autonomous TP agent. This paper proposes DeepTravel, an end to end agentic reinforcement learning framework for building autonomous travel planning agent, capable of autonomously planning, executing tools, and reflecting on tool responses to explore, verify, and refine intermediate actions in multi step reasoning. To achieve this, we first construct a robust sandbox environment by caching transportation, accommodation and POI data, facilitating TP agent training without being constrained by real world APIs limitations (e.g., inconsistent outputs). Moreover, we develop a hierarchical reward modeling system, where a trajectory level verifier first checks spatiotemporal feasibility and filters unsatisfied travel itinerary, and then the turn level verifier further validate itinerary detail consistency with tool responses, enabling efficient and precise reward service. Finally, we propose the reply augmented reinforcement learning method that enables TP agent to periodically replay from a failures experience buffer, emerging notable agentic capacity. We deploy trained TP agent on DiDi Enterprise Solutions App and conduct comprehensive online and offline evaluations, demonstrating that DeepTravel enables small size LLMs (e.g., Qwen3 32B) to significantly outperform existing frontier LLMs such as OpenAI o1, o3 and DeepSeek R1 in travel planning tasks.

Didichuxing Didi Chuxing
·
Sep 26 2

Offline Experience Replay for Continual Offline Reinforcement Learning

The capability of continuously learning new skills via a sequence of pre-collected offline datasets is desired for an agent. However, consecutively learning a sequence of offline tasks likely leads to the catastrophic forgetting issue under resource-limited scenarios. In this paper, we formulate a new setting, continual offline reinforcement learning (CORL), where an agent learns a sequence of offline reinforcement learning tasks and pursues good performance on all learned tasks with a small replay buffer without exploring any of the environments of all the sequential tasks. For consistently learning on all sequential tasks, an agent requires acquiring new knowledge and meanwhile preserving old knowledge in an offline manner. To this end, we introduced continual learning algorithms and experimentally found experience replay (ER) to be the most suitable algorithm for the CORL problem. However, we observe that introducing ER into CORL encounters a new distribution shift problem: the mismatch between the experiences in the replay buffer and trajectories from the learned policy. To address such an issue, we propose a new model-based experience selection (MBES) scheme to build the replay buffer, where a transition model is learned to approximate the state distribution. This model is used to bridge the distribution bias between the replay buffer and the learned model by filtering the data from offline data that most closely resembles the learned model for storage. Moreover, in order to enhance the ability on learning new tasks, we retrofit the experience replay method with a new dual behavior cloning (DBC) architecture to avoid the disturbance of behavior-cloning loss on the Q-learning process. In general, we call our algorithm offline experience replay (OER). Extensive experiments demonstrate that our OER method outperforms SOTA baselines in widely-used Mujoco environments.

  • 3 authors
·
May 23, 2023

In-the-Flow Agentic System Optimization for Effective Planning and Tool Use

Outcome-driven reinforcement learning has advanced reasoning in large language models (LLMs), but prevailing tool-augmented approaches train a single, monolithic policy that interleaves thoughts and tool calls under full context; this scales poorly with long horizons and diverse tools and generalizes weakly to new scenarios. Agentic systems offer a promising alternative by decomposing work across specialized modules, yet most remain training-free or rely on offline training decoupled from the live dynamics of multi-turn interaction. We introduce AgentFlow, a trainable, in-the-flow agentic framework that coordinates four modules (planner, executor, verifier, generator) through an evolving memory and directly optimizes its planner inside the multi-turn loop. To train on-policy in live environments, we propose Flow-based Group Refined Policy Optimization (Flow-GRPO), which tackles long-horizon, sparse-reward credit assignment by converting multi-turn optimization into a sequence of tractable single-turn policy updates. It broadcasts a single, verifiable trajectory-level outcome to every turn to align local planner decisions with global success and stabilizes learning with group-normalized advantages. Across ten benchmarks, AgentFlow with a 7B-scale backbone outperforms top-performing baselines with average accuracy gains of 14.9% on search, 14.0% on agentic, 14.5% on mathematical, and 4.1% on scientific tasks, even surpassing larger proprietary models like GPT-4o. Further analyses confirm the benefits of in-the-flow optimization, showing improved planning, enhanced tool-calling reliability, and positive scaling with model size and reasoning turns.

Stanford Stanford AI
·
Oct 7 3

BAPO: Stabilizing Off-Policy Reinforcement Learning for LLMs via Balanced Policy Optimization with Adaptive Clipping

Reinforcement learning (RL) has recently become the core paradigm for aligning and strengthening large language models (LLMs). Yet, applying RL in off-policy settings--where stale data from past policies are used for training--improves sample efficiency, but remains challenging: policy entropy declines sharply, optimization often becomes unstable and may even collapse. Through theoretical and empirical analysis, we identify two key insights: (i) an imbalance in optimization, where negative-advantage samples dominate the policy gradient, suppressing useful behaviors and risking gradient explosions; and (ii) the derived Entropy-Clip Rule, which reveals that the fixed clipping mechanism in PPO-like objectives systematically blocks entropy-increasing updates, thereby driving the policy toward over-exploitation at the expense of exploration. Building on these insights, we propose BAlanced Policy Optimization with Adaptive Clipping (BAPO), a simple yet effective method that dynamically adjusts clipping bounds to adaptively re-balance positive and negative contributions, preserve entropy, and stabilize RL optimization. Across diverse off-policy scenarios--including sample replay and partial rollout--BAPO achieves fast, stable, and data-efficient training. On AIME 2024 and AIME 2025 benchmarks, our 7B BAPO model surpasses open-source counterparts such as SkyWork-OR1-7B, while our 32B BAPO model not only achieves state-of-the-art results among models of the same scale but also outperforms leading proprietary systems like o3-mini and Gemini-2.5-Flash-Thinking.

Dyna-Mind: Learning to Simulate from Experience for Better AI Agents

Reasoning models have recently shown remarkable progress in domains such as math and coding. However, their expert-level abilities in math and coding contrast sharply with their performance in long-horizon, interactive tasks such as web navigation and computer/phone-use. Inspired by literature on human cognition, we argue that current AI agents need ''vicarious trial and error'' - the capacity to mentally simulate alternative futures before acting - in order to enhance their understanding and performance in complex interactive environments. We introduce Dyna-Mind, a two-stage training framework that explicitly teaches (V)LM agents to integrate such simulation into their reasoning. In stage 1, we introduce Reasoning with Simulations (ReSim), which trains the agent to generate structured reasoning traces from expanded search trees built from real experience gathered through environment interactions. ReSim thus grounds the agent's reasoning in faithful world dynamics and equips it with the ability to anticipate future states in its reasoning. In stage 2, we propose Dyna-GRPO, an online reinforcement learning method to further strengthen the agent's simulation and decision-making ability by using both outcome rewards and intermediate states as feedback from real rollouts. Experiments on two synthetic benchmarks (Sokoban and ALFWorld) and one realistic benchmark (AndroidWorld) demonstrate that (1) ReSim effectively infuses simulation ability into AI agents, and (2) Dyna-GRPO leverages outcome and interaction-level signals to learn better policies for long-horizon, planning-intensive tasks. Together, these results highlight the central role of simulation in enabling AI agents to reason, plan, and act more effectively in the ever more challenging environments.

  • 9 authors
·
Oct 10 2

ReLIC: A Recipe for 64k Steps of In-Context Reinforcement Learning for Embodied AI

Intelligent embodied agents need to quickly adapt to new scenarios by integrating long histories of experience into decision-making. For instance, a robot in an unfamiliar house initially wouldn't know the locations of objects needed for tasks and might perform inefficiently. However, as it gathers more experience, it should learn the layout of its environment and remember where objects are, allowing it to complete new tasks more efficiently. To enable such rapid adaptation to new tasks, we present ReLIC, a new approach for in-context reinforcement learning (RL) for embodied agents. With ReLIC, agents are capable of adapting to new environments using 64,000 steps of in-context experience with full attention while being trained through self-generated experience via RL. We achieve this by proposing a novel policy update scheme for on-policy RL called "partial updates'' as well as a Sink-KV mechanism that enables effective utilization of a long observation history for embodied agents. Our method outperforms a variety of meta-RL baselines in adapting to unseen houses in an embodied multi-object navigation task. In addition, we find that ReLIC is capable of few-shot imitation learning despite never being trained with expert demonstrations. We also provide a comprehensive analysis of ReLIC, highlighting that the combination of large-scale RL training, the proposed partial updates scheme, and the Sink-KV are essential for effective in-context learning. The code for ReLIC and all our experiments is at https://github.com/aielawady/relic

  • 7 authors
·
Oct 3, 2024

Beyond Reward: Offline Preference-guided Policy Optimization

This study focuses on the topic of offline preference-based reinforcement learning (PbRL), a variant of conventional reinforcement learning that dispenses with the need for online interaction or specification of reward functions. Instead, the agent is provided with fixed offline trajectories and human preferences between pairs of trajectories to extract the dynamics and task information, respectively. Since the dynamics and task information are orthogonal, a naive approach would involve using preference-based reward learning followed by an off-the-shelf offline RL algorithm. However, this requires the separate learning of a scalar reward function, which is assumed to be an information bottleneck of the learning process. To address this issue, we propose the offline preference-guided policy optimization (OPPO) paradigm, which models offline trajectories and preferences in a one-step process, eliminating the need for separately learning a reward function. OPPO achieves this by introducing an offline hindsight information matching objective for optimizing a contextual policy and a preference modeling objective for finding the optimal context. OPPO further integrates a well-performing decision policy by optimizing the two objectives iteratively. Our empirical results demonstrate that OPPO effectively models offline preferences and outperforms prior competing baselines, including offline RL algorithms performed over either true or pseudo reward function specifications. Our code is available on the project website: https://sites.google.com/view/oppo-icml-2023 .

  • 5 authors
·
May 25, 2023

Improving Multi-Step Reasoning Abilities of Large Language Models with Direct Advantage Policy Optimization

The role of reinforcement learning (RL) in enhancing the reasoning of large language models (LLMs) is becoming increasingly significant. Despite the success of RL in many scenarios, there are still many challenges in improving the reasoning of LLMs. One challenge is the sparse reward, which makes optimization difficult for RL and necessitates a large amount of data samples. Another challenge stems from the inherent instability of RL, particularly when using Actor-Critic (AC) methods to derive optimal policies, which often leads to unstable training processes. To address these issues, we introduce Direct Advantage Policy Optimization (DAPO), an novel step-level offline RL algorithm. Unlike standard alignment that rely solely outcome rewards to optimize policies (such as DPO), DAPO employs a critic function to predict the reasoning accuracy at each step, thereby generating dense signals to refine the generation strategy. Additionally, the Actor and Critic components in DAPO are trained independently, avoiding the co-training instability observed in standard AC algorithms like PPO. We train DAPO on mathematical and code query datasets and then evaluate its performance on multiple benchmarks. Our results show that DAPO can effectively enhance the mathematical and code capabilities on both SFT models and RL models, demonstrating the effectiveness of DAPO.

  • 8 authors
·
Dec 24, 2024

EPO: Entropy-regularized Policy Optimization for LLM Agents Reinforcement Learning

Training LLM agents in multi-turn environments with sparse rewards, where completing a single task requires 30+ turns of interaction within an episode, presents a fundamental challenge for reinforcement learning. We identify a critical failure mode unique to this setting: the exploration-exploitation cascade failure. This cascade begins with early-stage policy premature convergence, where sparse feedback causes agents to commit to flawed, low-entropy strategies. Subsequently, agents enter late-stage policy collapse, where conventional entropy regularization becomes counterproductive, promoting chaotic exploration that destabilizes training. We propose Entropy-regularized Policy Optimization (EPO), a general framework that breaks this failure cycle through three synergistic mechanisms: (1) adopting entropy regularization in multi-turn settings to enhance exploration, (2) an entropy smoothing regularizer that bounds policy entropy within historical averages to prevent abrupt fluctuations, and (3) adaptive phase-based weighting that balances exploration and exploitation across training. Our analysis justifies that EPO guarantees monotonically decreasing entropy variance while maintaining convergence. EPO achieves up to 152% performance improvement on ScienceWorld and up to 19.8% on ALFWorld. Our work demonstrates that multi-turn sparse-reward settings require fundamentally different entropy control than traditional RL, with broad implications for LLM agent training.

  • 9 authors
·
Sep 26 2

Policy Regularized Distributionally Robust Markov Decision Processes with Linear Function Approximation

Decision-making under distribution shift is a central challenge in reinforcement learning (RL), where training and deployment environments differ. We study this problem through the lens of robust Markov decision processes (RMDPs), which optimize performance against adversarial transition dynamics. Our focus is the online setting, where the agent has only limited interaction with the environment, making sample efficiency and exploration especially critical. Policy optimization, despite its success in standard RL, remains theoretically and empirically underexplored in robust RL. To bridge this gap, we propose Distributionally Robust Regularized Policy Optimization algorithm (DR-RPO), a model-free online policy optimization method that learns robust policies with sublinear regret. To enable tractable optimization within the softmax policy class, DR-RPO incorporates reference-policy regularization, yielding RMDP variants that are doubly constrained in both transitions and policies. To scale to large state-action spaces, we adopt the d-rectangular linear MDP formulation and combine linear function approximation with an upper confidence bonus for optimistic exploration. We provide theoretical guarantees showing that policy optimization can achieve polynomial suboptimality bounds and sample efficiency in robust RL, matching the performance of value-based approaches. Finally, empirical results across diverse domains corroborate our theory and demonstrate the robustness of DR-RPO.

