- LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech This paper introduces a new speech corpus called "LibriTTS" designed for text-to-speech use. It is derived from the original audio and text materials of the LibriSpeech corpus, which has been used for training and evaluating automatic speech recognition systems. The new corpus inherits desired properties of the LibriSpeech corpus while addressing a number of issues which make LibriSpeech less than ideal for text-to-speech work. The released corpus consists of 585 hours of speech data at 24kHz sampling rate from 2,456 speakers and the corresponding texts. Experimental results show that neural end-to-end TTS models trained from the LibriTTS corpus achieved above 4.0 in mean opinion scores in naturalness in five out of six evaluation speakers. The corpus is freely available for download from http://www.openslr.org/60/. 8 authors · Apr 5, 2019
- A Comprehensive Solution to Connect Speech Encoder and Large Language Model for ASR Recent works have shown promising results in connecting speech encoders to large language models (LLMs) for speech recognition. However, several limitations persist, including limited fine-tuning options, a lack of mechanisms to enforce speech-text alignment, and high insertion errors especially in domain mismatch conditions. This paper presents a comprehensive solution to address these issues. We begin by investigating more thoughtful fine-tuning schemes. Next, we propose a matching loss to enhance alignment between modalities. Finally, we explore training and inference methods to mitigate high insertion errors. Experimental results on the Librispeech corpus demonstrate that partially fine-tuning the encoder and LLM using parameter-efficient methods, such as LoRA, is the most cost-effective approach. Additionally, the matching loss improves modality alignment, enhancing performance. The proposed training and inference methods significantly reduce insertion errors. 7 authors · Jun 25, 2024
- Blank-regularized CTC for Frame Skipping in Neural Transducer Neural Transducer and connectionist temporal classification (CTC) are popular end-to-end automatic speech recognition systems. Due to their frame-synchronous design, blank symbols are introduced to address the length mismatch between acoustic frames and output tokens, which might bring redundant computation. Previous studies managed to accelerate the training and inference of neural Transducers by discarding frames based on the blank symbols predicted by a co-trained CTC. However, there is no guarantee that the co-trained CTC can maximize the ratio of blank symbols. This paper proposes two novel regularization methods to explicitly encourage more blanks by constraining the self-loop of non-blank symbols in the CTC. It is interesting to find that the frame reduction ratio of the neural Transducer can approach the theoretical boundary. Experiments on LibriSpeech corpus show that our proposed method accelerates the inference of neural Transducer by 4 times without sacrificing performance. Our work is open-sourced and publicly available https://github.com/k2-fsa/icefall. 9 authors · May 19, 2023
- Pre-Training Transformer Decoder for End-to-End ASR Model with Unpaired Speech Data This paper studies a novel pre-training technique with unpaired speech data, Speech2C, for encoder-decoder based automatic speech recognition (ASR). Within a multi-task learning framework, we introduce two pre-training tasks for the encoder-decoder network using acoustic units, i.e., pseudo codes, derived from an offline clustering model. One is to predict the pseudo codes via masked language modeling in encoder output, like HuBERT model, while the other lets the decoder learn to reconstruct pseudo codes autoregressively instead of generating textual scripts. In this way, the decoder learns to reconstruct original speech information with codes before learning to generate correct text. Comprehensive experiments on the LibriSpeech corpus show that the proposed Speech2C can relatively reduce the word error rate (WER) by 19.2% over the method without decoder pre-training, and also outperforms significantly the state-of-the-art wav2vec 2.0 and HuBERT on fine-tuning subsets of 10h and 100h. We release our code and model at https://github.com/microsoft/SpeechT5/tree/main/Speech2C. 10 authors · Mar 31, 2022
- Self-Training for End-to-End Speech Recognition We revisit self-training in the context of end-to-end speech recognition. We demonstrate that training with pseudo-labels can substantially improve the accuracy of a baseline model. Key to our approach are a strong baseline acoustic and language model used to generate the pseudo-labels, filtering mechanisms tailored to common errors from sequence-to-sequence models, and a novel ensemble approach to increase pseudo-label diversity. Experiments on the LibriSpeech corpus show that with an ensemble of four models and label filtering, self-training yields a 33.9% relative improvement in WER compared with a baseline trained on 100 hours of labelled data in the noisy speech setting. In the clean speech setting, self-training recovers 59.3% of the gap between the baseline and an oracle model, which is at least 93.8% relatively higher than what previous approaches can achieve. 3 authors · Sep 19, 2019
- TacoLM: GaTed Attention Equipped Codec Language Model are Efficient Zero-Shot Text to Speech Synthesizers Neural codec language model (LM) has demonstrated strong capability in zero-shot text-to-speech (TTS) synthesis. However, the codec LM often suffers from limitations in inference speed and stability, due to its auto-regressive nature and implicit alignment between text and audio. In this work, to handle these challenges, we introduce a new variant of neural codec LM, namely TacoLM. Specifically, TacoLM introduces a gated attention mechanism to improve the training and inference efficiency and reduce the model size. Meanwhile, an additional gated cross-attention layer is included for each decoder layer, which improves the efficiency and content accuracy of the synthesized speech. In the evaluation of the Librispeech corpus, the proposed TacoLM achieves a better word error rate, speaker similarity, and mean opinion score, with 90% fewer parameters and 5.2 times speed up, compared with VALL-E. Demo and code is available at https://ereboas.github.io/TacoLM/. 6 authors · Jun 22, 2024
1 RED-ACE: Robust Error Detection for ASR using Confidence Embeddings ASR Error Detection (AED) models aim to post-process the output of Automatic Speech Recognition (ASR) systems, in order to detect transcription errors. Modern approaches usually use text-based input, comprised solely of the ASR transcription hypothesis, disregarding additional signals from the ASR model. Instead, we propose to utilize the ASR system's word-level confidence scores for improving AED performance. Specifically, we add an ASR Confidence Embedding (ACE) layer to the AED model's encoder, allowing us to jointly encode the confidence scores and the transcribed text into a contextualized representation. Our experiments show the benefits of ASR confidence scores for AED, their complementary effect over the textual signal, as well as the effectiveness and robustness of ACE for combining these signals. To foster further research, we publish a novel AED dataset consisting of ASR outputs on the LibriSpeech corpus with annotated transcription errors. 4 authors · Mar 14, 2022
- Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training Large-scale distributed training requires significant communication bandwidth for gradient exchange that limits the scalability of multi-node training, and requires expensive high-bandwidth network infrastructure. The situation gets even worse with distributed training on mobile devices (federated learning), which suffers from higher latency, lower throughput, and intermittent poor connections. In this paper, we find 99.9% of the gradient exchange in distributed SGD is redundant, and propose Deep Gradient Compression (DGC) to greatly reduce the communication bandwidth. To preserve accuracy during compression, DGC employs four methods: momentum correction, local gradient clipping, momentum factor masking, and warm-up training. We have applied Deep Gradient Compression to image classification, speech recognition, and language modeling with multiple datasets including Cifar10, ImageNet, Penn Treebank, and Librispeech Corpus. On these scenarios, Deep Gradient Compression achieves a gradient compression ratio from 270x to 600x without losing accuracy, cutting the gradient size of ResNet-50 from 97MB to 0.35MB, and for DeepSpeech from 488MB to 0.74MB. Deep gradient compression enables large-scale distributed training on inexpensive commodity 1Gbps Ethernet and facilitates distributed training on mobile. Code is available at: https://github.com/synxlin/deep-gradient-compression. 5 authors · Dec 5, 2017
- Libriheavy: a 50,000 hours ASR corpus with punctuation casing and context In this paper, we introduce Libriheavy, a large-scale ASR corpus consisting of 50,000 hours of read English speech derived from LibriVox. To the best of our knowledge, Libriheavy is the largest freely-available corpus of speech with supervisions. Different from other open-sourced datasets that only provide normalized transcriptions, Libriheavy contains richer information such as punctuation, casing and text context, which brings more flexibility for system building. Specifically, we propose a general and efficient pipeline to locate, align and segment the audios in previously published Librilight to its corresponding texts. The same as Librilight, Libriheavy also has three training subsets small, medium, large of the sizes 500h, 5000h, 50000h respectively. We also extract the dev and test evaluation sets from the aligned audios and guarantee there is no overlapping speakers and books in training sets. Baseline systems are built on the popular CTC-Attention and transducer models. Additionally, we open-source our dataset creatation pipeline which can also be used to other audio alignment tasks. 8 authors · Sep 14, 2023
1 MLS: A Large-Scale Multilingual Dataset for Speech Research This paper introduces Multilingual LibriSpeech (MLS) dataset, a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages, including about 44.5K hours of English and a total of about 6K hours for other languages. Additionally, we provide Language Models (LM) and baseline Automatic Speech Recognition (ASR) models and for all the languages in our dataset. We believe such a large transcribed dataset will open new avenues in ASR and Text-To-Speech (TTS) research. The dataset will be made freely available for anyone at http://www.openslr.org. 5 authors · Dec 6, 2020
4 LibriTTS-R: A Restored Multi-Speaker Text-to-Speech Corpus This paper introduces a new speech dataset called ``LibriTTS-R'' designed for text-to-speech (TTS) use. It is derived by applying speech restoration to the LibriTTS corpus, which consists of 585 hours of speech data at 24 kHz sampling rate from 2,456 speakers and the corresponding texts. The constituent samples of LibriTTS-R are identical to those of LibriTTS, with only the sound quality improved. Experimental results show that the LibriTTS-R ground-truth samples showed significantly improved sound quality compared to those in LibriTTS. In addition, neural end-to-end TTS trained with LibriTTS-R achieved speech naturalness on par with that of the ground-truth samples. The corpus is freely available for download from http://www.openslr.org/141/. 10 authors · May 30, 2023 2
1 W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-Supervised Speech Pre-Training Motivated by the success of masked language modeling~(MLM) in pre-training natural language processing models, we propose w2v-BERT that explores MLM for self-supervised speech representation learning. w2v-BERT is a framework that combines contrastive learning and MLM, where the former trains the model to discretize input continuous speech signals into a finite set of discriminative speech tokens, and the latter trains the model to learn contextualized speech representations via solving a masked prediction task consuming the discretized tokens. In contrast to existing MLM-based speech pre-training frameworks such as HuBERT, which relies on an iterative re-clustering and re-training process, or vq-wav2vec, which concatenates two separately trained modules, w2v-BERT can be optimized in an end-to-end fashion by solving the two self-supervised tasks~(the contrastive task and MLM) simultaneously. Our experiments show that w2v-BERT achieves competitive results compared to current state-of-the-art pre-trained models on the LibriSpeech benchmarks when using the Libri-Light~60k corpus as the unsupervised data. In particular, when compared to published models such as conformer-based wav2vec~2.0 and HuBERT, our model shows~5\% to~10\% relative WER reduction on the test-clean and test-other subsets. When applied to the Google's Voice Search traffic dataset, w2v-BERT outperforms our internal conformer-based wav2vec~2.0 by more than~30\% relatively. 7 authors · Aug 7, 2021
- Learning Speaker Representation with Semi-supervised Learning approach for Speaker Profiling Speaker profiling, which aims to estimate speaker characteristics such as age and height, has a wide range of applications inforensics, recommendation systems, etc. In this work, we propose a semisupervised learning approach to mitigate the issue of low training data for speaker profiling. This is done by utilizing external corpus with speaker information to train a better representation which can help to improve the speaker profiling systems. Specifically, besides the standard supervised learning path, the proposed framework has two more paths: (1) an unsupervised speaker representation learning path that helps to capture the speaker information; (2) a consistency training path that helps to improve the robustness of the system by enforcing it to produce similar predictions for utterances of the same speaker.The proposed approach is evaluated on the TIMIT and NISP datasets for age, height, and gender estimation, while the Librispeech is used as the unsupervised external corpus. Trained both on single-task and multi-task settings, our approach was able to achieve state-of-the-art results on age estimation on the TIMIT Test dataset with Root Mean Square Error(RMSE) of6.8 and 7.4 years and Mean Absolute Error(MAE) of 4.8 and5.0 years for male and female speakers respectively. 3 authors · Oct 24, 2021
- Libri-Light: A Benchmark for ASR with Limited or No Supervision We introduce a new collection of spoken English audio suitable for training speech recognition systems under limited or no supervision. It is derived from open-source audio books from the LibriVox project. It contains over 60K hours of audio, which is, to our knowledge, the largest freely-available corpus of speech. The audio has been segmented using voice activity detection and is tagged with SNR, speaker ID and genre descriptions. Additionally, we provide baseline systems and evaluation metrics working under three settings: (1) the zero resource/unsupervised setting (ABX), (2) the semi-supervised setting (PER, CER) and (3) the distant supervision setting (WER). Settings (2) and (3) use limited textual resources (10 minutes to 10 hours) aligned with the speech. Setting (3) uses large amounts of unaligned text. They are evaluated on the standard LibriSpeech dev and test sets for comparison with the supervised state-of-the-art. 15 authors · Dec 17, 2019
