- The complex evolution of supermassive black holes in cosmological simulations We present here self-consistent zoom-in simulations of massive galaxies forming in a full cosmological setting. The simulations are run with an updated version of the KETJU code, which is able to resolve the gravitational dynamics of their supermassive black holes, while simultaneously modelling the large-scale astrophysical processes in the surrounding galaxies, such as gas cooling, star formation and stellar and AGN feedback. The KETJU code is able to accurately model the complex behaviour of multiple SMBHs, including dynamical friction, stellar scattering and gravitational wave emission, and also to resolve Lidov-Kozai oscillations that naturally occur in hierarchical triplet SMBH systems. In general most of the SMBH binaries form at moderately high eccentricities, with typical values in the range of e =0.6-0.95, meaning that the circular binary models that are commonly used in the literature are insufficient for capturing the typical binary evolution. 7 authors · Mar 23, 2022
- Relative Oscillation Theory for Jacobi Matrices Extended We present a comprehensive treatment of relative oscillation theory for finite Jacobi matrices. We show that the difference of the number of eigenvalues of two Jacobi matrices in an interval equals the number of weighted sign-changes of the Wronskian of suitable solutions of the two underlying difference equations. Until now only the case of perturbations of the main diagonal was known. We extend the known results to arbitrary perturbations, allow any (half-)open and closed spectral intervals, simplify the proof, and establish the comparison theorem. 1 authors · Jul 16, 2012
- Relative Oscillation Theory for Jacobi Matrices We develop relative oscillation theory for Jacobi matrices which, rather than counting the number of eigenvalues of one single matrix, counts the difference between the number of eigenvalues of two different matrices. This is done by replacing nodes of solutions associated with one matrix by weighted nodes of Wronskians of solutions of two different matrices. 2 authors · Oct 31, 2008
- One- and two-dimensional solitons in spin-orbit-coupled Bose-Einstein condensates with fractional kinetic energy We address effects of spin-orbit coupling (SOC), phenomenologically added to a two-component Bose-Einstein condensate composed of particles moving by Levy flights, in one- and two-dimensional (1D and 2D) settings. The corresponding system of coupled Gross-Pitaevskii equations includes fractional kinetic-energy operators, characterized by the Levy index, \alpha < 2 (the normal kinetic energy corresponds to \alpha = 2). The SOC terms, with strength \lambda, produce strong effects in the 2D case: they create families of stable solitons of the semi-vortex (SV) and mixed-mode (MM) types in the interval of 1 < \alpha < 2, where the supercritical collapse does not admit the existence of stable solitons in the absence of the SOC. At \lambda --> 0, amplitudes of these solitons vanish as (\lambda)^{1/(\alpha - 1)}. 2 authors · Jun 1, 2022
- Limits and Powers of Koopman Learning Dynamical systems provide a comprehensive way to study complex and changing behaviors across various sciences. Many modern systems are too complicated to analyze directly or we do not have access to models, driving significant interest in learning methods. Koopman operators have emerged as a dominant approach because they allow the study of nonlinear dynamics using linear techniques by solving an infinite-dimensional spectral problem. However, current algorithms face challenges such as lack of convergence, hindering practical progress. This paper addresses a fundamental open question: When can we robustly learn the spectral properties of Koopman operators from trajectory data of dynamical systems, and when can we not? Understanding these boundaries is crucial for analysis, applications, and designing algorithms. We establish a foundational approach that combines computational analysis and ergodic theory, revealing the first fundamental barriers -- universal for any algorithm -- associated with system geometry and complexity, regardless of data quality and quantity. For instance, we demonstrate well-behaved smooth dynamical systems on tori where non-trivial eigenfunctions of the Koopman operator cannot be determined by any sequence of (even randomized) algorithms, even with unlimited training data. Additionally, we identify when learning is possible and introduce optimal algorithms with verification that overcome issues in standard methods. These results pave the way for a sharp classification theory of data-driven dynamical systems based on how many limits are needed to solve a problem. These limits characterize all previous methods, presenting a unified view. Our framework systematically determines when and how Koopman spectral properties can be learned. 3 authors · Jul 8, 2024
- Linearly-Recurrent Autoencoder Networks for Learning Dynamics This paper describes a method for learning low-dimensional approximations of nonlinear dynamical systems, based on neural-network approximations of the underlying Koopman operator. Extended Dynamic Mode Decomposition (EDMD) provides a useful data-driven approximation of the Koopman operator for analyzing dynamical systems. This paper addresses a fundamental problem associated with EDMD: a trade-off between representational capacity of the dictionary and over-fitting due to insufficient data. A new neural network architecture combining an autoencoder with linear recurrent dynamics in the encoded state is used to learn a low-dimensional and highly informative Koopman-invariant subspace of observables. A method is also presented for balanced model reduction of over-specified EDMD systems in feature space. Nonlinear reconstruction using partially linear multi-kernel regression aims to improve reconstruction accuracy from the low-dimensional state when the data has complex but intrinsically low-dimensional structure. The techniques demonstrate the ability to identify Koopman eigenfunctions of the unforced Duffing equation, create accurate low-dimensional models of an unstable cylinder wake flow, and make short-time predictions of the chaotic Kuramoto-Sivashinsky equation. 2 authors · Dec 4, 2017
