new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 1

DeepSpeed Ulysses: System Optimizations for Enabling Training of Extreme Long Sequence Transformer Models

Computation in a typical Transformer-based large language model (LLM) can be characterized by batch size, hidden dimension, number of layers, and sequence length. Until now, system works for accelerating LLM training have focused on the first three dimensions: data parallelism for batch size, tensor parallelism for hidden size and pipeline parallelism for model depth or layers. These widely studied forms of parallelism are not targeted or optimized for long sequence Transformer models. Given practical application needs for long sequence LLM, renewed attentions are being drawn to sequence parallelism. However, existing works in sequence parallelism are constrained by memory-communication inefficiency, limiting their scalability to long sequence large models. In this work, we introduce DeepSpeed-Ulysses, a novel, portable and effective methodology for enabling highly efficient and scalable LLM training with extremely long sequence length. DeepSpeed-Ulysses at its core partitions input data along the sequence dimension and employs an efficient all-to-all collective communication for attention computation. Theoretical communication analysis shows that whereas other methods incur communication overhead as sequence length increases, DeepSpeed-Ulysses maintains constant communication volume when sequence length and compute devices are increased proportionally. Furthermore, experimental evaluations show that DeepSpeed-Ulysses trains 2.5X faster with 4X longer sequence length than the existing method SOTA baseline.

  • 7 authors
·
Sep 25, 2023 1

Arctic Long Sequence Training: Scalable And Efficient Training For Multi-Million Token Sequences

Long sequences are critical for applications like RAG, long document summarization, multi-modality, etc., and modern LLMs, like Llama 4 Scout, support max sequence length of up to 10 million tokens. However, outside of enterprise labs, long sequence training is challenging for the AI community with limited system support in the open-source space. Out-of-box, even on a modern NVIDIA H100 80GB GPU cluster, training Llama 8B model with sequence over 32K runs out of memory on a basic Hugging Face (HF) model due to two reasons: i) LLM training workloads are not optimized to fully leverage a single GPU memory, ii) existing solutions for leveraging multiple GPU memory are not easily available to HF models, making long sequence training inaccessible. We address this with Arctic Long Sequence Training (ALST). It offers a combination of attention-agnostic single GPU and multi-GPU memory optimizations, that enables it to support out-of-box training of multi-million sequence length for a wide variety of HF models. ALST supports training Meta's Llama 8B model with 500K sequence length on a single H100 GPU, 3.7M on a single 8xH100 GPU node, and over 15M on a 4 node cluster, an increase of over 400x compared to the 32K baseline for the latter. ALST is fully compatible with HF models and open-sourced via Deepspeed https://www.deepspeed.ai/tutorials/ulysses-alst-sequence-pallellism/ and Arctic Training https://github.com/snowflakedb/ArcticTraining/blob/main/projects/sequence-parallelism/README.md.

  • 8 authors
·
Jun 16