  • 4 authors
·
Oct 15

Squeeze the Soaked Sponge: Efficient Off-policy Reinforcement Finetuning for Large Language Model

Reinforcement Learning (RL) has demonstrated its potential to improve the reasoning ability of Large Language Models (LLMs). One major limitation of most existing Reinforcement Finetuning (RFT) methods is that they are on-policy RL in nature, i.e., data generated during the past learning process is not fully utilized. This inevitably comes at a significant cost of compute and time, posing a stringent bottleneck on continuing economic and efficient scaling. To this end, we launch the renaissance of off-policy RL and propose Reincarnating Mix-policy Proximal Policy Gradient (ReMix), a general approach to enable on-policy RFT methods like PPO and GRPO to leverage off-policy data. ReMix consists of three major components: (1) Mix-policy proximal policy gradient with an increased Update-To-Data (UTD) ratio for efficient training; (2) KL-Convex policy constraint to balance the trade-off between stability and flexibility; (3) Policy reincarnation to achieve a seamless transition from efficient early-stage learning to steady asymptotic improvement. In our experiments, we train a series of ReMix models upon PPO, GRPO and 1.5B, 7B base models. ReMix shows an average Pass@1 accuracy of 52.10% (for 1.5B model) with 0.079M response rollouts, 350 training steps and achieves 63.27%/64.39% (for 7B model) with 0.007M/0.011M response rollouts, 50/75 training steps, on five math reasoning benchmarks (i.e., AIME'24, AMC'23, Minerva, OlympiadBench, and MATH500). Compared with 15 recent advanced models, ReMix shows SOTA-level performance with an over 30x to 450x reduction in training cost in terms of rollout data volume. In addition, we reveal insightful findings via multifaceted analysis, including the implicit preference for shorter responses due to the Whipping Effect of off-policy discrepancy, the collapse mode of self-reflection behavior under the presence of severe off-policyness, etc.

  • 8 authors
·
Jul 9

FAPO: Flawed-Aware Policy Optimization for Efficient and Reliable Reasoning

Reinforcement learning with verifiable rewards (RLVR) has emerged as a promising paradigm for enhancing the reasoning capabilities of large language models (LLMs). In this context, models explore reasoning trajectories and exploit rollouts with correct answers as positive signals for policy optimization. However, these rollouts might involve flawed patterns such as answer-guessing and jump-in-reasoning. Such flawed-positive rollouts are rewarded identically to fully correct ones, causing policy models to internalize these unreliable reasoning patterns. In this work, we first conduct a systematic study of flawed-positive rollouts in RL and find that they enable rapid capability gains during the early optimization stage, while constraining reasoning capability later by reinforcing unreliable patterns. Building on these insights, we propose Flawed-Aware Policy Optimization (FAPO), which presents a parameter-free reward penalty for flawed-positive rollouts, enabling the policy to leverage them as useful shortcuts in the warm-up stage, securing stable early gains, while gradually shifting optimization toward reliable reasoning in the later refinement stage. To accurately and comprehensively detect flawed-positive rollouts, we introduce a generative reward model (GenRM) with a process-level reward that precisely localizes reasoning errors. Experiments show that FAPO is effective in broad domains, improving outcome correctness, process reliability, and training stability without increasing the token budget.

  • 6 authors
·
Oct 26 1

Mirror Descent Policy Optimization

Mirror descent (MD), a well-known first-order method in constrained convex optimization, has recently been shown as an important tool to analyze trust-region algorithms in reinforcement learning (RL). However, there remains a considerable gap between such theoretically analyzed algorithms and the ones used in practice. Inspired by this, we propose an efficient RL algorithm, called {\em mirror descent policy optimization} (MDPO). MDPO iteratively updates the policy by {\em approximately} solving a trust-region problem, whose objective function consists of two terms: a linearization of the standard RL objective and a proximity term that restricts two consecutive policies to be close to each other. Each update performs this approximation by taking multiple gradient steps on this objective function. We derive {\em on-policy} and {\em off-policy} variants of MDPO, while emphasizing important design choices motivated by the existing theory of MD in RL. We highlight the connections between on-policy MDPO and two popular trust-region RL algorithms: TRPO and PPO, and show that explicitly enforcing the trust-region constraint is in fact {\em not} a necessity for high performance gains in TRPO. We then show how the popular soft actor-critic (SAC) algorithm can be derived by slight modifications of off-policy MDPO. Overall, MDPO is derived from the MD principles, offers a unified approach to viewing a number of popular RL algorithms, and performs better than or on-par with TRPO, PPO, and SAC in a number of continuous control tasks. Code is available at https://github.com/manantomar/Mirror-Descent-Policy-Optimization.

  • 4 authors
·
May 19, 2020

Overcoming Slow Decision Frequencies in Continuous Control: Model-Based Sequence Reinforcement Learning for Model-Free Control

Reinforcement learning (RL) is rapidly reaching and surpassing human-level control capabilities. However, state-of-the-art RL algorithms often require timesteps and reaction times significantly faster than human capabilities, which is impractical in real-world settings and typically necessitates specialized hardware. Such speeds are difficult to achieve in the real world and often requires specialized hardware. We introduce Sequence Reinforcement Learning (SRL), an RL algorithm designed to produce a sequence of actions for a given input state, enabling effective control at lower decision frequencies. SRL addresses the challenges of learning action sequences by employing both a model and an actor-critic architecture operating at different temporal scales. We propose a "temporal recall" mechanism, where the critic uses the model to estimate intermediate states between primitive actions, providing a learning signal for each individual action within the sequence. Once training is complete, the actor can generate action sequences independently of the model, achieving model-free control at a slower frequency. We evaluate SRL on a suite of continuous control tasks, demonstrating that it achieves performance comparable to state-of-the-art algorithms while significantly reducing actor sample complexity. To better assess performance across varying decision frequencies, we introduce the Frequency-Averaged Score (FAS) metric. Our results show that SRL significantly outperforms traditional RL algorithms in terms of FAS, making it particularly suitable for applications requiring variable decision frequencies. Additionally, we compare SRL with model-based online planning, showing that SRL achieves superior FAS while leveraging the same model during training that online planners use for planning.

  • 2 authors
·
Oct 11, 2024

A Minimaximalist Approach to Reinforcement Learning from Human Feedback

We present Self-Play Preference Optimization (SPO), an algorithm for reinforcement learning from human feedback. Our approach is minimalist in that it does not require training a reward model nor unstable adversarial training and is therefore rather simple to implement. Our approach is maximalist in that it provably handles non-Markovian, intransitive, and stochastic preferences while being robust to the compounding errors that plague offline approaches to sequential prediction. To achieve the preceding qualities, we build upon the concept of a Minimax Winner (MW), a notion of preference aggregation from the social choice theory literature that frames learning from preferences as a zero-sum game between two policies. By leveraging the symmetry of this game, we prove that rather than using the traditional technique of dueling two policies to compute the MW, we can simply have a single agent play against itself while maintaining strong convergence guarantees. Practically, this corresponds to sampling multiple trajectories from a policy, asking a rater or preference model to compare them, and then using the proportion of wins as the reward for a particular trajectory. We demonstrate that on a suite of continuous control tasks, we are able to learn significantly more efficiently than reward-model based approaches while maintaining robustness to the intransitive and stochastic preferences that frequently occur in practice when aggregating human judgments.

  • 5 authors
·
Jan 8, 2024

Adaptive Advantage-Guided Policy Regularization for Offline Reinforcement Learning

In offline reinforcement learning, the challenge of out-of-distribution (OOD) is pronounced. To address this, existing methods often constrain the learned policy through policy regularization. However, these methods often suffer from the issue of unnecessary conservativeness, hampering policy improvement. This occurs due to the indiscriminate use of all actions from the behavior policy that generates the offline dataset as constraints. The problem becomes particularly noticeable when the quality of the dataset is suboptimal. Thus, we propose Adaptive Advantage-guided Policy Regularization (A2PR), obtaining high-advantage actions from an augmented behavior policy combined with VAE to guide the learned policy. A2PR can select high-advantage actions that differ from those present in the dataset, while still effectively maintaining conservatism from OOD actions. This is achieved by harnessing the VAE capacity to generate samples matching the distribution of the data points. We theoretically prove that the improvement of the behavior policy is guaranteed. Besides, it effectively mitigates value overestimation with a bounded performance gap. Empirically, we conduct a series of experiments on the D4RL benchmark, where A2PR demonstrates state-of-the-art performance. Furthermore, experimental results on additional suboptimal mixed datasets reveal that A2PR exhibits superior performance. Code is available at https://github.com/ltlhuuu/A2PR.

  • 6 authors
·
May 30, 2024

Iterative Nash Policy Optimization: Aligning LLMs with General Preferences via No-Regret Learning

Reinforcement Learning with Human Feedback (RLHF) has achieved great success in aligning large language models (LLMs) with human preferences. Prevalent RLHF approaches are reward-based, following the Bradley-Terry (BT) model assumption, which may not fully capture the complexity of human preferences. In this paper, we explore RLHF under a general preference framework and approach it from a game-theoretic perspective. Specifically, we formulate the problem as a two-player game and propose a novel algorithm, iterative Nash policy optimization (INPO). The key idea is to let the policy play against itself via no-regret learning, thereby approximating the Nash policy. Unlike previous methods, INPO bypasses the need for estimating the expected win rate for individual responses, which typically incurs high computational or annotation costs. Instead, we introduce a new loss objective that is directly minimized over a preference dataset. We provide theoretical analysis for our approach and demonstrate its effectiveness through experiments on various representative benchmarks. With an LLaMA-3-8B-based SFT model, INPO achieves a 41.5% length-controlled win rate on AlpacaEval 2.0 and a 38.3% win rate on Arena-Hard, showing substantial improvement over the state-of-the-art iterative algorithm [Dong et al., 2024] under the BT model assumption. Additionally, our ablation study highlights the benefits of incorporating KL regularization for response length control.

  • 9 authors
·
Jun 30, 2024 1

A^2FM: An Adaptive Agent Foundation Model for Tool-Aware Hybrid Reasoning

Large language models split into two families: reasoning-centric LLMs, which strengthen internal chain-of-thought reasoning but cannot invoke external tools, and agentic LLMs, which learn to interact with environments and leverage tools but often lag in deep reasoning. This divide arises from fundamentally different training objectives, leading to mismatched strengths and inefficiency on simple queries, where both families tend to overthink or over-call tools. In this work, we present Adaptive Agent Foundation Model (A^2FM), a unified framework that follows a route-then-align principle: the model first learns task-aware routing and then aligns mode-specific trajectories under a shared backbone. To address the inefficiency gap, we introduce a third mode-instant-that handles simple queries directly, preventing unnecessary reasoning or tool calls while complementing the agentic and reasoning modes. To jointly enhance accuracy and efficiency, we propose Adaptive Policy Optimization (APO), which enforces adaptive sampling across modes and applies a cost-regularized reward. On the 32B scale, A^2FM achieves 13.4% on BrowseComp, 70.4% on AIME25, and 16.7% on HLE, setting new SOTA among comparable models and performing competitively with frontier LLMs across agentic, reasoning, and general benchmarks. Notably, the adaptive execution achieves a cost of pass of only $0.00487 per correct answer-cutting cost by 45.2% relative to reasoning and 33.5% relative to agentic, thus delivering substantially higher cost efficiency while maintaining comparable accuracy.

OPPOer OPPO
·
Oct 13 3

From Uniform to Heterogeneous: Tailoring Policy Optimization to Every Token's Nature

Reinforcement Learning has emerged as the fundamental technique for enhancing reasoning in LLMs. However, existing algorithms apply uniform optimization to all tokens, ignoring their different roles in reasoning process. To address this limitation, we introduce Heterogeneous Adaptive Policy Optimization (HAPO), a comprehensive token-aware algorithm that dynamically adapts optimization based on token entropy. For rollout sampling, we propose Adaptive Temperature Sampling, which adjusts sampling temperature in real time, promoting exploration at high-entropy tokens while preserving coherence at low-entropy ones. For advantage calculation, we introduce Token Level Group Average that normalizes advantages at token level, jointly accounting for sequence-length as in token-mean loss while preserving non-biased treatment. We then develop Differential Advantage Redistribution that leverages entropy and importance ratios to modulate rewards-adjusting updates for tokens with clear signals. For clipping loss, we design Asymmetric Adaptive Clipping, allowing aggressive probability reduction for noisy low-entropy tokens while enabling exploration for high-entropy tokens. Through systematic investigation between entropy and training dynamics, we embedded token-level treatment into every stages to achieve fine-grained control. Extensive experiments demonstrate that HAPO consistently outperforms DAPO across multiple model scales. Our code can be found in https://github.com/starriver030515/HAPO.

  • 7 authors
·
Sep 20 2

GHPO: Adaptive Guidance for Stable and Efficient LLM Reinforcement Learning

Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a powerful paradigm for facilitating the self-improvement of large language models (LLMs), particularly in the domain of complex reasoning tasks. However, prevailing on-policy RL methods often contend with significant training instability and inefficiency. This is primarily due to a capacity-difficulty mismatch, where the complexity of training data frequently outpaces the model's current capabilities, leading to critically sparse reward signals and stalled learning progress. This challenge is particularly acute for smaller, more resource-efficient LLMs. To overcome this, we introduce the Guided Hybrid Policy Optimization (GHPO), a novel difficulty-aware reinforcement learning framework. GHPO dynamically calibrates task difficulty by employing adaptive prompt refinement to provide targeted guidance. This unique approach adaptively balances direct imitation learning for problems currently beyond the model's reach with exploration-based reinforcement learning for more manageable tasks, effectively creating a smooth and optimized learning curriculum. Extensive experiments demonstrate that GHPO achieves an average performance gain of approximately 5% across six challenging mathematics benchmarks, consistently outperforming strong on-policy reinforcement learning and curriculum learning baselines. Further analysis confirms that our framework significantly enhances both training stability and final reasoning performance, thus offering a scalable and efficient solution for developing powerful and robust reasoning models.