- ClArTTS: An Open-Source Classical Arabic Text-to-Speech Corpus At present, Text-to-speech (TTS) systems that are trained with high-quality transcribed speech data using end-to-end neural models can generate speech that is intelligible, natural, and closely resembles human speech. These models are trained with relatively large single-speaker professionally recorded audio, typically extracted from audiobooks. Meanwhile, due to the scarcity of freely available speech corpora of this kind, a larger gap exists in Arabic TTS research and development. Most of the existing freely available Arabic speech corpora are not suitable for TTS training as they contain multi-speaker casual speech with variations in recording conditions and quality, whereas the corpus curated for speech synthesis are generally small in size and not suitable for training state-of-the-art end-to-end models. In a move towards filling this gap in resources, we present a speech corpus for Classical Arabic Text-to-Speech (ClArTTS) to support the development of end-to-end TTS systems for Arabic. The speech is extracted from a LibriVox audiobook, which is then processed, segmented, and manually transcribed and annotated. The final ClArTTS corpus contains about 12 hours of speech from a single male speaker sampled at 40100 kHz. In this paper, we describe the process of corpus creation and provide details of corpus statistics and a comparison with existing resources. Furthermore, we develop two TTS systems based on Grad-TTS and Glow-TTS and illustrate the performance of the resulting systems via subjective and objective evaluations. The corpus will be made publicly available at www.clartts.com for research purposes, along with the baseline TTS systems demo. 4 authors · Feb 28, 2023
- RyanSpeech: A Corpus for Conversational Text-to-Speech Synthesis This paper introduces RyanSpeech, a new speech corpus for research on automated text-to-speech (TTS) systems. Publicly available TTS corpora are often noisy, recorded with multiple speakers, or lack quality male speech data. In order to meet the need for a high quality, publicly available male speech corpus within the field of speech recognition, we have designed and created RyanSpeech which contains textual materials from real-world conversational settings. These materials contain over 10 hours of a professional male voice actor's speech recorded at 44.1 kHz. This corpus's design and pipeline make RyanSpeech ideal for developing TTS systems in real-world applications. To provide a baseline for future research, protocols, and benchmarks, we trained 4 state-of-the-art speech models and a vocoder on RyanSpeech. The results show 3.36 in mean opinion scores (MOS) in our best model. We have made both the corpus and trained models for public use. 4 authors · Jun 15, 2021
- LibriConvo: Simulating Conversations from Read Literature for ASR and Diarization We introduce LibriConvo, a simulated multi-speaker conversational dataset based on speaker-aware conversation simulation (SASC), designed to support training and evaluation of speaker diarization and automatic speech recognition (ASR) systems. Unlike prior resources that mostly rely on semantically disconnected utterances and implausible temporal gaps, LibriConvo ensures semantic coherence and realistic conversational timing. Our pipeline leverages CallHome with external VAD for reliable boundaries, applies compression to reduce unnaturally long silences, and organizes LibriTTS utterances by book to maintain contextual consistency. Acoustic realism is enhanced via a novel room impulse response selection procedure that ranks speaker-microphone configurations by spatial plausibility, balancing realism and diversity. The dataset comprises 240.1 hours across 1,496 dialogues with 830 unique speakers, split in a speaker-disjoint manner for robust evaluation. Baselines show that the sortformer model outperforms the pyannote pipeline in diarization, while a fine-tuned Fast Conformer-CTC XLarge with Serialized Output Training achieves 7.29\% WER for ASR, surpassing zero-shot Whisper-large-v3. LibriConvo provides a valuable resource for advancing multi-speaker speech processing research with realistic conversational dynamics and controlled experimental conditions. 2 authors · Oct 27
- Librispeech Transducer Model with Internal Language Model Prior Correction We present our transducer model on Librispeech. We study variants to include an external language model (LM) with shallow fusion and subtract an estimated internal LM. This is justified by a Bayesian interpretation where the transducer model prior is given by the estimated internal LM. The subtraction of the internal LM gives us over 14% relative improvement over normal shallow fusion. Our transducer has a separate probability distribution for the non-blank labels which allows for easier combination with the external LM, and easier estimation of the internal LM. We additionally take care of including the end-of-sentence (EOS) probability of the external LM in the last blank probability which further improves the performance. All our code and setups are published. 5 authors · Apr 7, 2021
- LibriQuote: A Speech Dataset of Fictional Character Utterances for Expressive Zero-Shot Speech Synthesis Text-to-speech (TTS) systems have recently achieved more expressive and natural speech synthesis by scaling to large speech datasets. However, the proportion of expressive speech in such large-scale corpora is often unclear. Besides, existing expressive speech corpora are typically smaller in scale and primarily used for benchmarking TTS systems. In this paper, we introduce the LibriQuote dataset, an English corpus derived from read audiobooks, designed for both fine-tuning and benchmarking expressive zero-shot TTS system. The training dataset includes 12.7K hours of read, non-expressive speech and 5.3K hours of mostly expressive speech drawn from character quotations. Each utterance in the expressive subset is supplemented with the context in which it was written, along with pseudo-labels of speech verbs and adverbs used to describe the quotation (e.g. ``he whispered softly''). Additionally, we provide a challenging 7.5 hour test set intended for benchmarking TTS systems: given a neutral reference speech as input, we evaluate system's ability to synthesize an expressive utterance while preserving reference timbre. We validate qualitatively the test set by showing that it covers a wide range of emotions compared to non-expressive speech, along with various accents. Extensive subjective and objective evaluations show that fine-tuning a baseline TTS system on LibriQuote significantly improves its synthesized speech intelligibility, and that recent systems fail to synthesize speech as expressive and natural as the ground-truth utterances. The dataset and evaluation code are freely available. Audio samples can be found at https://libriquote.github.io/. 3 authors · Sep 4
- Loquacious Set: 25,000 Hours of Transcribed and Diverse English Speech Recognition Data for Research and Commercial Use Automatic speech recognition (ASR) research is driven by the availability of common datasets between industrial researchers and academics, encouraging comparisons and evaluations. LibriSpeech, despite its long success as an ASR benchmark, is now limited by its size and focus on clean, read speech, leading to near-zero word error rates. More recent datasets, including MOSEL, YODAS, Gigaspeech, OWSM, Libriheavy or People's Speech suffer from major limitations including licenses that researchers in the industry cannot use, unreliable transcriptions, incorrect audio data, or the lack of evaluation sets. This work presents the Loquacious Set, a 25,000-hour curated collection of commercially usable English speech. Featuring hundreds of thousands of speakers with diverse accents and a wide range of speech types (read, spontaneous, talks, clean, noisy), the Loquacious Set is designed to work for academics and researchers in the industry to build ASR systems in real-world scenarios. 4 authors · May 27
- LibriMix: An Open-Source Dataset for Generalizable Speech Separation In recent years, wsj0-2mix has become the reference dataset for single-channel speech separation. Most deep learning-based speech separation models today are benchmarked on it. However, recent studies have shown important performance drops when models trained on wsj0-2mix are evaluated on other, similar datasets. To address this generalization issue, we created LibriMix, an open-source alternative to wsj0-2mix, and to its noisy extension, WHAM!. Based on LibriSpeech, LibriMix consists of two- or three-speaker mixtures combined with ambient noise samples from WHAM!. Using Conv-TasNet, we achieve competitive performance on all LibriMix versions. In order to fairly evaluate across datasets, we introduce a third test set based on VCTK for speech and WHAM! for noise. Our experiments show that the generalization error is smaller for models trained with LibriMix than with WHAM!, in both clean and noisy conditions. Aiming towards evaluation in more realistic, conversation-like scenarios, we also release a sparsely overlapping version of LibriMix's test set. 5 authors · May 22, 2020
- LibriS2S: A German-English Speech-to-Speech Translation Corpus Recently, we have seen an increasing interest in the area of speech-to-text translation. This has led to astonishing improvements in this area. In contrast, the activities in the area of speech-to-speech translation is still limited, although it is essential to overcome the language barrier. We believe that one of the limiting factors is the availability of appropriate training data. We address this issue by creating LibriS2S, to our knowledge the first publicly available speech-to-speech training corpus between German and English. For this corpus, we used independently created audio for German and English leading to an unbiased pronunciation of the text in both languages. This allows the creation of a new text-to-speech and speech-to-speech translation model that directly learns to generate the speech signal based on the pronunciation of the source language. Using this created corpus, we propose Text-to-Speech models based on the example of the recently proposed FastSpeech 2 model that integrates source language information. We do this by adapting the model to take information such as the pitch, energy or transcript from the source speech as additional input. 2 authors · Apr 22, 2022
- LibriTTS-P: A Corpus with Speaking Style and Speaker Identity Prompts for Text-to-Speech and Style Captioning We introduce LibriTTS-P, a new corpus based on LibriTTS-R that includes utterance-level descriptions (i.e., prompts) of speaking style and speaker-level prompts of speaker characteristics. We employ a hybrid approach to construct prompt annotations: (1) manual annotations that capture human perceptions of speaker characteristics and (2) synthetic annotations on speaking style. Compared to existing English prompt datasets, our corpus provides more diverse prompt annotations for all speakers of LibriTTS-R. Experimental results for prompt-based controllable TTS demonstrate that the TTS model trained with LibriTTS-P achieves higher naturalness than the model using the conventional dataset. Furthermore, the results for style captioning tasks show that the model utilizing LibriTTS-P generates 2.5 times more accurate words than the model using a conventional dataset. Our corpus, LibriTTS-P, is available at https://github.com/line/LibriTTS-P. 5 authors · Jun 12, 2024
- The People's Speech: A Large-Scale Diverse English Speech Recognition Dataset for Commercial Usage The People's Speech is a free-to-download 30,000-hour and growing supervised conversational English speech recognition dataset licensed for academic and commercial usage under CC-BY-SA (with a CC-BY subset). The data is collected via searching the Internet for appropriately licensed audio data with existing transcriptions. We describe our data collection methodology and release our data collection system under the Apache 2.0 license. We show that a model trained on this dataset achieves a 9.98% word error rate on Librispeech's test-clean test set.Finally, we discuss the legal and ethical issues surrounding the creation of a sizable machine learning corpora and plans for continued maintenance of the project under MLCommons's sponsorship. 10 authors · Nov 17, 2021
- JVS corpus: free Japanese multi-speaker voice corpus Thanks to improvements in machine learning techniques, including deep learning, speech synthesis is becoming a machine learning task. To accelerate speech synthesis research, we are developing Japanese voice corpora reasonably accessible from not only academic institutions but also commercial companies. In 2017, we released the JSUT corpus, which contains 10 hours of reading-style speech uttered by a single speaker, for end-to-end text-to-speech synthesis. For more general use in speech synthesis research, e.g., voice conversion and multi-speaker modeling, in this paper, we construct the JVS corpus, which contains voice data of 100 speakers in three styles (normal, whisper, and falsetto). The corpus contains 30 hours of voice data including 22 hours of parallel normal voices. This paper describes how we designed the corpus and summarizes the specifications. The corpus is available at our project page. 6 authors · Aug 17, 2019
- The Multilingual TEDx Corpus for Speech Recognition and Translation We present the Multilingual TEDx corpus, built to support speech recognition (ASR) and speech translation (ST) research across many non-English source languages. The corpus is a collection of audio recordings from TEDx talks in 8 source languages. We segment transcripts into sentences and align them to the source-language audio and target-language translations. The corpus is released along with open-sourced code enabling extension to new talks and languages as they become available. Our corpus creation methodology can be applied to more languages than previous work, and creates multi-way parallel evaluation sets. We provide baselines in multiple ASR and ST settings, including multilingual models to improve translation performance for low-resource language pairs. 8 authors · Feb 2, 2021
- Continual Learning for On-Device Speech Recognition using Disentangled Conformers Automatic speech recognition research focuses on training and evaluating on static datasets. Yet, as speech models are increasingly deployed on personal devices, such models encounter user-specific distributional shifts. To simulate this real-world scenario, we introduce LibriContinual, a continual learning benchmark for speaker-specific domain adaptation derived from LibriVox audiobooks, with data corresponding to 118 individual speakers and 6 train splits per speaker of different sizes. Additionally, current speech recognition models and continual learning algorithms are not optimized to be compute-efficient. We adapt a general-purpose training algorithm NetAug for ASR and create a novel Conformer variant called the DisConformer (Disentangled Conformer). This algorithm produces ASR models consisting of a frozen 'core' network for general-purpose use and several tunable 'augment' networks for speaker-specific tuning. Using such models, we propose a novel compute-efficient continual learning algorithm called DisentangledCL. Our experiments show that the DisConformer models significantly outperform baselines on general ASR i.e. LibriSpeech (15.58% rel. WER on test-other). On speaker-specific LibriContinual they significantly outperform trainable-parameter-matched baselines (by 20.65% rel. WER on test) and even match fully finetuned baselines in some settings. 7 authors · Dec 2, 2022
- JSUT corpus: free large-scale Japanese speech corpus for end-to-end speech synthesis Thanks to improvements in machine learning techniques including deep learning, a free large-scale speech corpus that can be shared between academic institutions and commercial companies has an important role. However, such a corpus for Japanese speech synthesis does not exist. In this paper, we designed a novel Japanese speech corpus, named the "JSUT corpus," that is aimed at achieving end-to-end speech synthesis. The corpus consists of 10 hours of reading-style speech data and its transcription and covers all of the main pronunciations of daily-use Japanese characters. In this paper, we describe how we designed and analyzed the corpus. The corpus is freely available online. 3 authors · Oct 28, 2017
- LibriSQA: Advancing Free-form and Open-ended Spoken Question Answering with a Novel Dataset and Framework While Large Language Models (LLMs) have demonstrated commendable performance across a myriad of domains and tasks, existing LLMs still exhibit a palpable deficit in handling multimodal functionalities, especially for the Spoken Question Answering (SQA) task which necessitates precise alignment and deep interaction between speech and text features. To address the SQA challenge on LLMs, we initially curated the free-form and open-ended LibriSQA dataset from Librispeech, comprising Part I with natural conversational formats and Part II encompassing multiple-choice questions followed by answers and analytical segments. Both parts collectively include 107k SQA pairs that cover various topics. Given the evident paucity of existing speech-text LLMs, we propose a lightweight, end-to-end framework to execute the SQA task on the LibriSQA, witnessing significant results. By reforming ASR into the SQA format, we further substantiate our framework's capability in handling ASR tasks. Our empirical findings bolster the LLMs' aptitude for aligning and comprehending multimodal information, paving the way for the development of universal multimodal LLMs. The dataset and demo can be found at https://github.com/ZihanZhaoSJTU/LibriSQA. 5 authors · Aug 20, 2023
