Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeBlended RAG: Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid Query-Based Retrievers
Retrieval-Augmented Generation (RAG) is a prevalent approach to infuse a private knowledge base of documents with Large Language Models (LLM) to build Generative Q\&A (Question-Answering) systems. However, RAG accuracy becomes increasingly challenging as the corpus of documents scales up, with Retrievers playing an outsized role in the overall RAG accuracy by extracting the most relevant document from the corpus to provide context to the LLM. In this paper, we propose the 'Blended RAG' method of leveraging semantic search techniques, such as Dense Vector indexes and Sparse Encoder indexes, blended with hybrid query strategies. Our study achieves better retrieval results and sets new benchmarks for IR (Information Retrieval) datasets like NQ and TREC-COVID datasets. We further extend such a 'Blended Retriever' to the RAG system to demonstrate far superior results on Generative Q\&A datasets like SQUAD, even surpassing fine-tuning performance.
Speech-to-Text Adapter and Speech-to-Entity Retriever Augmented LLMs for Speech Understanding
Large Language Models (LLMs) have been applied in the speech domain, often incurring a performance drop due to misaligned between speech and language representations. To bridge this gap, we propose a joint speech and language model (SLM) using a Speech2Text adapter, which maps speech into text token embedding space without speech information loss. Additionally, using a CTC-based blank-filtering, we can reduce the speech sequence length to that of text. In speech MultiWoz dataset (DSTC11 challenge), SLM largely improves the dialog state tracking (DST) performance (24.7% to 28.4% accuracy). Further to address errors on rare entities, we augment SLM with a Speech2Entity retriever, which uses speech to retrieve relevant entities, and then adds them to the original SLM input as a prefix. With this retrieval-augmented SLM (ReSLM), the DST performance jumps to 34.6% accuracy. Moreover, augmenting the ASR task with the dialog understanding task improves the ASR performance from 9.4% to 8.5% WER.
MLP Memory: Language Modeling with Retriever-pretrained External Memory
While modern decoder-only LLMs achieve superior performance across various domains, hallucinations have risen to be a common problem in their generated text, hindering their application in knowledge-intensive tasks. Retriever-augmented generation (RAG) offers a solution, but the non-parametric nature of the retriever hinders its deep interaction with LLM. In this work, we propose to decouple memorization from the LLM decoder using a pretrained, differentiable external memory. The external memory is an MLP pretrained by imitating the behavior of a retriever on the entire pretraining dataset. Our resulting architecture, which comprises a transformer decoder and an external MLP memory pretrained on language modeling and retriever imitation respectively, demonstrates strong perplexity and performance on downstream tasks. Experiments show our architecture exhibits steeper power-law scaling with model size, achieving 17.5% and 24.1% improvement on WikiText-103 and Web datasets compared to decoder-only models while benefiting from added training without overfitting. We demonstrate superior performance on three hallucination benchmarks and nine memory-intensive tasks. Additionally, our approach delivers 80times speedup over kNN-LM (500M tokens) and 1.3times faster inference than decoder-only models. Unlike kNN-LM, which impairs reasoning, our MLP memory improves StrategyQA performance. We will open-source our code and models in the future.
Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering
Retriever-augmented instruction-following models are attractive alternatives to fine-tuned approaches for information-seeking tasks such as question answering (QA). By simply prepending retrieved documents in its input along with an instruction, these models can be adapted to various information domains and tasks without additional fine-tuning. While the model responses tend to be natural and fluent, the additional verbosity makes traditional QA evaluation metrics such as exact match (EM) and F1 unreliable for accurately quantifying model performance. In this work, we investigate the performance of instruction-following models across three information-seeking QA tasks. We use both automatic and human evaluation to evaluate these models along two dimensions: 1) how well they satisfy the user's information need (correctness), and 2) whether they produce a response based on the provided knowledge (faithfulness). Guided by human evaluation and analysis, we highlight the shortcomings of traditional metrics for both correctness and faithfulness. We then propose simple token-overlap based and model-based metrics that reflect the true performance of these models. Our analysis reveals that instruction-following models are competitive, and sometimes even outperform fine-tuned models for correctness. However, these models struggle to stick to the provided knowledge and often hallucinate in their responses. We hope our work encourages a more holistic evaluation of instruction-following models for QA. Our code and data is available at https://github.com/McGill-NLP/instruct-qa
Telco-DPR: A Hybrid Dataset for Evaluating Retrieval Models of 3GPP Technical Specifications
This paper proposes a Question-Answering (QA) system for the telecom domain using 3rd Generation Partnership Project (3GPP) technical documents. Alongside, a hybrid dataset, Telco-DPR, which consists of a curated 3GPP corpus in a hybrid format, combining text and tables, is presented. Additionally, the dataset includes a set of synthetic question/answer pairs designed to evaluate the retrieval performance of QA systems on this type of data. The retrieval models, including the sparse model, Best Matching 25 (BM25), as well as dense models, such as Dense Passage Retriever (DPR) and Dense Hierarchical Retrieval (DHR), are evaluated and compared using top-K accuracy and Mean Reciprocal Rank (MRR). The results show that DHR, a retriever model utilising hierarchical passage selection through fine-tuning at both the document and passage levels, outperforms traditional methods in retrieving relevant technical information, achieving a Top-10 accuracy of 86.2%. Additionally, the Retriever-Augmented Generation (RAG) technique, used in the proposed QA system, is evaluated to demonstrate the benefits of using the hybrid dataset and the DHR. The proposed QA system, using the developed RAG model and the Generative Pretrained Transformer (GPT)-4, achieves a 14% improvement in answer accuracy, when compared to a previous benchmark on the same dataset.
G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering
Given a graph with textual attributes, we enable users to `chat with their graph': that is, to ask questions about the graph using a conversational interface. In response to a user's questions, our method provides textual replies and highlights the relevant parts of the graph. While existing works integrate large language models (LLMs) and graph neural networks (GNNs) in various ways, they mostly focus on either conventional graph tasks (such as node, edge, and graph classification), or on answering simple graph queries on small or synthetic graphs. In contrast, we develop a flexible question-answering framework targeting real-world textual graphs, applicable to multiple applications including scene graph understanding, common sense reasoning, and knowledge graph reasoning. Toward this goal, we first develop a Graph Question Answering (GraphQA) benchmark with data collected from different tasks. Then, we propose our G-Retriever method, introducing the first retrieval-augmented generation (RAG) approach for general textual graphs, which can be fine-tuned to enhance graph understanding via soft prompting. To resist hallucination and to allow for textual graphs that greatly exceed the LLM's context window size, G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem. Empirical evaluations show that our method outperforms baselines on textual graph tasks from multiple domains, scales well with larger graph sizes, and mitigates hallucination.~Our codes and datasets are available at: \url{https://github.com/XiaoxinHe/G-Retriever}
MemLong: Memory-Augmented Retrieval for Long Text Modeling
Recent advancements in Large Language Models (LLMs) have yielded remarkable success across diverse fields. However, handling long contexts remains a significant challenge for LLMs due to the quadratic time and space complexity of attention mechanisms and the growing memory consumption of the key-value cache during generation. This work introduces MemLong: Memory-Augmented Retrieval for Long Text Generation, a method designed to enhance the capabilities of long-context language modeling by utilizing an external retriever for historical information retrieval. MemLong combines a non-differentiable ``ret-mem'' module with a partially trainable decoder-only language model and introduces a fine-grained, controllable retrieval attention mechanism that leverages semantic-level relevant chunks. Comprehensive evaluations on multiple long-context language modeling benchmarks demonstrate that MemLong consistently outperforms other state-of-the-art LLMs. More importantly, MemLong can extend the context length on a single 3090 GPU from 4k up to 80k. Our code is available at https://github.com/Bui1dMySea/MemLong
Test-Time Scaling Strategies for Generative Retrieval in Multimodal Conversational Recommendations
The rapid evolution of e-commerce has exposed the limitations of traditional product retrieval systems in managing complex, multi-turn user interactions. Recent advances in multimodal generative retrieval -- particularly those leveraging multimodal large language models (MLLMs) as retrievers -- have shown promise. However, most existing methods are tailored to single-turn scenarios and struggle to model the evolving intent and iterative nature of multi-turn dialogues when applied naively. Concurrently, test-time scaling has emerged as a powerful paradigm for improving large language model (LLM) performance through iterative inference-time refinement. Yet, its effectiveness typically relies on two conditions: (1) a well-defined problem space (e.g., mathematical reasoning), and (2) the model's ability to self-correct -- conditions that are rarely met in conversational product search. In this setting, user queries are often ambiguous and evolving, and MLLMs alone have difficulty grounding responses in a fixed product corpus. Motivated by these challenges, we propose a novel framework that introduces test-time scaling into conversational multimodal product retrieval. Our approach builds on a generative retriever, further augmented with a test-time reranking (TTR) mechanism that improves retrieval accuracy and better aligns results with evolving user intent throughout the dialogue. Experiments across multiple benchmarks show consistent improvements, with average gains of 14.5 points in MRR and 10.6 points in nDCG@1.
Knowledge-Driven CoT: Exploring Faithful Reasoning in LLMs for Knowledge-intensive Question Answering
Equipped with Chain-of-Thought (CoT), Large language models (LLMs) have shown impressive reasoning ability in various downstream tasks. Even so, suffering from hallucinations and the inability to access external knowledge, LLMs often come with incorrect or unfaithful intermediate reasoning steps, especially in the context of answering knowledge-intensive tasks such as KBQA. To alleviate this issue, we propose a framework called Knowledge-Driven Chain-of-Thought (KD-CoT) to verify and modify reasoning traces in CoT via interaction with external knowledge, and thus overcome the hallucinations and error propagation. Concretely, we formulate the CoT rationale process of LLMs into a structured multi-round QA format. In each round, LLMs interact with a QA system that retrieves external knowledge and produce faithful reasoning traces based on retrieved precise answers. The structured CoT reasoning of LLMs is facilitated by our developed KBQA CoT collection, which serves as in-context learning demonstrations and can also be utilized as feedback augmentation to train a robust retriever. Extensive experiments on WebQSP and ComplexWebQuestion datasets demonstrate the effectiveness of proposed KD-CoT in task-solving reasoning generation, which outperforms the vanilla CoT ICL with an absolute success rate of 8.0% and 5.1%. Furthermore, our proposed feedback-augmented retriever outperforms the state-of-the-art baselines for retrieving knowledge, achieving significant improvement in Hit performance.
WebGLM: Towards An Efficient Web-Enhanced Question Answering System with Human Preferences
We present WebGLM, a web-enhanced question-answering system based on the General Language Model (GLM). Its goal is to augment a pre-trained large language model (LLM) with web search and retrieval capabilities while being efficient for real-world deployments. To achieve this, we develop WebGLM with strategies for the LLM-augmented retriever, bootstrapped generator, and human preference-aware scorer. Specifically, we identify and address the limitations of WebGPT (OpenAI), through which WebGLM is enabled with accuracy, efficiency, and cost-effectiveness advantages. In addition, we propose systematic criteria for evaluating web-enhanced QA systems. We conduct multi-dimensional human evaluation and quantitative ablation studies, which suggest the outperformance of the proposed WebGLM designs over existing systems. WebGLM with the 10-billion-parameter GLM (10B) is shown to perform better than the similar-sized WebGPT (13B) and even comparably to WebGPT (175B) in human evaluation. The code, demo, and data are at https://github.com/THUDM/WebGLM.