- Dynamical Cosmological Constant The dynamical realisation of the equation of state p +rho =0 is studied. A non-pathological dynamics for the perturbations of such a system mimicking a dynamical cosmological constant (DCC) requires to go beyond the perfect fluid paradigm. It is shown that an anisotropic stress must be always present. The Hamiltonian of the system in isolation resembles the one of a Pais-Uhlenbeck oscillator and linear stability requires that it cannot be positive definite. The dynamics of linear cosmological perturbations in a DCC dominated Universe is studied in detail showing that when DCC is minimally coupled to gravity no dramatic instability is present. In contrast to what happens in a cosmological constant dominated Universe, the non-relativistic matter contrast is no longer constant and exhibits an oscillator behaviour at small scales while it grows weakly at large scales. In the gravitational waves sector, at small scales, the amplitude is still suppressed as the inverse power of the scale factor while it grows logarithmically at large scales. Also the vector modes propagate, though no growing mode is found. 2 authors · Mar 5
- Eigenvalues restricted by Lyapunov exponent of eigenstates We point out that the Lyapunov exponent of the eigenstate places restrictions on the eigenvalue. Consequently, with regard to non-Hermitian systems, even without any symmetry, the non-conservative Hamiltonians can exhibit real spectra as long as Lyapunov exponents of eigenstates inhibit imaginary parts of eigenvalues. Our findings open up a new route to study non-Hermitian physics. 2 authors · Jun 20, 2022
- Large-scale unpinning and pulsar glitches due to the forced oscillation of vortices The basic framework of the superfluid vortex model for pulsar glitches, though, is well accepted; there is a lack of consensus on the possible trigger mechanism responsible for the simultaneous release of a large number (sim 10^{17}) of superfluid vortices from the inner crust. Here, we propose a simple trigger mechanism to explain such catastrophic events of vortex unpinning. We treat a superfluid vortex line as a classical massive straight string with well-defined string tension stretching along the rotation axis of pulsars. The crustquake-induced lattice vibration of the inner crust can act as a driving force for the transverse oscillation of the string. Such forced oscillation near resonance causes the bending of the vortex lines, disturbing their equilibrium configuration and resulting in the unpinning of vortices. We consider unpinning from the inner crust's so-called {\it strong (nuclear)} pinning region, where the vortices are likely pinned to the nuclear sites. We also comment on vortex unpinning from the interstitial pinning region of the inner crust. We sense that unifying crustquake with the superfluid vortex model can naturally explain the cause of large-scale vortex unpinning and generation of large-size pulsar glitches. 3 authors · Nov 28, 2024
- On the higher-order smallest ring star network of Chialvo neurons under diffusive couplings We put forward the dynamical study of a novel higher-order small network of Chialvo neurons arranged in a ring-star topology, with the neurons interacting via linear diffusive couplings. This model is perceived to imitate the nonlinear dynamical properties exhibited by a realistic nervous system where the neurons transfer information through higher-order multi-body interactions. We first analyze our model using the tools from nonlinear dynamics literature: fixed point analysis, Jacobian matrix, and bifurcation patterns. We observe the coexistence of chaotic attractors, and also an intriguing route to chaos starting from a fixed point, to period-doubling, to cyclic quasiperiodic closed invariant curves, to ultimately chaos. We numerically observe the existence of codimension-1 bifurcation patterns: saddle-node, period-doubling, and Neimark Sacker. We also qualitatively study the typical phase portraits of the system and numerically quantify chaos and complexity using the 0-1 test and sample entropy measure respectively. Finally, we study the collective behavior of the neurons in terms of two synchronization measures: the cross-correlation coefficient, and the Kuramoto order parameter. 4 authors · May 9, 2024
- Piecewise DMD for oscillatory and Turing spatio-temporal dynamics Dynamic Mode Decomposition (DMD) is an equation-free method that aims at reconstructing the best linear fit from temporal datasets. In this paper, we show that DMD does not provide accurate approximation for datasets describing oscillatory dynamics, like spiral waves and relaxation oscillations, or spatio-temporal Turing instability. Inspired from the classical "divide and conquer" approach, we propose a piecewise version of DMD (pDMD) to overcome this problem. The main idea is to split the original dataset in N submatrices and then apply the exact (randomized) DMD method in each subset of the obtained partition. We describe the pDMD algorithm in detail and we introduce some error indicators to evaluate its performance when N is increased. Numerical experiments show that very accurate reconstructions are obtained by pDMD for datasets arising from time snapshots of some reaction-diffusion PDE systems, like the FitzHugh-Nagumo model, the lambda-omega system and the DIB morpho-chemical system for battery modeling. 3 authors · Mar 11, 2023
- Butterfly Effects of SGD Noise: Error Amplification in Behavior Cloning and Autoregression This work studies training instabilities of behavior cloning with deep neural networks. We observe that minibatch SGD updates to the policy network during training result in sharp oscillations in long-horizon rewards, despite negligibly affecting the behavior cloning loss. We empirically disentangle the statistical and computational causes of these oscillations, and find them to stem from the chaotic propagation of minibatch SGD noise through unstable closed-loop dynamics. While SGD noise is benign in the single-step action prediction objective, it results in catastrophic error accumulation over long horizons, an effect we term gradient variance amplification (GVA). We show that many standard mitigation techniques do not alleviate GVA, but find an exponential moving average (EMA) of iterates to be surprisingly effective at doing so. We illustrate the generality of this phenomenon by showing the existence of GVA and its amelioration by EMA in both continuous control and autoregressive language generation. Finally, we provide theoretical vignettes that highlight the benefits of EMA in alleviating GVA and shed light on the extent to which classical convex models can help in understanding the benefits of iterate averaging in deep learning. 5 authors · Oct 17, 2023