  • 10 authors
·
Jul 14

Demystifying Reinforcement Learning in Agentic Reasoning

Recently, the emergence of agentic RL has showcased that RL could also effectively improve the agentic reasoning ability of LLMs, yet the key design principles and optimal practices remain unclear. In this work, we conduct a comprehensive and systematic investigation to demystify reinforcement learning in agentic reasoning from three key perspectives: data, algorithm, and reasoning mode. We highlight our key insights: (i) Replacing stitched synthetic trajectories with real end-to-end tool-use trajectories yields a far stronger SFT initialization; high-diversity, model-aware datasets sustain exploration and markedly improve RL performance. (ii) Exploration-friendly techniques are crucial for agentic RL, such as clip higher, overlong reward shaping, and maintaining adequate policy entropy could improve the training efficiency. (iii) A deliberative strategy with fewer tool calls outperforms frequent tool calls or verbose self-reasoning, improving tool efficiency and final accuracy. Together, these simple practices consistently enhance agentic reasoning and training efficiency, achieving strong results on challenging benchmarks with smaller models, and establishing a practical baseline for future agentic RL research. Beyond these empirical insights, we further contribute a high-quality, real end-to-end agentic SFT dataset along with a high-quality RL dataset, and demonstrate the effectiveness of our insights in boosting the agentic reasoning ability of LLMs across four challenging benchmarks, including AIME2024/AIME2025, GPQA-Diamond, and LiveCodeBench-v6. With our recipes, 4B-sized models could also achieve superior agentic reasoning performance compared to 32B-sized models. Code and models: https://github.com/Gen-Verse/Open-AgentRL

  • 5 authors
·
Oct 13 2

Self-Play Preference Optimization for Language Model Alignment

Traditional reinforcement learning from human feedback (RLHF) approaches relying on parametric models like the Bradley-Terry model fall short in capturing the intransitivity and irrationality in human preferences. Recent advancements suggest that directly working with preference probabilities can yield a more accurate reflection of human preferences, enabling more flexible and accurate language model alignment. In this paper, we propose a self-play-based method for language model alignment, which treats the problem as a constant-sum two-player game aimed at identifying the Nash equilibrium policy. Our approach, dubbed Self-Play Preference Optimization (SPPO), approximates the Nash equilibrium through iterative policy updates and enjoys theoretical convergence guarantee. Our method can effectively increase the log-likelihood of the chosen response and decrease that of the rejected response, which cannot be trivially achieved by symmetric pairwise loss such as Direct Preference Optimization (DPO) and Identity Preference Optimization (IPO). In our experiments, using only 60k prompts (without responses) from the UltraFeedback dataset and without any prompt augmentation, by leveraging a pre-trained preference model PairRM with only 0.4B parameters, SPPO can obtain a model from fine-tuning Mistral-7B-Instruct-v0.2 that achieves the state-of-the-art length-controlled win-rate of 28.53% against GPT-4-Turbo on AlpacaEval 2.0. It also outperforms the (iterative) DPO and IPO on MT-Bench and the Open LLM Leaderboard. Notably, the strong performance of SPPO is achieved without additional external supervision (e.g., responses, preferences, etc.) from GPT-4 or other stronger language models.

  • 6 authors
·
May 1, 2024 7

More Than One Teacher: Adaptive Multi-Guidance Policy Optimization for Diverse Exploration

Reinforcement Learning with Verifiable Rewards (RLVR) is a promising paradigm for enhancing the reasoning ability in Large Language Models (LLMs). However, prevailing methods primarily rely on self-exploration or a single off-policy teacher to elicit long chain-of-thought (LongCoT) reasoning, which may introduce intrinsic model biases and restrict exploration, ultimately limiting reasoning diversity and performance. Drawing inspiration from multi-teacher strategies in knowledge distillation, we introduce Adaptive Multi-Guidance Policy Optimization (AMPO), a novel framework that adaptively leverages guidance from multiple proficient teacher models, but only when the on-policy model fails to generate correct solutions. This "guidance-on-demand" approach expands exploration while preserving the value of self-discovery. Moreover, AMPO incorporates a comprehension-based selection mechanism, prompting the student to learn from the reasoning paths that it is most likely to comprehend, thus balancing broad exploration with effective exploitation. Extensive experiments show AMPO substantially outperforms a strong baseline (GRPO), with a 4.3% improvement on mathematical reasoning tasks and 12.2% on out-of-distribution tasks, while significantly boosting Pass@k performance and enabling more diverse exploration. Notably, using four peer-sized teachers, our method achieves comparable results to approaches that leverage a single, more powerful teacher (e.g., DeepSeek-R1) with more data. These results demonstrate a more efficient and scalable path to superior reasoning and generalizability. Our code is available at https://github.com/SII-Enigma/AMPO.

  • 8 authors
·
Oct 2

Arbitrary Entropy Policy Optimization: Entropy Is Controllable in Reinforcement Fine-tuning

Reinforcement fine-tuning (RFT) is essential for enhancing the reasoning capabilities of large language models (LLM), yet the widely adopted Group Relative Policy Optimization (GRPO) suffers from entropy collapse, where entropy monotonically decreases, exploration vanishes, and policies converge prematurely. Existing entropy-regularized methods only partially alleviate this issue while introducing bias and instability, leaving entropy control unresolved and the connection between entropy, exploration, and performance unclear. We propose Arbitrary Entropy Policy Optimization (AEPO), which eliminates entropy collapse by replacing entropy bonuses with REINFORCE policy gradient on temperature-adjusted distributions and stabilizing entropy through temperature regulation. AEPO integrates three key designs: policy gradient as regularization, distribution as regularization, and REINFORCE as regularization, enabling precise entropy control without distorting optimization. Experiments demonstrate three major contributions: AEPO (1) stabilizes entropy at arbitrary target levels, effectively removing collapse in GRPO; (2) reveals a non-monotonic relation where performance first improves then declines with increasing entropy, clarifying the link between entropy, exploration, and reasoning; and (3) generalizes beyond entropy, providing a broader RFT paradigm where superior target distributions can serve as REINFORCE regularizers.

  • 7 authors
·
Oct 9

Reinforcement Learning for Long-Horizon Interactive LLM Agents

Interactive digital agents (IDAs) leverage APIs of stateful digital environments to perform tasks in response to user requests. While IDAs powered by instruction-tuned large language models (LLMs) can react to feedback from interface invocations in multi-step exchanges, they have not been trained in their respective digital environments. Prior methods accomplish less than half of tasks in sophisticated benchmarks such as AppWorld. We present a reinforcement learning (RL) approach that trains IDAs directly in their target environments. We formalize this training as a partially observable Markov decision process and derive LOOP, a data- and memory-efficient variant of proximal policy optimization. LOOP uses no value network and maintains exactly one copy of the underlying LLM in memory, making its implementation straightforward and as memory-efficient as fine-tuning a single LLM. A 32-billion-parameter agent trained with LOOP in the AppWorld environment outperforms the much larger OpenAI o1 agent by 9 percentage points (15% relative). To our knowledge, this is the first reported application of RL to IDAs that interact with a stateful, multi-domain, multi-app environment via direct API calls. Our analysis sheds light on the effectiveness of RL in this area, showing that the agent learns to consult the API documentation, avoid unwarranted assumptions, minimize confabulation, and recover from setbacks.

  • 7 authors
·
Feb 3

Vision-Zero: Scalable VLM Self-Improvement via Strategic Gamified Self-Play

Although reinforcement learning (RL) can effectively enhance the reasoning capabilities of vision-language models (VLMs), current methods remain heavily dependent on labor-intensive datasets that require extensive manual construction and verification, leading to extremely high training costs and consequently constraining the practical deployment of VLMs. To address this challenge, we propose Vision-Zero, a domain-agnostic framework enabling VLM self-improvement through competitive visual games generated from arbitrary image pairs. Specifically, Vision-Zero encompasses three main attributes: (1) Strategic Self-Play Framework: Vision-Zero trains VLMs in "Who Is the Spy"-style games, where the models engage in strategic reasoning and actions across multiple roles. Through interactive gameplay, models autonomously generate their training data without human annotation. (2) Gameplay from Arbitrary Images: Unlike existing gamified frameworks, Vision-Zero can generate games from arbitrary images, thereby enhancing the model's reasoning ability across diverse domains and showing strong generalization to different tasks. We demonstrate this versatility using three distinct types of image datasets: CLEVR-based synthetic scenes, charts, and real-world images. (3) Sustainable Performance Gain: We introduce Iterative Self-Play Policy Optimization (Iterative-SPO), a novel training algorithm that alternates between Self-Play and reinforcement learning with verifiable rewards (RLVR), mitigating the performance plateau often seen in self-play-only training and achieving sustained long-term improvements. Despite using label-free data, Vision-Zero achieves state-of-the-art performance on reasoning, chart question answering, and vision-centric understanding tasks, surpassing other annotation-based methods. Models and code has been released at https://github.com/wangqinsi1/Vision-Zero.

  • 9 authors
·
Sep 29 2

Fathom-DeepResearch: Unlocking Long Horizon Information Retrieval and Synthesis for SLMs

Tool-integrated reasoning has emerged as a key focus for enabling agentic applications. Among these, DeepResearch Agents have gained significant attention for their strong performance on complex, open-ended information-seeking tasks. We introduce Fathom-DeepResearch, an agentic system composed of two specialized models. The first is Fathom-Search-4B, a DeepSearch model trained from Qwen3-4B and optimized for evidence-based investigation through live web search and targeted webpage querying. Its training combines three advances: (i) DUETQA, a 5K-sample dataset generated via multi-agent self-play that enforces strict web-search dependence and heterogeneous source grounding; (ii) RAPO, a zero-overhead extension of GRPO that stabilizes multi-turn Reinforcement Learning with Verifiable Rewards through curriculum pruning, reward-aware advantage scaling, and per-prompt replay buffers; and (iii) a steerable step-level reward that classifies each tool call by cognitive behavior and marginal utility, enabling explicit control over search trajectory breadth, depth, and horizon. These improvements enable reliable extension of tool-calling beyond 20 calls when warranted. The second is Fathom-Synthesizer-4B, trained from Qwen3-4B, which converts multi-turn DeepSearch traces into structured, citation-dense DeepResearch Reports for comprehensive synthesis. Evaluated on DeepSearch benchmarks (SimpleQA, FRAMES, WebWalker, Seal0, MuSiQue) and DeepResearch-Bench, the system achieves state-of-the-art performance in the open-weights category while demonstrating strong generalization to diverse reasoning tasks including HLE, AIME-25, GPQA-Diamond, and MedQA.

Truncated Proximal Policy Optimization

Recently, test-time scaling Large Language Models (LLMs) have demonstrated exceptional reasoning capabilities across scientific and professional tasks by generating long chains-of-thought (CoT). As a crucial component for developing these reasoning models, reinforcement learning (RL), exemplified by Proximal Policy Optimization (PPO) and its variants, allows models to learn through trial and error. However, PPO can be time-consuming due to its inherent on-policy nature, which is further exacerbated by increasing response lengths. In this work, we propose Truncated Proximal Policy Optimization (T-PPO), a novel extension to PPO that improves training efficiency by streamlining policy update and length-restricted response generation. T-PPO mitigates the issue of low hardware utilization, an inherent drawback of fully synchronized long-generation procedures, where resources often sit idle during the waiting periods for complete rollouts. Our contributions are two-folds. First, we propose Extended Generalized Advantage Estimation (EGAE) for advantage estimation derived from incomplete responses while maintaining the integrity of policy learning. Second, we devise a computationally optimized mechanism that allows for the independent optimization of the policy and value models. By selectively filtering prompt and truncated tokens, this mechanism reduces redundant computations and accelerates the training process without sacrificing convergence performance. We demonstrate the effectiveness and efficacy of T-PPO on AIME 2024 with a 32B base model. The experimental results show that T-PPO improves the training efficiency of reasoning LLMs by up to 2.5x and outperforms its existing competitors.

Information Gain-based Policy Optimization: A Simple and Effective Approach for Multi-Turn LLM Agents

Large language model (LLM)-based agents are increasingly trained with reinforcement learning (RL) to enhance their ability to interact with external environments through tool use, particularly in search-based settings that require multi-turn reasoning and knowledge acquisition. However, existing approaches typically rely on outcome-based rewards that are only provided at the final answer. This reward sparsity becomes particularly problematic in multi-turn settings, where long trajectories exacerbate two critical issues: (i) advantage collapse, where all rollouts receive identical rewards and provide no useful learning signals, and (ii) lack of fine-grained credit assignment, where dependencies between turns are obscured, especially in long-horizon tasks. In this paper, we propose Information Gain-based Policy Optimization (IGPO), a simple yet effective RL framework that provides dense and intrinsic supervision for multi-turn agent training. IGPO models each interaction turn as an incremental process of acquiring information about the ground truth, and defines turn-level rewards as the marginal increase in the policy's probability of producing the correct answer. Unlike prior process-level reward approaches that depend on external reward models or costly Monte Carlo estimation, IGPO derives intrinsic rewards directly from the model's own belief updates. These intrinsic turn-level rewards are combined with outcome-level supervision to form dense reward trajectories. Extensive experiments on both in-domain and out-of-domain benchmarks demonstrate that IGPO consistently outperforms strong baselines in multi-turn scenarios, achieving higher accuracy and improved sample efficiency.

antgroup Ant Group
·
Oct 16 2

Preference-conditioned Pixel-based AI Agent For Game Testing

The game industry is challenged to cope with increasing growth in demand and game complexity while maintaining acceptable quality standards for released games. Classic approaches solely depending on human efforts for quality assurance and game testing do not scale effectively in terms of time and cost. Game-testing AI agents that learn by interaction with the environment have the potential to mitigate these challenges with good scalability properties on time and costs. However, most recent work in this direction depends on game state information for the agent's state representation, which limits generalization across different game scenarios. Moreover, game test engineers usually prefer exploring a game in a specific style, such as exploring the golden path. However, current game testing AI agents do not provide an explicit way to satisfy such a preference. This paper addresses these limitations by proposing an agent design that mainly depends on pixel-based state observations while exploring the environment conditioned on a user's preference specified by demonstration trajectories. In addition, we propose an imitation learning method that couples self-supervised and supervised learning objectives to enhance the quality of imitation behaviors. Our agent significantly outperforms state-of-the-art pixel-based game testing agents over exploration coverage and test execution quality when evaluated on a complex open-world environment resembling many aspects of real AAA games.