FREESON: Retriever-Free Retrieval-Augmented Reasoning via Corpus-Traversing MCTS
Large Reasoning Models (LRMs) have demonstrated remarkable capabilities in multi-step reasoning and calling search engines at appropriate steps. However, existing retrieval-augmented reasoning approaches rely on separate retrieval models, limiting the LRM's role in retrieval to deciding when to retrieve and how to query. This separation not only increases hardware and operational costs but also leads to errors in the retrieval process due to the representation bottleneck, a phenomenon where the retriever's embedding space is not expressive enough to meet the generator's requirements. To address this, we shift our perspective from sequence-to-sequence matching to locating the answer-containing paths within the corpus, and propose a novel framework called FREESON (Retriever-FREE Retrieval-Augmented ReaSONing). This framework enables LRMs to retrieve relevant knowledge on their own by acting as both a generator and retriever. To achieve this, we introduce a variant of the MCTS algorithm specialized for the retrieval task, which we call CT-MCTS (Corpus-Traversing Monte Carlo Tree Search). In this algorithm, LRMs traverse through the corpus toward answer-containing regions. Our results on five open-domain QA benchmarks, including single-hop and multi-hop questions, show that FREESON achieves an average improvement of 14.4% in EM and F1 over four multi-step reasoning models with a separate retriever, and it also performs comparably to the strongest baseline, surpassing it by 3% on PopQA and 2WikiMultihopQA.
RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs
Large language models (LLMs) typically utilize the top-k contexts from a retriever in retrieval-augmented generation (RAG). In this work, we propose a novel instruction fine-tuning framework RankRAG, which instruction-tunes a single LLM for the dual purpose of context ranking and answer generation in RAG. In particular, the instruction-tuned LLMs work surprisingly well by adding a small fraction of ranking data into the training blend, and outperform existing expert ranking models, including the same LLM exclusively fine-tuned on a large amount of ranking data. For generation, we compare our model with many strong baselines, including GPT-4-0613, GPT-4-turbo-2024-0409, and ChatQA-1.5, an open-sourced model with the state-of-the-art performance on RAG benchmarks. Specifically, our Llama3-RankRAG significantly outperforms Llama3-ChatQA-1.5 and GPT-4 models on nine knowledge-intensive benchmarks. In addition, it also performs comparably to GPT-4 on five RAG benchmarks in the biomedical domain without instruction fine-tuning on biomedical data, demonstrating its superb capability for generalization to new domains.
Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) mitigates issues of the factual errors and hallucinated outputs generated by Large Language Models (LLMs) in open-domain question-answering tasks (OpenQA) via introducing external knowledge. For complex QA, however, existing RAG methods use LLMs to actively predict retrieval timing and directly use the retrieved information for generation, regardless of whether the retrieval timing accurately reflects the actual information needs, or sufficiently considers prior retrieved knowledge, which may result in insufficient information gathering and interaction, yielding low-quality answers. To address these, we propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks, which includes the iterative information collector, adaptive memory reviewer, and task-oriented generator, while following a new Retriever-and-Memory paradigm. Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes and updating them into the existing optimal knowledge structure, enhancing high-quality knowledge interactions. In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration. We conduct extensive experiments on five complex QA datasets, and the results demonstrate the superiority and effectiveness of our method and its components. The code and data are at https://github.com/thunlp/Adaptive-Note.
Training a Utility-based Retriever Through Shared Context Attribution for Retrieval-Augmented Language Models
Retrieval-Augmented Language Models boost task performance, owing to the retriever that provides external knowledge. Although crucial, the retriever primarily focuses on semantics relevance, which may not always be effective for generation. Thus, utility-based retrieval has emerged as a promising topic, prioritizing passages that provides valid benefits for downstream tasks. However, due to insufficient understanding, capturing passage utility accurately remains unexplored. This work proposes SCARLet, a framework for training utility-based retrievers in RALMs, which incorporates two key factors, multi-task generalization and inter-passage interaction. First, SCARLet constructs shared context on which training data for various tasks is synthesized. This mitigates semantic bias from context differences, allowing retrievers to focus on learning task-specific utility for better task generalization. Next, SCARLet uses a perturbation-based attribution method to estimate passage-level utility for shared context, which reflects interactions between passages and provides more accurate feedback. We evaluate our approach on ten datasets across various tasks, both in-domain and out-of-domain, showing that retrievers trained by SCARLet consistently improve the overall performance of RALMs.
KiRAG: Knowledge-Driven Iterative Retriever for Enhancing Retrieval-Augmented Generation
Iterative retrieval-augmented generation (iRAG) models offer an effective approach for multi-hop question answering (QA). However, their retrieval process faces two key challenges: (1) it can be disrupted by irrelevant documents or factually inaccurate chain-of-thoughts; (2) their retrievers are not designed to dynamically adapt to the evolving information needs in multi-step reasoning, making it difficult to identify and retrieve the missing information required at each iterative step. Therefore, we propose KiRAG, which uses a knowledge-driven iterative retriever model to enhance the retrieval process of iRAG. Specifically, KiRAG decomposes documents into knowledge triples and performs iterative retrieval with these triples to enable a factually reliable retrieval process. Moreover, KiRAG integrates reasoning into the retrieval process to dynamically identify and retrieve knowledge that bridges information gaps, effectively adapting to the evolving information needs. Empirical results show that KiRAG significantly outperforms existing iRAG models, with an average improvement of 9.40% in R@3 and 5.14% in F1 on multi-hop QA.
KG-Retriever: Efficient Knowledge Indexing for Retrieval-Augmented Large Language Models
Large language models with retrieval-augmented generation encounter a pivotal challenge in intricate retrieval tasks, e.g., multi-hop question answering, which requires the model to navigate across multiple documents and generate comprehensive responses based on fragmented information. To tackle this challenge, we introduce a novel Knowledge Graph-based RAG framework with a hierarchical knowledge retriever, termed KG-Retriever. The retrieval indexing in KG-Retriever is constructed on a hierarchical index graph that consists of a knowledge graph layer and a collaborative document layer. The associative nature of graph structures is fully utilized to strengthen intra-document and inter-document connectivity, thereby fundamentally alleviating the information fragmentation problem and meanwhile improving the retrieval efficiency in cross-document retrieval of LLMs. With the coarse-grained collaborative information from neighboring documents and concise information from the knowledge graph, KG-Retriever achieves marked improvements on five public QA datasets, showing the effectiveness and efficiency of our proposed RAG framework.
Golden-Retriever: High-Fidelity Agentic Retrieval Augmented Generation for Industrial Knowledge Base
This paper introduces Golden-Retriever, designed to efficiently navigate vast industrial knowledge bases, overcoming challenges in traditional LLM fine-tuning and RAG frameworks with domain-specific jargon and context interpretation. Golden-Retriever incorporates a reflection-based question augmentation step before document retrieval, which involves identifying jargon, clarifying its meaning based on context, and augmenting the question accordingly. Specifically, our method extracts and lists all jargon and abbreviations in the input question, determines the context against a pre-defined list, and queries a jargon dictionary for extended definitions and descriptions. This comprehensive augmentation ensures the RAG framework retrieves the most relevant documents by providing clear context and resolving ambiguities, significantly improving retrieval accuracy. Evaluations using three open-source LLMs on a domain-specific question-answer dataset demonstrate Golden-Retriever's superior performance, providing a robust solution for efficiently integrating and querying industrial knowledge bases.
Retrieval-augmented Large Language Models for Financial Time Series Forecasting
Stock movement prediction, a fundamental task in financial time-series forecasting, requires identifying and retrieving critical influencing factors from vast amounts of time-series data. However, existing text-trained or numeric similarity-based retrieval methods fall short in handling complex financial analysis. To address this, we propose the first retrieval-augmented generation (RAG) framework for financial time-series forecasting, featuring three key innovations: a fine-tuned 1B parameter large language model (StockLLM) as the backbone, a novel candidate selection method leveraging LLM feedback, and a training objective that maximizes similarity between queries and historically significant sequences. This enables our retriever, FinSeer, to uncover meaningful patterns while minimizing noise in complex financial data. We also construct new datasets integrating financial indicators and historical stock prices to train FinSeer and ensure robust evaluation. Experimental results demonstrate that our RAG framework outperforms bare StockLLM and random retrieval, highlighting its effectiveness, while FinSeer surpasses existing retrieval methods, achieving an 8\% higher accuracy on BIGDATA22 and retrieving more impactful sequences. This work underscores the importance of tailored retrieval models in financial forecasting and provides a novel framework for future research.
Multi-task retriever fine-tuning for domain-specific and efficient RAG
Retrieval-Augmented Generation (RAG) has become ubiquitous when deploying Large Language Models (LLMs), as it can address typical limitations such as generating hallucinated or outdated information. However, when building real-world RAG applications, practical issues arise. First, the retrieved information is generally domain-specific. Since it is computationally expensive to fine-tune LLMs, it is more feasible to fine-tune the retriever to improve the quality of the data included in the LLM input. Second, as more applications are deployed in the same real-world system, one cannot afford to deploy separate retrievers. Moreover, these RAG applications normally retrieve different kinds of data. Our solution is to instruction fine-tune a small retriever encoder on a variety of domain-specific tasks to allow us to deploy one encoder that can serve many use cases, thereby achieving low-cost, scalability, and speed. We show how this encoder generalizes to out-of-domain settings as well as to an unseen retrieval task on real-world enterprise use cases.
EfficientRAG: Efficient Retriever for Multi-Hop Question Answering
Retrieval-augmented generation (RAG) methods encounter difficulties when addressing complex questions like multi-hop queries. While iterative retrieval methods improve performance by gathering additional information, current approaches often rely on multiple calls of large language models (LLMs). In this paper, we introduce EfficientRAG, an efficient retriever for multi-hop question answering. EfficientRAG iteratively generates new queries without the need for LLM calls at each iteration and filters out irrelevant information. Experimental results demonstrate that EfficientRAG surpasses existing RAG methods on three open-domain multi-hop question-answering datasets.