- simple-idealized-1d-nlse: Pseudo-Spectral Solver for the 1D Nonlinear Schrödinger Equation We present an open-source Python implementation of an idealized high-order pseudo-spectral solver for the one-dimensional nonlinear Schr\"odinger equation (NLSE). The solver combines Fourier spectral spatial discretization with an adaptive eighth-order Dormand-Prince time integration scheme to achieve machine-precision conservation of mass and near-perfect preservation of momentum and energy for smooth solutions. The implementation accurately reproduces fundamental NLSE phenomena including soliton collisions with analytically predicted phase shifts, Akhmediev breather dynamics, and the development of modulation instability from noisy initial conditions. Four canonical test cases validate the numerical scheme: single soliton propagation, two-soliton elastic collision, breather evolution, and noise-seeded modulation instability. The solver employs a 2/3 dealiasing rule with exponential filtering to prevent aliasing errors from the cubic nonlinearity. Statistical analysis using Shannon, R\'enyi, and Tsallis entropies quantifies the spatio-temporal complexity of solutions, while phase space representations reveal the underlying coherence structure. The implementation prioritizes code transparency and educational accessibility over computational performance, providing a valuable pedagogical tool for exploring nonlinear wave dynamics. Complete source code, documentation, and example configurations are freely available, enabling reproducible computational experiments across diverse physical contexts where the NLSE governs wave evolution, including nonlinear optics, Bose-Einstein condensates, and ocean surface waves. 5 authors · Sep 6
- A Comprehensive Perturbative Formalism for Phase Mixing in Perturbed Disks. II. Phase Spirals in an Inhomogeneous Disk Galaxy with a Non-responsive Dark Matter Halo We develop a linear perturbative formalism to compute the response of an inhomogeneous stellar disk embedded in a non-responsive dark matter halo to perturbations like bars, spiral arms and satellite galaxy encounters. Without self-gravity to reinforce it, the response of a Fourier mode phase mixes away due to an intrinsic spread in the vertical (Omega_z), radial (Omega_r) and azimuthal (Omega_phi) frequencies, giving rise to local phase-space spirals. Collisional diffusion due to scattering of stars by structures like giant molecular clouds causes super-exponential damping of the phase-spiral amplitude. The z-v_z phase-spiral is 1-armed (2-armed) for vertically anti-symmetric (symmetric) bending (breathing) modes. Only transient perturbations with timescales (tau_{P}) comparable to the vertical oscillation period (tau_z sim 1/Omega_z) trigger z-v_z phase-spirals. Each (n,l,m) mode of the response to impulsive (tau_{P}<tau=1/(nOmega_z+lOmega_r+mOmega_phi)) perturbations is power law (sim tau_{P}/tau) suppressed, but that to adiabatic (tau_{P}>tau) perturbations is exponentially weak (sim left[-left(tau_{mathrm{P}/tauright)^alpharight]}) except resonant (tauto infty) modes. Slower (tau_{P}>tau_z) perturbations, e.g., distant encounters with satellite galaxies, induce stronger bending modes. If the Gaia phase-spiral was triggered by a satellite, Sagittarius is the leading contender as it dominates the Solar neighborhood response of the Milky Way disk to satellite encounters. However, survival against collisional damping necessitates that the impact occurred within sim 0.6-0.7 Gyr ago. We discuss how the detailed galactic potential dictates the phase-spiral shape: phase mixing occurs slower and phase-spirals are less wound in the outer disk and in presence of an ambient halo. 3 authors · Feb 28, 2023
- Intensity statistics inside an open wave-chaotic cavity with broken time-reversal invariance Using the supersymmetric method of random matrix theory within the Heidelberg approach framework we provide statistical description of stationary intensity sampled in locations inside an open wave-chaotic cavity, assuming that the time-reversal invariance inside the cavity is fully broken. In particular, we show that when incoming waves are fed via a finite number M of open channels the probability density {cal P}(I) for the single-point intensity I decays as a power law for large intensities: {cal P}(I)sim I^{-(M+2)}, provided there is no internal losses. This behaviour is in marked difference with the Rayleigh law {cal P}(I)sim exp(-I/I) which turns out to be valid only in the limit Mto infty. We also find the joint probability density of intensities I_1, ldots, I_L in L>1 observation points, and then extract the corresponding statistics for the maximal intensity in the observation pattern. For Lto infty the resulting limiting extreme value statistics (EVS) turns out to be different from the classical EVS distributions. 2 authors · May 21, 2023
- Energy-dependent temporal study of GX 13+1 with AstroSat observation In this work, we performed an energy-dependent study of low-frequency oscillations observed in GX 13+1 using AstroSat (Large Area X-ray Proportional Counter and Soft X-ray Telescope). The hardness-intensity diagram (HID) of the observation resembles a `nu'-shaped track, while the color-color diagram exhibits a `<'-shaped track, similar to the horizontal and normal branches of the Z source. We conducted flux-resolved temporal studies focusing on low-frequency variability and divided the HID into five regions: A, B, C, D, and E. Low-frequency quasi-periodic oscillations (QPOs) were detected in Regions A, B, and C. The QPO in Region A has a frequency of 5.06^{+0.54}_{-0.48} Hz with a quality factor (Q-factor) of 2.80. In Region B, the QPO was detected at 4.52^{+0.14}_{-0.13} Hz with a Q-factor of 5.79, while in Region C, it was observed at 4.70^{+0.62}_{-0.42} Hz with a Q-factor of 4.35. The QPO frequencies, Q-factors, and low root-mean-square (rms) values (1.32\%, 1.34\%, and 0.7\%) suggest that these oscillations are Normal Branch Oscillations, similar to those reported in GX 340+0. We modeled the rms and lag of the QPOs using a propagative model, considering variations in blackbody temperature, coronal heating rate, and optical depth. Our findings indicate that the observed QPOs are likely driven by interactions between the corona and variations in the blackbody temperature. 3 authors · Jul 1
- rd-spiral: An open-source Python library for learning 2D reaction-diffusion dynamics through pseudo-spectral method We introduce rd-spiral, an open-source Python library for simulating 2D reaction-diffusion systems using pseudo-spectral methods. The framework combines FFT-based spatial discretization with adaptive Dormand-Prince time integration, achieving exponential convergence while maintaining pedagogical clarity. We analyze three dynamical regimes: stable spirals, spatiotemporal chaos, and pattern decay, revealing extreme non-Gaussian statistics (kurtosis >96) in stable states. Information-theoretic metrics show 10.7% reduction in activator-inhibitor coupling during turbulence versus 6.5% in stable regimes. The solver handles stiffness ratios >6:1 with features including automated equilibrium classification and checkpointing. Effect sizes (delta=0.37--0.78) distinguish regimes, with asymmetric field sensitivities to perturbations. By balancing computational rigor with educational transparency, rd-spiral bridges theoretical and practical nonlinear dynamics. 3 authors · Jun 25