  • 3 authors
·
Aug 18, 2023

Dataset Reset Policy Optimization for RLHF

Reinforcement Learning (RL) from Human Preference-based feedback is a popular paradigm for fine-tuning generative models, which has produced impressive models such as GPT-4 and Claude3 Opus. This framework often consists of two steps: learning a reward model from an offline preference dataset followed by running online RL to optimize the learned reward model. In this work, leveraging the idea of reset, we propose a new RLHF algorithm with provable guarantees. Motivated by the fact that offline preference dataset provides informative states (i.e., data that is preferred by the labelers), our new algorithm, Dataset Reset Policy Optimization (DR-PO), integrates the existing offline preference dataset into the online policy training procedure via dataset reset: it directly resets the policy optimizer to the states in the offline dataset, instead of always starting from the initial state distribution. In theory, we show that DR-PO learns to perform at least as good as any policy that is covered by the offline dataset under general function approximation with finite sample complexity. In experiments, we demonstrate that on both the TL;DR summarization and the Anthropic Helpful Harmful (HH) dataset, the generation from DR-PO is better than that from Proximal Policy Optimization (PPO) and Direction Preference Optimization (DPO), under the metric of GPT4 win-rate. Code for this work can be found at https://github.com/Cornell-RL/drpo.

  • 7 authors
·
Apr 12, 2024

Group-in-Group Policy Optimization for LLM Agent Training

Recent advances in group-based reinforcement learning (RL) have driven frontier large language models (LLMs) in single-turn tasks like mathematical reasoning. However, their scalability to long-horizon LLM agent training remains limited. Unlike static tasks, agent-environment interactions unfold over many steps and often yield sparse or delayed rewards, making credit assignment across individual steps significantly more challenging. In this work, we propose Group-in-Group Policy Optimization (GiGPO), a novel RL algorithm that achieves fine-grained credit assignment for LLM agents while preserving the appealing properties of group-based RL: critic-free, low memory, and stable convergence. GiGPO introduces a two-level structure for estimating relative advantage: (i) At the episode-level, GiGPO computes macro relative advantages based on groups of complete trajectories; (ii) At the step-level, GiGPO introduces an anchor state grouping mechanism that retroactively constructs step-level groups by identifying repeated environment states across trajectories. Actions stemming from the same state are grouped together, enabling micro relative advantage estimation. This hierarchical structure effectively captures both global trajectory quality and local step effectiveness without relying on auxiliary models or additional rollouts. We evaluate GiGPO on two challenging agent benchmarks, ALFWorld and WebShop, using Qwen2.5-1.5B-Instruct and Qwen2.5-7B-Instruct. Crucially, GiGPO delivers fine-grained per-step credit signals and achieves performance gains of > 12\% on ALFWorld and > 9\% on WebShop over the GRPO baseline: all while maintaining the same GPU memory overhead, identical LLM rollout, and incurring little to no additional time cost.

  • 4 authors
·
May 16

VerIPO: Cultivating Long Reasoning in Video-LLMs via Verifier-Gudied Iterative Policy Optimization

Applying Reinforcement Learning (RL) to Video Large Language Models (Video-LLMs) shows significant promise for complex video reasoning. However, popular Reinforcement Fine-Tuning (RFT) methods, such as outcome-based Group Relative Policy Optimization (GRPO), are limited by data preparation bottlenecks (e.g., noise or high cost) and exhibit unstable improvements in the quality of long chain-of-thoughts (CoTs) and downstream performance.To address these limitations, we propose VerIPO, a Verifier-guided Iterative Policy Optimization method designed to gradually improve video LLMs' capacity for generating deep, long-term reasoning chains. The core component is Rollout-Aware Verifier, positioned between the GRPO and Direct Preference Optimization (DPO) training phases to form the GRPO-Verifier-DPO training loop. This verifier leverages small LLMs as a judge to assess the reasoning logic of rollouts, enabling the construction of high-quality contrastive data, including reflective and contextually consistent CoTs. These curated preference samples drive the efficient DPO stage (7x faster than GRPO), leading to marked improvements in reasoning chain quality, especially in terms of length and contextual consistency. This training loop benefits from GRPO's expansive search and DPO's targeted optimization. Experimental results demonstrate: 1) Significantly faster and more effective optimization compared to standard GRPO variants, yielding superior performance; 2) Our trained models exceed the direct inference of large-scale instruction-tuned Video-LLMs, producing long and contextually consistent CoTs on diverse video reasoning tasks; and 3) Our model with one iteration outperforms powerful LMMs (e.g., Kimi-VL) and long reasoning models (e.g., Video-R1), highlighting its effectiveness and stability.

  • 8 authors
·
May 25 6

Train Once, Get a Family: State-Adaptive Balances for Offline-to-Online Reinforcement Learning

Offline-to-online reinforcement learning (RL) is a training paradigm that combines pre-training on a pre-collected dataset with fine-tuning in an online environment. However, the incorporation of online fine-tuning can intensify the well-known distributional shift problem. Existing solutions tackle this problem by imposing a policy constraint on the policy improvement objective in both offline and online learning. They typically advocate a single balance between policy improvement and constraints across diverse data collections. This one-size-fits-all manner may not optimally leverage each collected sample due to the significant variation in data quality across different states. To this end, we introduce Family Offline-to-Online RL (FamO2O), a simple yet effective framework that empowers existing algorithms to determine state-adaptive improvement-constraint balances. FamO2O utilizes a universal model to train a family of policies with different improvement/constraint intensities, and a balance model to select a suitable policy for each state. Theoretically, we prove that state-adaptive balances are necessary for achieving a higher policy performance upper bound. Empirically, extensive experiments show that FamO2O offers a statistically significant improvement over various existing methods, achieving state-of-the-art performance on the D4RL benchmark. Codes are available at https://github.com/LeapLabTHU/FamO2O.

  • 9 authors
·
Oct 27, 2023

ReMax: A Simple, Effective, and Efficient Reinforcement Learning Method for Aligning Large Language Models

Alignment is crucial for training large language models. The predominant strategy is Reinforcement Learning from Human Feedback (RLHF), with Proximal Policy Optimization (PPO) as the de-facto algorithm. Yet, PPO is known to struggle with computational inefficiency, a challenge that this paper aims to address. We identify three important properties of RLHF tasks: fast simulation, deterministic transitions, and trajectory-level rewards, which are not leveraged in PPO. Based on these properties, we develop ReMax, a new algorithm tailored for RLHF. The design of ReMax builds on the celebrated algorithm REINFORCE but is enhanced with a new variance-reduction technique. ReMax offers threefold advantages over PPO: first, it is simple to implement with just 6 lines of code. It further eliminates more than 4 hyper-parameters in PPO, which are laborious to tune. Second, ReMax reduces memory usage by about 50%. To illustrate, PPO runs out of memory when fine-tuning a Llama2-7B model on A100-80GB GPUs, whereas ReMax can support the training. Even though memory-efficient techniques (e.g., ZeRO and offload) are employed for PPO to afford training, ReMax can utilize a larger batch size to increase throughput. Third, in terms of wall-clock time, PPO is about twice as slow as ReMax per iteration. Importantly, these improvements do not sacrifice task performance. We hypothesize that these advantages can be maintained in larger-scale models.

  • 7 authors
·
Oct 16, 2023

A Practitioner's Guide to Multi-turn Agentic Reinforcement Learning

We study what actually works and what doesn't for training large language models as agents via multi-turn reinforcement learning. Despite rapid progress, existing frameworks and definitions are fragmented, and there is no systematic formulation or analysis of which design choices matter across tasks. We address this gap by first breaking down the design space into three inter-related pillars -- environment, reward, and policy -- and empirically derive a recipe for training LLM agents in situated textual domains. In particular, we test TextWorld and ALFWorld, popular domains for testing situated embodied reasoning, as well as SWE-Gym for more software engineering style tasks. (i) For the environment, we analyze the impacts of task complexity in terms of sizes of the state and action spaces as well as optimal solution length, finding that even simple environments within a domain can provide signal on how well an agent can generalize to more complex tasks. (ii) For the reward, we ablate relative reward sparsity, observing that while dense turn-level rewards accelerate training, performance and stability is highly dependent on the choice of RL algorithm. (iii) And for the agent's policy, we explore the interplay between reward sparsity and biased (PPO, GRPO) and unbiased (RLOO) policy gradient methods in addition to showing how to find the optimal Supervised Fine-tuning (SFT) to RL training ratio given a fixed budget. We distill these findings into a training recipe that guides co-design across the three pillars, facilitating research and practical efforts in multi-turn agentic RL. Code: https://github.com/pearls-lab/meow-tea-taro

PEARLS-Lab PEARLS Lab
·
Oct 1 2

Sharing is Caring: Efficient LM Post-Training with Collective RL Experience Sharing

Post-training language models (LMs) with reinforcement learning (RL) can enhance their complex reasoning capabilities without supervised fine-tuning, as demonstrated by DeepSeek-R1-Zero. However, effectively utilizing RL for LMs requires significant parallelization to scale-up inference, which introduces non-trivial technical challenges (e.g. latency, memory, and reliability) alongside ever-growing financial costs. We present Swarm sAmpling Policy Optimization (SAPO), a fully decentralized and asynchronous RL post-training algorithm. SAPO is designed for decentralized networks of heterogenous compute nodes, where each node manages its own policy model(s) while "sharing" rollouts with others in the network; no explicit assumptions about latency, model homogeneity, or hardware are required and nodes can operate in silo if desired. As a result, the algorithm avoids common bottlenecks in scaling RL post-training while also allowing (and even encouraging) new possibilities. By sampling rollouts "shared" across the network, it enables "Aha moments" to propagate, thereby bootstrapping the learning process. In this paper we show SAPO achieved cumulative reward gains of up to 94% in controlled experiments. We also share insights from tests on a network with thousands of nodes contributed by Gensyn community members running the algorithm on diverse hardware and models during an open-source demo.

  • 15 authors
·
Sep 10 53

The Benefits of Model-Based Generalization in Reinforcement Learning

Model-Based Reinforcement Learning (RL) is widely believed to have the potential to improve sample efficiency by allowing an agent to synthesize large amounts of imagined experience. Experience Replay (ER) can be considered a simple kind of model, which has proved extremely effective at improving the stability and efficiency of deep RL. In principle, a learned parametric model could improve on ER by generalizing from real experience to augment the dataset with additional plausible experience. However, owing to the many design choices involved in empirically successful algorithms, it can be very hard to establish where the benefits are actually coming from. Here, we provide theoretical and empirical insight into when, and how, we can expect data generated by a learned model to be useful. First, we provide a general theorem motivating how learning a model as an intermediate step can narrow down the set of possible value functions more than learning a value function directly from data using the Bellman equation. Second, we provide an illustrative example showing empirically how a similar effect occurs in a more concrete setting with neural network function approximation. Finally, we provide extensive experiments showing the benefit of model-based learning for online RL in environments with combinatorial complexity, but factored structure that allows a learned model to generalize. In these experiments, we take care to control for other factors in order to isolate, insofar as possible, the benefit of using experience generated by a learned model relative to ER alone.

  • 4 authors
·
Nov 3, 2022

MM-HELIX: Boosting Multimodal Long-Chain Reflective Reasoning with Holistic Platform and Adaptive Hybrid Policy Optimization

While current Multimodal Large Language Models (MLLMs) have demonstrated proficiency in reasoning tasks such as mathematics and logic, their capacity for long-chain reflective reasoning, a prerequisite for solving complex real-world problems, remains largely underexplored. In this work, we first conduct an extensive empirical investigation to evaluate this capability. Leveraging a carefully designed data synthesis engine, we construct MM-HELIX, a multimodal benchmark consisting 1,260 samples of 42 challenging synthetic tasks that require iterative thinking and backtracking. Empirical results on this benchmark reveal that existing MLLMs exhibit significant performance deficits in long-chain reflective reasoning. To address this limitation, we generate post-training data and further explore learning paradigms for exploiting such data. We first develop the Step-Elicited Response Generation pipeline to create MM-HELIX-100K, a large-scale dataset of 100k high-quality, reflective reasoning traces for instruction-tuning stage. Given that standard Reinforcement Learning fails on complex tasks due to sparse reward signals and catastrophic forgetting after Supervised Fine-Tuning, we propose Adaptive Hybrid Policy Optimization (AHPO), a novel training strategy that dynamically unifies offline supervision and online optimization into a single stage. This strategy enables the model to learn from expert data when rewards are sparse and conduct independent exploration once proficient. When applied to the Qwen2.5-VL-7B baseline, our method achieves a +18.6\% accuracy improvement on MM-HELIX benchmark and demonstrates strong generalization with a +5.7\% average performance gain on general mathematic and logic tasks. Our work demonstrate that reflective reasoning in MLLMs can be effectively learned and generalized, paving the way for developing more capable MLLMs.