- RadioTalk: a large-scale corpus of talk radio transcripts We introduce RadioTalk, a corpus of speech recognition transcripts sampled from talk radio broadcasts in the United States between October of 2018 and March of 2019. The corpus is intended for use by researchers in the fields of natural language processing, conversational analysis, and the social sciences. The corpus encompasses approximately 2.8 billion words of automatically transcribed speech from 284,000 hours of radio, together with metadata about the speech, such as geographical location, speaker turn boundaries, gender, and radio program information. In this paper we summarize why and how we prepared the corpus, give some descriptive statistics on stations, shows and speakers, and carry out a few high-level analyses. 3 authors · Jul 16, 2019
1 Decoder-only Architecture for Speech Recognition with CTC Prompts and Text Data Augmentation Collecting audio-text pairs is expensive; however, it is much easier to access text-only data. Unless using shallow fusion, end-to-end automatic speech recognition (ASR) models require architecture modifications or additional training schemes to use text-only data. Inspired by recent advances in decoder-only language models (LMs), such as GPT-3 and PaLM adopted for speech-processing tasks, we propose using a decoder-only architecture for ASR with simple text augmentation. To provide audio information, encoder features compressed by CTC prediction are used as prompts for the decoder, which can be regarded as refining CTC prediction using the decoder-only model. Because the decoder architecture is the same as an autoregressive LM, it is simple to enhance the model by leveraging external text data with LM training. An experimental comparison using LibriSpeech and Switchboard shows that our proposed models with text augmentation training reduced word error rates from ordinary CTC by 0.3% and 1.4% on LibriSpeech test-clean and testother set, respectively, and 2.9% and 5.0% on Switchboard and CallHome. The proposed model had advantage on computational efficiency compared with conventional encoder-decoder ASR models with a similar parameter setup, and outperformed them on the LibriSpeech 100h and Switchboard training scenarios. 5 authors · Sep 16, 2023
- CSS10: A Collection of Single Speaker Speech Datasets for 10 Languages We describe our development of CSS10, a collection of single speaker speech datasets for ten languages. It is composed of short audio clips from LibriVox audiobooks and their aligned texts. To validate its quality we train two neural text-to-speech models on each dataset. Subsequently, we conduct Mean Opinion Score tests on the synthesized speech samples. We make our datasets, pre-trained models, and test resources publicly available. We hope they will be used for future speech tasks. 2 authors · Mar 27, 2019
- Improved Contextual Recognition In Automatic Speech Recognition Systems By Semantic Lattice Rescoring Automatic Speech Recognition (ASR) has witnessed a profound research interest. Recent breakthroughs have given ASR systems different prospects such as faithfully transcribing spoken language, which is a pivotal advancement in building conversational agents. However, there is still an imminent challenge of accurately discerning context-dependent words and phrases. In this work, we propose a novel approach for enhancing contextual recognition within ASR systems via semantic lattice processing leveraging the power of deep learning models in accurately delivering spot-on transcriptions across a wide variety of vocabularies and speaking styles. Our solution consists of using Hidden Markov Models and Gaussian Mixture Models (HMM-GMM) along with Deep Neural Networks (DNN) models integrating both language and acoustic modeling for better accuracy. We infused our network with the use of a transformer-based model to properly rescore the word lattice achieving remarkable capabilities with a palpable reduction in Word Error Rate (WER). We demonstrate the effectiveness of our proposed framework on the LibriSpeech dataset with empirical analyses. 5 authors · Oct 14, 2023
- Self-Supervised Syllable Discovery Based on Speaker-Disentangled HuBERT Self-supervised speech representation learning has become essential for extracting meaningful features from untranscribed audio. Recent advances highlight the potential of deriving discrete symbols from the features correlated with linguistic units, which enables text-less training across diverse tasks. In particular, sentence-level Self-Distillation of the pretrained HuBERT (SD-HuBERT) induces syllabic structures within latent speech frame representations extracted from an intermediate Transformer layer. In SD-HuBERT, sentence-level representation is accumulated from speech frame features through self-attention layers using a special CLS token. However, we observe that the information aggregated in the CLS token correlates more with speaker identity than with linguistic content. To address this, we propose a speech-only self-supervised fine-tuning approach that separates syllabic units from speaker information. Our method introduces speaker perturbation as data augmentation and adopts a frame-level training objective to prevent the CLS token from aggregating paralinguistic information. Experimental results show that our approach surpasses the current state-of-the-art method in most syllable segmentation and syllabic unit quality metrics on Librispeech, underscoring its effectiveness in promoting syllabic organization within speech-only models. 2 authors · Sep 16, 2024
1 Common Voice: A Massively-Multilingual Speech Corpus The Common Voice corpus is a massively-multilingual collection of transcribed speech intended for speech technology research and development. Common Voice is designed for Automatic Speech Recognition purposes but can be useful in other domains (e.g. language identification). To achieve scale and sustainability, the Common Voice project employs crowdsourcing for both data collection and data validation. The most recent release includes 29 languages, and as of November 2019 there are a total of 38 languages collecting data. Over 50,000 individuals have participated so far, resulting in 2,500 hours of collected audio. To our knowledge this is the largest audio corpus in the public domain for speech recognition, both in terms of number of hours and number of languages. As an example use case for Common Voice, we present speech recognition experiments using Mozilla's DeepSpeech Speech-to-Text toolkit. By applying transfer learning from a source English model, we find an average Character Error Rate improvement of 5.99 +/- 5.48 for twelve target languages (German, French, Italian, Turkish, Catalan, Slovenian, Welsh, Irish, Breton, Tatar, Chuvash, and Kabyle). For most of these languages, these are the first ever published results on end-to-end Automatic Speech Recognition. 10 authors · Dec 13, 2019
- speechocean762: An Open-Source Non-native English Speech Corpus For Pronunciation Assessment This paper introduces a new open-source speech corpus named "speechocean762" designed for pronunciation assessment use, consisting of 5000 English utterances from 250 non-native speakers, where half of the speakers are children. Five experts annotated each of the utterances at sentence-level, word-level and phoneme-level. A baseline system is released in open source to illustrate the phoneme-level pronunciation assessment workflow on this corpus. This corpus is allowed to be used freely for commercial and non-commercial purposes. It is available for free download from OpenSLR, and the corresponding baseline system is published in the Kaldi speech recognition toolkit. 9 authors · Apr 3, 2021
- DiPCo -- Dinner Party Corpus We present a speech data corpus that simulates a "dinner party" scenario taking place in an everyday home environment. The corpus was created by recording multiple groups of four Amazon employee volunteers having a natural conversation in English around a dining table. The participants were recorded by a single-channel close-talk microphone and by five far-field 7-microphone array devices positioned at different locations in the recording room. The dataset contains the audio recordings and human labeled transcripts of a total of 10 sessions with a duration between 15 and 45 minutes. The corpus was created to advance in the field of noise robust and distant speech processing and is intended to serve as a public research and benchmarking data set. 10 authors · Sep 30, 2019
- AISHELL-1: An Open-Source Mandarin Speech Corpus and A Speech Recognition Baseline An open-source Mandarin speech corpus called AISHELL-1 is released. It is by far the largest corpus which is suitable for conducting the speech recognition research and building speech recognition systems for Mandarin. The recording procedure, including audio capturing devices and environments are presented in details. The preparation of the related resources, including transcriptions and lexicon are described. The corpus is released with a Kaldi recipe. Experimental results implies that the quality of audio recordings and transcriptions are promising. 5 authors · Sep 16, 2017
- FT Speech: Danish Parliament Speech Corpus This paper introduces FT Speech, a new speech corpus created from the recorded meetings of the Danish Parliament, otherwise known as the Folketing (FT). The corpus contains over 1,800 hours of transcribed speech by a total of 434 speakers. It is significantly larger in duration, vocabulary, and amount of spontaneous speech than the existing public speech corpora for Danish, which are largely limited to read-aloud and dictation data. We outline design considerations, including the preprocessing methods and the alignment procedure. To evaluate the quality of the corpus, we train automatic speech recognition systems on the new resource and compare them to the systems trained on the Danish part of Sprakbanken, the largest public ASR corpus for Danish to date. Our baseline results show that we achieve a 14.01 WER on the new corpus. A combination of FT Speech with in-domain language data provides comparable results to models trained specifically on Sprakbanken, showing that FT Speech transfers well to this data set. Interestingly, our results demonstrate that the opposite is not the case. This shows that FT Speech provides a valuable resource for promoting research on Danish ASR with more spontaneous speech. 3 authors · May 25, 2020
- Citrinet: Closing the Gap between Non-Autoregressive and Autoregressive End-to-End Models for Automatic Speech Recognition We propose Citrinet - a new end-to-end convolutional Connectionist Temporal Classification (CTC) based automatic speech recognition (ASR) model. Citrinet is deep residual neural model which uses 1D time-channel separable convolutions combined with sub-word encoding and squeeze-and-excitation. The resulting architecture significantly reduces the gap between non-autoregressive and sequence-to-sequence and transducer models. We evaluate Citrinet on LibriSpeech, TED-LIUM2, AISHELL-1 and Multilingual LibriSpeech (MLS) English speech datasets. Citrinet accuracy on these datasets is close to the best autoregressive Transducer models. 6 authors · Apr 4, 2021
- RUSLAN: Russian Spoken Language Corpus for Speech Synthesis We present RUSLAN -- a new open Russian spoken language corpus for the text-to-speech task. RUSLAN contains 22200 audio samples with text annotations -- more than 31 hours of high-quality speech of one person -- being the largest annotated Russian corpus in terms of speech duration for a single speaker. We trained an end-to-end neural network for the text-to-speech task on our corpus and evaluated the quality of the synthesized speech using Mean Opinion Score test. Synthesized speech achieves 4.05 score for naturalness and 3.78 score for intelligibility on a 5-point MOS scale. 3 authors · Jun 26, 2019
1 DisfluencySpeech -- Single-Speaker Conversational Speech Dataset with Paralanguage Laughing, sighing, stuttering, and other forms of paralanguage do not contribute any direct lexical meaning to speech, but they provide crucial propositional context that aids semantic and pragmatic processes such as irony. It is thus important for artificial social agents to both understand and be able to generate speech with semantically-important paralanguage. Most speech datasets do not include transcribed non-lexical speech sounds and disfluencies, while those that do are typically multi-speaker datasets where each speaker provides relatively little audio. This makes it challenging to train conversational Text-to-Speech (TTS) synthesis models that include such paralinguistic components. We thus present DisfluencySpeech, a studio-quality labeled English speech dataset with paralanguage. A single speaker recreates nearly 10 hours of expressive utterances from the Switchboard-1 Telephone Speech Corpus (Switchboard), simulating realistic informal conversations. To aid the development of a TTS model that is able to predictively synthesise paralanguage from text without such components, we provide three different transcripts at different levels of information removal (removal of non-speech events, removal of non-sentence elements, and removal of false starts), as well as benchmark TTS models trained on each of these levels. 2 authors · Jun 13, 2024
- GLOBE: A High-quality English Corpus with Global Accents for Zero-shot Speaker Adaptive Text-to-Speech This paper introduces GLOBE, a high-quality English corpus with worldwide accents, specifically designed to address the limitations of current zero-shot speaker adaptive Text-to-Speech (TTS) systems that exhibit poor generalizability in adapting to speakers with accents. Compared to commonly used English corpora, such as LibriTTS and VCTK, GLOBE is unique in its inclusion of utterances from 23,519 speakers and covers 164 accents worldwide, along with detailed metadata for these speakers. Compared to its original corpus, i.e., Common Voice, GLOBE significantly improves the quality of the speech data through rigorous filtering and enhancement processes, while also populating all missing speaker metadata. The final curated GLOBE corpus includes 535 hours of speech data at a 24 kHz sampling rate. Our benchmark results indicate that the speaker adaptive TTS model trained on the GLOBE corpus can synthesize speech with better speaker similarity and comparable naturalness than that trained on other popular corpora. We will release GLOBE publicly after acceptance. The GLOBE dataset is available at https://globecorpus.github.io/. 3 authors · Jun 21, 2024
- Long-Form Speech Generation with Spoken Language Models We consider the generative modeling of speech over multiple minutes, a requirement for long-form multimedia generation and audio-native voice assistants. However, current spoken language models struggle to generate plausible speech past tens of seconds, from high temporal resolution of speech tokens causing loss of coherence, to architectural issues with long-sequence training or extrapolation, to memory costs at inference time. With these considerations we propose SpeechSSM, the first speech language model to learn from and sample long-form spoken audio (e.g., 16 minutes of read or extemporaneous speech) in a single decoding session without text intermediates, based on recent advances in linear-time sequence modeling. Furthermore, to address growing challenges in spoken language evaluation, especially in this new long-form setting, we propose: new embedding-based and LLM-judged metrics; quality measurements over length and time; and a new benchmark for long-form speech processing and generation, LibriSpeech-Long. Speech samples and the dataset are released at https://google.github.io/tacotron/publications/speechssm/ 6 authors · Dec 24, 2024 1
