- StreetViewAI: Making Street View Accessible Using Context-Aware Multimodal AI Interactive streetscape mapping tools such as Google Street View (GSV) and Meta Mapillary enable users to virtually navigate and experience real-world environments via immersive 360{\deg} imagery but remain fundamentally inaccessible to blind users. We introduce StreetViewAI, the first-ever accessible street view tool, which combines context-aware, multimodal AI, accessible navigation controls, and conversational speech. With StreetViewAI, blind users can virtually examine destinations, engage in open-world exploration, or virtually tour any of the over 220 billion images and 100+ countries where GSV is deployed. We iteratively designed StreetViewAI with a mixed-visual ability team and performed an evaluation with eleven blind users. Our findings demonstrate the value of an accessible street view in supporting POI investigations and remote route planning. We close by enumerating key guidelines for future work. 5 authors · Aug 11
18 Streetscapes: Large-scale Consistent Street View Generation Using Autoregressive Video Diffusion We present a method for generating Streetscapes-long sequences of views through an on-the-fly synthesized city-scale scene. Our generation is conditioned by language input (e.g., city name, weather), as well as an underlying map/layout hosting the desired trajectory. Compared to recent models for video generation or 3D view synthesis, our method can scale to much longer-range camera trajectories, spanning several city blocks, while maintaining visual quality and consistency. To achieve this goal, we build on recent work on video diffusion, used within an autoregressive framework that can easily scale to long sequences. In particular, we introduce a new temporal imputation method that prevents our autoregressive approach from drifting from the distribution of realistic city imagery. We train our Streetscapes system on a compelling source of data-posed imagery from Google Street View, along with contextual map data-which allows users to generate city views conditioned on any desired city layout, with controllable camera poses. Please see more results at our project page at https://boyangdeng.com/streetscapes. 6 authors · Jul 18, 2024 2
- LLMGeo: Benchmarking Large Language Models on Image Geolocation In-the-wild Image geolocation is a critical task in various image-understanding applications. However, existing methods often fail when analyzing challenging, in-the-wild images. Inspired by the exceptional background knowledge of multimodal language models, we systematically evaluate their geolocation capabilities using a novel image dataset and a comprehensive evaluation framework. We first collect images from various countries via Google Street View. Then, we conduct training-free and training-based evaluations on closed-source and open-source multi-modal language models. we conduct both training-free and training-based evaluations on closed-source and open-source multimodal language models. Our findings indicate that closed-source models demonstrate superior geolocation abilities, while open-source models can achieve comparable performance through fine-tuning. 6 authors · May 30, 2024
- RampNet: A Two-Stage Pipeline for Bootstrapping Curb Ramp Detection in Streetscape Images from Open Government Metadata Curb ramps are critical for urban accessibility, but robustly detecting them in images remains an open problem due to the lack of large-scale, high-quality datasets. While prior work has attempted to improve data availability with crowdsourced or manually labeled data, these efforts often fall short in either quality or scale. In this paper, we introduce and evaluate a two-stage pipeline called RampNet to scale curb ramp detection datasets and improve model performance. In Stage 1, we generate a dataset of more than 210,000 annotated Google Street View (GSV) panoramas by auto-translating government-provided curb ramp location data to pixel coordinates in panoramic images. In Stage 2, we train a curb ramp detection model (modified ConvNeXt V2) from the generated dataset, achieving state-of-the-art performance. To evaluate both stages of our pipeline, we compare to manually labeled panoramas. Our generated dataset achieves 94.0% precision and 92.5% recall, and our detection model reaches 0.9236 AP -- far exceeding prior work. Our work contributes the first large-scale, high-quality curb ramp detection dataset, benchmark, and model. 5 authors · Aug 12
7 "Does the cafe entrance look accessible? Where is the door?" Towards Geospatial AI Agents for Visual Inquiries Interactive digital maps have revolutionized how people travel and learn about the world; however, they rely on pre-existing structured data in GIS databases (e.g., road networks, POI indices), limiting their ability to address geo-visual questions related to what the world looks like. We introduce our vision for Geo-Visual Agents--multimodal AI agents capable of understanding and responding to nuanced visual-spatial inquiries about the world by analyzing large-scale repositories of geospatial images, including streetscapes (e.g., Google Street View), place-based photos (e.g., TripAdvisor, Yelp), and aerial imagery (e.g., satellite photos) combined with traditional GIS data sources. We define our vision, describe sensing and interaction approaches, provide three exemplars, and enumerate key challenges and opportunities for future work. 10 authors · Aug 21 2
- Tree-D Fusion: Simulation-Ready Tree Dataset from Single Images with Diffusion Priors We introduce Tree D-fusion, featuring the first collection of 600,000 environmentally aware, 3D simulation-ready tree models generated through Diffusion priors. Each reconstructed 3D tree model corresponds to an image from Google's Auto Arborist Dataset, comprising street view images and associated genus labels of trees across North America. Our method distills the scores of two tree-adapted diffusion models by utilizing text prompts to specify a tree genus, thus facilitating shape reconstruction. This process involves reconstructing a 3D tree envelope filled with point markers, which are subsequently utilized to estimate the tree's branching structure using the space colonization algorithm conditioned on a specified genus. 7 authors · Jul 14, 2024
- Where We Are and What We're Looking At: Query Based Worldwide Image Geo-localization Using Hierarchies and Scenes Determining the exact latitude and longitude that a photo was taken is a useful and widely applicable task, yet it remains exceptionally difficult despite the accelerated progress of other computer vision tasks. Most previous approaches have opted to learn a single representation of query images, which are then classified at different levels of geographic granularity. These approaches fail to exploit the different visual cues that give context to different hierarchies, such as the country, state, and city level. To this end, we introduce an end-to-end transformer-based architecture that exploits the relationship between different geographic levels (which we refer to as hierarchies) and the corresponding visual scene information in an image through hierarchical cross-attention. We achieve this by learning a query for each geographic hierarchy and scene type. Furthermore, we learn a separate representation for different environmental scenes, as different scenes in the same location are often defined by completely different visual features. We achieve state of the art street level accuracy on 4 standard geo-localization datasets : Im2GPS, Im2GPS3k, YFCC4k, and YFCC26k, as well as qualitatively demonstrate how our method learns different representations for different visual hierarchies and scenes, which has not been demonstrated in the previous methods. These previous testing datasets mostly consist of iconic landmarks or images taken from social media, which makes them either a memorization task, or biased towards certain places. To address this issue we introduce a much harder testing dataset, Google-World-Streets-15k, comprised of images taken from Google Streetview covering the whole planet and present state of the art results. Our code will be made available in the camera-ready version. 5 authors · Mar 7, 2023