Reinforcement Learning Foundations for Deep Research Systems: A Survey

Deep research systems, agentic AI that solve complex, multi-step tasks by coordinating reasoning, search across the open web and user files, and tool use, are moving toward hierarchical deployments with a Planner, Coordinator, and Executors. In practice, training entire stacks end-to-end remains impractical, so most work trains a single planner connected to core tools such as search, browsing, and code. While SFT imparts protocol fidelity, it suffers from imitation and exposure biases and underuses environment feedback. Preference alignment methods such as DPO are schema and proxy-dependent, off-policy, and weak for long-horizon credit assignment and multi-objective trade-offs. A further limitation of SFT and DPO is their reliance on human defined decision points and subskills through schema design and labeled comparisons. Reinforcement learning aligns with closed-loop, tool-interaction research by optimizing trajectory-level policies, enabling exploration, recovery behaviors, and principled credit assignment, and it reduces dependence on such human priors and rater biases. This survey is, to our knowledge, the first dedicated to the RL foundations of deep research systems. It systematizes work after DeepSeek-R1 along three axes: (i) data synthesis and curation; (ii) RL methods for agentic research covering stability, sample efficiency, long context handling, reward and credit design, multi-objective optimization, and multimodal integration; and (iii) agentic RL training systems and frameworks. We also cover agent architecture and coordination, as well as evaluation and benchmarks, including recent QA, VQA, long-form synthesis, and domain-grounded, tool-interaction tasks. We distill recurring patterns, surface infrastructure bottlenecks, and offer practical guidance for training robust, transparent deep research agents with RL.

Submodular Reinforcement Learning

In reinforcement learning (RL), rewards of states are typically considered additive, and following the Markov assumption, they are independent of states visited previously. In many important applications, such as coverage control, experiment design and informative path planning, rewards naturally have diminishing returns, i.e., their value decreases in light of similar states visited previously. To tackle this, we propose submodular RL (SubRL), a paradigm which seeks to optimize more general, non-additive (and history-dependent) rewards modelled via submodular set functions which capture diminishing returns. Unfortunately, in general, even in tabular settings, we show that the resulting optimization problem is hard to approximate. On the other hand, motivated by the success of greedy algorithms in classical submodular optimization, we propose SubPO, a simple policy gradient-based algorithm for SubRL that handles non-additive rewards by greedily maximizing marginal gains. Indeed, under some assumptions on the underlying Markov Decision Process (MDP), SubPO recovers optimal constant factor approximations of submodular bandits. Moreover, we derive a natural policy gradient approach for locally optimizing SubRL instances even in large state- and action- spaces. We showcase the versatility of our approach by applying SubPO to several applications, such as biodiversity monitoring, Bayesian experiment design, informative path planning, and coverage maximization. Our results demonstrate sample efficiency, as well as scalability to high-dimensional state-action spaces.

  • 4 authors
·
Jul 25, 2023

ARES: Multimodal Adaptive Reasoning via Difficulty-Aware Token-Level Entropy Shaping

Recent advances in multimodal large reasoning models (MLRMs) have substantially improved their ability to solve complex textual and visual tasks. However, these models tend to overthink on simple problems, producing unnecessarily lengthy reasoning traces, while under-exploring on challenging ones, leading to missed solutions. To address this imbalance, we propose ARES, a unified open-source framework for adaptive reasoning that dynamically allocates exploration effort based on task difficulty. Our approach is motivated by two key empirical findings: (i) while single-token entropy is noisy, high window-entropy (HWE) tokens (token-level entropies averaged under a sliding window) can reliably capture reasoning-critical moments; and (ii) reducing HWE usage benefits easy problems, while increasing it is essential for solving hard ones. Building on these insights, ARES introduces a two-stage training pipeline. In the Adaptive Cold-Start stage, we curate multimodal and textual data paired with reasoning traces of length proportional to problem difficulty, equipping the model with initial difficulty awareness. In the second stage, we develop Adaptive Entropy Policy Optimization (AEPO), which uses HWE tokens as exploration triggers to decide when to explore, and a hierarchical entropy reward with dynamic KL control to decide how much to explore. Extensive experiments demonstrate that ARES achieves superior performance and reasoning efficiency across diverse mathematical, logical, and multimodal benchmarks, while closing the gap to leading commercial systems under significantly lower inference costs.

InfiGUI-G1: Advancing GUI Grounding with Adaptive Exploration Policy Optimization

The emergence of Multimodal Large Language Models (MLLMs) has propelled the development of autonomous agents that operate on Graphical User Interfaces (GUIs) using pure visual input. A fundamental challenge is robustly grounding natural language instructions. This requires a precise spatial alignment, which accurately locates the coordinates of each element, and, more critically, a correct semantic alignment, which matches the instructions to the functionally appropriate UI element. Although Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be effective at improving spatial alignment for these MLLMs, we find that inefficient exploration bottlenecks semantic alignment, which prevent models from learning difficult semantic associations. To address this exploration problem, we present Adaptive Exploration Policy Optimization (AEPO), a new policy optimization framework. AEPO employs a multi-answer generation strategy to enforce broader exploration, which is then guided by a theoretically grounded Adaptive Exploration Reward (AER) function derived from first principles of efficiency eta=U/C. Our AEPO-trained models, InfiGUI-G1-3B and InfiGUI-G1-7B, establish new state-of-the-art results across multiple challenging GUI grounding benchmarks, achieving significant relative improvements of up to 9.0% against the naive RLVR baseline on benchmarks designed to test generalization and semantic understanding. Resources are available at https://github.com/InfiXAI/InfiGUI-G1.

A Survey on the Optimization of Large Language Model-based Agents

With the rapid development of Large Language Models (LLMs), LLM-based agents have been widely adopted in various fields, becoming essential for autonomous decision-making and interactive tasks. However, current work typically relies on prompt design or fine-tuning strategies applied to vanilla LLMs, which often leads to limited effectiveness or suboptimal performance in complex agent-related environments. Although LLM optimization techniques can improve model performance across many general tasks, they lack specialized optimization towards critical agent functionalities such as long-term planning, dynamic environmental interaction, and complex decision-making. Although numerous recent studies have explored various strategies to optimize LLM-based agents for complex agent tasks, a systematic review summarizing and comparing these methods from a holistic perspective is still lacking. In this survey, we provide a comprehensive review of LLM-based agent optimization approaches, categorizing them into parameter-driven and parameter-free methods. We first focus on parameter-driven optimization, covering fine-tuning-based optimization, reinforcement learning-based optimization, and hybrid strategies, analyzing key aspects such as trajectory data construction, fine-tuning techniques, reward function design, and optimization algorithms. Additionally, we briefly discuss parameter-free strategies that optimize agent behavior through prompt engineering and external knowledge retrieval. Finally, we summarize the datasets and benchmarks used for evaluation and tuning, review key applications of LLM-based agents, and discuss major challenges and promising future directions. Our repository for related references is available at https://github.com/YoungDubbyDu/LLM-Agent-Optimization.

  • 7 authors
·
Mar 16

SimPO: Simple Preference Optimization with a Reference-Free Reward

Direct Preference Optimization (DPO) is a widely used offline preference optimization algorithm that reparameterizes reward functions in reinforcement learning from human feedback (RLHF) to enhance simplicity and training stability. In this work, we propose SimPO, a simpler yet more effective approach. The effectiveness of SimPO is attributed to a key design: using the average log probability of a sequence as the implicit reward. This reward formulation better aligns with model generation and eliminates the need for a reference model, making it more compute and memory efficient. Additionally, we introduce a target reward margin to the Bradley-Terry objective to encourage a larger margin between the winning and losing responses, further enhancing the algorithm's performance. We compare SimPO to DPO and its latest variants across various state-of-the-art training setups, including both base and instruction-tuned models like Mistral and Llama3. We evaluated on extensive instruction-following benchmarks, including AlpacaEval 2, MT-Bench, and the recent challenging Arena-Hard benchmark. Our results demonstrate that SimPO consistently and significantly outperforms existing approaches without substantially increasing response length. Specifically, SimPO outperforms DPO by up to 6.4 points on AlpacaEval 2 and by up to 7.5 points on Arena-Hard. Our top-performing model, built on Llama3-8B-Instruct, achieves a remarkable 44.7 length-controlled win rate on AlpacaEval 2 -- surpassing Claude 3 Opus on the leaderboard, and a 33.8 win rate on Arena-Hard -- making it the strongest 8B open-source model.

  • 3 authors
·
May 23, 2024 1

The Perfect Blend: Redefining RLHF with Mixture of Judges

Reinforcement learning from human feedback (RLHF) has become the leading approach for fine-tuning large language models (LLM). However, RLHF has limitations in multi-task learning (MTL) due to challenges of reward hacking and extreme multi-objective optimization (i.e., trade-off of multiple and/or sometimes conflicting objectives). Applying RLHF for MTL currently requires careful tuning of the weights for reward model and data combinations. This is often done via human intuition and does not generalize. In this work, we introduce a novel post-training paradigm which we called Constrained Generative Policy Optimization (CGPO). The core of CGPO is Mixture of Judges (MoJ) with cost-efficient constrained policy optimization with stratification, which can identify the perfect blend in RLHF in a principled manner. It shows strong empirical results with theoretical guarantees, does not require extensive hyper-parameter tuning, and is plug-and-play in common post-training pipelines. Together, this can detect and mitigate reward hacking behaviors while reaching a pareto-optimal point across an extremely large number of objectives. Our empirical evaluations demonstrate that CGPO significantly outperforms standard RLHF algorithms like PPO and DPO across various tasks including general chat, STEM questions, instruction following, and coding. Specifically, CGPO shows improvements of 7.4% in AlpacaEval-2 (general chat), 12.5% in Arena-Hard (STEM & reasoning), and consistent gains in other domains like math and coding. Notably, PPO, while commonly used, is prone to severe reward hacking in popular coding benchmarks, which CGPO successfully addresses. This breakthrough in RLHF not only tackles reward hacking and extreme multi-objective optimization challenges but also advances the state-of-the-art in aligning general-purpose LLMs for diverse applications.

  • 20 authors
·
Sep 30, 2024

Self-Improving Robust Preference Optimization

Both online and offline RLHF methods such as PPO and DPO have been extremely successful in aligning AI with human preferences. Despite their success, the existing methods suffer from a fundamental problem that their optimal solution is highly task-dependent (i.e., not robust to out-of-distribution (OOD) tasks). Here we address this challenge by proposing Self-Improving Robust Preference Optimization SRPO, a practical and mathematically principled offline RLHF framework that is completely robust to the changes in the task. The key idea of SRPO is to cast the problem of learning from human preferences as a self-improvement process, which can be mathematically expressed in terms of a min-max objective that aims at joint optimization of self-improvement policy and the generative policy in an adversarial fashion. The solution for this optimization problem is independent of the training task and thus it is robust to its changes. We then show that this objective can be re-expressed in the form of a non-adversarial offline loss which can be optimized using standard supervised optimization techniques at scale without any need for reward model and online inference. We show the effectiveness of SRPO in terms of AI Win-Rate (WR) against human (GOLD) completions. In particular, when SRPO is evaluated on the OOD XSUM dataset, it outperforms the celebrated DPO by a clear margin of 15% after 5 self-revisions, achieving WR of 90%.

  • 5 authors
·
Jun 3, 2024 1

AgentFly: Fine-tuning LLM Agents without Fine-tuning LLMs

In this paper, we introduce a novel learning paradigm for adaptive Large Language Model (LLM) agents that eliminates the need for fine-tuning the underlying LLMs. Existing approaches are often either rigid, relying on static, handcrafted reflection workflows, or computationally intensive, requiring gradient updates of LLM model parameters. In contrast, our method enables low-cost continual adaptation via memory-based online reinforcement learning. We formalise this as a Memory-augmented Markov Decision Process (M-MDP), equipped with a neural case-selection policy to guide action decisions. Past experiences are stored in an episodic memory, either differentiable or non-parametric. The policy is continually updated based on environmental feedback through a memory rewriting mechanism, whereas policy improvement is achieved through efficient memory reading (retrieval). We instantiate our agent model in the deep research setting, namely AgentFly, which attains top-1 on GAIA validation (87.88% Pass@3) and 79.40% on the test set. It reaches 66.6% F1 and 80.4% PM on the DeepResearcher dataset, outperforming the state-of-the-art training-based method, while case-based memory adds 4.7% to 9.6% absolute points on out-of-distribution tasks. Our approach offers a scalable and efficient pathway for developing generalist LLM agents capable of continuous, real-time learning without gradient updates, advancing machine learning towards open-ended skill acquisition and deep research scenarios. The code is available at https://github.com/Agent-on-the-Fly/AgentFly.

  • 11 authors
·
Aug 22 11

Scaf-GRPO: Scaffolded Group Relative Policy Optimization for Enhancing LLM Reasoning

Reinforcement learning from verifiable rewards has emerged as a powerful technique for enhancing the complex reasoning abilities of Large Language Models (LLMs). However, these methods are fundamentally constrained by the ''learning cliff'' phenomenon: when faced with problems far beyond their current capabilities, models consistently fail, yielding a persistent zero-reward signal. In policy optimization algorithms like GRPO, this collapses the advantage calculation to zero, rendering these difficult problems invisible to the learning gradient and stalling progress. To overcome this, we introduce Scaf-GRPO (Scaffolded Group Relative Policy Optimization), a progressive training framework that strategically provides minimal guidance only when a model's independent learning has plateaued. The framework first diagnoses learning stagnation and then intervenes by injecting tiered in-prompt hints, ranging from abstract concepts to concrete steps, enabling the model to construct a valid solution by itself. Extensive experiments on challenging mathematics benchmarks demonstrate Scaf-GRPO's effectiveness, boosting the pass@1 score of the Qwen2.5-Math-7B model on the AIME24 benchmark by a relative 44.3% over a vanilla GRPO baseline. This result demonstrates our framework provides a robust and effective methodology for unlocking a model's ability to solve problems previously beyond its reach, a critical step towards extending the frontier of autonomous reasoning in LLM.

