- FLAVARS: A Multimodal Foundational Language and Vision Alignment Model for Remote Sensing Remote sensing imagery is dense with objects and contextual visual information. There is a recent trend to combine paired satellite images and text captions for pretraining performant encoders for downstream tasks. However, while contrastive image-text methods like CLIP enable vision-language alignment and zero-shot classification ability, vision-only downstream performance tends to degrade compared to image-only pretraining, such as MAE. In this paper, we propose FLAVARS, a pretraining method that combines the best of both contrastive learning and masked modeling, along with geospatial alignment via contrastive location encoding. We find that FLAVARS significantly outperforms a baseline of SkyCLIP for vision-only tasks such as KNN classification and semantic segmentation, +6\% mIOU on SpaceNet1, while retaining the ability to perform zero-shot classification, unlike MAE pretrained methods. 7 authors · Jan 14
- A Change Detection Reality Check In recent years, there has been an explosion of proposed change detection deep learning architectures in the remote sensing literature. These approaches claim to offer state-of the-art performance on different standard benchmark datasets. However, has the field truly made significant progress? In this paper we perform experiments which conclude a simple U-Net segmentation baseline without training tricks or complicated architectural changes is still a top performer for the task of change detection. 3 authors · Feb 10, 2024
- Revisiting pre-trained remote sensing model benchmarks: resizing and normalization matters Research in self-supervised learning (SSL) with natural images has progressed rapidly in recent years and is now increasingly being applied to and benchmarked with datasets containing remotely sensed imagery. A common benchmark case is to evaluate SSL pre-trained model embeddings on datasets of remotely sensed imagery with small patch sizes, e.g., 32x32 pixels, whereas standard SSL pre-training takes place with larger patch sizes, e.g., 224x224. Furthermore, pre-training methods tend to use different image normalization preprocessing steps depending on the dataset. In this paper, we show, across seven satellite and aerial imagery datasets of varying resolution, that by simply following the preprocessing steps used in pre-training (precisely, image sizing and normalization methods), one can achieve significant performance improvements when evaluating the extracted features on downstream tasks -- an important detail overlooked in previous work in this space. We show that by following these steps, ImageNet pre-training remains a competitive baseline for satellite imagery based transfer learning tasks -- for example we find that these steps give +32.28 to overall accuracy on the So2Sat random split dataset and +11.16 on the EuroSAT dataset. Finally, we report comprehensive benchmark results with a variety of simple baseline methods for each of the seven datasets, forming an initial benchmark suite for remote sensing imagery. 5 authors · May 22, 2023
- ZRG: A Dataset for Multimodal 3D Residential Rooftop Understanding A crucial part of any home is the roof over our heads to protect us from the elements. In this paper we present the Zeitview Rooftop Geometry (ZRG) dataset for residential rooftop understanding. ZRG is a large-scale residential rooftop dataset of over 20k properties collected through roof inspections from across the U.S. and contains multiple modalities including high resolution aerial orthomosaics, digital surface models (DSM), colored point clouds, and 3D roof wireframe annotations. We provide an in-depth analysis and perform several experimental baselines including roof outline extraction, monocular height estimation, and planar roof structure extraction, to illustrate a few of the numerous potential applications unlocked by this dataset. 3 authors · Apr 25, 2023
- Single-View Height Estimation with Conditional Diffusion Probabilistic Models Digital Surface Models (DSM) offer a wealth of height information for understanding the Earth's surface as well as monitoring the existence or change in natural and man-made structures. Classical height estimation requires multi-view geospatial imagery or LiDAR point clouds which can be expensive to acquire. Single-view height estimation using neural network based models shows promise however it can struggle with reconstructing high resolution features. The latest advancements in diffusion models for high resolution image synthesis and editing have yet to be utilized for remote sensing imagery, particularly height estimation. Our approach involves training a generative diffusion model to learn the joint distribution of optical and DSM images across both domains as a Markov chain. This is accomplished by minimizing a denoising score matching objective while being conditioned on the source image to generate realistic high resolution 3D surfaces. In this paper we experiment with conditional denoising diffusion probabilistic models (DDPM) for height estimation from a single remotely sensed image and show promising results on the Vaihingen benchmark dataset. 2 authors · Apr 25, 2023 1