- Peakbagging the K2 KEYSTONE sample with PBjam: characterising the individual mode frequencies in solar-like oscillators The pattern of individual mode frequencies in solar-like oscillators provides valuable insight into their properties and interior structures. The identification and characterisation of these modes requires high signal-to-noise and frequency resolution. The KEYSTONE project unlocks the asteroseismic potential of the K2 mission by providing individually reduced, high-quality time series data, global asteroseismic parameters, and spectroscopic analysis for 173 solar-like oscillators. In this work, we build on the KEYSTONE project and present the first analysis of the pattern of individual modes in the oscillation spectra for the K2 KEYSTONE stars. We perform a robust identification and characterisation of the modes through peakbagging methods in the open-source analysis tool PBjam. We present over 6000 mode frequencies, widths, and heights for 168 stars in the sample, covering the HR diagram from FGK dwarfs to sub-giants and the lower red giant branch, providing a significant increase in the number of individual mode frequency detections for main sequence and sub-giant oscillators. This study also presents sample-wide trends of oscillation patterns as a function of the fundamental stellar properties, and improves the precision of the global asteroseismic parameters. These measurements are part of the legacy of the K2 mission, and can be used to perform detailed modelling to improve the precision of fundamental properties of these stars. The results of this analysis provides evidence for the validity of using PBjam to identify and characterise the modes resulting from the observations of the future PLATO mission. 8 authors · Oct 24
1 Rieger, Schwabe, Suess-de Vries: The Sunny Beats of Resonance We propose a self-consistent explanation of Rieger-type periodicities, the Schwabe cycle, and the Suess-de Vries cycle of the solar dynamo in terms of resonances of various wave phenomena with gravitational forces exerted by the orbiting planets. Starting on the high-frequency side, we show that the two-planet spring tides of Venus, Earth and Jupiter are able to excite magneto-Rossby waves which can be linked with typical Rieger-type periods. We argue then that the 11.07-year beat period of those magneto-Rossby waves synchronizes an underlying conventional alpha-Omega-dynamo, by periodically changing either the field storage capacity in the tachocline or some portion of the alpha-effect therein. We also strengthen the argument that the Suess-de Vries cycle appears as an 193-year beat period between the 22.14-year Hale cycle and a spin-orbit coupling effect related with the 19.86-year rosette-like motion of the Sun around the barycenter. 5 authors · Sep 1, 2023
- Local Convergence of Gradient Descent-Ascent for Training Generative Adversarial Networks Generative Adversarial Networks (GANs) are a popular formulation to train generative models for complex high dimensional data. The standard method for training GANs involves a gradient descent-ascent (GDA) procedure on a minimax optimization problem. This procedure is hard to analyze in general due to the nonlinear nature of the dynamics. We study the local dynamics of GDA for training a GAN with a kernel-based discriminator. This convergence analysis is based on a linearization of a non-linear dynamical system that describes the GDA iterations, under an isolated points model assumption from [Becker et al. 2022]. Our analysis brings out the effect of the learning rates, regularization, and the bandwidth of the kernel discriminator, on the local convergence rate of GDA. Importantly, we show phase transitions that indicate when the system converges, oscillates, or diverges. We also provide numerical simulations that verify our claims. 4 authors · May 14, 2023
- Solitons near avoided mode crossing in χ^{(2)} nanowaveguides We present a model for chi^{(2)} waveguides accounting for three modes, two of which make an avoided crossing at the second harmonic wavelength. We introduce two linearly coupled pure modes and adjust the coupling to replicate the waveguide dispersion near the avoided crossing. Analysis of the nonlinear system reveals continuous wave (CW) solutions across much of the parameter-space and prevalence of its modulational instability. We also predict the existence of the avoided-crossing solitons, and study peculiarities of their dynamics and spectral properties, which include formation of a pedestal in the pulse tails and associated pronounced spectral peaks. Mapping these solitons onto the linear dispersion diagrams, we make connections between their existence and CW existence and stability. We also simulate the two-color soliton generation from a single frequency pump pulse to back up its formation and stability properties. 3 authors · Aug 19, 2021
- Asymptotic behavior of bifurcation curves of nonlocal logistic equation of population dynamics We study the one-dimensional nonlocal Kirchhoff type bifurcation problem related to logistic equation of population dynamics. We establish the precise asymptotic formulas for bifurcation curve lambda = lambda(alpha) as alpha to infty in L^2-framework, where alpha:= Vert u_lambda Vert_2. 1 authors · Aug 3
- Shubnikov-de Haas Oscillations in 2D PtSe_2: A fermiological Charge Carrier Investigation High magnetic field and low temperature transport is carried out in order to characterize the charge carriers of PtSe_2. In particular, the Shubnikov-de Haas oscillations arising at applied magnetic field strengths gtrsim 4.5,T are found to occur exclusively in plane and emerge at a layer thickness of approx 18,nm, increasing in amplitude and decreasing in frequency for thinner PtSe_2 flakes. Moreover, the quantum transport time, Berry phase, Dingle temperature and cyclotron mass of the charge carriers are ascertained. The emergence of weak antilocalization (WAL) lies in contrast to the presence of magnetic moments from Pt vacancies. An explanation is provided on how WAL and the Kondo effect can be observed within the same material. Detailed information about the charge carriers and transport phenomena in PtSe_2 is obtained, which is relevant for the design of prospective spintronic and orbitronic devices and for the realization of orbital Hall effect-based architectures. 4 authors · May 21