- Kosp2e: Korean Speech to English Translation Corpus Most speech-to-text (S2T) translation studies use English speech as a source, which makes it difficult for non-English speakers to take advantage of the S2T technologies. For some languages, this problem was tackled through corpus construction, but the farther linguistically from English or the more under-resourced, this deficiency and underrepresentedness becomes more significant. In this paper, we introduce kosp2e (read as `kospi'), a corpus that allows Korean speech to be translated into English text in an end-to-end manner. We adopt open license speech recognition corpus, translation corpus, and spoken language corpora to make our dataset freely available to the public, and check the performance through the pipeline and training-based approaches. Using pipeline and various end-to-end schemes, we obtain the highest BLEU of 21.3 and 18.0 for each based on the English hypothesis, validating the feasibility of our data. We plan to supplement annotations for other target languages through community contributions in the future. 4 authors · Jul 6, 2021
- SpokesBiz -- an Open Corpus of Conversational Polish This paper announces the early release of SpokesBiz, a freely available corpus of conversational Polish developed within the CLARIN-BIZ project and comprising over 650 hours of recordings. The transcribed recordings have been diarized and manually annotated for punctuation and casing. We outline the general structure and content of the corpus, showcasing selected applications in linguistic research, evaluation and improvement of automatic speech recognition (ASR) systems 11 authors · Dec 19, 2023
- Polish Read Speech Corpus for Speech Tools and Services This paper describes the speech processing activities conducted at the Polish consortium of the CLARIN project. The purpose of this segment of the project was to develop specific tools that would allow for automatic and semi-automatic processing of large quantities of acoustic speech data. The tools include the following: grapheme-to-phoneme conversion, speech-to-text alignment, voice activity detection, speaker diarization, keyword spotting and automatic speech transcription. Furthermore, in order to develop these tools, a large high-quality studio speech corpus was recorded and released under an open license, to encourage development in the area of Polish speech research. Another purpose of the corpus was to serve as a reference for studies in phonetics and pronunciation. All the tools and resources were released on the the Polish CLARIN website. This paper discusses the current status and future plans for the project. 4 authors · Jun 1, 2017
2 Accelerating Transducers through Adjacent Token Merging Recent end-to-end automatic speech recognition (ASR) systems often utilize a Transformer-based acoustic encoder that generates embedding at a high frame rate. However, this design is inefficient, particularly for long speech signals due to the quadratic computation of self-attention. To address this, we propose a new method, Adjacent Token Merging (A-ToMe), which gradually combines adjacent tokens with high similarity scores between their key values. In this way, the total time step could be reduced, and the inference of both the encoder and joint network is accelerated. Experiments on LibriSpeech show that our method can reduce 57% of tokens and improve the inference speed on GPU by 70% without any notable loss of accuracy. Additionally, we demonstrate that A-ToMe is also an effective solution to reduce tokens in long-form ASR, where the input speech consists of multiple utterances. 4 authors · Jun 28, 2023
- LibriSpeech-PC: Benchmark for Evaluation of Punctuation and Capitalization Capabilities of end-to-end ASR Models Traditional automatic speech recognition (ASR) models output lower-cased words without punctuation marks, which reduces readability and necessitates a subsequent text processing model to convert ASR transcripts into a proper format. Simultaneously, the development of end-to-end ASR models capable of predicting punctuation and capitalization presents several challenges, primarily due to limited data availability and shortcomings in the existing evaluation methods, such as inadequate assessment of punctuation prediction. In this paper, we introduce a LibriSpeech-PC benchmark designed to assess the punctuation and capitalization prediction capabilities of end-to-end ASR models. The benchmark includes a LibriSpeech-PC dataset with restored punctuation and capitalization, a novel evaluation metric called Punctuation Error Rate (PER) that focuses on punctuation marks, and initial baseline models. All code, data, and models are publicly available. 6 authors · Oct 4, 2023
- Unified Speech-Text Pre-training for Speech Translation and Recognition We describe a method to jointly pre-train speech and text in an encoder-decoder modeling framework for speech translation and recognition. The proposed method incorporates four self-supervised and supervised subtasks for cross modality learning. A self-supervised speech subtask leverages unlabelled speech data, and a (self-)supervised text to text subtask makes use of abundant text training data. Two auxiliary supervised speech tasks are included to unify speech and text modeling space. Our contribution lies in integrating linguistic information from the text corpus into the speech pre-training. Detailed analysis reveals learning interference among subtasks. Two pre-training configurations for speech translation and recognition, respectively, are presented to alleviate subtask interference. Our experiments show the proposed method can effectively fuse speech and text information into one model. It achieves between 1.7 and 2.3 BLEU improvement above the state of the art on the MuST-C speech translation dataset and comparable WERs to wav2vec 2.0 on the Librispeech speech recognition task. 11 authors · Apr 11, 2022
- SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition We present SpecAugment, a simple data augmentation method for speech recognition. SpecAugment is applied directly to the feature inputs of a neural network (i.e., filter bank coefficients). The augmentation policy consists of warping the features, masking blocks of frequency channels, and masking blocks of time steps. We apply SpecAugment on Listen, Attend and Spell networks for end-to-end speech recognition tasks. We achieve state-of-the-art performance on the LibriSpeech 960h and Swichboard 300h tasks, outperforming all prior work. On LibriSpeech, we achieve 6.8% WER on test-other without the use of a language model, and 5.8% WER with shallow fusion with a language model. This compares to the previous state-of-the-art hybrid system of 7.5% WER. For Switchboard, we achieve 7.2%/14.6% on the Switchboard/CallHome portion of the Hub5'00 test set without the use of a language model, and 6.8%/14.1% with shallow fusion, which compares to the previous state-of-the-art hybrid system at 8.3%/17.3% WER. 7 authors · Apr 18, 2019
1 Golos: Russian Dataset for Speech Research This paper introduces a novel Russian speech dataset called Golos, a large corpus suitable for speech research. The dataset mainly consists of recorded audio files manually annotated on the crowd-sourcing platform. The total duration of the audio is about 1240 hours. We have made the corpus freely available to download, along with the acoustic model with CTC loss prepared on this corpus. Additionally, transfer learning was applied to improve the performance of the acoustic model. In order to evaluate the quality of the dataset with the beam-search algorithm, we have built a 3-gram language model on the open Common Crawl dataset. The total word error rate (WER) metrics turned out to be about 3.3% and 11.5%. 3 authors · Jun 18, 2021
- SLURP: A Spoken Language Understanding Resource Package Spoken Language Understanding infers semantic meaning directly from audio data, and thus promises to reduce error propagation and misunderstandings in end-user applications. However, publicly available SLU resources are limited. In this paper, we release SLURP, a new SLU package containing the following: (1) A new challenging dataset in English spanning 18 domains, which is substantially bigger and linguistically more diverse than existing datasets; (2) Competitive baselines based on state-of-the-art NLU and ASR systems; (3) A new transparent metric for entity labelling which enables a detailed error analysis for identifying potential areas of improvement. SLURP is available at https: //github.com/pswietojanski/slurp. 4 authors · Nov 26, 2020
9 Efficient infusion of self-supervised representations in Automatic Speech Recognition Self-supervised learned (SSL) models such as Wav2vec and HuBERT yield state-of-the-art results on speech-related tasks. Given the effectiveness of such models, it is advantageous to use them in conventional ASR systems. While some approaches suggest incorporating these models as a trainable encoder or a learnable frontend, training such systems is extremely slow and requires a lot of computation cycles. In this work, we propose two simple approaches that use (1) framewise addition and (2) cross-attention mechanisms to efficiently incorporate the representations from the SSL model(s) into the ASR architecture, resulting in models that are comparable in size with standard encoder-decoder conformer systems while also avoiding the usage of SSL models during training. Our approach results in faster training and yields significant performance gains on the Librispeech and Tedlium datasets compared to baselines. We further provide detailed analysis and ablation studies that demonstrate the effectiveness of our approach. 3 authors · Apr 19, 2024
- MUSAN: A Music, Speech, and Noise Corpus This report introduces a new corpus of music, speech, and noise. This dataset is suitable for training models for voice activity detection (VAD) and music/speech discrimination. Our corpus is released under a flexible Creative Commons license. The dataset consists of music from several genres, speech from twelve languages, and a wide assortment of technical and non-technical noises. We demonstrate use of this corpus for music/speech discrimination on Broadcast news and VAD for speaker identification. 3 authors · Oct 28, 2015
- Earnings-21: A Practical Benchmark for ASR in the Wild Commonly used speech corpora inadequately challenge academic and commercial ASR systems. In particular, speech corpora lack metadata needed for detailed analysis and WER measurement. In response, we present Earnings-21, a 39-hour corpus of earnings calls containing entity-dense speech from nine different financial sectors. This corpus is intended to benchmark ASR systems in the wild with special attention towards named entity recognition. We benchmark four commercial ASR models, two internal models built with open-source tools, and an open-source LibriSpeech model and discuss their differences in performance on Earnings-21. Using our recently released fstalign tool, we provide a candid analysis of each model's recognition capabilities under different partitions. Our analysis finds that ASR accuracy for certain NER categories is poor, presenting a significant impediment to transcript comprehension and usage. Earnings-21 bridges academic and commercial ASR system evaluation and enables further research on entity modeling and WER on real world audio. 10 authors · Apr 22, 2021
- Self-training and Pre-training are Complementary for Speech Recognition Self-training and unsupervised pre-training have emerged as effective approaches to improve speech recognition systems using unlabeled data. However, it is not clear whether they learn similar patterns or if they can be effectively combined. In this paper, we show that pseudo-labeling and pre-training with wav2vec 2.0 are complementary in a variety of labeled data setups. Using just 10 minutes of labeled data from Libri-light as well as 53k hours of unlabeled data from LibriVox achieves WERs of 3.0%/5.2% on the clean and other test sets of Librispeech - rivaling the best published systems trained on 960 hours of labeled data only a year ago. Training on all labeled data of Librispeech achieves WERs of 1.5%/3.1%. 8 authors · Oct 22, 2020
- HiFiTTS-2: A Large-Scale High Bandwidth Speech Dataset This paper introduces HiFiTTS-2, a large-scale speech dataset designed for high-bandwidth speech synthesis. The dataset is derived from LibriVox audiobooks, and contains approximately 36.7k hours of English speech for 22.05 kHz training, and 31.7k hours for 44.1 kHz training. We present our data processing pipeline, including bandwidth estimation, segmentation, text preprocessing, and multi-speaker detection. The dataset is accompanied by detailed utterance and audiobook metadata generated by our pipeline, enabling researchers to apply data quality filters to adapt the dataset to various use cases. Experimental results demonstrate that our data pipeline and resulting dataset can facilitate the training of high-quality, zero-shot text-to-speech (TTS) models at high bandwidths. 7 authors · Jun 4
- Transformer Transducer: A Streamable Speech Recognition Model with Transformer Encoders and RNN-T Loss In this paper we present an end-to-end speech recognition model with Transformer encoders that can be used in a streaming speech recognition system. Transformer computation blocks based on self-attention are used to encode both audio and label sequences independently. The activations from both audio and label encoders are combined with a feed-forward layer to compute a probability distribution over the label space for every combination of acoustic frame position and label history. This is similar to the Recurrent Neural Network Transducer (RNN-T) model, which uses RNNs for information encoding instead of Transformer encoders. The model is trained with the RNN-T loss well-suited to streaming decoding. We present results on the LibriSpeech dataset showing that limiting the left context for self-attention in the Transformer layers makes decoding computationally tractable for streaming, with only a slight degradation in accuracy. We also show that the full attention version of our model beats the-state-of-the art accuracy on the LibriSpeech benchmarks. Our results also show that we can bridge the gap between full attention and limited attention versions of our model by attending to a limited number of future frames. 7 authors · Feb 6, 2020
- Improved training of end-to-end attention models for speech recognition Sequence-to-sequence attention-based models on subword units allow simple open-vocabulary end-to-end speech recognition. In this work, we show that such models can achieve competitive results on the Switchboard 300h and LibriSpeech 1000h tasks. In particular, we report the state-of-the-art word error rates (WER) of 3.54% on the dev-clean and 3.82% on the test-clean evaluation subsets of LibriSpeech. We introduce a new pretraining scheme by starting with a high time reduction factor and lowering it during training, which is crucial both for convergence and final performance. In some experiments, we also use an auxiliary CTC loss function to help the convergence. In addition, we train long short-term memory (LSTM) language models on subword units. By shallow fusion, we report up to 27% relative improvements in WER over the attention baseline without a language model. 4 authors · May 8, 2018
1 Conformer: Convolution-augmented Transformer for Speech Recognition Recently Transformer and Convolution neural network (CNN) based models have shown promising results in Automatic Speech Recognition (ASR), outperforming Recurrent neural networks (RNNs). Transformer models are good at capturing content-based global interactions, while CNNs exploit local features effectively. In this work, we achieve the best of both worlds by studying how to combine convolution neural networks and transformers to model both local and global dependencies of an audio sequence in a parameter-efficient way. To this regard, we propose the convolution-augmented transformer for speech recognition, named Conformer. Conformer significantly outperforms the previous Transformer and CNN based models achieving state-of-the-art accuracies. On the widely used LibriSpeech benchmark, our model achieves WER of 2.1%/4.3% without using a language model and 1.9%/3.9% with an external language model on test/testother. We also observe competitive performance of 2.7%/6.3% with a small model of only 10M parameters. 11 authors · May 16, 2020