  • 7 authors
·
Oct 22

Hyperparameter Optimization for Multi-Objective Reinforcement Learning

Reinforcement learning (RL) has emerged as a powerful approach for tackling complex problems. The recent introduction of multi-objective reinforcement learning (MORL) has further expanded the scope of RL by enabling agents to make trade-offs among multiple objectives. This advancement not only has broadened the range of problems that can be tackled but also created numerous opportunities for exploration and advancement. Yet, the effectiveness of RL agents heavily relies on appropriately setting their hyperparameters. In practice, this task often proves to be challenging, leading to unsuccessful deployments of these techniques in various instances. Hence, prior research has explored hyperparameter optimization in RL to address this concern. This paper presents an initial investigation into the challenge of hyperparameter optimization specifically for MORL. We formalize the problem, highlight its distinctive challenges, and propose a systematic methodology to address it. The proposed methodology is applied to a well-known environment using a state-of-the-art MORL algorithm, and preliminary results are reported. Our findings indicate that the proposed methodology can effectively provide hyperparameter configurations that significantly enhance the performance of MORL agents. Furthermore, this study identifies various future research opportunities to further advance the field of hyperparameter optimization for MORL.

  • 4 authors
·
Oct 25, 2023

Accelerated Preference Optimization for Large Language Model Alignment

Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal tool for aligning large language models (LLMs) with human preferences. Direct Preference Optimization (DPO), one of the most popular approaches, formulates RLHF as a policy optimization problem without explicitly estimating the reward function. It overcomes the stability and efficiency issues of two-step approaches, which typically involve first estimating the reward function and then optimizing the policy via proximal policy optimization (PPO). Since RLHF is essentially an optimization problem, and it is well-known that momentum techniques can accelerate optimization both theoretically and empirically, a natural question arises: Can RLHF be accelerated by momentum? This paper answers this question in the affirmative. In detail, we first show that the iterative preference optimization method can be viewed as a proximal point method. Based on this observation, we propose a general Accelerated Preference Optimization (APO) framework, which unifies many existing preference optimization algorithms and employs Nesterov's momentum technique to speed up the alignment of LLMs. Theoretically, we demonstrate that APO can achieve a faster convergence rate than the standard iterative preference optimization methods, including DPO and Self-Play Preference Optimization (SPPO). Empirically, we show the superiority of APO over DPO, iterative DPO, and other strong baselines for RLHF on the AlpacaEval 2.0 benchmark.

  • 3 authors
·
Oct 8, 2024 2

Agent-R: Training Language Model Agents to Reflect via Iterative Self-Training

Large Language Models (LLMs) agents are increasingly pivotal for addressing complex tasks in interactive environments. Existing work mainly focuses on enhancing performance through behavior cloning from stronger experts, yet such approaches often falter in real-world applications, mainly due to the inability to recover from errors. However, step-level critique data is difficult and expensive to collect. Automating and dynamically constructing self-critique datasets is thus crucial to empowering models with intelligent agent capabilities. In this work, we propose an iterative self-training framework, Agent-R, that enables language Agent to Reflect on the fly. Unlike traditional methods that reward or penalize actions based on correctness, Agent-R leverages MCTS to construct training data that recover correct trajectories from erroneous ones. A key challenge of agent reflection lies in the necessity for timely revision rather than waiting until the end of a rollout. To address this, we introduce a model-guided critique construction mechanism: the actor model identifies the first error step (within its current capability) in a failed trajectory. Starting from it, we splice it with the adjacent correct path, which shares the same parent node in the tree. This strategy enables the model to learn reflection based on its current policy, therefore yielding better learning efficiency. To further explore the scalability of this self-improvement paradigm, we investigate iterative refinement of both error correction capabilities and dataset construction. Our findings demonstrate that Agent-R continuously improves the model's ability to recover from errors and enables timely error correction. Experiments on three interactive environments show that Agent-R effectively equips agents to correct erroneous actions while avoiding loops, achieving superior performance compared to baseline methods (+5.59%).

  • 6 authors
·
Jan 20 2

SkillMimic-V2: Learning Robust and Generalizable Interaction Skills from Sparse and Noisy Demonstrations

We address a fundamental challenge in Reinforcement Learning from Interaction Demonstration (RLID): demonstration noise and coverage limitations. While existing data collection approaches provide valuable interaction demonstrations, they often yield sparse, disconnected, and noisy trajectories that fail to capture the full spectrum of possible skill variations and transitions. Our key insight is that despite noisy and sparse demonstrations, there exist infinite physically feasible trajectories that naturally bridge between demonstrated skills or emerge from their neighboring states, forming a continuous space of possible skill variations and transitions. Building upon this insight, we present two data augmentation techniques: a Stitched Trajectory Graph (STG) that discovers potential transitions between demonstration skills, and a State Transition Field (STF) that establishes unique connections for arbitrary states within the demonstration neighborhood. To enable effective RLID with augmented data, we develop an Adaptive Trajectory Sampling (ATS) strategy for dynamic curriculum generation and a historical encoding mechanism for memory-dependent skill learning. Our approach enables robust skill acquisition that significantly generalizes beyond the reference demonstrations. Extensive experiments across diverse interaction tasks demonstrate substantial improvements over state-of-the-art methods in terms of convergence stability, generalization capability, and recovery robustness.

  • 7 authors
·
May 4 1

Correlated Proxies: A New Definition and Improved Mitigation for Reward Hacking

Because it is difficult to precisely specify complex objectives, reinforcement learning policies are often optimized using proxy reward functions that only approximate the true goal. However, optimizing proxy rewards frequently leads to reward hacking: the optimized reward function ceases to be a good proxy and the resulting policy performs poorly with respect to the unspecified true reward. Principled solutions to reward hacking have been impeded by the lack of a good definition for the problem. To address this gap, we introduce a definition of reward hacking based on the correlation between proxy and true rewards for states and actions seen by a "base policy" that breaks down under optimization. We show that this definition captures reward hacking behavior across several realistic settings, including in reinforcement learning from human feedback (RLHF). Using our formulation, we show theoretically that regularization to the base policy can effectively prevent reward hacking. While the current practice in RLHF applies a KL penalty between action distributions for this purpose, our theory suggests regularizing the chi^2 divergence between the policies' occupancy measures can be more effective. We intuitively show the benefits of this type of regularization and demonstrate that it better mitigates reward hacking in practice across four realistic settings, including RLHF. Our code is available at https://github.com/cassidylaidlaw/orpo.

  • 3 authors
·
Mar 5, 2024

Goal-Conditioned Imitation Learning using Score-based Diffusion Policies

We propose a new policy representation based on score-based diffusion models (SDMs). We apply our new policy representation in the domain of Goal-Conditioned Imitation Learning (GCIL) to learn general-purpose goal-specified policies from large uncurated datasets without rewards. Our new goal-conditioned policy architecture "BEhavior generation with ScOre-based Diffusion Policies" (BESO) leverages a generative, score-based diffusion model as its policy. BESO decouples the learning of the score model from the inference sampling process, and, hence allows for fast sampling strategies to generate goal-specified behavior in just 3 denoising steps, compared to 30+ steps of other diffusion based policies. Furthermore, BESO is highly expressive and can effectively capture multi-modality present in the solution space of the play data. Unlike previous methods such as Latent Plans or C-Bet, BESO does not rely on complex hierarchical policies or additional clustering for effective goal-conditioned behavior learning. Finally, we show how BESO can even be used to learn a goal-independent policy from play-data using classifier-free guidance. To the best of our knowledge this is the first work that a) represents a behavior policy based on such a decoupled SDM b) learns an SDM based policy in the domain of GCIL and c) provides a way to simultaneously learn a goal-dependent and a goal-independent policy from play-data. We evaluate BESO through detailed simulation and show that it consistently outperforms several state-of-the-art goal-conditioned imitation learning methods on challenging benchmarks. We additionally provide extensive ablation studies and experiments to demonstrate the effectiveness of our method for goal-conditioned behavior generation. Demonstrations and Code are available at https://intuitive-robots.github.io/beso-website/

  • 4 authors
·
Apr 5, 2023

EXPO: Stable Reinforcement Learning with Expressive Policies

We study the problem of training and fine-tuning expressive policies with online reinforcement learning (RL) given an offline dataset. Training expressive policy classes with online RL present a unique challenge of stable value maximization. Unlike simpler Gaussian policies commonly used in online RL, expressive policies like diffusion and flow-matching policies are parameterized by a long denoising chain, which hinders stable gradient propagation from actions to policy parameters when optimizing against some value function. Our key insight is that we can address stable value maximization by avoiding direct optimization over value with the expressive policy and instead construct an on-the-fly RL policy to maximize Q-value. We propose Expressive Policy Optimization (EXPO), a sample-efficient online RL algorithm that utilizes an on-the-fly policy to maximize value with two parameterized policies -- a larger expressive base policy trained with a stable imitation learning objective and a light-weight Gaussian edit policy that edits the actions sampled from the base policy toward a higher value distribution. The on-the-fly policy optimizes the actions from the base policy with the learned edit policy and chooses the value maximizing action from the base and edited actions for both sampling and temporal-difference (TD) backup. Our approach yields up to 2-3x improvement in sample efficiency on average over prior methods both in the setting of fine-tuning a pretrained policy given offline data and in leveraging offline data to train online.

  • 4 authors
·
Jul 10

Reason for Future, Act for Now: A Principled Framework for Autonomous LLM Agents with Provable Sample Efficiency

Large language models (LLMs) demonstrate impressive reasoning abilities, but translating reasoning into actions in the real world remains challenging. In particular, it remains unclear how to complete a given task provably within a minimum number of interactions with the external environment, e.g., through an internal mechanism of reasoning. To this end, we propose a principled framework with provable regret guarantees to orchestrate reasoning and acting, which we call "reason for future, act for now" (RAFA). Specifically, we design a prompt template for reasoning that learns from the memory buffer and plans a future trajectory over a long horizon ("reason for future"). At each step, the LLM agent takes the initial action of the planned trajectory ("act for now"), stores the collected feedback in the memory buffer, and reinvokes the reasoning routine to replan the future trajectory from the new state. The key idea is to cast reasoning in LLMs as learning and planning in Bayesian adaptive Markov decision processes (MDPs). Correspondingly, we prompt LLMs to form an updated posterior of the unknown environment from the memory buffer (learning) and generate an optimal trajectory for multiple future steps that maximizes a value function (planning). The learning and planning subroutines are performed in an "in-context" manner to emulate the actor-critic update for MDPs. Our theoretical analysis proves that the novel combination of long-term reasoning and short-term acting achieves a T regret. In particular, the regret bound highlights an intriguing interplay between the prior knowledge obtained through pretraining and the uncertainty reduction achieved by reasoning and acting. Our empirical validation shows that it outperforms various existing frameworks and achieves nearly perfect scores on a few benchmarks.

  • 7 authors
·
Sep 29, 2023 1

Taming Masked Diffusion Language Models via Consistency Trajectory Reinforcement Learning with Fewer Decoding Step

Masked diffusion language models (MDLMs) have recently emerged as a promising alternative to autoregressive (AR) language models, offering properties such as parallel decoding, flexible generation orders, and the potential for fewer inference steps. Despite these advantages, decoding strategies and reinforcement learning (RL) algorithms tailored for MDLMs remain underexplored. A naive approach is to directly transfer techniques well-established for AR models to MDLMs. However, this raises an immediate question: Is such a naive transfer truly optimal? For example, 1) Block-wise and semi-AR decoding strategies are not employed during the training of MDLMs, so why do they outperform full diffusion-style decoding during inference? 2) Applying RL algorithms designed for AR models directly to MDLMs exhibits a training-inference inconsistency, since MDLM decoding are non-causal (parallel). This results in inconsistencies between the rollout trajectory and the optimization trajectory. To address these challenges, we propose EOS Early Rejection (EOSER) and Ascending Step-Size (ASS) decoding scheduler, which unlock the potential of MDLMs to perform full diffusion-style decoding, achieving competitive performance with fewer decoding steps. Additionally, we introduce Consistency Trajectory Group Relative Policy Optimization (CJ-GRPO) for taming MDLMs, which emphasizes the consistency between rollout trajectory and optimization trajectory, and reduces the optimization errors caused by skip-step optimization. We conduct extensive experiments on reasoning tasks, such as mathematical and planning benchmarks, using LLaDA-8B-Instruct. The results demonstrate that the proposed EOSER and ASS mechanisms, together with CJ-GRPO, hold significant promise for effectively and efficiently taming MDLMs. Code: https://github.com/yjyddq/EOSER-ASS-RL.

MasHost Builds It All: Autonomous Multi-Agent System Directed by Reinforcement Learning

Large Language Model (LLM)-driven Multi-agent systems (Mas) have recently emerged as a powerful paradigm for tackling complex real-world tasks. However, existing Mas construction methods typically rely on manually crafted interaction mechanisms or heuristic rules, introducing human biases and constraining the autonomous ability. Even with recent advances in adaptive Mas construction, existing systems largely remain within the paradigm of semi-autonomous patterns. In this work, we propose MasHost, a Reinforcement Learning (RL)-based framework for autonomous and query-adaptive Mas design. By formulating Mas construction as a graph search problem, our proposed MasHost jointly samples agent roles and their interactions through a unified probabilistic sampling mechanism. Beyond the accuracy and efficiency objectives pursued in prior works, we introduce component rationality as an additional and novel design principle in Mas. To achieve this multi-objective optimization, we propose Hierarchical Relative Policy Optimization (HRPO), a novel RL strategy that collaboratively integrates group-relative advantages and action-wise rewards. To our knowledge, our proposed MasHost is the first RL-driven framework for autonomous Mas graph construction. Extensive experiments on six benchmarks demonstrate that MasHost consistently outperforms most competitive baselines, validating its effectiveness, efficiency, and structure rationality.