1 Forecasting Thermoacoustic Instabilities in Liquid Propellant Rocket Engines Using Multimodal Bayesian Deep Learning The 100 MW cryogenic liquid oxygen/hydrogen multi-injector combustor BKD operated by the DLR Institute of Space Propulsion is a research platform that allows the study of thermoacoustic instabilities under realistic conditions, representative of small upper stage rocket engines. We use data from BKD experimental campaigns in which the static chamber pressure and fuel-oxidizer ratio are varied such that the first tangential mode of the combustor is excited under some conditions. We train an autoregressive Bayesian neural network model to forecast the amplitude of the dynamic pressure time series, inputting multiple sensor measurements (injector pressure/ temperature measurements, static chamber pressure, high-frequency dynamic pressure measurements, high-frequency OH* chemiluminescence measurements) and future flow rate control signals. The Bayesian nature of our algorithms allows us to work with a dataset whose size is restricted by the expense of each experimental run, without making overconfident extrapolations. We find that the networks are able to accurately forecast the evolution of the pressure amplitude and anticipate instability events on unseen experimental runs 500 milliseconds in advance. We compare the predictive accuracy of multiple models using different combinations of sensor inputs. We find that the high-frequency dynamic pressure signal is particularly informative. We also use the technique of integrated gradients to interpret the influence of different sensor inputs on the model prediction. The negative log-likelihood of data points in the test dataset indicates that predictive uncertainties are well-characterized by our Bayesian model and simulating a sensor failure event results as expected in a dramatic increase in the epistemic component of the uncertainty. 5 authors · Jul 1, 2021
- On the Dynamics of Acceleration in First order Gradient Methods Ever since the original algorithm by Nesterov (1983), the true nature of the acceleration phenomenon has remained elusive, with various interpretations of why the method is actually faster. The diagnosis of the algorithm through the lens of Ordinary Differential Equations (ODEs) and the corresponding dynamical system formulation to explain the underlying dynamics has a rich history. In the literature, the ODEs that explain algorithms are typically derived by considering the limiting case of the algorithm maps themselves, that is, an ODE formulation follows the development of an algorithm. This obfuscates the underlying higher order principles and thus provides little evidence of the working of the algorithm. Such has been the case with Nesterov algorithm and the various analogies used to describe the acceleration phenomena, viz, momentum associated with the rolling of a Heavy-Ball down a slope, Hessian damping etc. The main focus of our work is to ideate the genesis of the Nesterov algorithm from the viewpoint of dynamical systems leading to demystifying the mathematical rigour behind the algorithm. Instead of reverse engineering ODEs from discrete algorithms, this work explores tools from the recently developed control paradigm titled Passivity and Immersion approach and the Geometric Singular Perturbation theory which are applied to arrive at the formulation of a dynamical system that explains and models the acceleration phenomena. This perspective helps to gain insights into the various terms present and the sequence of steps used in Nesterovs accelerated algorithm for the smooth strongly convex and the convex case. The framework can also be extended to derive the acceleration achieved using the triple momentum method and provides justifications for the non-convergence to the optimal solution in the Heavy-Ball method. 5 authors · Sep 22
1 Model-agnostic search for the quasinormal modes of gravitational wave echoes Post-merger gravitational wave echoes provide a unique opportunity to probe the near-horizon structure of astrophysical black holes, that may be modified due to non-perturbative quantum gravity phenomena. However, since the waveform is subject to large theoretical uncertainties, it is necessary to develop model-agnostic search methods for detecting echoes from observational data. A promising strategy is to identify the characteristic quasinormal modes (QNMs) associated with echoes, {\it in frequency space}, which complements existing searches of quasiperiodic pulses in time. In this study, we build upon our previous work targeting these modes by incorporating relative phase information to optimize the Bayesian search algorithm. Using a new phase-marginalized likelihood, the performance can be significantly improved for well-resolved QNMs. This enables an efficient model-agnostic search for QNMs of different shapes by using a simple search template. To demonstrate the robustness of the search algorithm, we construct four complementary benchmarks for the echo waveform that span a diverse range of different theoretical possibilities for the near-horizon structure. We then validate our Bayesian search algorithms by injecting the benchmark models into different realizations of Gaussian noise. Using two types of phase-marginalized likelihoods, we find that the search algorithm can efficiently detect the corresponding QNMs. Therefore, our search strategy provides a concrete Bayesian and model-agnostic approach to "quantum black hole seismology". 4 authors · Aug 2, 2023
- Sharp electromagnetically induced absorption via balanced interferometric excitation in a microwave resonator A cylindrical TM_{0,1,0} mode microwave cavity resonator was excited using a balanced interferometric configuration that allowed manipulation of the electric field and potential within the resonator by adjusting the phase and amplitude of the interferometer arms driving the resonator. With precise tuning of the phase and amplitude, 25 dB suppression of the electric field at the resonance frequency was achieved while simultaneously resonantly enhancing the time-varying electric-scalar potential. Under these conditions, the system demonstrated electromagnetically induced absorption in the cavity response due to the annulment of the electric field at the resonance frequency. This phenomena can be regarded as a form of extreme dispersion, and led to a sharp increase in the cavity phase versus frequency response by an order of magnitude when compared to the cavity Q-factor. This work presents an experimental setup that will allow the electric-scalar Aharonov-Bohm effect to be tested under conditions involving a time-varying electric-scalar potential, without the presence of an electric field or magnetic vector potential, an experiment that has not yet been realised. 5 authors · Oct 2, 2024