17 Prompting Large Language Models with Speech Recognition Abilities Large language models have proven themselves highly flexible, able to solve a wide range of generative tasks, such as abstractive summarization and open-ended question answering. In this paper we extend the capabilities of LLMs by directly attaching a small audio encoder allowing it to perform speech recognition. By directly prepending a sequence of audial embeddings to the text token embeddings, the LLM can be converted to an automatic speech recognition (ASR) system, and be used in the exact same manner as its textual counterpart. Experiments on Multilingual LibriSpeech (MLS) show that incorporating a conformer encoder into the open sourced LLaMA-7B allows it to outperform monolingual baselines by 18% and perform multilingual speech recognition despite LLaMA being trained overwhelmingly on English text. Furthermore, we perform ablation studies to investigate whether the LLM can be completely frozen during training to maintain its original capabilities, scaling up the audio encoder, and increasing the audio encoder striding to generate fewer embeddings. The results from these studies show that multilingual ASR is possible even when the LLM is frozen or when strides of almost 1 second are used in the audio encoder opening up the possibility for LLMs to operate on long-form audio. 12 authors · Jul 21, 2023 1
- Hi-Fi Multi-Speaker English TTS Dataset This paper introduces a new multi-speaker English dataset for training text-to-speech models. The dataset is based on LibriVox audiobooks and Project Gutenberg texts, both in the public domain. The new dataset contains about 292 hours of speech from 10 speakers with at least 17 hours per speaker sampled at 44.1 kHz. To select speech samples with high quality, we considered audio recordings with a signal bandwidth of at least 13 kHz and a signal-to-noise ratio (SNR) of at least 32 dB. The dataset is publicly released at http://www.openslr.org/109/ . 4 authors · Apr 3, 2021
- ArVoice: A Multi-Speaker Dataset for Arabic Speech Synthesis We introduce ArVoice, a multi-speaker Modern Standard Arabic (MSA) speech corpus with diacritized transcriptions, intended for multi-speaker speech synthesis, and can be useful for other tasks such as speech-based diacritic restoration, voice conversion, and deepfake detection. ArVoice comprises: (1) a new professionally recorded set from six voice talents with diverse demographics, (2) a modified subset of the Arabic Speech Corpus; and (3) high-quality synthetic speech from two commercial systems. The complete corpus consists of a total of 83.52 hours of speech across 11 voices; around 10 hours consist of human voices from 7 speakers. We train three open-source TTS and two voice conversion systems to illustrate the use cases of the dataset. The corpus is available for research use. 5 authors · May 26
- A systematic comparison of grapheme-based vs. phoneme-based label units for encoder-decoder-attention models Following the rationale of end-to-end modeling, CTC, RNN-T or encoder-decoder-attention models for automatic speech recognition (ASR) use graphemes or grapheme-based subword units based on e.g. byte-pair encoding (BPE). The mapping from pronunciation to spelling is learned completely from data. In contrast to this, classical approaches to ASR employ secondary knowledge sources in the form of phoneme lists to define phonetic output labels and pronunciation lexica. In this work, we do a systematic comparison between grapheme- and phoneme-based output labels for an encoder-decoder-attention ASR model. We investigate the use of single phonemes as well as BPE-based phoneme groups as output labels of our model. To preserve a simplified and efficient decoder design, we also extend the phoneme set by auxiliary units to be able to distinguish homophones. Experiments performed on the Switchboard 300h and LibriSpeech benchmarks show that phoneme-based modeling is competitive to grapheme-based encoder-decoder-attention modeling. 6 authors · May 19, 2020
- Hearing voices at the National Library -- a speech corpus and acoustic model for the Swedish language This paper explains our work in developing new acoustic models for automated speech recognition (ASR) at KBLab, the infrastructure for data-driven research at the National Library of Sweden (KB). We evaluate different approaches for a viable speech-to-text pipeline for audiovisual resources in Swedish, using the wav2vec 2.0 architecture in combination with speech corpuses created from KB's collections. These approaches include pretraining an acoustic model for Swedish from the ground up, and fine-tuning existing monolingual and multilingual models. The collections-based corpuses we use have been sampled from millions of hours of speech, with a conscious attempt to balance regional dialects to produce a more representative, and thus more democratic, model. The acoustic model this enabled, "VoxRex", outperforms existing models for Swedish ASR. We also evaluate combining this model with various pretrained language models, which further enhanced performance. We conclude by highlighting the potential of such technology for cultural heritage institutions with vast collections of previously unlabelled audiovisual data. Our models are released for further exploration and research here: https://huggingface.co/KBLab. 3 authors · May 6, 2022
- Preparing an Endangered Language for the Digital Age: The Case of Judeo-Spanish We develop machine translation and speech synthesis systems to complement the efforts of revitalizing Judeo-Spanish, the exiled language of Sephardic Jews, which survived for centuries, but now faces the threat of extinction in the digital age. Building on resources created by the Sephardic community of Turkey and elsewhere, we create corpora and tools that would help preserve this language for future generations. For machine translation, we first develop a Spanish to Judeo-Spanish rule-based machine translation system, in order to generate large volumes of synthetic parallel data in the relevant language pairs: Turkish, English and Spanish. Then, we train baseline neural machine translation engines using this synthetic data and authentic parallel data created from translations by the Sephardic community. For text-to-speech synthesis, we present a 3.5 hour single speaker speech corpus for building a neural speech synthesis engine. Resources, model weights and online inference engines are shared publicly. 5 authors · May 31, 2022
- A Large Dataset of Spontaneous Speech with the Accent Spoken in São Paulo for Automatic Speech Recognition Evaluation We present a freely available spontaneous speech corpus for the Brazilian Portuguese language and report preliminary automatic speech recognition (ASR) results, using both the Wav2Vec2-XLSR-53 and Distil-Whisper models fine-tuned and trained on our corpus. The NURC-SP Audio Corpus comprises 401 different speakers (204 females, 197 males) with a total of 239.30 hours of transcribed audio recordings. To the best of our knowledge, this is the first large Paulistano accented spontaneous speech corpus dedicated to the ASR task in Portuguese. We first present the design and development procedures of the NURC-SP Audio Corpus, and then describe four ASR experiments in detail. The experiments demonstrated promising results for the applicability of the corpus for ASR. Specifically, we fine-tuned two versions of Wav2Vec2-XLSR-53 model, trained a Distil-Whisper model using our dataset with labels determined by Whisper Large-V3 model, and fine-tuned this Distil-Whisper model with our corpus. Our best results were the Distil-Whisper fine-tuned over NURC-SP Audio Corpus with a WER of 24.22% followed by a fine-tuned versions of Wav2Vec2-XLSR-53 model with a WER of 33.73%, that is almost 10% point worse than Distil-Whisper's. To enable experiment reproducibility, we share the NURC-SP Audio Corpus dataset, pre-trained models, and training recipes in Hugging-Face and Github repositories. 4 authors · Sep 10, 2024
- Swiss Parliaments Corpus, an Automatically Aligned Swiss German Speech to Standard German Text Corpus We present the Swiss Parliaments Corpus (SPC), an automatically aligned Swiss German speech to Standard German text corpus. This first version of the corpus is based on publicly available data of the Bernese cantonal parliament and consists of 293 hours of data. It was created using a novel forced sentence alignment procedure and an alignment quality estimator, which can be used to trade off corpus size and quality. We trained Automatic Speech Recognition (ASR) models as baselines on different subsets of the data and achieved a Word Error Rate (WER) of 0.278 and a BLEU score of 0.586 on the SPC test set. The corpus is freely available for download. 4 authors · Oct 6, 2020
1 A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference This paper introduces the Multi-Genre Natural Language Inference (MultiNLI) corpus, a dataset designed for use in the development and evaluation of machine learning models for sentence understanding. In addition to being one of the largest corpora available for the task of NLI, at 433k examples, this corpus improves upon available resources in its coverage: it offers data from ten distinct genres of written and spoken English--making it possible to evaluate systems on nearly the full complexity of the language--and it offers an explicit setting for the evaluation of cross-genre domain adaptation. 3 authors · Apr 18, 2017
- KazakhTTS2: Extending the Open-Source Kazakh TTS Corpus With More Data, Speakers, and Topics We present an expanded version of our previously released Kazakh text-to-speech (KazakhTTS) synthesis corpus. In the new KazakhTTS2 corpus, the overall size has increased from 93 hours to 271 hours, the number of speakers has risen from two to five (three females and two males), and the topic coverage has been diversified with the help of new sources, including a book and Wikipedia articles. This corpus is necessary for building high-quality TTS systems for Kazakh, a Central Asian agglutinative language from the Turkic family, which presents several linguistic challenges. We describe the corpus construction process and provide the details of the training and evaluation procedures for the TTS system. Our experimental results indicate that the constructed corpus is sufficient to build robust TTS models for real-world applications, with a subjective mean opinion score ranging from 3.6 to 4.2 for all the five speakers. We believe that our corpus will facilitate speech and language research for Kazakh and other Turkic languages, which are widely considered to be low-resource due to the limited availability of free linguistic data. The constructed corpus, code, and pretrained models are publicly available in our GitHub repository. 3 authors · Jan 15, 2022
- TED-LIUM 3: twice as much data and corpus repartition for experiments on speaker adaptation In this paper, we present TED-LIUM release 3 corpus dedicated to speech recognition in English, that multiplies by more than two the available data to train acoustic models in comparison with TED-LIUM 2. We present the recent development on Automatic Speech Recognition (ASR) systems in comparison with the two previous releases of the TED-LIUM Corpus from 2012 and 2014. We demonstrate that, passing from 207 to 452 hours of transcribed speech training data is really more useful for end-to-end ASR systems than for HMM-based state-of-the-art ones, even if the HMM-based ASR system still outperforms end-to-end ASR system when the size of audio training data is 452 hours, with respectively a Word Error Rate (WER) of 6.6% and 13.7%. Last, we propose two repartitions of the TED-LIUM release 3 corpus: the legacy one that is the same as the one existing in release 2, and a new one, calibrated and designed to make experiments on speaker adaptation. Like the two first releases, TED-LIUM 3 corpus will be freely available for the research community. 5 authors · May 12, 2018
- Learning Robust and Multilingual Speech Representations Unsupervised speech representation learning has shown remarkable success at finding representations that correlate with phonetic structures and improve downstream speech recognition performance. However, most research has been focused on evaluating the representations in terms of their ability to improve the performance of speech recognition systems on read English (e.g. Wall Street Journal and LibriSpeech). This evaluation methodology overlooks two important desiderata that speech representations should have: robustness to domain shifts and transferability to other languages. In this paper we learn representations from up to 8000 hours of diverse and noisy speech data and evaluate the representations by looking at their robustness to domain shifts and their ability to improve recognition performance in many languages. We find that our representations confer significant robustness advantages to the resulting recognition systems: we see significant improvements in out-of-domain transfer relative to baseline feature sets and the features likewise provide improvements in 25 phonetically diverse languages including tonal languages and low-resource languages. 5 authors · Jan 29, 2020
1 Text-only Domain Adaptation using Unified Speech-Text Representation in Transducer Domain adaptation using text-only corpus is challenging in end-to-end(E2E) speech recognition. Adaptation by synthesizing audio from text through TTS is resource-consuming. We present a method to learn Unified Speech-Text Representation in Conformer Transducer(USTR-CT) to enable fast domain adaptation using the text-only corpus. Different from the previous textogram method, an extra text encoder is introduced in our work to learn text representation and is removed during inference, so there is no modification for online deployment. To improve the efficiency of adaptation, single-step and multi-step adaptations are also explored. The experiments on adapting LibriSpeech to SPGISpeech show the proposed method reduces the word error rate(WER) by relatively 44% on the target domain, which is better than those of TTS method and textogram method. Also, it is shown the proposed method can be combined with internal language model estimation(ILME) to further improve the performance. 5 authors · Jun 6, 2023
1 Swiss Parliaments Corpus Re-Imagined (SPC_R): Enhanced Transcription with RAG-based Correction and Predicted BLEU This paper presents a new long-form release of the Swiss Parliaments Corpus, converting entire multi-hour Swiss German debate sessions (each aligned with the official session protocols) into high-quality speech-text pairs. Our pipeline starts by transcribing all session audio into Standard German using Whisper Large-v3 under high-compute settings. We then apply a two-step GPT-4o correction process: first, GPT-4o ingests the raw Whisper output alongside the official protocols to refine misrecognitions, mainly named entities. Second, a separate GPT-4o pass evaluates each refined segment for semantic completeness. We filter out any segments whose Predicted BLEU score (derived from Whisper's average token log-probability) and GPT-4o evaluation score fall below a certain threshold. The final corpus contains 801 hours of audio, of which 751 hours pass our quality control. Compared to the original sentence-level SPC release, our long-form dataset achieves a 6-point BLEU improvement, demonstrating the power of combining robust ASR, LLM-based correction, and data-driven filtering for low-resource, domain-specific speech corpora. 4 authors · Jun 9
2 BibleTTS: a large, high-fidelity, multilingual, and uniquely African speech corpus BibleTTS is a large, high-quality, open speech dataset for ten languages spoken in Sub-Saharan Africa. The corpus contains up to 86 hours of aligned, studio quality 48kHz single speaker recordings per language, enabling the development of high-quality text-to-speech models. The ten languages represented are: Akuapem Twi, Asante Twi, Chichewa, Ewe, Hausa, Kikuyu, Lingala, Luganda, Luo, and Yoruba. This corpus is a derivative work of Bible recordings made and released by the Open.Bible project from Biblica. We have aligned, cleaned, and filtered the original recordings, and additionally hand-checked a subset of the alignments for each language. We present results for text-to-speech models with Coqui TTS. The data is released under a commercial-friendly CC-BY-SA license. 19 authors · Jul 7, 2022