  • 8 authors
·
Jun 10

Agent-RLVR: Training Software Engineering Agents via Guidance and Environment Rewards

Reinforcement Learning from Verifiable Rewards (RLVR) has been widely adopted as the de facto method for enhancing the reasoning capabilities of large language models and has demonstrated notable success in verifiable domains like math and competitive programming tasks. However, the efficacy of RLVR diminishes significantly when applied to agentic environments. These settings, characterized by multi-step, complex problem solving, lead to high failure rates even for frontier LLMs, as the reward landscape is too sparse for effective model training via conventional RLVR. In this work, we introduce Agent-RLVR, a framework that makes RLVR effective in challenging agentic settings, with an initial focus on software engineering tasks. Inspired by human pedagogy, Agent-RLVR introduces agent guidance, a mechanism that actively steers the agent towards successful trajectories by leveraging diverse informational cues. These cues, ranging from high-level strategic plans to dynamic feedback on the agent's errors and environmental interactions, emulate a teacher's guidance, enabling the agent to navigate difficult solution spaces and promotes active self-improvement via additional environment exploration. In the Agent-RLVR training loop, agents first attempt to solve tasks to produce initial trajectories, which are then validated by unit tests and supplemented with agent guidance. Agents then reattempt with guidance, and the agent policy is updated with RLVR based on the rewards of these guided trajectories. Agent-RLVR elevates the pass@1 performance of Qwen-2.5-72B-Instruct from 9.4% to 22.4% on SWE-Bench Verified. We find that our guidance-augmented RLVR data is additionally useful for test-time reward model training, shown by further boosting pass@1 to 27.8%. Agent-RLVR lays the groundwork for training agents with RLVR in complex, real-world environments where conventional RL methods struggle.

  • 6 authors
·
Jun 12

Perception-Aware Policy Optimization for Multimodal Reasoning

Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be a highly effective strategy for endowing Large Language Models (LLMs) with robust multi-step reasoning abilities. However, its design and optimizations remain tailored to purely textual domains, resulting in suboptimal performance when applied to multimodal reasoning tasks. In particular, we observe that a major source of error in current multimodal reasoning lies in the perception of visual inputs. To address this bottleneck, we propose Perception-Aware Policy Optimization (PAPO), a simple yet effective extension of GRPO that encourages the model to learn to perceive while learning to reason, entirely from internal supervision signals. Notably, PAPO does not rely on additional data curation, external reward models, or proprietary models. Specifically, we introduce the Implicit Perception Loss in the form of a KL divergence term to the GRPO objective, which, despite its simplicity, yields significant overall improvements (4.4%) on diverse multimodal benchmarks. The improvements are more pronounced, approaching 8.0%, on tasks with high vision dependency. We also observe a substantial reduction (30.5%) in perception errors, indicating improved perceptual capabilities with PAPO. We conduct comprehensive analysis of PAPO and identify a unique loss hacking issue, which we rigorously analyze and mitigate through a Double Entropy Loss. Overall, our work introduces a deeper integration of perception-aware supervision into RLVR learning objectives and lays the groundwork for a new RL framework that encourages visually grounded reasoning. Project page: https://mikewangwzhl.github.io/PAPO.

Actor-Critics Can Achieve Optimal Sample Efficiency

Actor-critic algorithms have become a cornerstone in reinforcement learning (RL), leveraging the strengths of both policy-based and value-based methods. Despite recent progress in understanding their statistical efficiency, no existing work has successfully learned an epsilon-optimal policy with a sample complexity of O(1/epsilon^2) trajectories with general function approximation when strategic exploration is necessary. We address this open problem by introducing a novel actor-critic algorithm that attains a sample-complexity of O(dH^5 log|A|/epsilon^2 + d H^4 log|F|/ epsilon^2) trajectories, and accompanying T regret when the Bellman eluder dimension d does not increase with T at more than a log T rate. Here, F is the critic function class, A is the action space, and H is the horizon in the finite horizon MDP setting. Our algorithm integrates optimism, off-policy critic estimation targeting the optimal Q-function, and rare-switching policy resets. We extend this to the setting of Hybrid RL, showing that initializing the critic with offline data yields sample efficiency gains compared to purely offline or online RL. Further, utilizing access to offline data, we provide a non-optimistic provably efficient actor-critic algorithm that only additionally requires N_{off} geq c_{off}^*dH^4/epsilon^2 in exchange for omitting optimism, where c_{off}^* is the single-policy concentrability coefficient and N_{off} is the number of offline samples. This addresses another open problem in the literature. We further provide numerical experiments to support our theoretical findings.

  • 3 authors
·
May 6

Tool-Augmented Policy Optimization: Synergizing Reasoning and Adaptive Tool Use with Reinforcement Learning

Recent advances in large language models (LLMs) have popularized test-time scaling, where models generate additional reasoning tokens before producing final answers. These approaches have demonstrated significant performance improvements on benchmarks involving mathematical reasoning. However, language models relying solely on direct inference still struggle with tasks demanding up-to-date knowledge or computational tools such as calculators and code interpreters for complex arithmetic operations. To overcome these limitations, we propose Tool-Augmented Policy Optimization (TAPO), a novel reinforcement learning framework that systematically integrates multi-hop reasoning with adaptive tool-calling capabilities. Our approach employs a modified version of Dynamic Sampling Policy Optimization (DAPO), a recently developed RL paradigm, which we adapt specifically for tool invocation scenarios, enabling models to dynamically interleave complex reasoning with on-demand tool usage (including search APIs and Python interpreters). To support this research, we introduce two new datasets: TAPO-easy-60K and TAPO-hard-18K, specifically designed to train and evaluate both fact-based reasoning and mathematical calculation capabilities. Our experiments on Qwen2.5-3B and Qwen2.5-7B models demonstrate the effectiveness of our approach, with both models achieving state-of-the-art performance on tasks requiring external knowledge and mathematical computation among methods with comparable parameters. Notably, TAPO achieves more efficient tool utilization than baseline methods while preventing excessive calls caused by reward hacking. These results highlight the significant potential of combining advanced reasoning with tool usage to enhance model performance in knowledge-intensive and computationally demanding tasks.

  • 5 authors
·
Oct 8

Adversarial Imitation Learning via Boosting

Adversarial imitation learning (AIL) has stood out as a dominant framework across various imitation learning (IL) applications, with Discriminator Actor Critic (DAC) (Kostrikov et al.,, 2019) demonstrating the effectiveness of off-policy learning algorithms in improving sample efficiency and scalability to higher-dimensional observations. Despite DAC's empirical success, the original AIL objective is on-policy and DAC's ad-hoc application of off-policy training does not guarantee successful imitation (Kostrikov et al., 2019; 2020). Follow-up work such as ValueDICE (Kostrikov et al., 2020) tackles this issue by deriving a fully off-policy AIL objective. Instead in this work, we develop a novel and principled AIL algorithm via the framework of boosting. Like boosting, our new algorithm, AILBoost, maintains an ensemble of properly weighted weak learners (i.e., policies) and trains a discriminator that witnesses the maximum discrepancy between the distributions of the ensemble and the expert policy. We maintain a weighted replay buffer to represent the state-action distribution induced by the ensemble, allowing us to train discriminators using the entire data collected so far. In the weighted replay buffer, the contribution of the data from older policies are properly discounted with the weight computed based on the boosting framework. Empirically, we evaluate our algorithm on both controller state-based and pixel-based environments from the DeepMind Control Suite. AILBoost outperforms DAC on both types of environments, demonstrating the benefit of properly weighting replay buffer data for off-policy training. On state-based environments, DAC outperforms ValueDICE and IQ-Learn (Gary et al., 2021), achieving competitive performance with as little as one expert trajectory.

  • 5 authors
·
Apr 12, 2024

S-GRPO: Early Exit via Reinforcement Learning in Reasoning Models

As Test-Time Scaling emerges as an active research focus in the large language model community, advanced post-training methods increasingly emphasize extending chain-of-thought (CoT) generation length, thereby enhancing reasoning capabilities to approach Deepseek R1-like reasoning models. However, recent studies reveal that reasoning models (even Qwen3) consistently exhibit excessive thought redundancy in CoT generation. This overthinking issue arises from the inherent limitations of conventional outcome-reward reinforcement learning, which systematically overlooks the regulation of intermediate reasoning processes. This paper introduces Serial-Group Decaying-Reward Policy Optimization (S-GRPO), a novel reinforcement learning paradigm that enables models to implicitly evaluate the sufficiency of intermediate reasoning steps, thereby facilitating early exit in CoT generation. Unlike GRPO, which samples multiple possible reasoning paths in parallel (parallel group), S-GRPO only samples one reasoning path and serially selects multiple temporal positions from the path to exit thinking and directly generate answers (serial group). For correct answers within a serial group, rewards gradually decrease based on the exit positions along the reasoning path from front to back. This design encourages the model to produce more accurate and concise thoughts, while also incentivizing early thinking termination when appropriate. Empirical evaluations demonstrate that S-GRPO is compatible with state-of-the-art reasoning models, including Qwen3 and Deepseek-distill. Across diverse benchmarks such as GSM8K, AIME 2024, AMC 2023, MATH-500, and GPQA Diamond, S-GRPO achieves a substantial reduction in sequence length (35.4% - 61.1%) while simultaneously improving accuracy (absolute 0.72% - 6.08%).

  • 3 authors
·
May 12

CRAFT-GUI: Curriculum-Reinforced Agent For GUI Tasks

As autonomous agents become adept at understanding and interacting with graphical user interface (GUI) environments, a new era of automated task execution is emerging. Recent studies have demonstrated that Reinforcement Learning (RL) can effectively enhance agents' performance in dynamic interactive GUI environments. However, these methods face two key limitations: (1) they overlook the significant variation in difficulty across different GUI tasks by treating the entire training data as a uniform set, which hampers the agent's ability to adapt its learning process; and (2) most approaches collapse task-specific nuances into a single, coarse reward, leaving the agent with a uniform signal that yields inefficient policy updates. To address these limitations, we propose CRAFT-GUI, a curriculum learning framework based on Group Relative Policy Optimization (GRPO) that explicitly accounts for the varying difficulty across trajectories. To enable more fine-grained policy optimization, we design a reward function that combines simple rule-based signals with model-judged evaluation, providing richer and more nuanced feedback during training. Experimental results demonstrate that our method achieves significant improvements over previous state-of-the-art approaches, outperforming them by 5.6% on public benchmarks Android Control and 10.3% on our internal online benchmarks, respectively. These findings empirically validate the effectiveness of integrating reinforcement learning with curriculum learning in GUI interaction tasks.

  • 7 authors
·
Aug 15

Cogito, Ergo Ludo: An Agent that Learns to Play by Reasoning and Planning

The pursuit of artificial agents that can learn to master complex environments has led to remarkable successes, yet prevailing deep reinforcement learning methods often rely on immense experience, encoding their knowledge opaquely within neural network weights. We propose a different paradigm, one in which an agent learns to play by reasoning and planning. We introduce Cogito, ergo ludo (CEL), a novel agent architecture that leverages a Large Language Model (LLM) to build an explicit, language-based understanding of its environment's mechanics and its own strategy. Starting from a tabula rasa state with no prior knowledge (except action set), CEL operates on a cycle of interaction and reflection. After each episode, the agent analyzes its complete trajectory to perform two concurrent learning processes: Rule Induction, where it refines its explicit model of the environment's dynamics, and Strategy and Playbook Summarization, where it distills experiences into an actionable strategic playbook. We evaluate CEL on diverse grid-world tasks (i.e., Minesweeper, Frozen Lake, and Sokoban), and show that the CEL agent successfully learns to master these games by autonomously discovering their rules and developing effective policies from sparse rewards. Ablation studies confirm that the iterative process is critical for sustained learning. Our work demonstrates a path toward more general and interpretable agents that not only act effectively but also build a transparent and improving model of their world through explicit reasoning on raw experience.

tencent Tencent
·
Sep 29 2

Memory as Action: Autonomous Context Curation for Long-Horizon Agentic Tasks

Large Language Models face challenges in long-horizon agentic tasks as their constrained memory is easily overwhelmed by distracting or irrelevant context. Existing working memory methods typically rely on external, heuristic mechanisms that are decoupled from the agent's core policy. In this work, we reframe working memory management as a learnable, intrinsic capability. We propose a novel framework, Memory-as-Action, where an agent actively manages its working memory by executing explicit editing operations as part of a unified policy. This formulation allows an agent, trained via reinforcement learning, to balance memory curation against long-term task objectives under given resource constraints. However, such memory editing actions break the standard assumption of a continuously growing prefix in LLM interactions, leading to what we call trajectory fractures. These non-prefix changes disrupt the causal continuity required by standard policy gradient methods, making those methods inapplicable. To address this, we propose a new algorithm, Dynamic Context Policy Optimization, which enables stable end-to-end reinforcement learning by segmenting trajectories at memory action points and applying trajectory-level advantages to the resulting action segments. Our results demonstrate that jointly optimizing for task reasoning and memory management in an end-to-end fashion not only reduces overall computational consumption but also improves task performance, driven by adaptive context curation strategies tailored to the model's intrinsic capabilities.

Mobile-R1: Towards Interactive Reinforcement Learning for VLM-Based Mobile Agent via Task-Level Rewards

Vision-language model-based mobile agents have gained the ability to not only understand complex instructions and mobile screenshots, but also optimize their action outputs via thinking and reasoning, benefiting from reinforcement learning, such as Group Relative Policy Optimization (GRPO). However, existing research centers on offline reinforcement learning training or online optimization using action-level rewards, which limits the agent's dynamic interaction with the environment. This often results in agents settling into local optima, thereby weakening their ability for exploration and error action correction. To address these challenges, we introduce an approach called Mobile-R1, which employs interactive multi-turn reinforcement learning with task-level rewards for mobile agents. Our training framework consists of three stages: initial format finetuning, single-step online training via action-level reward, followed by online training via task-level reward based on multi-turn trajectories. This strategy is designed to enhance the exploration and error correction capabilities of Mobile-R1, leading to significant performance improvements. Moreover, we have collected a dataset covering 28 Chinese applications with 24,521 high-quality manual annotations and established a new benchmark with 500 trajectories. We will open source all resources, including the dataset, benchmark, model weight, and codes: https://mobile-r1.github.io/Mobile-R1/.