- The nature of an imaginary quasi-periodic oscillation in the soft-to-hard transition of MAXI J1820+070 A recent study shows that if the power spectra (PS) of accreting compact objects consist of a combination of Lorentzian functions that are coherent in different energy bands but incoherent with each other, the same is true for the Real and Imaginary parts of the cross spectrum (CS). Using this idea, we discovered imaginary quasi-periodic oscillations (QPOs) in NICER observations of the black hole candidate MAXI J1820+070. The imaginary QPOs appear as narrow features with a small Real and large Imaginary part in the CS but are not significantly detected in the PS when they overlap in frequency with other variability components. The coherence function drops and the phase lags increase abruptly at the frequency of the imaginary QPO. We show that the multi-Lorentzian model that fits the PS and CS of the source in two energy bands correctly reproduces the lags and the coherence, and that the narrow drop of the coherence is caused by the interaction of the imaginary QPO with other variability components. The imaginary QPO appears only in the decay of the outburst, during the transition from the high-soft to the low-hard state of MAXI J1820+070, and its frequency decreases from approximately 5 Hz to around 1 Hz as the source spectrum hardens. We also analysed the earlier observations of the transition, where no narrow features were seen, and we identified a QPO in the PS that appears to evolve into the imaginary QPO as the source hardens. As for the type-B and C QPOs in this source, the rms spectrum of the imaginary QPO increases with energy. The lags of the imaginary QPO are similar to those of the type-B and C QPOs above 2 keV but differ from the lags of those other QPOs below that energy. While the properties of this imaginary QPO resemble those of type-C QPOs, we cannot rule out that it is a new type of QPO. 5 authors · Feb 17
- Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation The theory of open quantum systems lays the foundations for a substantial part of modern research in quantum science and engineering. Rooted in the dimensionality of their extended Hilbert spaces, the high computational complexity of simulating open quantum systems calls for the development of strategies to approximate their dynamics. In this paper, we present an approach for tackling open quantum system dynamics. Using an exact probabilistic formulation of quantum physics based on positive operator-valued measure (POVM), we compactly represent quantum states with autoregressive transformer neural networks; such networks bring significant algorithmic flexibility due to efficient exact sampling and tractable density. We further introduce the concept of String States to partially restore the symmetry of the autoregressive transformer neural network and improve the description of local correlations. Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator using a forward-backward trapezoid method and find the steady state via a variational formulation. Our approach is benchmarked on prototypical one and two-dimensional systems, finding results which closely track the exact solution and achieve higher accuracy than alternative approaches based on using Markov chain Monte Carlo to sample restricted Boltzmann machines. Our work provides general methods for understanding quantum dynamics in various contexts, as well as techniques for solving high-dimensional probabilistic differential equations in classical setups. 4 authors · Sep 11, 2020
- Dynamical properties of a small heterogeneous chain network of neurons in discrete time We propose a novel nonlinear bidirectionally coupled heterogeneous chain network whose dynamics evolve in discrete time. The backbone of the model is a pair of popular map-based neuron models, the Chialvo and the Rulkov maps. This model is assumed to proximate the intricate dynamical properties of neurons in the widely complex nervous system. The model is first realized via various nonlinear analysis techniques: fixed point analysis, phase portraits, Jacobian matrix, and bifurcation diagrams. We observe the coexistence of chaotic and period-4 attractors. Various codimension-1 and -2 patterns for example saddle-node, period-doubling, Neimark-Sacker, double Neimark-Sacker, flip- and fold-Neimark Sacker, and 1:1 and 1:2 resonance are also explored. Furthermore, the study employs two synchronization measures to quantify how the oscillators in the network behave in tandem with each other over a long number of iterations. Finally, a time series analysis of the model is performed to investigate its complexity in terms of sample entropy. 4 authors · May 9, 2024
- An efficient Asymptotic-Preserving scheme for the Boltzmann mixture with disparate mass In this paper, we develop and implement an efficient asymptotic-preserving (AP) scheme to solve the gas mixture of Boltzmann equations under the disparate mass scaling relevant to the so-called "epochal relaxation" phenomenon. The disparity in molecular masses, ranging across several orders of magnitude, leads to significant challenges in both the evaluation of collision operators and the designing of time-stepping schemes to capture the multi-scale nature of the dynamics. A direct implementation of the spectral method faces prohibitive computational costs as the mass ratio increases due to the need to resolve vastly different thermal velocities. Unlike [I. M. Gamba, S. Jin, and L. Liu, Commun. Math. Sci., 17 (2019), pp. 1257-1289], we propose an alternative approach based on proper truncation of asymptotic expansions of the collision operators, which significantly reduces the computational complexity and works well for small varepsilon. By incorporating the separation of three time scales in the model's relaxation process [P. Degond and B. Lucquin-Desreux, Math. Models Methods Appl. Sci., 6 (1996), pp. 405-436], we design an AP scheme that captures the specific dynamics of the disparate mass model while maintaining computational efficiency. Numerical experiments demonstrate the effectiveness of the proposed scheme in handling large mass ratios of heavy and light species, as well as capturing the epochal relaxation phenomenon. 3 authors · Nov 20, 2024
- Efficient Dynamics Modeling in Interactive Environments with Koopman Theory The accurate modeling of dynamics in interactive environments is critical for successful long-range prediction. Such a capability could advance Reinforcement Learning (RL) and Planning algorithms, but achieving it is challenging. Inaccuracies in model estimates can compound, resulting in increased errors over long horizons. We approach this problem from the lens of Koopman theory, where the nonlinear dynamics of the environment can be linearized in a high-dimensional latent space. This allows us to efficiently parallelize the sequential problem of long-range prediction using convolution while accounting for the agent's action at every time step. Our approach also enables stability analysis and better control over gradients through time. Taken together, these advantages result in significant improvement over the existing approaches, both in the efficiency and the accuracy of modeling dynamics over extended horizons. We also show that this model can be easily incorporated into dynamics modeling for model-based planning and model-free RL and report promising experimental results. 5 authors · Jun 20, 2023