- Monolingual and Cross-Lingual Acceptability Judgments with the Italian CoLA corpus The development of automated approaches to linguistic acceptability has been greatly fostered by the availability of the English CoLA corpus, which has also been included in the widely used GLUE benchmark. However, this kind of research for languages other than English, as well as the analysis of cross-lingual approaches, has been hindered by the lack of resources with a comparable size in other languages. We have therefore developed the ItaCoLA corpus, containing almost 10,000 sentences with acceptability judgments, which has been created following the same approach and the same steps as the English one. In this paper we describe the corpus creation, we detail its content, and we present the first experiments on this new resource. We compare in-domain and out-of-domain classification, and perform a specific evaluation of nine linguistic phenomena. We also present the first cross-lingual experiments, aimed at assessing whether multilingual transformerbased approaches can benefit from using sentences in two languages during fine-tuning. 4 authors · Sep 24, 2021
- The PLLuM Instruction Corpus This paper describes the instruction dataset used to fine-tune a set of transformer-based large language models (LLMs) developed in the PLLuM (Polish Large Language Model) project. We present a functional typology of the organic, converted, and synthetic instructions used in PLLuM and share some observations about the implications of using human-authored versus synthetic instruction datasets in the linguistic adaptation of base LLMs. Additionally, we release the first representative subset of the PLLuM instruction corpus (PLLuMIC), which we believe to be useful in guiding and planning the development of similar datasets for other LLMs. 53 authors · Nov 21
- SLUE Phase-2: A Benchmark Suite of Diverse Spoken Language Understanding Tasks Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In particular, there are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers. Recent work has begun to introduce such benchmark datasets for several tasks. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. We follow the blueprint of the Spoken Language Understanding Evaluation (SLUE) benchmark suite. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will be publishing for each task (i) annotations for a relatively small fine-tuning set, (ii) annotated development and test sets, and (iii) baseline models for easy reproducibility and comparisons. In this work, we present the details of data collection and annotation and the performance of the baseline models. We also perform sensitivity analysis of pipeline models' performance (speech recognizer + text model) to the speech recognition accuracy, using more than 20 state-of-the-art speech recognition models. 10 authors · Dec 20, 2022
- A standardized Project Gutenberg corpus for statistical analysis of natural language and quantitative linguistics The use of Project Gutenberg (PG) as a text corpus has been extremely popular in statistical analysis of language for more than 25 years. However, in contrast to other major linguistic datasets of similar importance, no consensual full version of PG exists to date. In fact, most PG studies so far either consider only a small number of manually selected books, leading to potential biased subsets, or employ vastly different pre-processing strategies (often specified in insufficient details), raising concerns regarding the reproducibility of published results. In order to address these shortcomings, here we present the Standardized Project Gutenberg Corpus (SPGC), an open science approach to a curated version of the complete PG data containing more than 50,000 books and more than 3 times 10^9 word-tokens. Using different sources of annotated metadata, we not only provide a broad characterization of the content of PG, but also show different examples highlighting the potential of SPGC for investigating language variability across time, subjects, and authors. We publish our methodology in detail, the code to download and process the data, as well as the obtained corpus itself on 3 different levels of granularity (raw text, timeseries of word tokens, and counts of words). In this way, we provide a reproducible, pre-processed, full-size version of Project Gutenberg as a new scientific resource for corpus linguistics, natural language processing, and information retrieval. 2 authors · Dec 19, 2018
4 GlotCC: An Open Broad-Coverage CommonCrawl Corpus and Pipeline for Minority Languages The need for large text corpora has increased with the advent of pretrained language models and, in particular, the discovery of scaling laws for these models. Most available corpora have sufficient data only for languages with large dominant communities. However, there is no corpus available that (i) covers a wide range of minority languages; (ii) is generated by an open-source reproducible pipeline; and (iii) is rigorously cleaned from noise, making it trustworthy to use. We present GlotCC, a clean, document-level, 2TB general domain corpus derived from CommonCrawl, covering more than 1000 languages. We make GlotCC and the system used to generate it - including the pipeline, language identification model, and filters - available to the research community. Corpus v. 1.0 https://huggingface.co/datasets/cis-lmu/GlotCC-v1, Pipeline v. 3.0 https://github.com/cisnlp/GlotCC. 3 authors · Oct 31, 2024 2
- PromptTTS++: Controlling Speaker Identity in Prompt-Based Text-to-Speech Using Natural Language Descriptions We propose PromptTTS++, a prompt-based text-to-speech (TTS) synthesis system that allows control over speaker identity using natural language descriptions. To control speaker identity within the prompt-based TTS framework, we introduce the concept of speaker prompt, which describes voice characteristics (e.g., gender-neutral, young, old, and muffled) designed to be approximately independent of speaking style. Since there is no large-scale dataset containing speaker prompts, we first construct a dataset based on the LibriTTS-R corpus with manually annotated speaker prompts. We then employ a diffusion-based acoustic model with mixture density networks to model diverse speaker factors in the training data. Unlike previous studies that rely on style prompts describing only a limited aspect of speaker individuality, such as pitch, speaking speed, and energy, our method utilizes an additional speaker prompt to effectively learn the mapping from natural language descriptions to the acoustic features of diverse speakers. Our subjective evaluation results show that the proposed method can better control speaker characteristics than the methods without the speaker prompt. Audio samples are available at https://reppy4620.github.io/demo.promptttspp/. 7 authors · Sep 15, 2023
2 The Knesset Corpus: An Annotated Corpus of Hebrew Parliamentary Proceedings We present the Knesset Corpus, a corpus of Hebrew parliamentary proceedings containing over 30 million sentences (over 384 million tokens) from all the (plenary and committee) protocols held in the Israeli parliament between 1998 and 2022. Sentences are annotated with morpho-syntactic information and are associated with detailed meta-information reflecting demographic and political properties of the speakers, based on a large database of parliament members and factions that we compiled. We discuss the structure and composition of the corpus and the various processing steps we applied to it. To demonstrate the utility of this novel dataset we present two use cases. We show that the corpus can be used to examine historical developments in the style of political discussions by showing a reduction in lexical richness in the proceedings over time. We also investigate some differences between the styles of men and women speakers. These use cases exemplify the potential of the corpus to shed light on important trends in the Israeli society, supporting research in linguistics, political science, communication, law, etc. 5 authors · May 28, 2024
- Keep Decoding Parallel with Effective Knowledge Distillation from Language Models to End-to-end Speech Recognisers This study presents a novel approach for knowledge distillation (KD) from a BERT teacher model to an automatic speech recognition (ASR) model using intermediate layers. To distil the teacher's knowledge, we use an attention decoder that learns from BERT's token probabilities. Our method shows that language model (LM) information can be more effectively distilled into an ASR model using both the intermediate layers and the final layer. By using the intermediate layers as distillation target, we can more effectively distil LM knowledge into the lower network layers. Using our method, we achieve better recognition accuracy than with shallow fusion of an external LM, allowing us to maintain fast parallel decoding. Experiments on the LibriSpeech dataset demonstrate the effectiveness of our approach in enhancing greedy decoding with connectionist temporal classification (CTC). 4 authors · Jan 22, 2024
- Advancing Singlish Understanding: Bridging the Gap with Datasets and Multimodal Models Singlish, a Creole language rooted in English, is a key focus in linguistic research within multilingual and multicultural contexts. However, its spoken form remains underexplored, limiting insights into its linguistic structure and applications. To address this gap, we standardize and annotate the largest spoken Singlish corpus, introducing the Multitask National Speech Corpus (MNSC). These datasets support diverse tasks, including Automatic Speech Recognition (ASR), Spoken Question Answering (SQA), Spoken Dialogue Summarization (SDS), and Paralinguistic Question Answering (PQA). We release standardized splits and a human-verified test set to facilitate further research. Additionally, we propose SingAudioLLM, a multi-task multimodal model leveraging multimodal large language models to handle these tasks concurrently. Experiments reveal our models adaptability to Singlish context, achieving state-of-the-art performance and outperforming prior models by 10-30% in comparison with other AudioLLMs and cascaded solutions. 9 authors · Jan 1
- The ARIEL-CMU Systems for LoReHLT18 This paper describes the ARIEL-CMU submissions to the Low Resource Human Language Technologies (LoReHLT) 2018 evaluations for the tasks Machine Translation (MT), Entity Discovery and Linking (EDL), and detection of Situation Frames in Text and Speech (SF Text and Speech). 30 authors · Feb 24, 2019
- SPGISpeech: 5,000 hours of transcribed financial audio for fully formatted end-to-end speech recognition In the English speech-to-text (STT) machine learning task, acoustic models are conventionally trained on uncased Latin characters, and any necessary orthography (such as capitalization, punctuation, and denormalization of non-standard words) is imputed by separate post-processing models. This adds complexity and limits performance, as many formatting tasks benefit from semantic information present in the acoustic signal but absent in transcription. Here we propose a new STT task: end-to-end neural transcription with fully formatted text for target labels. We present baseline Conformer-based models trained on a corpus of 5,000 hours of professionally transcribed earnings calls, achieving a CER of 1.7. As a contribution to the STT research community, we release the corpus free for non-commercial use at https://datasets.kensho.com/datasets/scribe. 13 authors · Apr 5, 2021
- JESC: Japanese-English Subtitle Corpus In this paper we describe the Japanese-English Subtitle Corpus (JESC). JESC is a large Japanese-English parallel corpus covering the underrepresented domain of conversational dialogue. It consists of more than 3.2 million examples, making it the largest freely available dataset of its kind. The corpus was assembled by crawling and aligning subtitles found on the web. The assembly process incorporates a number of novel preprocessing elements to ensure high monolingual fluency and accurate bilingual alignments. We summarize its contents and evaluate its quality using human experts and baseline machine translation (MT) systems. 4 authors · Oct 29, 2017
- MinWikiSplit: A Sentence Splitting Corpus with Minimal Propositions We compiled a new sentence splitting corpus that is composed of 203K pairs of aligned complex source and simplified target sentences. Contrary to previously proposed text simplification corpora, which contain only a small number of split examples, we present a dataset where each input sentence is broken down into a set of minimal propositions, i.e. a sequence of sound, self-contained utterances with each of them presenting a minimal semantic unit that cannot be further decomposed into meaningful propositions. This corpus is useful for developing sentence splitting approaches that learn how to transform sentences with a complex linguistic structure into a fine-grained representation of short sentences that present a simple and more regular structure which is easier to process for downstream applications and thus facilitates and improves their performance. 3 authors · Sep 26, 2019
- CJST: CTC Compressor based Joint Speech and Text Training for Decoder-Only ASR CTC compressor can be an effective approach to integrate audio encoders to decoder-only models, which has gained growing interest for different speech applications. In this work, we propose a novel CTC compressor based joint speech and text training (CJST) framework for decoder-only ASR. CJST matches speech and text modalities from both directions by exploring a simple modality adaptor and several features of the CTC compressor, including sequence compression, on-the-fly forced peaky alignment and CTC class embeddings. Experimental results on the Librispeech and TED-LIUM2 corpora show that the proposed CJST achieves an effective text injection without the need of duration handling, leading to the best performance for both in-domain and cross-domain scenarios. We also provide a comprehensive study on CTC compressor, covering various compression modes, edge case handling and behavior under both clean and noisy data conditions, which reveals the most robust setting to use CTC compressor for decoder-only models. 5 authors · Nov 12, 2024
- Speak While You Think: Streaming Speech Synthesis During Text Generation Large Language Models (LLMs) demonstrate impressive capabilities, yet interaction with these models is mostly facilitated through text. Using Text-To-Speech to synthesize LLM outputs typically results in notable latency, which is impractical for fluent voice conversations. We propose LLM2Speech, an architecture to synthesize speech while text is being generated by an LLM which yields significant latency reduction. LLM2Speech mimics the predictions of a non-streaming teacher model while limiting the exposure to future context in order to enable streaming. It exploits the hidden embeddings of the LLM, a by-product of the text generation that contains informative semantic context. Experimental results show that LLM2Speech maintains the teacher's quality while reducing the latency to enable natural conversations. 6 authors · Sep 20, 2023
- SLIDE: Integrating Speech Language Model with LLM for Spontaneous Spoken Dialogue Generation Recently, ``textless" speech language models (SLMs) based on speech units have made huge progress in generating naturalistic speech, including non-verbal vocalizations. However, the generated speech samples often lack semantic coherence. In this paper, we propose SLM and LLM Integration for spontaneous spoken Dialogue gEneration (SLIDE). Specifically, we first utilize an LLM to generate the textual content of spoken dialogue. Next, we convert the textual dialogues into phoneme sequences and use a two-tower transformer-based duration predictor to predict the duration of each phoneme. Finally, an SLM conditioned on the spoken phoneme sequences is used to vocalize the textual dialogue. Experimental results on the Fisher dataset demonstrate that our system can generate naturalistic spoken dialogue while maintaining high semantic coherence. 6 authors · Jan 1