LeanDojo: Theorem Proving with Retrieval-Augmented Language Models
Large language models (LLMs) have shown promise in proving formal theorems using proof assistants such as Lean. However, existing methods are difficult to reproduce or build on, due to private code, data, and large compute requirements. This has created substantial barriers to research on machine learning methods for theorem proving. This paper removes these barriers by introducing LeanDojo: an open-source Lean playground consisting of toolkits, data, models, and benchmarks. LeanDojo extracts data from Lean and enables interaction with the proof environment programmatically. It contains fine-grained annotations of premises in proofs, providing valuable data for premise selection: a key bottleneck in theorem proving. Using this data, we develop ReProver (Retrieval-Augmented Prover): the first LLM-based prover that is augmented with retrieval for selecting premises from a vast math library. It is inexpensive and needs only one GPU week of training. Our retriever leverages LeanDojo's program analysis capability to identify accessible premises and hard negative examples, which makes retrieval much more effective. Furthermore, we construct a new benchmark consisting of 96,962 theorems and proofs extracted from Lean's math library. It features challenging data split requiring the prover to generalize to theorems relying on novel premises that are never used in training. We use this benchmark for training and evaluation, and experimental results demonstrate the effectiveness of ReProver over non-retrieval baselines and GPT-4. We thus provide the first set of open-source LLM-based theorem provers without any proprietary datasets and release it under a permissive MIT license to facilitate further research.
Retrieval-augmented reasoning with lean language models
This technical report details a novel approach to combining reasoning and retrieval augmented generation (RAG) within a single, lean language model architecture. While existing RAG systems typically rely on large-scale models and external APIs, our work addresses the increasing demand for performant and privacy-preserving solutions deployable in resource-constrained or secure environments. Building on recent developments in test-time scaling and small-scale reasoning models, we develop a retrieval augmented conversational agent capable of interpreting complex, domain-specific queries using a lightweight backbone model. Our system integrates a dense retriever with fine-tuned Qwen2.5-Instruct models, using synthetic query generation and reasoning traces derived from frontier models (e.g., DeepSeek-R1) over a curated corpus, in this case, the NHS A-to-Z condition pages. We explore the impact of summarisation-based document compression, synthetic data design, and reasoning-aware fine-tuning on model performance. Evaluation against both non-reasoning and general-purpose lean models demonstrates that our domain-specific fine-tuning approach yields substantial gains in answer accuracy and consistency, approaching frontier-level performance while remaining feasible for local deployment. All implementation details and code are publicly released to support reproducibility and adaptation across domains.
Retrieval Augmented Generation for Domain-specific Question Answering
Question answering (QA) has become an important application in the advanced development of large language models. General pre-trained large language models for question-answering are not trained to properly understand the knowledge or terminology for a specific domain, such as finance, healthcare, education, and customer service for a product. To better cater to domain-specific understanding, we build an in-house question-answering system for Adobe products. We propose a novel framework to compile a large question-answer database and develop the approach for retrieval-aware finetuning of a Large Language model. We showcase that fine-tuning the retriever leads to major improvements in the final generation. Our overall approach reduces hallucinations during generation while keeping in context the latest retrieval information for contextual grounding.
Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains, but their reliability is hindered by the outdated knowledge and hallucinations. Retrieval-Augmented Generation mitigates these issues by grounding LLMs with external knowledge; however, most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning. Knowledge graphs, which represent facts as relational triples, offer a more structured and compact alternative. Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering (KGQA), with a significant proportion adopting the retrieve-then-reasoning paradigm. In this framework, graph-based retrievers have demonstrated strong empirical performance, yet they still face challenges in generalization ability. In this work, we propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA. RAPL addresses these limitations through three aspects: (1) a two-stage labeling strategy that combines heuristic signals with parametric models to provide causally grounded supervision; (2) a model-agnostic graph transformation approach to capture both intra- and inter-triple interactions, thereby enhancing representational capacity; and (3) a path-based reasoning strategy that facilitates learning from the injected rational knowledge, and supports downstream reasoner through structured inputs. Empirically, RAPL outperforms state-of-the-art methods by 2.66%-20.34%, and significantly reduces the performance gap between smaller and more powerful LLM-based reasoners, as well as the gap under cross-dataset settings, highlighting its superior retrieval capability and generalizability. Codes are available at: https://github.com/tianyao-aka/RAPL.
The Chronicles of RAG: The Retriever, the Chunk and the Generator
Retrieval Augmented Generation (RAG) has become one of the most popular paradigms for enabling LLMs to access external data, and also as a mechanism for grounding to mitigate against hallucinations. When implementing RAG you can face several challenges like effective integration of retrieval models, efficient representation learning, data diversity, computational efficiency optimization, evaluation, and quality of text generation. Given all these challenges, every day a new technique to improve RAG appears, making it unfeasible to experiment with all combinations for your problem. In this context, this paper presents good practices to implement, optimize, and evaluate RAG for the Brazilian Portuguese language, focusing on the establishment of a simple pipeline for inference and experiments. We explored a diverse set of methods to answer questions about the first Harry Potter book. To generate the answers we used the OpenAI's gpt-4, gpt-4-1106-preview, gpt-3.5-turbo-1106, and Google's Gemini Pro. Focusing on the quality of the retriever, our approach achieved an improvement of MRR@10 by 35.4% compared to the baseline. When optimizing the input size in the application, we observed that it is possible to further enhance it by 2.4%. Finally, we present the complete architecture of the RAG with our recommendations. As result, we moved from a baseline of 57.88% to a maximum relative score of 98.61%.
REALM: Retrieval-Augmented Language Model Pre-Training
Language model pre-training has been shown to capture a surprising amount of world knowledge, crucial for NLP tasks such as question answering. However, this knowledge is stored implicitly in the parameters of a neural network, requiring ever-larger networks to cover more facts. To capture knowledge in a more modular and interpretable way, we augment language model pre-training with a latent knowledge retriever, which allows the model to retrieve and attend over documents from a large corpus such as Wikipedia, used during pre-training, fine-tuning and inference. For the first time, we show how to pre-train such a knowledge retriever in an unsupervised manner, using masked language modeling as the learning signal and backpropagating through a retrieval step that considers millions of documents. We demonstrate the effectiveness of Retrieval-Augmented Language Model pre-training (REALM) by fine-tuning on the challenging task of Open-domain Question Answering (Open-QA). We compare against state-of-the-art models for both explicit and implicit knowledge storage on three popular Open-QA benchmarks, and find that we outperform all previous methods by a significant margin (4-16% absolute accuracy), while also providing qualitative benefits such as interpretability and modularity.
LongRAG: Enhancing Retrieval-Augmented Generation with Long-context LLMs
In traditional RAG framework, the basic retrieval units are normally short. The common retrievers like DPR normally work with 100-word Wikipedia paragraphs. Such a design forces the retriever to search over a large corpus to find the `needle' unit. In contrast, the readers only need to extract answers from the short retrieved units. Such an imbalanced `heavy' retriever and `light' reader design can lead to sub-optimal performance. In order to alleviate the imbalance, we propose a new framework LongRAG, consisting of a `long retriever' and a `long reader'. LongRAG processes the entire Wikipedia into 4K-token units, which is 30x longer than before. By increasing the unit size, we significantly reduce the total units from 22M to 700K. This significantly lowers the burden of retriever, which leads to a remarkable retrieval score: answer recall@1=71% on NQ (previously 52%) and answer recall@2=72% (previously 47%) on HotpotQA (full-wiki). Then we feed the top-k retrieved units (approx 30K tokens) to an existing long-context LLM to perform zero-shot answer extraction. Without requiring any training, LongRAG achieves an EM of 62.7% on NQ, which is the best known result. LongRAG also achieves 64.3% on HotpotQA (full-wiki), which is on par of the SoTA model. Our study offers insights into the future roadmap for combining RAG with long-context LLMs.
GeAR: Generation Augmented Retrieval
Document retrieval techniques form the foundation for the development of large-scale information systems. The prevailing methodology is to construct a bi-encoder and compute the semantic similarity. However, such scalar similarity is difficult to reflect enough information and impedes our comprehension of the retrieval results. In addition, this computational process mainly emphasizes the global semantics and ignores the fine-grained semantic relationship between the query and the complex text in the document. In this paper, we propose a new method called Generation Augmented Retrieval (GeAR) that incorporates well-designed fusion and decoding modules. This enables GeAR to generate the relevant text from documents based on the fused representation of the query and the document, thus learning to "focus on" the fine-grained information. Also when used as a retriever, GeAR does not add any computational burden over bi-encoders. To support the training of the new framework, we have introduced a pipeline to efficiently synthesize high-quality data by utilizing large language models. GeAR exhibits competitive retrieval and localization performance across diverse scenarios and datasets. Moreover, the qualitative analysis and the results generated by GeAR provide novel insights into the interpretation of retrieval results. The code, data, and models will be released after completing technical review to facilitate future research.
Benchmarking Retrieval-Augmented Generation for Chemistry
Retrieval-augmented generation (RAG) has emerged as a powerful framework for enhancing large language models (LLMs) with external knowledge, particularly in scientific domains that demand specialized and dynamic information. Despite its promise, the application of RAG in the chemistry domain remains underexplored, primarily due to the lack of high-quality, domain-specific corpora and well-curated evaluation benchmarks. In this work, we introduce ChemRAG-Bench, a comprehensive benchmark designed to systematically assess the effectiveness of RAG across a diverse set of chemistry-related tasks. The accompanying chemistry corpus integrates heterogeneous knowledge sources, including scientific literature, the PubChem database, PubMed abstracts, textbooks, and Wikipedia entries. In addition, we present ChemRAG-Toolkit, a modular and extensible RAG toolkit that supports five retrieval algorithms and eight LLMs. Using ChemRAG-Toolkit, we demonstrate that RAG yields a substantial performance gain -- achieving an average relative improvement of 17.4% over direct inference methods. We further conduct in-depth analyses on retriever architectures, corpus selection, and the number of retrieved passages, culminating in practical recommendations to guide future research and deployment of RAG systems in the chemistry domain. The code and data is available at https://chemrag.github.io.
Retrieval-Augmented Multimodal Language Modeling
Recent multimodal models such as DALL-E and CM3 have achieved remarkable progress in text-to-image and image-to-text generation. However, these models store all learned knowledge (e.g., the appearance of the Eiffel Tower) in the model parameters, requiring increasingly larger models and training data to capture more knowledge. To integrate knowledge in a more scalable and modular way, we propose a retrieval-augmented multimodal model, which enables a base multimodal model (generator) to refer to relevant text and images fetched by a retriever from external memory (e.g., documents on the web). Specifically, for the retriever, we use a pretrained CLIP, and for the generator, we train a CM3 Transformer on the LAION dataset. Our resulting model, named Retrieval-Augmented CM3 (RA-CM3), is the first multimodal model that can retrieve and generate both text and images. We show that RA-CM3 significantly outperforms baseline multimodal models such as DALL-E and CM3 on both image and caption generation tasks (12 FID and 17 CIDEr improvements on MS-COCO), while requiring much less compute for training (<30% of DALL-E). Moreover, we show that RA-CM3 exhibits novel capabilities, such as faithful image generation and multimodal in-context learning (e.g., image generation from demonstrations).