- Stochastic lensing of stars by ultralight dark matter halos Ultralight dark matter is an interesting dark matter candidate describing the lightest end of the mass parameter space. This model produces an oscillating granular pattern in halo densities. These fluctuations have the potential to produce a time-varying density along the line of sight creating a small lensing signal for any stars observed through a dark matter halo which oscillates on the de Broglie timescale. In this work, we study this stochastic lensing signal taking into account the impact of density granules as well as the central soliton. We calculate the amplitude and temporal properties of this signal and estimate how stellar observations may be used to constrain the ultralight dark matter mass and abundance. 5 authors · Feb 27
- ConvNets for Counting: Object Detection of Transient Phenomena in Steelpan Drums We train an object detector built from convolutional neural networks to count interference fringes in elliptical antinode regions in frames of high-speed video recordings of transient oscillations in Caribbean steelpan drums illuminated by electronic speckle pattern interferometry (ESPI). The annotations provided by our model aim to contribute to the understanding of time-dependent behavior in such drums by tracking the development of sympathetic vibration modes. The system is trained on a dataset of crowdsourced human-annotated images obtained from the Zooniverse Steelpan Vibrations Project. Due to the small number of human-annotated images and the ambiguity of the annotation task, we also evaluate the model on a large corpus of synthetic images whose properties have been matched to the real images by style transfer using a Generative Adversarial Network. Applying the model to thousands of unlabeled video frames, we measure oscillations consistent with audio recordings of these drum strikes. One unanticipated result is that sympathetic oscillations of higher-octave notes significantly precede the rise in sound intensity of the corresponding second harmonic tones; the mechanism responsible for this remains unidentified. This paper primarily concerns the development of the predictive model; further exploration of the steelpan images and deeper physical insights await its further application. 2 authors · Jan 31, 2021
- Benign Oscillation of Stochastic Gradient Descent with Large Learning Rates In this work, we theoretically investigate the generalization properties of neural networks (NN) trained by stochastic gradient descent (SGD) algorithm with large learning rates. Under such a training regime, our finding is that, the oscillation of the NN weights caused by the large learning rate SGD training turns out to be beneficial to the generalization of the NN, which potentially improves over the same NN trained by SGD with small learning rates that converges more smoothly. In view of this finding, we call such a phenomenon "benign oscillation". Our theory towards demystifying such a phenomenon builds upon the feature learning perspective of deep learning. Specifically, we consider a feature-noise data generation model that consists of (i) weak features which have a small ell_2-norm and appear in each data point; (ii) strong features which have a larger ell_2-norm but only appear in a certain fraction of all data points; and (iii) noise. We prove that NNs trained by oscillating SGD with a large learning rate can effectively learn the weak features in the presence of those strong features. In contrast, NNs trained by SGD with a small learning rate can only learn the strong features but makes little progress in learning the weak features. Consequently, when it comes to the new testing data which consist of only weak features, the NN trained by oscillating SGD with a large learning rate could still make correct predictions consistently, while the NN trained by small learning rate SGD fails. Our theory sheds light on how large learning rate training benefits the generalization of NNs. Experimental results demonstrate our finding on "benign oscillation". 4 authors · Oct 25, 2023
- A Low-complexity Structured Neural Network to Realize States of Dynamical Systems Data-driven learning is rapidly evolving and places a new perspective on realizing state-space dynamical systems. However, dynamical systems derived from nonlinear ordinary differential equations (ODEs) suffer from limitations in computational efficiency. Thus, this paper stems from data-driven learning to advance states of dynamical systems utilizing a structured neural network (StNN). The proposed learning technique also seeks to identify an optimal, low-complexity operator to solve dynamical systems, the so-called Hankel operator, derived from time-delay measurements. Thus, we utilize the StNN based on the Hankel operator to solve dynamical systems as an alternative to existing data-driven techniques. We show that the proposed StNN reduces the number of parameters and computational complexity compared with the conventional neural networks and also with the classical data-driven techniques, such as Sparse Identification of Nonlinear Dynamics (SINDy) and Hankel Alternative view of Koopman (HAVOK), which is commonly known as delay-Dynamic Mode Decomposition(DMD) or Hankel-DMD. More specifically, we present numerical simulations to solve dynamical systems utilizing the StNN based on the Hankel operator beginning from the fundamental Lotka-Volterra model, where we compare the StNN with the LEarning Across Dynamical Systems (LEADS), and extend our analysis to highly nonlinear and chaotic Lorenz systems, comparing the StNN with conventional neural networks, SINDy, and HAVOK. Hence, we show that the proposed StNN paves the way for realizing state-space dynamical systems with a low-complexity learning algorithm, enabling prediction and understanding of future states. 4 authors · Mar 30
- Local linearization for estimating the diffusion parameter of nonlinear stochastic wave equations with spatially correlated noise We study the bi-parameter local linearization of the one-dimensional nonlinear stochastic wave equation driven by a Gaussian noise, which is white in time and has a spatially homogeneous covariance structure of Riesz-kernel type. We establish that the second-order increments of the solution can be approximated by those of the corresponding linearized wave equation, modulated by the diffusion coefficient. These findings extend the previous results of Huang et al. HOO2024, which addressed the case of space-time white noise. As applications, we analyze the quadratic variation of the solution and construct a consistent estimator for the diffusion parameter. 2 authors · Oct 1