- QASR: QCRI Aljazeera Speech Resource -- A Large Scale Annotated Arabic Speech Corpus We introduce the largest transcribed Arabic speech corpus, QASR, collected from the broadcast domain. This multi-dialect speech dataset contains 2,000 hours of speech sampled at 16kHz crawled from Aljazeera news channel. The dataset is released with lightly supervised transcriptions, aligned with the audio segments. Unlike previous datasets, QASR contains linguistically motivated segmentation, punctuation, speaker information among others. QASR is suitable for training and evaluating speech recognition systems, acoustics- and/or linguistics- based Arabic dialect identification, punctuation restoration, speaker identification, speaker linking, and potentially other NLP modules for spoken data. In addition to QASR transcription, we release a dataset of 130M words to aid in designing and training a better language model. We show that end-to-end automatic speech recognition trained on QASR reports a competitive word error rate compared to the previous MGB-2 corpus. We report baseline results for downstream natural language processing tasks such as named entity recognition using speech transcript. We also report the first baseline for Arabic punctuation restoration. We make the corpus available for the research community. 4 authors · Jun 24, 2021
- Speaker Anonymization with Phonetic Intermediate Representations In this work, we propose a speaker anonymization pipeline that leverages high quality automatic speech recognition and synthesis systems to generate speech conditioned on phonetic transcriptions and anonymized speaker embeddings. Using phones as the intermediate representation ensures near complete elimination of speaker identity information from the input while preserving the original phonetic content as much as possible. Our experimental results on LibriSpeech and VCTK corpora reveal two key findings: 1) although automatic speech recognition produces imperfect transcriptions, our neural speech synthesis system can handle such errors, making our system feasible and robust, and 2) combining speaker embeddings from different resources is beneficial and their appropriate normalization is crucial. Overall, our final best system outperforms significantly the baselines provided in the Voice Privacy Challenge 2020 in terms of privacy robustness against a lazy-informed attacker while maintaining high intelligibility and naturalness of the anonymized speech. 6 authors · Jul 11, 2022
- Annotated Speech Corpus for Low Resource Indian Languages: Awadhi, Bhojpuri, Braj and Magahi In this paper we discuss an in-progress work on the development of a speech corpus for four low-resource Indo-Aryan languages -- Awadhi, Bhojpuri, Braj and Magahi using the field methods of linguistic data collection. The total size of the corpus currently stands at approximately 18 hours (approx. 4-5 hours each language) and it is transcribed and annotated with grammatical information such as part-of-speech tags, morphological features and Universal dependency relationships. We discuss our methodology for data collection in these languages, most of which was done in the middle of the COVID-19 pandemic, with one of the aims being to generate some additional income for low-income groups speaking these languages. In the paper, we also discuss the results of the baseline experiments for automatic speech recognition system in these languages. 9 authors · Jun 26, 2022
2 Speech Translation with Speech Foundation Models and Large Language Models: What is There and What is Missing? The field of natural language processing (NLP) has recently witnessed a transformative shift with the emergence of foundation models, particularly Large Language Models (LLMs) that have revolutionized text-based NLP. This paradigm has extended to other modalities, including speech, where researchers are actively exploring the combination of Speech Foundation Models (SFMs) and LLMs into single, unified models capable of addressing multimodal tasks. Among such tasks, this paper focuses on speech-to-text translation (ST). By examining the published papers on the topic, we propose a unified view of the architectural solutions and training strategies presented so far, highlighting similarities and differences among them. Based on this examination, we not only organize the lessons learned but also show how diverse settings and evaluation approaches hinder the identification of the best-performing solution for each architectural building block and training choice. Lastly, we outline recommendations for future works on the topic aimed at better understanding the strengths and weaknesses of the SFM+LLM solutions for ST. 4 authors · Feb 19, 2024
1 Scaling Rich Style-Prompted Text-to-Speech Datasets We introduce Paralinguistic Speech Captions (ParaSpeechCaps), a large-scale dataset that annotates speech utterances with rich style captions. While rich abstract tags (e.g. guttural, nasal, pained) have been explored in small-scale human-annotated datasets, existing large-scale datasets only cover basic tags (e.g. low-pitched, slow, loud). We combine off-the-shelf text and speech embedders, classifiers and an audio language model to automatically scale rich tag annotations for the first time. ParaSpeechCaps covers a total of 59 style tags, including both speaker-level intrinsic tags and utterance-level situational tags. It consists of 342 hours of human-labelled data (PSC-Base) and 2427 hours of automatically annotated data (PSC-Scaled). We finetune Parler-TTS, an open-source style-prompted TTS model, on ParaSpeechCaps, and achieve improved style consistency (+7.9% Consistency MOS) and speech quality (+15.5% Naturalness MOS) over the best performing baseline that combines existing rich style tag datasets. We ablate several of our dataset design choices to lay the foundation for future work in this space. Our dataset, models and code are released at https://github.com/ajd12342/paraspeechcaps . 4 authors · Mar 6
8 wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. 4 authors · Jun 19, 2020 1
- Retrieval-Enhanced Few-Shot Prompting for Speech Event Extraction Speech Event Extraction (SpeechEE) is a challenging task that lies at the intersection of Automatic Speech Recognition (ASR) and Natural Language Processing (NLP), requiring the identification of structured event information from spoken language. In this work, we present a modular, pipeline-based SpeechEE framework that integrates high-performance ASR with semantic search-enhanced prompting of Large Language Models (LLMs). Our system first classifies speech segments likely to contain events using a hybrid filtering mechanism including rule-based, BERT-based, and LLM-based models. It then employs few-shot LLM prompting, dynamically enriched via semantic similarity retrieval, to identify event triggers and extract corresponding arguments. We evaluate the pipeline using multiple LLMs (Llama3-8B, GPT-4o-mini, and o1-mini) highlighting significant performance gains with o1-mini, which achieves 63.3% F1 on trigger classification and 27.8% F1 on argument classification, outperforming prior benchmarks. Our results demonstrate that pipeline approaches, when empowered by retrieval-augmented LLMs, can rival or exceed end-to-end systems while maintaining interpretability and modularity. This work provides practical insights into LLM-driven event extraction and opens pathways for future hybrid models combining textual and acoustic features. 1 authors · Apr 30
- J-CHAT: Japanese Large-scale Spoken Dialogue Corpus for Spoken Dialogue Language Modeling Spoken dialogue plays a crucial role in human-AI interactions, necessitating dialogue-oriented spoken language models (SLMs). To develop versatile SLMs, large-scale and diverse speech datasets are essential. Additionally, to ensure hiqh-quality speech generation, the data must be spontaneous like in-wild data and must be acoustically clean with noise removed. Despite the critical need, no open-source corpus meeting all these criteria has been available. This study addresses this gap by constructing and releasing a large-scale spoken dialogue corpus, named Japanese Corpus for Human-AI Talks (J-CHAT), which is publicly accessible. Furthermore, this paper presents a language-independent method for corpus construction and describes experiments on dialogue generation using SLMs trained on J-CHAT. Experimental results indicate that the collected data from multiple domains by our method improve the naturalness and meaningfulness of dialogue generation. 6 authors · Jul 22, 2024
- Machines Getting with the Program: Understanding Intent Arguments of Non-Canonical Directives Modern dialog managers face the challenge of having to fulfill human-level conversational skills as part of common user expectations, including but not limited to discourse with no clear objective. Along with these requirements, agents are expected to extrapolate intent from the user's dialogue even when subjected to non-canonical forms of speech. This depends on the agent's comprehension of paraphrased forms of such utterances. Especially in low-resource languages, the lack of data is a bottleneck that prevents advancements of the comprehension performance for these types of agents. In this regard, here we demonstrate the necessity of extracting the intent argument of non-canonical directives in a natural language format, which may yield more accurate parsing, and suggest guidelines for building a parallel corpus for this purpose. Following the guidelines, we construct a Korean corpus of 50K instances of question/command-intent pairs, including the labels for classification of the utterance type. We also propose a method for mitigating class imbalance, demonstrating the potential applications of the corpus generation method and its multilingual extensibility. 5 authors · Dec 1, 2019
3 Salamandra Technical Report This work introduces Salamandra, a suite of open-source decoder-only large language models available in three different sizes: 2, 7, and 40 billion parameters. The models were trained from scratch on highly multilingual data that comprises text in 35 European languages and code. Our carefully curated corpus is made exclusively from open-access data compiled from a wide variety of sources. Along with the base models, supplementary checkpoints that were fine-tuned on public-domain instruction data are also released for chat applications. Additionally, we also share our preliminary experiments on multimodality, which serve as proof-of-concept to showcase potential applications for the Salamandra family. Our extensive evaluations on multilingual benchmarks reveal that Salamandra has strong capabilities, achieving competitive performance when compared to similarly sized open-source models. We provide comprehensive evaluation results both on standard downstream tasks as well as key aspects related to bias and safety.With this technical report, we intend to promote open science by sharing all the details behind our design choices, data curation strategy and evaluation methodology. In addition to that, we deviate from the usual practice by making our training and evaluation scripts publicly accessible. We release all models under a permissive Apache 2.0 license in order to foster future research and facilitate commercial use, thereby contributing to the open-source ecosystem of large language models. 23 authors · Feb 12
- Pseudo-Autoregressive Neural Codec Language Models for Efficient Zero-Shot Text-to-Speech Synthesis Recent zero-shot text-to-speech (TTS) systems face a common dilemma: autoregressive (AR) models suffer from slow generation and lack duration controllability, while non-autoregressive (NAR) models lack temporal modeling and typically require complex designs. In this paper, we introduce a novel pseudo-autoregressive (PAR) codec language modeling approach that unifies AR and NAR modeling. Combining explicit temporal modeling from AR with parallel generation from NAR, PAR generates dynamic-length spans at fixed time steps. Building on PAR, we propose PALLE, a two-stage TTS system that leverages PAR for initial generation followed by NAR refinement. In the first stage, PAR progressively generates speech tokens along the time dimension, with each step predicting all positions in parallel but only retaining the left-most span. In the second stage, low-confidence tokens are iteratively refined in parallel, leveraging the global contextual information. Experiments demonstrate that PALLE, trained on LibriTTS, outperforms state-of-the-art systems trained on large-scale data, including F5-TTS, E2-TTS, and MaskGCT, on the LibriSpeech test-clean set in terms of speech quality, speaker similarity, and intelligibility, while achieving up to ten times faster inference speed. Audio samples are available at https://anonymous-palle.github.io. 13 authors · Apr 14
2 SynParaSpeech: Automated Synthesis of Paralinguistic Datasets for Speech Generation and Understanding Paralinguistic sounds, like laughter and sighs, are crucial for synthesizing more realistic and engaging speech. However, existing methods typically depend on proprietary datasets, while publicly available resources often suffer from incomplete speech, inaccurate or missing timestamps, and limited real-world relevance. To address these problems, we propose an automated framework for generating large-scale paralinguistic data and apply it to construct the SynParaSpeech dataset. The dataset comprises 6 paralinguistic categories with 118.75 hours of data and precise timestamps, all derived from natural conversational speech. Our contributions lie in introducing the first automated method for constructing large-scale paralinguistic datasets and releasing the SynParaSpeech corpus, which advances speech generation through more natural paralinguistic synthesis and enhances speech understanding by improving paralinguistic event detection. The dataset and audio samples are available at https://github.com/ShawnPi233/SynParaSpeech. 11 authors · Sep 18
- ELCC: the Emergent Language Corpus Collection We introduce the Emergent Language Corpus Collection (ELCC): a collection of corpora generated from open source implementations of emergent communication systems across the literature. These systems include a variety of signalling game environments as well as more complex environments like a social deduction game and embodied navigation. Each corpus is annotated with metadata describing the characteristics of the source system as well as a suite of analyses of the corpus (e.g., size, entropy, average message length, performance as transfer learning data). Currently, research studying emergent languages requires directly running different systems which takes time away from actual analyses of such languages, makes studies which compare diverse emergent languages rare, and presents a barrier to entry for researchers without a background in deep learning. The availability of a substantial collection of well-documented emergent language corpora, then, will enable research which can analyze a wider variety of emergent languages, which more effectively uncovers general principles in emergent communication rather than artifacts of particular environments. We provide some quantitative and qualitative analyses with ELCC to demonstrate potential use cases of the resource in this vein. 2 authors · Jul 4, 2024
- A Spoken Drug Prescription Dataset in French for Spoken Language Understanding Spoken medical dialogue systems are increasingly attracting interest to enhance access to healthcare services and improve quality and traceability of patient care. In this paper, we focus on medical drug prescriptions acquired on smartphones through spoken dialogue. Such systems would facilitate the traceability of care and would free clinicians' time. However, there is a lack of speech corpora to develop such systems since most of the related corpora are in text form and in English. To facilitate the research and development of spoken medical dialogue systems, we present, to the best of our knowledge, the first spoken medical drug prescriptions corpus, named PxSLU. It contains 4 hours of transcribed and annotated dialogues of drug prescriptions in French acquired through an experiment with 55 participants experts and non-experts in prescriptions. We also present some experiments that demonstrate the interest of this corpus for the evaluation and development of medical dialogue systems. 6 authors · Jul 17, 2022