Retrieval-Augmented Dynamic Prompt Tuning for Incomplete Multimodal Learning
Multimodal learning with incomplete modality is practical and challenging. Recently, researchers have focused on enhancing the robustness of pre-trained MultiModal Transformers (MMTs) under missing modality conditions by applying learnable prompts. However, these prompt-based methods face several limitations: (1) incomplete modalities provide restricted modal cues for task-specific inference, (2) dummy imputation for missing content causes information loss and introduces noise, and (3) static prompts are instance-agnostic, offering limited knowledge for instances with various missing conditions. To address these issues, we propose RAGPT, a novel Retrieval-AuGmented dynamic Prompt Tuning framework. RAGPT comprises three modules: (I) the multi-channel retriever, which identifies similar instances through a within-modality retrieval strategy, (II) the missing modality generator, which recovers missing information using retrieved contexts, and (III) the context-aware prompter, which captures contextual knowledge from relevant instances and generates dynamic prompts to largely enhance the MMT's robustness. Extensive experiments conducted on three real-world datasets show that RAGPT consistently outperforms all competitive baselines in handling incomplete modality problems. The code of our work and prompt-based baselines is available at https://github.com/Jian-Lang/RAGPT.
TimeRAF: Retrieval-Augmented Foundation model for Zero-shot Time Series Forecasting
Time series forecasting plays a crucial role in data mining, driving rapid advancements across numerous industries. With the emergence of large models, time series foundation models (TSFMs) have exhibited remarkable generalization capabilities, such as zero-shot learning, through large-scale pre-training. Meanwhile, Retrieval-Augmented Generation (RAG) methods have been widely employed to enhance the performance of foundation models on unseen data, allowing models to access to external knowledge. In this paper, we introduce TimeRAF, a Retrieval-Augmented Forecasting model that enhance zero-shot time series forecasting through retrieval-augmented techniques. We develop customized time series knowledge bases that are tailored to the specific forecasting tasks. TimeRAF employs an end-to-end learnable retriever to extract valuable information from the knowledge base. Additionally, we propose Channel Prompting for knowledge integration, which effectively extracts relevant information from the retrieved knowledge along the channel dimension. Extensive experiments demonstrate the effectiveness of our model, showing significant improvement across various domains and datasets.
Retrieval-Augmented Generation for Large Language Models: A Survey
Large language models (LLMs) demonstrate powerful capabilities, but they still face challenges in practical applications, such as hallucinations, slow knowledge updates, and lack of transparency in answers. Retrieval-Augmented Generation (RAG) refers to the retrieval of relevant information from external knowledge bases before answering questions with LLMs. RAG has been demonstrated to significantly enhance answer accuracy, reduce model hallucination, particularly for knowledge-intensive tasks. By citing sources, users can verify the accuracy of answers and increase trust in model outputs. It also facilitates knowledge updates and the introduction of domain-specific knowledge. RAG effectively combines the parameterized knowledge of LLMs with non-parameterized external knowledge bases, making it one of the most important methods for implementing large language models. This paper outlines the development paradigms of RAG in the era of LLMs, summarizing three paradigms: Naive RAG, Advanced RAG, and Modular RAG. It then provides a summary and organization of the three main components of RAG: retriever, generator, and augmentation methods, along with key technologies in each component. Furthermore, it discusses how to evaluate the effectiveness of RAG models, introducing two evaluation methods for RAG, emphasizing key metrics and abilities for evaluation, and presenting the latest automatic evaluation framework. Finally, potential future research directions are introduced from three aspects: vertical optimization, horizontal scalability, and the technical stack and ecosystem of RAG.
Retrieval-Augmented Generation with Graphs (GraphRAG)
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information, such as knowledge, skills, and tools from external sources. Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information, making it a golden resource for RAG in tremendous real-world applications. As a result, we have recently witnessed increasing attention on equipping RAG with Graph, i.e., GraphRAG. However, unlike conventional RAG, where the retriever, generator, and external data sources can be uniformly designed in the neural-embedding space, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains. Given the broad applicability, the associated design challenges, and the recent surge in GraphRAG, a systematic and up-to-date survey of its key concepts and techniques is urgently desired. Following this motivation, we present a comprehensive and up-to-date survey on GraphRAG. Our survey first proposes a holistic GraphRAG framework by defining its key components, including query processor, retriever, organizer, generator, and data source. Furthermore, recognizing that graphs in different domains exhibit distinct relational patterns and require dedicated designs, we review GraphRAG techniques uniquely tailored to each domain. Finally, we discuss research challenges and brainstorm directions to inspire cross-disciplinary opportunities. Our survey repository is publicly maintained at https://github.com/Graph-RAG/GraphRAG/.
RRAML: Reinforced Retrieval Augmented Machine Learning
The emergence of large language models (LLMs) has revolutionized machine learning and related fields, showcasing remarkable abilities in comprehending, generating, and manipulating human language. However, their conventional usage through API-based text prompt submissions imposes certain limitations in terms of context constraints and external source availability. To address these challenges, we propose a novel framework called Reinforced Retrieval Augmented Machine Learning (RRAML). RRAML integrates the reasoning capabilities of LLMs with supporting information retrieved by a purpose-built retriever from a vast user-provided database. By leveraging recent advancements in reinforcement learning, our method effectively addresses several critical challenges. Firstly, it circumvents the need for accessing LLM gradients. Secondly, our method alleviates the burden of retraining LLMs for specific tasks, as it is often impractical or impossible due to restricted access to the model and the computational intensity involved. Additionally we seamlessly link the retriever's task with the reasoner, mitigating hallucinations and reducing irrelevant, and potentially damaging retrieved documents. We believe that the research agenda outlined in this paper has the potential to profoundly impact the field of AI, democratizing access to and utilization of LLMs for a wide range of entities.
VimoRAG: Video-based Retrieval-augmented 3D Motion Generation for Motion Language Models
This paper introduces VimoRAG, a novel video-based retrieval-augmented motion generation framework for motion large language models (LLMs). As motion LLMs face severe out-of-domain/out-of-vocabulary issues due to limited annotated data, VimoRAG leverages large-scale in-the-wild video databases to enhance 3D motion generation by retrieving relevant 2D human motion signals. While video-based motion RAG is nontrivial, we address two key bottlenecks: (1) developing an effective motion-centered video retrieval model that distinguishes human poses and actions, and (2) mitigating the issue of error propagation caused by suboptimal retrieval results. We design the Gemini Motion Video Retriever mechanism and the Motion-centric Dual-alignment DPO Trainer, enabling effective retrieval and generation processes. Experimental results show that VimoRAG significantly boosts the performance of motion LLMs constrained to text-only input.
REPLUG: Retrieval-Augmented Black-Box Language Models
We introduce REPLUG, a retrieval-augmented language modeling framework that treats the language model (LM) as a black box and augments it with a tuneable retrieval model. Unlike prior retrieval-augmented LMs that train language models with special cross attention mechanisms to encode the retrieved text, REPLUG simply prepends retrieved documents to the input for the frozen black-box LM. This simple design can be easily applied to any existing retrieval and language models. Furthermore, we show that the LM can be used to supervise the retrieval model, which can then find documents that help the LM make better predictions. Our experiments demonstrate that REPLUG with the tuned retriever significantly improves the performance of GPT-3 (175B) on language modeling by 6.3%, as well as the performance of Codex on five-shot MMLU by 5.1%.
VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents
Retrieval-augmented generation (RAG) is an effective technique that enables large language models (LLMs) to utilize external knowledge sources for generation. However, current RAG systems are solely based on text, rendering it impossible to utilize vision information like layout and images that play crucial roles in real-world multi-modality documents. In this paper, we introduce VisRAG, which tackles this issue by establishing a vision-language model (VLM)-based RAG pipeline. In this pipeline, instead of first parsing the document to obtain text, the document is directly embedded using a VLM as an image and then retrieved to enhance the generation of a VLM. Compared to traditional text-based RAG, VisRAG maximizes the retention and utilization of the data information in the original documents, eliminating the information loss introduced during the parsing process. We collect both open-source and synthetic data to train the retriever in VisRAG and explore a variety of generation methods. Experiments demonstrate that VisRAG outperforms traditional RAG in both the retrieval and generation stages, achieving a 25--39\% end-to-end performance gain over traditional text-based RAG pipeline. Further analysis reveals that VisRAG is effective in utilizing training data and demonstrates strong generalization capability, positioning it as a promising solution for RAG on multi-modality documents. Our code and data are available at https://github.com/openbmb/visrag .
MARC: Memory-Augmented RL Token Compression for Efficient Video Understanding
The rapid progress of large language models (LLMs) has laid the foundation for multimodal models. However, visual language models (VLMs) still face heavy computational costs when extended from images to videos due to high frame rates and long durations. Token compression is a promising solution, yet most existing training-free methods cause information loss and performance degradation. To overcome this, we propose Memory-Augmented Reinforcement Learning-based Token Compression (MARC), which integrates structured retrieval and RL-based distillation. MARC adopts a retrieve-then-compress strategy using a Visual Memory Retriever (VMR) to select key clips and a Compression Group Relative Policy Optimization (C-GRPO) framework to distil reasoning ability from a teacher to a student model. Experiments on six video benchmarks show that MARC achieves near-baseline accuracy using only one frame's tokens -- reducing visual tokens by 95\%, GPU memory by 72\%, and latency by 23.9\%. This demonstrates its potential for efficient, real-time video understanding in resource-constrained settings such as video QA, surveillance, and autonomous driving.
RealRAG: Retrieval-augmented Realistic Image Generation via Self-reflective Contrastive Learning
Recent text-to-image generative models, e.g., Stable Diffusion V3 and Flux, have achieved notable progress. However, these models are strongly restricted to their limited knowledge, a.k.a., their own fixed parameters, that are trained with closed datasets. This leads to significant hallucinations or distortions when facing fine-grained and unseen novel real-world objects, e.g., the appearance of the Tesla Cybertruck. To this end, we present the first real-object-based retrieval-augmented generation framework (RealRAG), which augments fine-grained and unseen novel object generation by learning and retrieving real-world images to overcome the knowledge gaps of generative models. Specifically, to integrate missing memory for unseen novel object generation, we train a reflective retriever by self-reflective contrastive learning, which injects the generator's knowledge into the sef-reflective negatives, ensuring that the retrieved augmented images compensate for the model's missing knowledge. Furthermore, the real-object-based framework integrates fine-grained visual knowledge for the generative models, tackling the distortion problem and improving the realism for fine-grained object generation. Our Real-RAG is superior in its modular application to all types of state-of-the-art text-to-image generative models and also delivers remarkable performance boosts with all of them, such as a gain of 16.18% FID score with the auto-regressive model on the Stanford Car benchmark.
Improving Consistency in Retrieval-Augmented Systems with Group Similarity Rewards
RAG systems are increasingly deployed in high-stakes domains where users expect outputs to be consistent across semantically equivalent queries. However, existing systems often exhibit significant inconsistencies due to variability in both the retriever and generator (LLM), undermining trust and reliability. In this work, we focus on information consistency, i.e., the requirement that outputs convey the same core content across semantically equivalent inputs. We introduce a principled evaluation framework that decomposes RAG consistency into retriever-level, generator-level, and end-to-end components, helping identify inconsistency sources. To improve consistency, we propose Paraphrased Set Group Relative Policy Optimization (PS-GRPO), an RL approach that leverages multiple rollouts across paraphrased set to assign group similarity rewards. We leverage PS-GRPO to achieve Information Consistent RAG (Con-RAG), training the generator to produce consistent outputs across paraphrased queries and remain robust to retrieval-induced variability. Because exact reward computation over paraphrase sets is computationally expensive, we also introduce a scalable approximation method that retains effectiveness while enabling efficient, large-scale training. Empirical evaluations across short-form, multi-hop, and long-form QA benchmarks demonstrate that Con-RAG significantly improves both consistency and accuracy over strong baselines, even in the absence of explicit ground-truth supervision. Our work provides practical solutions for evaluating and building reliable RAG systems for safety-critical deployments.