- Supervising Remote Sensing Change Detection Models with 3D Surface Semantics Remote sensing change detection, identifying changes between scenes of the same location, is an active area of research with a broad range of applications. Recent advances in multimodal self-supervised pretraining have resulted in state-of-the-art methods which surpass vision models trained solely on optical imagery. In the remote sensing field, there is a wealth of overlapping 2D and 3D modalities which can be exploited to supervise representation learning in vision models. In this paper we propose Contrastive Surface-Image Pretraining (CSIP) for joint learning using optical RGB and above ground level (AGL) map pairs. We then evaluate these pretrained models on several building segmentation and change detection datasets to show that our method does, in fact, extract features relevant to downstream applications where natural and artificial surface information is relevant. 2 authors · Feb 26, 2022
- Destruction of Image Steganography using Generative Adversarial Networks Digital image steganalysis, or the detection of image steganography, has been studied in depth for years and is driven by Advanced Persistent Threat (APT) groups', such as APT37 Reaper, utilization of steganographic techniques to transmit additional malware to perform further post-exploitation activity on a compromised host. However, many steganalysis algorithms are constrained to work with only a subset of all possible images in the wild or are known to produce a high false positive rate. This results in blocking any suspected image being an unreasonable policy. A more feasible policy is to filter suspicious images prior to reception by the host machine. However, how does one optimally filter specifically to obfuscate or remove image steganography while avoiding degradation of visual image quality in the case that detection of the image was a false positive? We propose the Deep Digital Steganography Purifier (DDSP), a Generative Adversarial Network (GAN) which is optimized to destroy steganographic content without compromising the perceptual quality of the original image. As verified by experimental results, our model is capable of providing a high rate of destruction of steganographic image content while maintaining a high visual quality in comparison to other state-of-the-art filtering methods. Additionally, we test the transfer learning capability of generalizing to to obfuscate real malware payloads embedded into different image file formats and types using an unseen steganographic algorithm and prove that our model can in fact be deployed to provide adequate results. 3 authors · Dec 20, 2019
- DomainGAN: Generating Adversarial Examples to Attack Domain Generation Algorithm Classifiers Domain Generation Algorithms (DGAs) are frequently used to generate numerous domains for use by botnets. These domains are often utilized as rendezvous points for servers that malware has command and control over. There are many algorithms that are used to generate domains, however many of these algorithms are simplistic and easily detected by traditional machine learning techniques. In this paper, three variants of Generative Adversarial Networks (GANs) are optimized to generate domains which have similar characteristics of benign domains, resulting in domains which greatly evade several state-of-the-art deep learning based DGA classifiers. We additionally provide a detailed analysis into offensive usability for each variant with respect to repeated and existing domain collisions. Finally, we fine-tune the state-of-the-art DGA classifiers by adding GAN generated samples to their original training datasets and analyze the changes in performance. Our results conclude that GAN based DGAs are superior in evading DGA classifiers in comparison to traditional DGAs, and of the variants, the Wasserstein GAN with Gradient Penalty (WGANGP) is the highest performing DGA for uses both offensively and defensively. 3 authors · Nov 14, 2019
- EMBERSim: A Large-Scale Databank for Boosting Similarity Search in Malware Analysis In recent years there has been a shift from heuristics-based malware detection towards machine learning, which proves to be more robust in the current heavily adversarial threat landscape. While we acknowledge machine learning to be better equipped to mine for patterns in the increasingly high amounts of similar-looking files, we also note a remarkable scarcity of the data available for similarity-targeted research. Moreover, we observe that the focus in the few related works falls on quantifying similarity in malware, often overlooking the clean data. This one-sided quantification is especially dangerous in the context of detection bypass. We propose to address the deficiencies in the space of similarity research on binary files, starting from EMBER - one of the largest malware classification data sets. We enhance EMBER with similarity information as well as malware class tags, to enable further research in the similarity space. Our contribution is threefold: (1) we publish EMBERSim, an augmented version of EMBER, that includes similarity-informed tags; (2) we enrich EMBERSim with automatically determined malware class tags using the open-source tool AVClass on VirusTotal data and (3) we describe and share the implementation for our class scoring technique and leaf similarity method. 4 authors · Oct 3, 2023