  • 13 authors
·
Jun 25

Agents Play Thousands of 3D Video Games

We present PORTAL, a novel framework for developing artificial intelligence agents capable of playing thousands of 3D video games through language-guided policy generation. By transforming decision-making problems into language modeling tasks, our approach leverages large language models (LLMs) to generate behavior trees represented in domain-specific language (DSL). This method eliminates the computational burden associated with traditional reinforcement learning approaches while preserving strategic depth and rapid adaptability. Our framework introduces a hybrid policy structure that combines rule-based nodes with neural network components, enabling both high-level strategic reasoning and precise low-level control. A dual-feedback mechanism incorporating quantitative game metrics and vision-language model analysis facilitates iterative policy improvement at both tactical and strategic levels. The resulting policies are instantaneously deployable, human-interpretable, and capable of generalizing across diverse gaming environments. Experimental results demonstrate PORTAL's effectiveness across thousands of first-person shooter (FPS) games, showcasing significant improvements in development efficiency, policy generalization, and behavior diversity compared to traditional approaches. PORTAL represents a significant advancement in game AI development, offering a practical solution for creating sophisticated agents that can operate across thousands of commercial video games with minimal development overhead. Experiment results on the 3D video games are best viewed on https://zhongwen.one/projects/portal .

  • 7 authors
·
Mar 17 2

DanceGRPO: Unleashing GRPO on Visual Generation

Recent breakthroughs in generative models-particularly diffusion models and rectified flows-have revolutionized visual content creation, yet aligning model outputs with human preferences remains a critical challenge. Existing reinforcement learning (RL)-based methods for visual generation face critical limitations: incompatibility with modern Ordinary Differential Equations (ODEs)-based sampling paradigms, instability in large-scale training, and lack of validation for video generation. This paper introduces DanceGRPO, the first unified framework to adapt Group Relative Policy Optimization (GRPO) to visual generation paradigms, unleashing one unified RL algorithm across two generative paradigms (diffusion models and rectified flows), three tasks (text-to-image, text-to-video, image-to-video), four foundation models (Stable Diffusion, HunyuanVideo, FLUX, SkyReel-I2V), and five reward models (image/video aesthetics, text-image alignment, video motion quality, and binary reward). To our knowledge, DanceGRPO is the first RL-based unified framework capable of seamless adaptation across diverse generative paradigms, tasks, foundational models, and reward models. DanceGRPO demonstrates consistent and substantial improvements, which outperform baselines by up to 181% on benchmarks such as HPS-v2.1, CLIP Score, VideoAlign, and GenEval. Notably, DanceGRPO not only can stabilize policy optimization for complex video generation, but also enables generative policy to better capture denoising trajectories for Best-of-N inference scaling and learn from sparse binary feedback. Our results establish DanceGRPO as a robust and versatile solution for scaling Reinforcement Learning from Human Feedback (RLHF) tasks in visual generation, offering new insights into harmonizing reinforcement learning and visual synthesis. The code will be released.

  • 11 authors
·
May 12 3

A Technical Survey of Reinforcement Learning Techniques for Large Language Models

Reinforcement Learning (RL) has emerged as a transformative approach for aligning and enhancing Large Language Models (LLMs), addressing critical challenges in instruction following, ethical alignment, and reasoning capabilities. This survey offers a comprehensive foundation on the integration of RL with language models, highlighting prominent algorithms such as Proximal Policy Optimization (PPO), Q-Learning, and Actor-Critic methods. Additionally, it provides an extensive technical overview of RL techniques specifically tailored for LLMs, including foundational methods like Reinforcement Learning from Human Feedback (RLHF) and AI Feedback (RLAIF), as well as advanced strategies such as Direct Preference Optimization (DPO) and Group Relative Policy Optimization (GRPO). We systematically analyze their applications across domains, i.e., from code generation to tool-augmented reasoning. We also present a comparative taxonomy based on reward modeling, feedback mechanisms, and optimization strategies. Our evaluation highlights key trends. RLHF remains dominant for alignment, and outcome-based RL such as RLVR significantly improves stepwise reasoning. However, persistent challenges such as reward hacking, computational costs, and scalable feedback collection underscore the need for continued innovation. We further discuss emerging directions, including hybrid RL algorithms, verifier-guided training, and multi-objective alignment frameworks. This survey serves as a roadmap for researchers advancing RL-driven LLM development, balancing capability enhancement with safety and scalability.

  • 2 authors
·
Jul 5

BNPO: Beta Normalization Policy Optimization

Recent studies, including DeepSeek-R1 and Kimi-k1.5, have demonstrated that reinforcement learning with rule-based, binary-valued reward functions can significantly enhance the reasoning capabilities of large language models. These models primarily utilize REINFORCE-based policy optimization techniques, such as REINFORCE with baseline and group relative policy optimization (GRPO). However, a key limitation remains: current policy optimization methods either neglect reward normalization or employ static normalization strategies, which fail to adapt to the dynamic nature of policy updates during training. This may result in unstable gradient estimates and hinder training stability. To address this issue, we propose Beta Normalization Policy Optimization (BNPO), a novel policy optimization method that adaptively normalizes rewards using a Beta distribution with dynamically updated parameters. BNPO aligns the normalization with the changing policy distribution, enabling more precise and lower-variance gradient estimation, which in turn promotes stable training dynamics. We provide theoretical analysis demonstrating BNPO's variance-reducing properties and show that it generalizes both REINFORCE and GRPO under binary-valued reward settings. Furthermore, we introduce an advantage decomposition mechanism to extend BNPO's applicability to more complex reward systems. Experimental results confirm that BNPO achieves state-of-the-art performance among policy optimization methods on reasoning tasks. The code is available at https://github.com/changyi7231/BNPO.

  • 3 authors
·
Jun 3

Synthetic Experience Replay

A key theme in the past decade has been that when large neural networks and large datasets combine they can produce remarkable results. In deep reinforcement learning (RL), this paradigm is commonly made possible through experience replay, whereby a dataset of past experiences is used to train a policy or value function. However, unlike in supervised or self-supervised learning, an RL agent has to collect its own data, which is often limited. Thus, it is challenging to reap the benefits of deep learning, and even small neural networks can overfit at the start of training. In this work, we leverage the tremendous recent progress in generative modeling and propose Synthetic Experience Replay (SynthER), a diffusion-based approach to flexibly upsample an agent's collected experience. We show that SynthER is an effective method for training RL agents across offline and online settings, in both proprioceptive and pixel-based environments. In offline settings, we observe drastic improvements when upsampling small offline datasets and see that additional synthetic data also allows us to effectively train larger networks. Furthermore, SynthER enables online agents to train with a much higher update-to-data ratio than before, leading to a significant increase in sample efficiency, without any algorithmic changes. We believe that synthetic training data could open the door to realizing the full potential of deep learning for replay-based RL algorithms from limited data. Finally, we open-source our code at https://github.com/conglu1997/SynthER.

  • 4 authors
·
Mar 12, 2023

Boundary-Guided Policy Optimization for Memory-efficient RL of Diffusion Large Language Models

A key challenge in applying reinforcement learning (RL) to diffusion large language models (dLLMs) lies in the intractability of their likelihood functions, which are essential for the RL objective, necessitating corresponding approximation in each training step. While existing methods approximate the log-likelihoods by their evidence lower bounds (ELBOs) via customized Monte Carlo (MC) sampling, the forward computational graphs of all MC samples need to be retained for the gradient computation of non-linear terms in the RL objective, resulting in significant memory overhead. This constraint restricts feasible sample sizes, leading to imprecise likelihood approximations and ultimately distorting the RL objective. To overcome this limitation, we propose Boundary-Guided Policy Optimization (BGPO), a memory-efficient RL algorithm that maximizes a specially constructed lower bound of the ELBO-based objective. This lower bound is carefully designed to satisfy two key properties: (1) Linearity: it is formulated in a linear sum where each term depends only on a single MC sample, thereby enabling gradient accumulation across samples and ensuring constant memory usage; (2) Equivalence: Both the value and gradient of this lower bound are equal to those of the ELBO-based objective in on-policy training, making it also an effective approximation for the original RL objective. These properties allow BGPO to adopt a large MC sample size, resulting in more accurate likelihood approximations and improved RL objective estimation, which in turn leads to enhanced performance. Experiments show that BGPO significantly outperforms previous RL algorithms for dLLMs in math problem solving, code generation, and planning tasks.

zai-org Z.ai
·
Oct 13 2

A Reinforcement Learning Method for Environments with Stochastic Variables: Post-Decision Proximal Policy Optimization with Dual Critic Networks

This paper presents Post-Decision Proximal Policy Optimization (PDPPO), a novel variation of the leading deep reinforcement learning method, Proximal Policy Optimization (PPO). The PDPPO state transition process is divided into two steps: a deterministic step resulting in the post-decision state and a stochastic step leading to the next state. Our approach incorporates post-decision states and dual critics to reduce the problem's dimensionality and enhance the accuracy of value function estimation. Lot-sizing is a mixed integer programming problem for which we exemplify such dynamics. The objective of lot-sizing is to optimize production, delivery fulfillment, and inventory levels in uncertain demand and cost parameters. This paper evaluates the performance of PDPPO across various environments and configurations. Notably, PDPPO with a dual critic architecture achieves nearly double the maximum reward of vanilla PPO in specific scenarios, requiring fewer episode iterations and demonstrating faster and more consistent learning across different initializations. On average, PDPPO outperforms PPO in environments with a stochastic component in the state transition. These results support the benefits of using a post-decision state. Integrating this post-decision state in the value function approximation leads to more informed and efficient learning in high-dimensional and stochastic environments.

  • 5 authors
·
Apr 7

Critique-GRPO: Advancing LLM Reasoning with Natural Language and Numerical Feedback

Recent advances in reinforcement learning (RL) with numerical feedback, such as scalar rewards, have significantly enhanced the complex reasoning capabilities of large language models (LLMs). Despite this success, we identify three key challenges encountered by RL with solely numerical feedback: performance plateaus, limited effectiveness of self-reflection, and persistent failures. We then demonstrate that RL-finetuned models, even after exhibiting performance plateaus, can generate correct refinements on persistently failed problems by leveraging natural language feedback in the form of critiques. Building on this insight, we propose Critique-GRPO, an online RL framework that integrates both natural language and numerical feedback for effective policy optimization. Critique-GRPO enables LLMs to learn from initial responses and critique-guided refinements simultaneously while maintaining exploration. Extensive experiments using Qwen2.5-7B-Base and Qwen3-8B-Base show that Critique-GRPO consistently outperforms supervised learning-based and RL-based fine-tuning approaches across eight challenging mathematical, STEM, and general reasoning tasks, improving average pass@1 scores by approximately 4.5% and 5%, respectively. Notably, Critique-GRPO surpasses a strong baseline that incorporates expert demonstrations within online RL. Further analysis reveals two critical insights about policy exploration: (1) higher entropy does not always guarantee efficient learning from exploration, and (2) longer responses do not necessarily lead to more effective exploration.

Training-Free Group Relative Policy Optimization

Recent advances in Large Language Model (LLM) agents have demonstrated their promising general capabilities. However, their performance in specialized real-world domains often degrades due to challenges in effectively integrating external tools and specific prompting strategies. While methods like agentic reinforcement learning have been proposed to address this, they typically rely on costly parameter updates, for example, through a process that uses Supervised Fine-Tuning (SFT) followed by a Reinforcement Learning (RL) phase with Group Relative Policy Optimization (GRPO) to alter the output distribution. However, we argue that LLMs can achieve a similar effect on the output distribution by learning experiential knowledge as a token prior, which is a far more lightweight approach that not only addresses practical data scarcity but also avoids the common issue of overfitting. To this end, we propose Training-Free Group Relative Policy Optimization (Training-Free GRPO), a cost-effective solution that enhances LLM agent performance without any parameter updates. Our method leverages the group relative semantic advantage instead of numerical ones within each group of rollouts, iteratively distilling high-quality experiential knowledge during multi-epoch learning on a minimal ground-truth data. Such knowledge serves as the learned token prior, which is seamlessly integrated during LLM API calls to guide model behavior. Experiments on mathematical reasoning and web searching tasks demonstrate that Training-Free GRPO, when applied to DeepSeek-V3.1-Terminus, significantly improves out-of-domain performance. With just a few dozen training samples, Training-Free GRPO outperforms fine-tuned small LLMs with marginal training data and cost.

tencent Tencent
·
Oct 9 2

Sim2Rec: A Simulator-based Decision-making Approach to Optimize Real-World Long-term User Engagement in Sequential Recommender Systems

Long-term user engagement (LTE) optimization in sequential recommender systems (SRS) is shown to be suited by reinforcement learning (RL) which finds a policy to maximize long-term rewards. Meanwhile, RL has its shortcomings, particularly requiring a large number of online samples for exploration, which is risky in real-world applications. One of the appealing ways to avoid the risk is to build a simulator and learn the optimal recommendation policy in the simulator. In LTE optimization, the simulator is to simulate multiple users' daily feedback for given recommendations. However, building a user simulator with no reality-gap, i.e., can predict user's feedback exactly, is unrealistic because the users' reaction patterns are complex and historical logs for each user are limited, which might mislead the simulator-based recommendation policy. In this paper, we present a practical simulator-based recommender policy training approach, Simulation-to-Recommendation (Sim2Rec) to handle the reality-gap problem for LTE optimization. Specifically, Sim2Rec introduces a simulator set to generate various possibilities of user behavior patterns, then trains an environment-parameter extractor to recognize users' behavior patterns in the simulators. Finally, a context-aware policy is trained to make the optimal decisions on all of the variants of the users based on the inferred environment-parameters. The policy is transferable to unseen environments (e.g., the real world) directly as it has learned to recognize all various user behavior patterns and to make the correct decisions based on the inferred environment-parameters. Experiments are conducted in synthetic environments and a real-world large-scale ride-hailing platform, DidiChuxing. The results show that Sim2Rec achieves significant performance improvement, and produces robust recommendations in unseen environments.

  • 8 authors
·
May 3, 2023