MIRAGE: A Metric-Intensive Benchmark for Retrieval-Augmented Generation Evaluation
Retrieval-Augmented Generation (RAG) has gained prominence as an effective method for enhancing the generative capabilities of Large Language Models (LLMs) through the incorporation of external knowledge. However, the evaluation of RAG systems remains a challenge, due to the intricate interplay between retrieval and generation components. This limitation has resulted in a scarcity of benchmarks that facilitate a detailed, component-specific assessment. In this work, we present MIRAGE, a Question Answering dataset specifically designed for RAG evaluation. MIRAGE consists of 7,560 curated instances mapped to a retrieval pool of 37,800 entries, enabling an efficient and precise evaluation of both retrieval and generation tasks. We also introduce novel evaluation metrics aimed at measuring RAG adaptability, encompassing dimensions such as noise vulnerability, context acceptability, context insensitivity, and context misinterpretation. Through comprehensive experiments across various retriever-LLM configurations, we provide new insights into the optimal alignment of model pairs and the nuanced dynamics within RAG systems. The dataset and evaluation code are publicly available, allowing for seamless integration and customization in diverse research settings\footnote{The MIRAGE code and data are available at https://github.com/nlpai-lab/MIRAGE.
Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language Models
Iterative retrieval refers to the process in which the model continuously queries the retriever during generation to enhance the relevance of the retrieved knowledge, thereby improving the performance of Retrieval-Augmented Generation (RAG). Existing work typically employs few-shot prompting or manually constructed rules to implement iterative retrieval. This introduces additional inference overhead and overlooks the remarkable reasoning capabilities of Large Language Models (LLMs). In this paper, we introduce Auto-RAG, an autonomous iterative retrieval model centered on the LLM's powerful decision-making capabilities. Auto-RAG engages in multi-turn dialogues with the retriever, systematically planning retrievals and refining queries to acquire valuable knowledge. This process continues until sufficient external information is gathered, at which point the results are presented to the user. To this end, we develop a method for autonomously synthesizing reasoning-based decision-making instructions in iterative retrieval and fine-tuned the latest open-source LLMs. The experimental results indicate that Auto-RAG is capable of autonomous iterative interaction with the retriever, effectively leveraging the remarkable reasoning and decision-making abilities of LLMs, which lead to outstanding performance across six benchmarks. Further analysis reveals that Auto-RAG can autonomously adjust the number of iterations based on the difficulty of the questions and the utility of the retrieved knowledge, without requiring any human intervention. Moreover, Auto-RAG expresses the iterative retrieval process in natural language, enhancing interpretability while providing users with a more intuitive experienceCode is available at \url{https://github.com/ictnlp/Auto-RAG.
RAGBench: Explainable Benchmark for Retrieval-Augmented Generation Systems
Retrieval-Augmented Generation (RAG) has become a standard architectural pattern for incorporating domain-specific knowledge into user-facing chat applications powered by Large Language Models (LLMs). RAG systems are characterized by (1) a document retriever that queries a domain-specific corpus for context information relevant to an input query, and (2) an LLM that generates a response based on the provided query and context. However, comprehensive evaluation of RAG systems remains a challenge due to the lack of unified evaluation criteria and annotated datasets. In response, we introduce RAGBench: the first comprehensive, large-scale RAG benchmark dataset of 100k examples. It covers five unique industry-specific domains and various RAG task types. RAGBench examples are sourced from industry corpora such as user manuals, making it particularly relevant for industry applications. Further, we formalize the TRACe evaluation framework: a set of explainable and actionable RAG evaluation metrics applicable across all RAG domains. We release the labeled dataset at https://huggingface.co/datasets/rungalileo/ragbench. RAGBench explainable labels facilitate holistic evaluation of RAG systems, enabling actionable feedback for continuous improvement of production applications. Thorough extensive benchmarking, we find that LLM-based RAG evaluation methods struggle to compete with a finetuned RoBERTa model on the RAG evaluation task. We identify areas where existing approaches fall short and propose the adoption of RAGBench with TRACe towards advancing the state of RAG evaluation systems.
IM-RAG: Multi-Round Retrieval-Augmented Generation Through Learning Inner Monologues
Although the Retrieval-Augmented Generation (RAG) paradigms can use external knowledge to enhance and ground the outputs of Large Language Models (LLMs) to mitigate generative hallucinations and static knowledge base problems, they still suffer from limited flexibility in adopting Information Retrieval (IR) systems with varying capabilities, constrained interpretability during the multi-round retrieval process, and a lack of end-to-end optimization. To address these challenges, we propose a novel LLM-centric approach, IM-RAG, that integrates IR systems with LLMs to support multi-round RAG through learning Inner Monologues (IM, i.e., the human inner voice that narrates one's thoughts). During the IM process, the LLM serves as the core reasoning model (i.e., Reasoner) to either propose queries to collect more information via the Retriever or to provide a final answer based on the conversational context. We also introduce a Refiner that improves the outputs from the Retriever, effectively bridging the gap between the Reasoner and IR modules with varying capabilities and fostering multi-round communications. The entire IM process is optimized via Reinforcement Learning (RL) where a Progress Tracker is incorporated to provide mid-step rewards, and the answer prediction is further separately optimized via Supervised Fine-Tuning (SFT). We conduct extensive experiments with the HotPotQA dataset, a popular benchmark for retrieval-based, multi-step question-answering. The results show that our approach achieves state-of-the-art (SOTA) performance while providing high flexibility in integrating IR modules as well as strong interpretability exhibited in the learned inner monologues.
RAP-Gen: Retrieval-Augmented Patch Generation with CodeT5 for Automatic Program Repair
Automatic program repair (APR) is crucial to reduce manual debugging efforts for developers and improve software reliability. While conventional search-based techniques typically rely on heuristic rules or a redundancy assumption to mine fix patterns, recent years have witnessed the surge of deep learning (DL) based approaches to automate the program repair process in a data-driven manner. However, their performance is often limited by a fixed set of parameters to model the highly complex search space of APR. To ease such burden on the parametric models, in this work, we propose a novel Retrieval-Augmented Patch Generation framework (RAP-Gen) by explicitly leveraging relevant fix patterns retrieved from a codebase of previous bug-fix pairs. Specifically, we build a hybrid patch retriever to account for both lexical and semantic matching based on the raw source code in a language-agnostic manner, which does not rely on any code-specific features. In addition, we adapt a code-aware language model CodeT5 as our foundation model to facilitate both patch retrieval and generation tasks in a unified manner. We adopt a stage-wise approach where the patch retriever first retrieves a relevant external bug-fix pair to augment the buggy input for the CodeT5 patch generator, which synthesizes a ranked list of repair patch candidates. Notably, RAP-Gen is a generic APR framework that can flexibly integrate different patch retrievers and generators to repair various types of bugs. We thoroughly evaluate RAP-Gen on three benchmarks in two programming languages, including the TFix benchmark in JavaScript, and Code Refinement and Defects4J benchmarks in Java, where the bug localization information may or may not be provided. Experimental results show that RAP-Gen significantly outperforms previous state-of-the-art approaches on all benchmarks, e.g., repairing 15 more bugs on 818 Defects4J bugs.
Query Rewriting for Retrieval-Augmented Large Language Models
Large Language Models (LLMs) play powerful, black-box readers in the retrieve-then-read pipeline, making remarkable progress in knowledge-intensive tasks. This work introduces a new framework, Rewrite-Retrieve-Read instead of the previous retrieve-then-read for the retrieval-augmented LLMs from the perspective of the query rewriting. Unlike prior studies focusing on adapting either the retriever or the reader, our approach pays attention to the adaptation of the search query itself, for there is inevitably a gap between the input text and the needed knowledge in retrieval. We first prompt an LLM to generate the query, then use a web search engine to retrieve contexts. Furthermore, to better align the query to the frozen modules, we propose a trainable scheme for our pipeline. A small language model is adopted as a trainable rewriter to cater to the black-box LLM reader. The rewriter is trained using the feedback of the LLM reader by reinforcement learning. Evaluation is conducted on downstream tasks, open-domain QA and multiple-choice QA. Experiments results show consistent performance improvement, indicating that our framework is proven effective and scalable, and brings a new framework for retrieval-augmented LLM.
OpenScholar: Synthesizing Scientific Literature with Retrieval-augmented LMs
Scientific progress depends on researchers' ability to synthesize the growing body of literature. Can large language models (LMs) assist scientists in this task? We introduce OpenScholar, a specialized retrieval-augmented LM that answers scientific queries by identifying relevant passages from 45 million open-access papers and synthesizing citation-backed responses. To evaluate OpenScholar, we develop ScholarQABench, the first large-scale multi-domain benchmark for literature search, comprising 2,967 expert-written queries and 208 long-form answers across computer science, physics, neuroscience, and biomedicine. On ScholarQABench, OpenScholar-8B outperforms GPT-4o by 5% and PaperQA2 by 7% in correctness, despite being a smaller, open model. While GPT4o hallucinates citations 78 to 90% of the time, OpenScholar achieves citation accuracy on par with human experts. OpenScholar's datastore, retriever, and self-feedback inference loop also improves off-the-shelf LMs: for instance, OpenScholar-GPT4o improves GPT-4o's correctness by 12%. In human evaluations, experts preferred OpenScholar-8B and OpenScholar-GPT4o responses over expert-written ones 51% and 70% of the time, respectively, compared to GPT4o's 32%. We open-source all of our code, models, datastore, data and a public demo.
Understand What LLM Needs: Dual Preference Alignment for Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) has demonstrated effectiveness in mitigating the hallucination problem of large language models (LLMs). However, the difficulty of aligning the retriever with the diverse LLMs' knowledge preferences inevitably poses an inevitable challenge in developing a reliable RAG system. To address this issue, we propose DPA-RAG, a universal framework designed to align diverse knowledge preferences within RAG systems. Specifically, we initially introduce a preference knowledge construction pipline and incorporate five novel query augmentation strategies to alleviate preference data scarcity. Based on preference data, DPA-RAG accomplishes both external and internal preference alignment: 1) It jointly integrate pair-wise, point-wise, and contrastive preference alignment abilities into the reranker, achieving external preference alignment among RAG components. 2) It further introduces a pre-aligned stage before vanilla Supervised Fine-tuning (SFT), enabling LLMs to implicitly capture knowledge aligned with their reasoning preferences, achieving LLMs' internal alignment. Experimental results across four knowledge-intensive QA datasets demonstrate that DPA-RAG outperforms all baselines and seamlessly integrates both black-box and open-sourced LLM readers. Further qualitative analysis and discussions also provide empirical guidance for achieving reliable RAG systems. Our code is publicly available at https://github.com/dongguanting/DPA-RAG.