- Stability of Superconducting Strings We investigate the stability of superconducting strings as bound states of strings and fermion zero modes at both the classical and quantum levels. The dynamics of these superconducting strings can result in a stable configuration, known as a vorton. We mainly focus on global strings, but the majority of the discussion can be applied to local strings. Using lattice simulations, we study the classical dynamics of superconducting strings and confirm that they relax to the vorton configuration through Nambu-Goldstone boson radiation, with no evidence of over-shooting that would destabilize the vorton. We explore the tunneling of fermion zero modes out of the strings. Both our classical analysis and quantum calculations yield consistent results: the maximum energy of the zero mode significantly exceeds the fermion mass, in contrast to previous literature. Additionally, we introduce a world-sheet formalism to evaluate the decay rate of zero modes into other particles, which constitute the dominant decay channel. We also identify additional processes that trigger zero-mode decay due to non-adiabatic changes of the string configuration. In these decay processes, the rates are suppressed by the curvature of string loops, with exponential suppression for large masses of the final states. We further study the scattering with light charged particles surrounding the string core produced by the zero-mode current and find that a wide zero-mode wavefunction can enhance vorton stability. 4 authors · Dec 16, 2024
- Finding extremal periodic orbits with polynomial optimisation, with application to a nine-mode model of shear flow Tobasco et al. [Physics Letters A, 382:382-386, 2018; see https://doi.org/10.1016/j.physleta.2017.12.023] recently suggested that trajectories of ODE systems that optimize the infinite-time average of a certain observable can be localized using sublevel sets of a function that arise when bounding such averages using so-called auxiliary functions. In this paper we demonstrate that this idea is viable and allows for the computation of extremal unstable periodic orbits (UPOs) for polynomial ODE systems. First, we prove that polynomial optimization is guaranteed to produce auxiliary functions that yield near-sharp bounds on time averages, which is required in order to localize the extremal orbit accurately. Second, we show that points inside the relevant sublevel sets can be computed efficiently through direct nonlinear optimization. Such points provide good initial conditions for UPO computations. As a proof of concept, we then combine these methods with a single-shooting Newton-Raphson algorithm to study extremal UPOs for a nine-dimensional model of sinusoidally forced shear flow. We discover three previously unknown families of UPOs, one of which simultaneously minimizes the mean energy dissipation rate and maximizes the mean perturbation energy relative to the laminar state for Reynolds numbers approximately between 81.24 and 125. 5 authors · Jun 10, 2019
- Revisiting the Effects of Stochasticity for Hamiltonian Samplers We revisit the theoretical properties of Hamiltonian stochastic differential equations (SDES) for Bayesian posterior sampling, and we study the two types of errors that arise from numerical SDE simulation: the discretization error and the error due to noisy gradient estimates in the context of data subsampling. Our main result is a novel analysis for the effect of mini-batches through the lens of differential operator splitting, revising previous literature results. The stochastic component of a Hamiltonian SDE is decoupled from the gradient noise, for which we make no normality assumptions. This leads to the identification of a convergence bottleneck: when considering mini-batches, the best achievable error rate is O(eta^2), with eta being the integrator step size. Our theoretical results are supported by an empirical study on a variety of regression and classification tasks for Bayesian neural networks. 4 authors · Jun 30, 2021
- Instability of the solitary waves for the Generalized Benjamin-Bona-Mahony Equation In this work, we consider the generalized Benjamin-Bona-Mahony equation $partial_t u+partial_x u+partial_x( |u|^pu)-partial_t partial_x^{2}u=0, quad(t,x) in R times R, with p>4. This equation has the traveling wave solutions \phi_{c}(x-ct), for any frequency c>1. It has been proved by Souganidis and Strauss Strauss-1990 that, there exists a number c_{0}(p)>1, such that solitary waves \phi_{c}(x-ct) with 1<c<c_{0}(p) is orbitally unstable, while for c>c_{0}(p), \phi_{c}(x-ct) is orbitally stable. The linear exponential instability in the former case was further proved by Pego and Weinstein Pego-1991-eigenvalue. In this paper, we prove the orbital instability in the critical case c=c_{0}(p)$. 2 authors · Sep 1, 2023
- Learning Semilinear Neural Operators : A Unified Recursive Framework For Prediction And Data Assimilation Recent advances in the theory of Neural Operators (NOs) have enabled fast and accurate computation of the solutions to complex systems described by partial differential equations (PDEs). Despite their great success, current NO-based solutions face important challenges when dealing with spatio-temporal PDEs over long time scales. Specifically, the current theory of NOs does not present a systematic framework to perform data assimilation and efficiently correct the evolution of PDE solutions over time based on sparsely sampled noisy measurements. In this paper, we propose a learning-based state-space approach to compute the solution operators to infinite-dimensional semilinear PDEs. Exploiting the structure of semilinear PDEs and the theory of nonlinear observers in function spaces, we develop a flexible recursive method that allows for both prediction and data assimilation by combining prediction and correction operations. The proposed framework is capable of producing fast and accurate predictions over long time horizons, dealing with irregularly sampled noisy measurements to correct the solution, and benefits from the decoupling between the spatial and temporal dynamics of this class of PDEs. We show through experiments on the Kuramoto-Sivashinsky, Navier-Stokes and Korteweg-de Vries equations that the proposed model is robust to noise and can leverage arbitrary amounts of measurements to correct its prediction over a long time horizon with little computational overhead. 4 authors · Feb 23, 2024