1 Charting a Decade of Computational Linguistics in Italy: The CLiC-it Corpus Over the past decade, Computational Linguistics (CL) and Natural Language Processing (NLP) have evolved rapidly, especially with the advent of Transformer-based Large Language Models (LLMs). This shift has transformed research goals and priorities, from Lexical and Semantic Resources to Language Modelling and Multimodality. In this study, we track the research trends of the Italian CL and NLP community through an analysis of the contributions to CLiC-it, arguably the leading Italian conference in the field. We compile the proceedings from the first 10 editions of the CLiC-it conference (from 2014 to 2024) into the CLiC-it Corpus, providing a comprehensive analysis of both its metadata, including author provenance, gender, affiliations, and more, as well as the content of the papers themselves, which address various topics. Our goal is to provide the Italian and international research communities with valuable insights into emerging trends and key developments over time, supporting informed decisions and future directions in the field. 8 authors · Sep 23 1
6 Common Corpus: The Largest Collection of Ethical Data for LLM Pre-Training Large Language Models (LLMs) are pre-trained on large amounts of data from different sources and domains. These data most often contain trillions of tokens with large portions of copyrighted or proprietary content, which hinders the usage of such models under AI legislation. This raises the need for truly open pre-training data that is compliant with the data security regulations. In this paper, we introduce Common Corpus, the largest open dataset for language model pre-training. The data assembled in Common Corpus are either uncopyrighted or under permissible licenses and amount to about two trillion tokens. The dataset contains a wide variety of languages, ranging from the main European languages to low-resource ones rarely present in pre-training datasets; in addition, it includes a large portion of code data. The diversity of data sources in terms of covered domains and time periods opens up the paths for both research and entrepreneurial needs in diverse areas of knowledge. In this technical report, we present the detailed provenance of data assembling and the details of dataset filtering and curation. Being already used by such industry leaders as Anthropic and multiple LLM training projects, we believe that Common Corpus will become a critical infrastructure for open science research in LLMs. 10 authors · Jun 2
- Improving End-to-End SLU performance with Prosodic Attention and Distillation Most End-to-End SLU methods depend on the pretrained ASR or language model features for intent prediction. However, other essential information in speech, such as prosody, is often ignored. Recent research has shown improved results in classifying dialogue acts by incorporating prosodic information. The margins of improvement in these methods are minimal as the neural models ignore prosodic features. In this work, we propose prosody-attention, which uses the prosodic features differently to generate attention maps across time frames of the utterance. Then we propose prosody-distillation to explicitly learn the prosodic information in the acoustic encoder rather than concatenating the implicit prosodic features. Both the proposed methods improve the baseline results, and the prosody-distillation method gives an intent classification accuracy improvement of 8\% and 2\% on SLURP and STOP datasets over the prosody baseline. 1 authors · May 14, 2023
- MSR-86K: An Evolving, Multilingual Corpus with 86,300 Hours of Transcribed Audio for Speech Recognition Research Recently, multilingual artificial intelligence assistants, exemplified by ChatGPT, have gained immense popularity. As a crucial gateway to human-computer interaction, multilingual automatic speech recognition (ASR) has also garnered significant attention, as evidenced by systems like Whisper. However, the proprietary nature of the training data has impeded researchers' efforts to study multilingual ASR. This paper introduces MSR-86K, an evolving, large-scale multilingual corpus for speech recognition research. The corpus is derived from publicly accessible videos on YouTube, comprising 15 languages and a total of 86,300 hours of transcribed ASR data. We also introduce how to use the MSR-86K corpus and other open-source corpora to train a robust multilingual ASR model that is competitive with Whisper. MSR-86K will be publicly released on HuggingFace, and we believe that such a large corpus will pave new avenues for research in multilingual ASR. 6 authors · Jun 26, 2024
1 VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation We introduce VoxPopuli, a large-scale multilingual corpus providing 100K hours of unlabelled speech data in 23 languages. It is the largest open data to date for unsupervised representation learning as well as semi-supervised learning. VoxPopuli also contains 1.8K hours of transcribed speeches in 16 languages and their aligned oral interpretations into 5 other languages totaling 5.1K hours. We provide speech recognition baselines and validate the versatility of VoxPopuli unlabelled data in semi-supervised learning under challenging out-of-domain settings. We will release the corpus at https://github.com/facebookresearch/voxpopuli under an open license. 9 authors · Jan 2, 2021 1
- BENYO-S2ST-Corpus-1: A Bilingual English-to-Yoruba Direct Speech-to-Speech Translation Corpus There is a major shortage of Speech-to-Speech Translation (S2ST) datasets for high resource-to-low resource language pairs such as English-to-Yoruba. Thus, in this study, we curated the Bilingual English-to-Yoruba Speech-to-Speech Translation Corpus Version 1 (BENYO-S2ST-Corpus-1). The corpus is based on a hybrid architecture we developed for large-scale direct S2ST corpus creation at reduced cost. To achieve this, we leveraged non speech-to-speech Standard Yoruba (SY) real-time audios and transcripts in the YORULECT Corpus as well as the corresponding Standard English (SE) transcripts. YORULECT Corpus is small scale(1,504) samples, and it does not have paired English audios. Therefore, we generated the SE audios using pre-trained AI models (i.e. Facebook MMS). We also developed an audio augmentation algorithm named AcoustAug based on three latent acoustic features to generate augmented audios from the raw audios of the two languages. BENYO-S2ST-Corpus-1 has 12,032 audio samples per language, which gives a total of 24,064 sample size. The total audio duration for the two languages is 41.20 hours. This size is quite significant. Beyond building S2ST models, BENYO-S2ST-Corpus-1 can be used to build pretrained models or improve existing ones. The created corpus and Coqui framework were used to build a pretrained Yoruba TTS model (named YoruTTS-0.5) as a proof of concept. The YoruTTS-0.5 gave a F0 RMSE value of 63.54 after 1,000 epochs, which indicates moderate fundamental pitch similarity with the reference real-time audio. Ultimately, the corpus architecture in this study can be leveraged by researchers and developers to curate datasets for multilingual high-resource-to-low-resource African languages. This will bridge the huge digital divides in translations among high and low-resource language pairs. BENYO-S2ST-Corpus-1 and YoruTTS-0.5 are publicly available at (https://bit.ly/40bGMwi). 10 authors · Jul 12
- The ACL OCL Corpus: Advancing Open Science in Computational Linguistics We present ACL OCL, a scholarly corpus derived from the ACL Anthology to assist Open scientific research in the Computational Linguistics domain. Integrating and enhancing the previous versions of the ACL Anthology, the ACL OCL contributes metadata, PDF files, citation graphs and additional structured full texts with sections, figures, and links to a large knowledge resource (Semantic Scholar). The ACL OCL spans seven decades, containing 73K papers, alongside 210K figures. We spotlight how ACL OCL applies to observe trends in computational linguistics. By detecting paper topics with a supervised neural model, we note that interest in "Syntax: Tagging, Chunking and Parsing" is waning and "Natural Language Generation" is resurging. Our dataset is available from HuggingFace (https://huggingface.co/datasets/WINGNUS/ACL-OCL). 5 authors · May 24, 2023
19 SpeechVerse: A Large-scale Generalizable Audio Language Model Large language models (LLMs) have shown incredible proficiency in performing tasks that require semantic understanding of natural language instructions. Recently, many works have further expanded this capability to perceive multimodal audio and text inputs, but their capabilities are often limited to specific fine-tuned tasks such as automatic speech recognition and translation. We therefore develop SpeechVerse, a robust multi-task training and curriculum learning framework that combines pre-trained speech and text foundation models via a small set of learnable parameters, while keeping the pre-trained models frozen during training. The models are instruction finetuned using continuous latent representations extracted from the speech foundation model to achieve optimal zero-shot performance on a diverse range of speech processing tasks using natural language instructions. We perform extensive benchmarking that includes comparing our model performance against traditional baselines across several datasets and tasks. Furthermore, we evaluate the model's capability for generalized instruction following by testing on out-of-domain datasets, novel prompts, and unseen tasks. Our empirical experiments reveal that our multi-task SpeechVerse model is even superior to conventional task-specific baselines on 9 out of the 11 tasks. 16 authors · May 13, 2024
- Google Crowdsourced Speech Corpora and Related Open-Source Resources for Low-Resource Languages and Dialects: An Overview This paper presents an overview of a program designed to address the growing need for developing freely available speech resources for under-represented languages. At present we have released 38 datasets for building text-to-speech and automatic speech recognition applications for languages and dialects of South and Southeast Asia, Africa, Europe and South America. The paper describes the methodology used for developing such corpora and presents some of our findings that could benefit under-represented language communities. 21 authors · Oct 13, 2020
- FLEURS-R: A Restored Multilingual Speech Corpus for Generation Tasks This paper introduces FLEURS-R, a speech restoration applied version of the Few-shot Learning Evaluation of Universal Representations of Speech (FLEURS) corpus. FLEURS-R maintains an N-way parallel speech corpus in 102 languages as FLEURS, with improved audio quality and fidelity by applying the speech restoration model Miipher. The aim of FLEURS-R is to advance speech technology in more languages and catalyze research including text-to-speech (TTS) and other speech generation tasks in low-resource languages. Comprehensive evaluations with the restored speech and TTS baseline models trained from the new corpus show that the new corpus obtained significantly improved speech quality while maintaining the semantic contents of the speech. The corpus is publicly released via Hugging Face. 7 authors · Aug 12, 2024
1 Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs) by incorporating pre-trained speech models. However, these SLMs often undergo extensive speech instruction-tuning to bridge the gap between speech and text modalities. This requires significant annotation efforts and risks catastrophic forgetting of the original language capabilities. In this work, we present a simple yet effective automatic process for creating speech-text pair data that carefully injects speech paralinguistic understanding abilities into SLMs while preserving the inherent language capabilities of the text-based LLM. Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data, achieving impressive performance on Dynamic-SUPERB and AIR-Bench-Chat benchmarks. Furthermore, our model exhibits the ability to follow complex instructions derived from LLMs, such as specific output formatting and chain-of-thought reasoning. Our approach not only enhances the versatility and effectiveness of SLMs but also reduces reliance on extensive annotated datasets, paving the way for more efficient and capable speech understanding systems. 8 authors · Sep 30, 2024
5 Building a Large Japanese Web Corpus for Large Language Models Open Japanese large language models (LLMs) have been trained on the Japanese portions of corpora such as CC-100, mC4, and OSCAR. However, these corpora were not created for the quality of Japanese texts. This study builds a large Japanese web corpus by extracting and refining text from the Common Crawl archive (21 snapshots of approximately 63.4 billion pages crawled between 2020 and 2023). This corpus consists of approximately 312.1 billion characters (approximately 173 million pages), which is the largest of all available training corpora for Japanese LLMs, surpassing CC-100 (approximately 25.8 billion characters), mC4 (approximately 239.7 billion characters) and OSCAR 23.10 (approximately 74 billion characters). To confirm the quality of the corpus, we performed continual pre-training on Llama 2 7B, 13B, 70B, Mistral 7B v0.1, and Mixtral 8x7B Instruct as base LLMs and gained consistent (6.6-8.1 points) improvements on Japanese benchmark datasets. We also demonstrate that the improvement on Llama 2 13B brought from the presented corpus was the largest among those from other existing corpora. 10 authors · Apr 26, 2024
1 Semi-Autoregressive Streaming ASR With Label Context Non-autoregressive (NAR) modeling has gained significant interest in speech processing since these models achieve dramatically lower inference time than autoregressive (AR) models while also achieving good transcription accuracy. Since NAR automatic speech recognition (ASR) models must wait for the completion of the entire utterance before processing, some works explore streaming NAR models based on blockwise attention for low-latency applications. However, streaming NAR models significantly lag in accuracy compared to streaming AR and non-streaming NAR models. To address this, we propose a streaming "semi-autoregressive" ASR model that incorporates the labels emitted in previous blocks as additional context using a Language Model (LM) subnetwork. We also introduce a novel greedy decoding algorithm that addresses insertion and deletion errors near block boundaries while not significantly increasing the inference time. Experiments show that our method outperforms the existing streaming NAR model by 19% relative on Tedlium2, 16%/8% on Librispeech-100 clean/other test sets, and 19%/8% on the Switchboard(SWB) / Callhome(CH) test sets. It also reduced the accuracy gap with streaming AR and non-streaming NAR models while achieving 2.5x lower latency. We also demonstrate that our approach can effectively utilize external text data to pre-train the LM subnetwork to further improve streaming ASR accuracy. 4 authors · Sep 19, 2023
- Carolina: a General Corpus of Contemporary Brazilian Portuguese with Provenance, Typology and Versioning Information This paper presents the first publicly available version of the Carolina Corpus and discusses its future directions. Carolina is a large open corpus of Brazilian Portuguese texts under construction using web-as-corpus methodology enhanced with provenance, typology, versioning, and text integrality. The corpus aims at being used both as a reliable source for research in Linguistics and as an important resource for Computer Science research on language models, contributing towards removing Portuguese from the set of low-resource languages. Here we present the construction of the corpus methodology, comparing it with other existing methodologies, as well as the corpus current state: Carolina's first public version has 653,322,577 tokens, distributed over 7 broad types. Each text is annotated with several different metadata categories in its header, which we developed using TEI annotation standards. We also present ongoing derivative works and invite NLP researchers to contribute with their own. 14 authors · Mar 28, 2023