NV-Retriever: Improving text embedding models with effective hard-negative mining
Text embedding models have been popular for information retrieval applications such as semantic search and Question-Answering systems based on Retrieval-Augmented Generation (RAG). Those models are typically Transformer models that are fine-tuned with contrastive learning objectives. Many papers introduced new embedding model architectures and training approaches, however, one of the key ingredients, the process of mining negative passages, remains poorly explored or described. One of the challenging aspects of fine-tuning embedding models is the selection of high quality hard-negative passages for contrastive learning. In this paper we propose a family of positive-aware mining methods that leverage the positive relevance score for more effective false negatives removal. We also provide a comprehensive ablation study on hard-negative mining methods over their configurations, exploring different teacher and base models. We demonstrate the efficacy of our proposed methods by introducing the NV-Retriever-v1 model, which scores 60.9 on MTEB Retrieval (BEIR) benchmark and 0.65 points higher than previous methods. The model placed 1st when it was published to MTEB Retrieval on July 07, 2024.
PoisonArena: Uncovering Competing Poisoning Attacks in Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) systems, widely used to improve the factual grounding of large language models (LLMs), are increasingly vulnerable to poisoning attacks, where adversaries inject manipulated content into the retriever's corpus. While prior research has predominantly focused on single-attacker settings, real-world scenarios often involve multiple, competing attackers with conflicting objectives. In this work, we introduce PoisonArena, the first benchmark to systematically study and evaluate competing poisoning attacks in RAG. We formalize the multi-attacker threat model, where attackers vie to control the answer to the same query using mutually exclusive misinformation. PoisonArena leverages the Bradley-Terry model to quantify each method's competitive effectiveness in such adversarial environments. Through extensive experiments on the Natural Questions and MS MARCO datasets, we demonstrate that many attack strategies successful in isolation fail under competitive pressure. Our findings highlight the limitations of conventional evaluation metrics like Attack Success Rate (ASR) and F1 score and underscore the need for competitive evaluation to assess real-world attack robustness. PoisonArena provides a standardized framework to benchmark and develop future attack and defense strategies under more realistic, multi-adversary conditions.
Retrieval-Augmented Generation for Reliable Interpretation of Radio Regulations
We study question answering in the domain of radio regulations, a legally sensitive and high-stakes area. We propose a telecom-specific Retrieval-Augmented Generation (RAG) pipeline and introduce, to our knowledge, the first multiple-choice evaluation set for this domain, constructed from authoritative sources using automated filtering and human validation. To assess retrieval quality, we define a domain-specific retrieval metric, under which our retriever achieves approximately 97% accuracy. Beyond retrieval, our approach consistently improves generation accuracy across all tested models. In particular, while naively inserting documents without structured retrieval yields only marginal gains for GPT-4o (less than 1%), applying our pipeline results in nearly a 12% relative improvement. These findings demonstrate that carefully targeted grounding provides a simple yet strong baseline and an effective domain-specific solution for regulatory question answering. All code and evaluation scripts, along with our derived question-answer dataset, are available at https://github.com/Zakaria010/Radio-RAG.
Improving End-to-End Training of Retrieval-Augmented Generation Models via Joint Stochastic Approximation
Retrieval-augmented generation (RAG) has become a widely recognized paradigm to combine parametric memory with non-parametric memories. An RAG model consists of two serial connecting components (retriever and generator). A major challenge in end-to-end optimization of the RAG model is that marginalization over relevant passages (modeled as discrete latent variables) from a knowledge base is required. Traditional top-K marginalization and variational RAG (VRAG) suffer from biased or high-variance gradient estimates. In this paper, we propose and develop joint stochastic approximation (JSA) based end-to-end training of RAG, which is referred to as JSA-RAG. The JSA algorithm is a stochastic extension of the EM (expectation-maximization) algorithm and is particularly powerful in estimating discrete latent variable models. Extensive experiments are conducted on five datasets for two tasks (open-domain question answering, knowledge-grounded dialogs) and show that JSA-RAG significantly outperforms both vanilla RAG and VRAG. Further analysis shows the efficacy of JSA-RAG from the perspectives of generation, retrieval, and low-variance gradient estimate.
Inference Scaling for Bridging Retrieval and Augmented Generation
Retrieval-augmented generation (RAG) has emerged as a popular approach to steering the output of a large language model (LLM) by incorporating retrieved contexts as inputs. However, existing work observed the generator bias, such that improving the retrieval results may negatively affect the outcome. In this work, we show such bias can be mitigated, from inference scaling, aggregating inference calls from the permuted order of retrieved contexts. The proposed Mixture-of-Intervention (MOI) explicitly models the debiased utility of each passage with multiple forward passes to construct a new ranking. We also show that MOI can leverage the retriever's prior knowledge to reduce the computational cost by minimizing the number of permutations considered and lowering the cost per LLM call. We showcase the effectiveness of MOI on diverse RAG tasks, improving ROUGE-L on MS MARCO and EM on HotpotQA benchmarks by ~7 points.
ReACC: A Retrieval-Augmented Code Completion Framework
Code completion, which aims to predict the following code token(s) according to the code context, can improve the productivity of software development. Recent work has proved that statistical language modeling with transformers can greatly improve the performance in the code completion task via learning from large-scale source code datasets. However, current approaches focus only on code context within the file or project, i.e. internal context. Our distinction is utilizing "external" context, inspired by human behaviors of copying from the related code snippets when writing code. Specifically, we propose a retrieval-augmented code completion framework, leveraging both lexical copying and referring to code with similar semantics by retrieval. We adopt a stage-wise training approach that combines a source code retriever and an auto-regressive language model for programming language. We evaluate our approach in the code completion task in Python and Java programming languages, achieving a state-of-the-art performance on CodeXGLUE benchmark.
Towards Mixed-Modal Retrieval for Universal Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm for enhancing large language models (LLMs) by retrieving relevant documents from an external corpus. However, existing RAG systems primarily focus on unimodal text documents, and often fall short in real-world scenarios where both queries and documents may contain mixed modalities (such as text and images). In this paper, we address the challenge of Universal Retrieval-Augmented Generation (URAG), which involves retrieving and reasoning over mixed-modal information to improve vision-language generation. To this end, we propose Nyx, a unified mixed-modal to mixed-modal retriever tailored for URAG scenarios. To mitigate the scarcity of realistic mixed-modal data, we introduce a four-stage automated pipeline for generation and filtering, leveraging web documents to construct NyxQA, a dataset comprising diverse mixed-modal question-answer pairs that better reflect real-world information needs. Building on this high-quality dataset, we adopt a two-stage training framework for Nyx: we first perform pre-training on NyxQA along with a variety of open-source retrieval datasets, followed by supervised fine-tuning using feedback from downstream vision-language models (VLMs) to align retrieval outputs with generative preferences. Experimental results demonstrate that Nyx not only performs competitively on standard text-only RAG benchmarks, but also excels in the more general and realistic URAG setting, significantly improving generation quality in vision-language tasks.
PlanRAG: A Plan-then-Retrieval Augmented Generation for Generative Large Language Models as Decision Makers
In this paper, we conduct a study to utilize LLMs as a solution for decision making that requires complex data analysis. We define Decision QA as the task of answering the best decision, d_{best}, for a decision-making question Q, business rules R and a database D. Since there is no benchmark that can examine Decision QA, we propose Decision QA benchmark, DQA. It has two scenarios, Locating and Building, constructed from two video games (Europa Universalis IV and Victoria 3) that have almost the same goal as Decision QA. To address Decision QA effectively, we also propose a new RAG technique called the iterative plan-then-retrieval augmented generation (PlanRAG). Our PlanRAG-based LM generates the plan for decision making as the first step, and the retriever generates the queries for data analysis as the second step. The proposed method outperforms the state-of-the-art iterative RAG method by 15.8% in the Locating scenario and by 7.4% in the Building scenario, respectively. We release our code and benchmark at https://github.com/myeon9h/PlanRAG.
RARe: Retrieval Augmented Retrieval with In-Context Examples
We investigate whether in-context examples, widely used in decoder-only language models (LLMs), can improve embedding model performance in retrieval tasks. Unlike in LLMs, naively prepending in-context examples (query-document pairs) to the target query at inference time does not work out of the box. We introduce a simple approach to enable retrievers to use in-context examples. Our approach, RARe, finetunes a pre-trained model with in-context examples whose query is semantically similar to the target query. This can be applied to adapt various base architectures (i.e., decoder-only language models, retriever models) and consistently achieves performance gains of up to +2.72% nDCG across various open-domain retrieval datasets (BeIR, RAR-b). In particular, we find RARe exhibits stronger out-of-domain generalization compared to models using queries without in-context examples, similar to what is seen for in-context learning in LLMs. We further provide analysis on the design choices of in-context example augmentation and lay the foundation for future work in this space.
Accelerating Retrieval-Augmented Language Model Serving with Speculation
Retrieval-augmented language models (RaLM) have demonstrated the potential to solve knowledge-intensive natural language processing (NLP) tasks by combining a non-parametric knowledge base with a parametric language model. Instead of fine-tuning a fully parametric model, RaLM excels at its low-cost adaptation to the latest data and better source attribution mechanisms. Among various RaLM approaches, iterative RaLM delivers a better generation quality due to a more frequent interaction between the retriever and the language model. Despite the benefits, iterative RaLM usually encounters high overheads due to the frequent retrieval step. To this end, we propose RaLMSpec, a speculation-inspired framework that provides generic speed-up over iterative RaLM while preserving the same model outputs through speculative retrieval and batched verification. By further incorporating prefetching, optimal speculation stride scheduler, and asynchronous verification, RaLMSpec can automatically exploit the acceleration potential to the fullest. For naive iterative RaLM serving, extensive evaluations over three language models on four downstream QA datasets demonstrate that RaLMSpec can achieve a speed-up ratio of 1.75-2.39x, 1.04-1.39x, and 1.31-1.77x when the retriever is an exact dense retriever, approximate dense retriever, and sparse retriever respectively compared with the baseline. For KNN-LM serving, RaLMSpec can achieve a speed-up ratio up to 7.59x and 2.45x when the retriever is an exact dense retriever and approximate dense retriever, respectively, compared with the baseline.