- Depth Any Canopy: Leveraging Depth Foundation Models for Canopy Height Estimation Estimating global tree canopy height is crucial for forest conservation and climate change applications. However, capturing high-resolution ground truth canopy height using LiDAR is expensive and not available globally. An efficient alternative is to train a canopy height estimator to operate on single-view remotely sensed imagery. The primary obstacle to this approach is that these methods require significant training data to generalize well globally and across uncommon edge cases. Recent monocular depth estimation foundation models have show strong zero-shot performance even for complex scenes. In this paper we leverage the representations learned by these models to transfer to the remote sensing domain for measuring canopy height. Our findings suggest that our proposed Depth Any Canopy, the result of fine-tuning the Depth Anything v2 model for canopy height estimation, provides a performant and efficient solution, surpassing the current state-of-the-art with superior or comparable performance using only a fraction of the computational resources and parameters. Furthermore, our approach requires less than \$1.30 in compute and results in an estimated carbon footprint of 0.14 kgCO2. Code, experimental results, and model checkpoints are openly available at https://github.com/DarthReca/depth-any-canopy. 3 authors · Aug 8, 2024
1 "Vorbeşti Româneşte?" A Recipe to Train Powerful Romanian LLMs with English Instructions In recent years, Large Language Models (LLMs) have achieved almost human-like performance on various tasks. While some LLMs have been trained on multilingual data, most of the training data is in English; hence, their performance in English greatly exceeds other languages. To our knowledge, we are the first to collect and translate a large collection of texts, instructions, and benchmarks and train, evaluate, and release open-source LLMs tailored for Romanian. We evaluate our methods on four different categories, including academic benchmarks, MT-Bench (manually translated), and a professionally built historical, cultural, and social benchmark adapted to Romanian. We argue for the usefulness and high performance of RoLLMs by obtaining state-of-the-art results across the board. We publicly release all resources (i.e., data, training and evaluation code, models) to support and encourage research on Romanian LLMs while concurrently creating a generalizable recipe, adequate for other low or less-resourced languages. 13 authors · Jun 26, 2024
1 TorchGeo: Deep Learning With Geospatial Data Remotely sensed geospatial data are critical for applications including precision agriculture, urban planning, disaster monitoring and response, and climate change research, among others. Deep learning methods are particularly promising for modeling many remote sensing tasks given the success of deep neural networks in similar computer vision tasks and the sheer volume of remotely sensed imagery available. However, the variance in data collection methods and handling of geospatial metadata make the application of deep learning methodology to remotely sensed data nontrivial. For example, satellite imagery often includes additional spectral bands beyond red, green, and blue and must be joined to other geospatial data sources that can have differing coordinate systems, bounds, and resolutions. To help realize the potential of deep learning for remote sensing applications, we introduce TorchGeo, a Python library for integrating geospatial data into the PyTorch deep learning ecosystem. TorchGeo provides data loaders for a variety of benchmark datasets, composable datasets for generic geospatial data sources, samplers for geospatial data, and transforms that work with multispectral imagery. TorchGeo is also the first library to provide pre-trained models for multispectral satellite imagery (e.g., models that use all bands from the Sentinel-2 satellites), allowing for advances in transfer learning on downstream remote sensing tasks with limited labeled data. We use TorchGeo to create reproducible benchmark results on existing datasets and benchmark our proposed method for preprocessing geospatial imagery on the fly. TorchGeo is open source and available on GitHub: https://github.com/microsoft/torchgeo. 6 authors · Nov 16, 2021
- HydroChronos: Forecasting Decades of Surface Water Change Forecasting surface water dynamics is crucial for water resource management and climate change adaptation. However, the field lacks comprehensive datasets and standardized benchmarks. In this paper, we introduce HydroChronos, a large-scale, multi-modal spatiotemporal dataset for surface water dynamics forecasting designed to address this gap. We couple the dataset with three forecasting tasks. The dataset includes over three decades of aligned Landsat 5 and Sentinel-2 imagery, climate data, and Digital Elevation Models for diverse lakes and rivers across Europe, North America, and South America. We also propose AquaClimaTempo UNet, a novel spatiotemporal architecture with a dedicated climate data branch, as a strong benchmark baseline. Our model significantly outperforms a Persistence baseline for forecasting future water dynamics by +14% and +11% F1 across change detection and direction of change classification tasks, and by +0.1 MAE on the magnitude of change regression. Finally, we conduct an Explainable AI analysis to identify the key climate variables and input channels that influence surface water change, providing insights to inform and guide future modeling efforts. 7 authors · Jun 17
- OpenLLM-Ro -- Technical Report on Open-source Romanian LLMs trained starting from Llama 2 In recent years, Large Language Models (LLMs) have achieved almost human-like performance on various tasks. While some LLMs have been trained on multilingual data, most of the training data is in English. Hence, their performance in English greatly exceeds their performance in other languages. This document presents our approach to training and evaluating the first foundational and chat LLM specialized for Romanian. 9 authors · May 13, 2024