Hierarchical Retrieval-Augmented Generation Model with Rethink for Multi-hop Question Answering
Multi-hop Question Answering (QA) necessitates complex reasoning by integrating multiple pieces of information to resolve intricate questions. However, existing QA systems encounter challenges such as outdated information, context window length limitations, and an accuracy-quantity trade-off. To address these issues, we propose a novel framework, the Hierarchical Retrieval-Augmented Generation Model with Rethink (HiRAG), comprising Decomposer, Definer, Retriever, Filter, and Summarizer five key modules. We introduce a new hierarchical retrieval strategy that incorporates both sparse retrieval at the document level and dense retrieval at the chunk level, effectively integrating their strengths. Additionally, we propose a single-candidate retrieval method to mitigate the limitations of multi-candidate retrieval. We also construct two new corpora, Indexed Wikicorpus and Profile Wikicorpus, to address the issues of outdated and insufficient knowledge. Our experimental results on four datasets demonstrate that HiRAG outperforms state-of-the-art models across most metrics, and our Indexed Wikicorpus is effective. The code for HiRAG is available at https://github.com/2282588541a/HiRAG
RIGHT: Retrieval-augmented Generation for Mainstream Hashtag Recommendation
Automatic mainstream hashtag recommendation aims to accurately provide users with concise and popular topical hashtags before publication. Generally, mainstream hashtag recommendation faces challenges in the comprehensive difficulty of newly posted tweets in response to new topics, and the accurate identification of mainstream hashtags beyond semantic correctness. However, previous retrieval-based methods based on a fixed predefined mainstream hashtag list excel in producing mainstream hashtags, but fail to understand the constant flow of up-to-date information. Conversely, generation-based methods demonstrate a superior ability to comprehend newly posted tweets, but their capacity is constrained to identifying mainstream hashtags without additional features. Inspired by the recent success of the retrieval-augmented technique, in this work, we attempt to adopt this framework to combine the advantages of both approaches. Meantime, with the help of the generator component, we could rethink how to further improve the quality of the retriever component at a low cost. Therefore, we propose RetrIeval-augmented Generative Mainstream HashTag Recommender (RIGHT), which consists of three components: 1) a retriever seeks relevant hashtags from the entire tweet-hashtags set; 2) a selector enhances mainstream identification by introducing global signals; and 3) a generator incorporates input tweets and selected hashtags to directly generate the desired hashtags. The experimental results show that our method achieves significant improvements over state-of-the-art baselines. Moreover, RIGHT can be easily integrated into large language models, improving the performance of ChatGPT by more than 10%.
Furthest Reasoning with Plan Assessment: Stable Reasoning Path with Retrieval-Augmented Large Language Models
Large Language Models (LLMs), acting as a powerful reasoner and generator, exhibit extraordinary performance across various natural language tasks, such as question answering (QA). Among these tasks, Multi-Hop Question Answering (MHQA) stands as a widely discussed category, necessitating seamless integration between LLMs and the retrieval of external knowledge. Existing methods employ LLM to generate reasoning paths and plans, and utilize IR to iteratively retrieve related knowledge, but these approaches have inherent flaws. On one hand, Information Retriever (IR) is hindered by the low quality of generated queries by LLM. On the other hand, LLM is easily misguided by the irrelevant knowledge by IR. These inaccuracies, accumulated by the iterative interaction between IR and LLM, lead to a disaster in effectiveness at the end. To overcome above barriers, in this paper, we propose a novel pipeline for MHQA called Furthest-Reasoning-with-Plan-Assessment (FuRePA), including an improved framework (Furthest Reasoning) and an attached module (Plan Assessor). 1) Furthest reasoning operates by masking previous reasoning path and generated queries for LLM, encouraging LLM generating chain of thought from scratch in each iteration. This approach enables LLM to break the shackle built by previous misleading thoughts and queries (if any). 2) The Plan Assessor is a trained evaluator that selects an appropriate plan from a group of candidate plans proposed by LLM. Our methods are evaluated on three highly recognized public multi-hop question answering datasets and outperform state-of-the-art on most metrics (achieving a 10%-12% in answer accuracy).
Cross-modal RAG: Sub-dimensional Retrieval-Augmented Text-to-Image Generation
Text-to-image generation increasingly demands access to domain-specific, fine-grained, and rapidly evolving knowledge that pretrained models cannot fully capture. Existing Retrieval-Augmented Generation (RAG) methods attempt to address this by retrieving globally relevant images, but they fail when no single image contains all desired elements from a complex user query. We propose Cross-modal RAG, a novel framework that decomposes both queries and images into sub-dimensional components, enabling subquery-aware retrieval and generation. Our method introduces a hybrid retrieval strategy - combining a sub-dimensional sparse retriever with a dense retriever - to identify a Pareto-optimal set of images, each contributing complementary aspects of the query. During generation, a multimodal large language model is guided to selectively condition on relevant visual features aligned to specific subqueries, ensuring subquery-aware image synthesis. Extensive experiments on MS-COCO, Flickr30K, WikiArt, CUB, and ImageNet-LT demonstrate that Cross-modal RAG significantly outperforms existing baselines in both retrieval and generation quality, while maintaining high efficiency.
Fine-Grained Guidance for Retrievers: Leveraging LLMs' Feedback in Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has proven to be an effective method for mitigating hallucination issues inherent in large language models (LLMs). Previous approaches typically train retrievers based on semantic similarity, lacking optimization for RAG. More recent works have proposed aligning retrievers with the preference signals of LLMs. However, these preference signals are often difficult for dense retrievers, which typically have weaker language capabilities, to understand and learn effectively. Drawing inspiration from pedagogical theories like Guided Discovery Learning, we propose a novel framework, FiGRet (Fine-grained Guidance for Retrievers), which leverages the language capabilities of LLMs to construct examples from a more granular, information-centric perspective to guide the learning of retrievers. Specifically, our method utilizes LLMs to construct easy-to-understand examples from samples where the retriever performs poorly, focusing on three learning objectives highly relevant to the RAG scenario: relevance, comprehensiveness, and purity. These examples serve as scaffolding to ultimately align the retriever with the LLM's preferences. Furthermore, we employ a dual curriculum learning strategy and leverage the reciprocal feedback between LLM and retriever to further enhance the performance of the RAG system. A series of experiments demonstrate that our proposed framework enhances the performance of RAG systems equipped with different retrievers and is applicable to various LLMs.
WeQA: A Benchmark for Retrieval Augmented Generation in Wind Energy Domain
In the rapidly evolving landscape of Natural Language Processing (NLP) and text generation, the emergence of Retrieval Augmented Generation (RAG) presents a promising avenue for improving the quality and reliability of generated text by leveraging information retrieved from user specified database. Benchmarking is essential to evaluate and compare the performance of the different RAG configurations in terms of retriever and generator, providing insights into their effectiveness, scalability, and suitability for the specific domain and applications. In this paper, we present a comprehensive framework to generate a domain relevant RAG benchmark. Our framework is based on automatic question-answer generation with Human (domain experts)-AI Large Language Model (LLM) teaming. As a case study, we demonstrate the framework by introducing WeQA, a first-of-its-kind benchmark on the wind energy domain which comprises of multiple scientific documents/reports related to environmental impact of wind energy projects. Our framework systematically evaluates RAG performance using diverse metrics and multiple question types with varying complexity level. We also demonstrate the performance of different models on our benchmark.
RA-DIT: Retrieval-Augmented Dual Instruction Tuning
Retrieval-augmented language models (RALMs) improve performance by accessing long-tail and up-to-date knowledge from external data stores, but are challenging to build. Existing approaches require either expensive retrieval-specific modifications to LM pre-training or use post-hoc integration of the data store that leads to suboptimal performance. We introduce Retrieval-Augmented Dual Instruction Tuning (RA-DIT), a lightweight fine-tuning methodology that provides a third option by retrofitting any LLM with retrieval capabilities. Our approach operates in two distinct fine-tuning steps: (1) one updates a pre-trained LM to better use retrieved information, while (2) the other updates the retriever to return more relevant results, as preferred by the LM. By fine-tuning over tasks that require both knowledge utilization and contextual awareness, we demonstrate that each stage yields significant performance improvements, and using both leads to additional gains. Our best model, RA-DIT 65B, achieves state-of-the-art performance across a range of knowledge-intensive zero- and few-shot learning benchmarks, significantly outperforming existing in-context RALM approaches by up to +8.9% in 0-shot setting and +1.4% in 5-shot setting on average.
Cache-Craft: Managing Chunk-Caches for Efficient Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) is often used with Large Language Models (LLMs) to infuse domain knowledge or user-specific information. In RAG, given a user query, a retriever extracts chunks of relevant text from a knowledge base. These chunks are sent to an LLM as part of the input prompt. Typically, any given chunk is repeatedly retrieved across user questions. However, currently, for every question, attention-layers in LLMs fully compute the key values (KVs) repeatedly for the input chunks, as state-of-the-art methods cannot reuse KV-caches when chunks appear at arbitrary locations with arbitrary contexts. Naive reuse leads to output quality degradation. This leads to potentially redundant computations on expensive GPUs and increases latency. In this work, we propose Cache-Craft, a system for managing and reusing precomputed KVs corresponding to the text chunks (we call chunk-caches) in RAG-based systems. We present how to identify chunk-caches that are reusable, how to efficiently perform a small fraction of recomputation to fix the cache to maintain output quality, and how to efficiently store and evict chunk-caches in the hardware for maximizing reuse while masking any overheads. With real production workloads as well as synthetic datasets, we show that Cache-Craft reduces redundant computation by 51% over SOTA prefix-caching and 75% over full recomputation. Additionally, with continuous batching on a real production workload, we get a 1.6X speed up in throughput and a 2X reduction in end-to-end response latency over prefix-caching while maintaining quality, for both the LLaMA-3-8B and LLaMA-3-70B models.
CPA-RAG:Covert Poisoning Attacks on Retrieval-Augmented Generation in Large Language Models
Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by incorporating external knowledge, but its openness introduces vulnerabilities that can be exploited by poisoning attacks. Existing poisoning methods for RAG systems have limitations, such as poor generalization and lack of fluency in adversarial texts. In this paper, we propose CPA-RAG, a black-box adversarial framework that generates query-relevant texts capable of manipulating the retrieval process to induce target answers. The proposed method integrates prompt-based text generation, cross-guided optimization through multiple LLMs, and retriever-based scoring to construct high-quality adversarial samples. We conduct extensive experiments across multiple datasets and LLMs to evaluate its effectiveness. Results show that the framework achieves over 90\% attack success when the top-k retrieval setting is 5, matching white-box performance, and maintains a consistent advantage of approximately 5 percentage points across different top-k values. It also outperforms existing black-box baselines by 14.5 percentage points under various defense strategies. Furthermore, our method successfully compromises a commercial RAG system deployed on Alibaba's BaiLian platform, demonstrating its practical threat in real-world applications. These findings underscore the need for more robust and secure RAG frameworks to defend against poisoning attacks.
Joint-GCG: Unified Gradient-Based Poisoning Attacks on Retrieval-Augmented Generation Systems
Retrieval-Augmented Generation (RAG) systems enhance Large Language Models (LLMs) by retrieving relevant documents from external corpora before generating responses. This approach significantly expands LLM capabilities by leveraging vast, up-to-date external knowledge. However, this reliance on external knowledge makes RAG systems vulnerable to corpus poisoning attacks that manipulate generated outputs via poisoned document injection. Existing poisoning attack strategies typically treat the retrieval and generation stages as disjointed, limiting their effectiveness. We propose Joint-GCG, the first framework to unify gradient-based attacks across both retriever and generator models through three innovations: (1) Cross-Vocabulary Projection for aligning embedding spaces, (2) Gradient Tokenization Alignment for synchronizing token-level gradient signals, and (3) Adaptive Weighted Fusion for dynamically balancing attacking objectives. Evaluations demonstrate that Joint-GCG achieves at most 25% and an average of 5% higher attack success rate than previous methods across multiple retrievers and generators. While optimized under a white-box assumption, the generated poisons show unprecedented transferability to unseen models. Joint-GCG's innovative unification of gradient-based attacks across retrieval and generation stages fundamentally reshapes our understanding of vulnerabilities within RAG systems. Our code is available at https://github.com/NicerWang/Joint-GCG.