- Structured World Representations in Maze-Solving Transformers Transformer models underpin many recent advances in practical machine learning applications, yet understanding their internal behavior continues to elude researchers. Given the size and complexity of these models, forming a comprehensive picture of their inner workings remains a significant challenge. To this end, we set out to understand small transformer models in a more tractable setting: that of solving mazes. In this work, we focus on the abstractions formed by these models and find evidence for the consistent emergence of structured internal representations of maze topology and valid paths. We demonstrate this by showing that the residual stream of only a single token can be linearly decoded to faithfully reconstruct the entire maze. We also find that the learned embeddings of individual tokens have spatial structure. Furthermore, we take steps towards deciphering the circuity of path-following by identifying attention heads (dubbed adjacency heads), which are implicated in finding valid subsequent tokens. 12 authors · Dec 5, 2023
- SSL4EO-L: Datasets and Foundation Models for Landsat Imagery The Landsat program is the longest-running Earth observation program in history, with 50+ years of data acquisition by 8 satellites. The multispectral imagery captured by sensors onboard these satellites is critical for a wide range of scientific fields. Despite the increasing popularity of deep learning and remote sensing, the majority of researchers still use decision trees and random forests for Landsat image analysis due to the prevalence of small labeled datasets and lack of foundation models. In this paper, we introduce SSL4EO-L, the first ever dataset designed for Self-Supervised Learning for Earth Observation for the Landsat family of satellites (including 3 sensors and 2 product levels) and the largest Landsat dataset in history (5M image patches). Additionally, we modernize and re-release the L7 Irish and L8 Biome cloud detection datasets, and introduce the first ML benchmark datasets for Landsats 4-5 TM and Landsat 7 ETM+ SR. Finally, we pre-train the first foundation models for Landsat imagery using SSL4EO-L and evaluate their performance on multiple semantic segmentation tasks. All datasets and model weights are available via the TorchGeo (https://github.com/microsoft/torchgeo) library, making reproducibility and experimentation easy, and enabling scientific advancements in the burgeoning field of remote sensing for a multitude of downstream applications. 9 authors · Jun 15, 2023
- Fix your Models by Fixing your Datasets The quality of underlying training data is very crucial for building performant machine learning models with wider generalizabilty. However, current machine learning (ML) tools lack streamlined processes for improving the data quality. So, getting data quality insights and iteratively pruning the errors to obtain a dataset which is most representative of downstream use cases is still an ad-hoc manual process. Our work addresses this data tooling gap, required to build improved ML workflows purely through data-centric techniques. More specifically, we introduce a systematic framework for (1) finding noisy or mislabelled samples in the dataset and, (2) identifying the most informative samples, which when included in training would provide maximal model performance lift. We demonstrate the efficacy of our framework on public as well as private enterprise datasets of two Fortune 500 companies, and are confident this work will form the basis for ML teams to perform more intelligent data discovery and pruning. 6 authors · Dec 14, 2021
- A Configurable Library for Generating and Manipulating Maze Datasets Understanding how machine learning models respond to distributional shifts is a key research challenge. Mazes serve as an excellent testbed due to varied generation algorithms offering a nuanced platform to simulate both subtle and pronounced distributional shifts. To enable systematic investigations of model behavior on out-of-distribution data, we present maze-dataset, a comprehensive library for generating, processing, and visualizing datasets consisting of maze-solving tasks. With this library, researchers can easily create datasets, having extensive control over the generation algorithm used, the parameters fed to the algorithm of choice, and the filters that generated mazes must satisfy. Furthermore, it supports multiple output formats, including rasterized and text-based, catering to convolutional neural networks and autoregressive transformer models. These formats, along with tools for visualizing and converting between them, ensure versatility and adaptability in research applications. 11 authors · Sep 19, 2023
- A search for extremely-high-energy neutrinos and first constraints on the ultra-high-energy cosmic-ray proton fraction with IceCube We present a search for the diffuse extremely-high-energy neutrino flux using 12.6 years of IceCube data. The non-observation of neutrinos with energies well above 10 , PeV constrains the all-flavor neutrino flux at 10^{18} , eV to a level of E^2 Phi_{nu_e + nu_mu + nu_tau} simeq 10^{-8} , GeV , cm^{-2} , s^{-1} , sr^{-1}, the most stringent limit to date. Using this data, we constrain the proton fraction of ultra-high-energy cosmic rays (UHECRs) above simeq 30 , EeV to be lesssim 70,% (at 90,% CL) if the cosmological evolution of the sources is comparable to or stronger than the star formation rate. This result complements direct air-shower measurements by being insensitive to uncertainties associated with hadronic interaction models. It is the first such result to disfavor the ``proton-only" hypothesis for UHECRs using neutrino data. 427 authors · Feb 3