Syntriever: How to Train Your Retriever with Synthetic Data from LLMs
LLMs have boosted progress in many AI applications. Recently, there were attempts to distill the vast knowledge of LLMs into information retrieval systems. Those distillation methods mostly use output probabilities of LLMs which are unavailable in the latest black-box LLMs. We propose Syntriever, a training framework for retrievers using synthetic data from black-box LLMs. Syntriever consists of two stages. Firstly in the distillation stage, we synthesize relevant and plausibly irrelevant passages and augmented queries using chain-of-thoughts for the given queries. LLM is asked to self-verify the synthetic data for possible hallucinations, after which retrievers are trained with a loss designed to cluster the embeddings of relevant passages. Secondly in the alignment stage, we align the retriever with the preferences of LLMs. We propose a preference modeling called partial Plackett-Luce ranking to learn LLM preferences with regularization which prevents the model from deviating excessively from that trained in the distillation stage. Experiments show that Syntriever achieves state-of-the-art performances on benchmark datasets from various domains in nDCG@K. The code is available at https://github.com/kmswin1/Syntriever{https://github.com/kmswin1/Syntriever}.
RbFT: Robust Fine-tuning for Retrieval-Augmented Generation against Retrieval Defects
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by integrating external knowledge retrieved from a knowledge base. However, its effectiveness is fundamentally constrained by the reliability of both the retriever and the knowledge base. In real-world scenarios, imperfections in these components often lead to the retrieval of noisy, irrelevant, or misleading counterfactual information, ultimately undermining the trustworthiness of RAG systems. To address this challenge, we propose Robust Fine-Tuning (RbFT), a method designed to enhance the resilience of LLMs against retrieval defects through two targeted fine-tuning tasks. Experimental results demonstrate that RbFT significantly improves the robustness of RAG systems across diverse retrieval conditions, surpassing existing methods while maintaining high inference efficiency and compatibility with other robustness techniques.
CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models
Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources. This method addresses common LLM limitations, including outdated information and the tendency to produce inaccurate "hallucinated" content. However, the evaluation of RAG systems is challenging, as existing benchmarks are limited in scope and diversity. Most of the current benchmarks predominantly assess question-answering applications, overlooking the broader spectrum of situations where RAG could prove advantageous. Moreover, they only evaluate the performance of the LLM component of the RAG pipeline in the experiments, and neglect the influence of the retrieval component and the external knowledge database. To address these issues, this paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios. Specifically, we have categorized the range of RAG applications into four distinct types-Create, Read, Update, and Delete (CRUD), each representing a unique use case. "Create" refers to scenarios requiring the generation of original, varied content. "Read" involves responding to intricate questions in knowledge-intensive situations. "Update" focuses on revising and rectifying inaccuracies or inconsistencies in pre-existing texts. "Delete" pertains to the task of summarizing extensive texts into more concise forms. For each of these CRUD categories, we have developed comprehensive datasets to evaluate the performance of RAG systems. We also analyze the effects of various components of the RAG system, such as the retriever, the context length, the knowledge base construction, and the LLM. Finally, we provide useful insights for optimizing the RAG technology for different scenarios.
Improving the Domain Adaptation of Retrieval Augmented Generation (RAG) Models for Open Domain Question Answering
Retrieval Augment Generation (RAG) is a recent advancement in Open-Domain Question Answering (ODQA). RAG has only been trained and explored with a Wikipedia-based external knowledge base and is not optimized for use in other specialized domains such as healthcare and news. In this paper, we evaluate the impact of joint training of the retriever and generator components of RAG for the task of domain adaptation in ODQA. We propose RAG-end2end, an extension to RAG, that can adapt to a domain-specific knowledge base by updating all components of the external knowledge base during training. In addition, we introduce an auxiliary training signal to inject more domain-specific knowledge. This auxiliary signal forces RAG-end2end to reconstruct a given sentence by accessing the relevant information from the external knowledge base. Our novel contribution is unlike RAG, RAG-end2end does joint training of the retriever and generator for the end QA task and domain adaptation. We evaluate our approach with datasets from three domains: COVID-19, News, and Conversations, and achieve significant performance improvements compared to the original RAG model. Our work has been open-sourced through the Huggingface Transformers library, attesting to our work's credibility and technical consistency.
Spectrum Projection Score: Aligning Retrieved Summaries with Reader Models in Retrieval-Augmented Generation
Large Language Models (LLMs) have shown improved generation performance through retrieval-augmented generation (RAG) following the retriever-reader paradigm, which supplements model inputs with externally retrieved knowledge. However, prior work often evaluates RAG holistically, assessing the retriever and reader jointly, making it difficult to isolate the true contribution of retrieval, particularly given the prompt sensitivity of LLMs used as readers. We introduce Spectrum Projection Score (SPS), a lightweight, supervision-free metric that allows the reader to gauge the semantic alignment of a retrieved summary with its hidden representation by comparing the area formed by generated tokens from the summary, and the principal directions of subspace in the reader and to measure the relevance. Building on SPS we present xCompress, an inference time controller framework that dynamically samples, ranks, and compresses retrieval summary candidates. Extensive experiments on five QA benchmarks with four open source LLMs show that SPS not only enhances performance across a range of tasks but also provides a principled perspective on the interaction between retrieval and generation.
Youtu-GraphRAG: Vertically Unified Agents for Graph Retrieval-Augmented Complex Reasoning
Graph retrieval-augmented generation (GraphRAG) has effectively enhanced large language models in complex reasoning by organizing fragmented knowledge into explicitly structured graphs. Prior efforts have been made to improve either graph construction or graph retrieval in isolation, yielding suboptimal performance, especially when domain shifts occur. In this paper, we propose a vertically unified agentic paradigm, Youtu-GraphRAG, to jointly connect the entire framework as an intricate integration. Specifically, (i) a seed graph schema is introduced to bound the automatic extraction agent with targeted entity types, relations and attribute types, also continuously expanded for scalability over unseen domains; (ii) To obtain higher-level knowledge upon the schema, we develop novel dually-perceived community detection, fusing structural topology with subgraph semantics for comprehensive knowledge organization. This naturally yields a hierarchical knowledge tree that supports both top-down filtering and bottom-up reasoning with community summaries; (iii) An agentic retriever is designed to interpret the same graph schema to transform complex queries into tractable and parallel sub-queries. It iteratively performs reflection for more advanced reasoning; (iv) To alleviate the knowledge leaking problem in pre-trained LLM, we propose a tailored anonymous dataset and a novel 'Anonymity Reversion' task that deeply measures the real performance of the GraphRAG frameworks. Extensive experiments across six challenging benchmarks demonstrate the robustness of Youtu-GraphRAG, remarkably moving the Pareto frontier with up to 90.71% saving of token costs and 16.62% higher accuracy over state-of-the-art baselines. The results indicate our adaptability, allowing seamless domain transfer with minimal intervention on schema.
Improving Medical Reasoning through Retrieval and Self-Reflection with Retrieval-Augmented Large Language Models
Recent proprietary large language models (LLMs), such as GPT-4, have achieved a milestone in tackling diverse challenges in the biomedical domain, ranging from multiple-choice questions to long-form generations. To address challenges that still cannot be handled with the encoded knowledge of LLMs, various retrieval-augmented generation (RAG) methods have been developed by searching documents from the knowledge corpus and appending them unconditionally or selectively to the input of LLMs for generation. However, when applying existing methods to different domain-specific problems, poor generalization becomes apparent, leading to fetching incorrect documents or making inaccurate judgments. In this paper, we introduce Self-BioRAG, a framework reliable for biomedical text that specializes in generating explanations, retrieving domain-specific documents, and self-reflecting generated responses. We utilize 84k filtered biomedical instruction sets to train Self-BioRAG that can assess its generated explanations with customized reflective tokens. Our work proves that domain-specific components, such as a retriever, domain-related document corpus, and instruction sets are necessary for adhering to domain-related instructions. Using three major medical question-answering benchmark datasets, experimental results of Self-BioRAG demonstrate significant performance gains by achieving a 7.2% absolute improvement on average over the state-of-the-art open-foundation model with a parameter size of 7B or less. Overall, we analyze that Self-BioRAG finds the clues in the question, retrieves relevant documents if needed, and understands how to answer with information from retrieved documents and encoded knowledge as a medical expert does. We release our data and code for training our framework components and model weights (7B and 13B) to enhance capabilities in biomedical and clinical domains.
xRAG: Extreme Context Compression for Retrieval-augmented Generation with One Token
This paper introduces xRAG, an innovative context compression method tailored for retrieval-augmented generation. xRAG reinterprets document embeddings in dense retrieval--traditionally used solely for retrieval--as features from the retrieval modality. By employing a modality fusion methodology, xRAG seamlessly integrates these embeddings into the language model representation space, effectively eliminating the need for their textual counterparts and achieving an extreme compression rate. In xRAG, the only trainable component is the modality bridge, while both the retriever and the language model remain frozen. This design choice allows for the reuse of offline-constructed document embeddings and preserves the plug-and-play nature of retrieval augmentation. Experimental results demonstrate that xRAG achieves an average improvement of over 10% across six knowledge-intensive tasks, adaptable to various language model backbones, ranging from a dense 7B model to an 8x7B Mixture of Experts configuration. xRAG not only significantly outperforms previous context compression methods but also matches the performance of uncompressed models on several datasets, while reducing overall FLOPs by a factor of 3.53. Our work pioneers new directions in retrieval-augmented generation from the perspective of multimodality fusion, and we hope it lays the foundation for future efficient and scalable retrieval-augmented systems
Reducing hallucination in structured outputs via Retrieval-Augmented Generation
A common and fundamental limitation of Generative AI (GenAI) is its propensity to hallucinate. While large language models (LLM) have taken the world by storm, without eliminating or at least reducing hallucinations, real-world GenAI systems may face challenges in user adoption. In the process of deploying an enterprise application that produces workflows based on natural language requirements, we devised a system leveraging Retrieval Augmented Generation (RAG) to greatly improve the quality of the structured output that represents such workflows. Thanks to our implementation of RAG, our proposed system significantly reduces hallucinations in the output and improves the generalization of our LLM in out-of-domain settings. In addition, we show that using a small, well-trained retriever encoder can reduce the size of the accompanying LLM, thereby making deployments of LLM-based systems less resource-intensive.
UniMS-RAG: A Unified Multi-source Retrieval-Augmented Generation for Personalized Dialogue Systems
Large Language Models (LLMs) has shown exceptional capabilities in many natual language understanding and generation tasks. However, the personalization issue still remains a much-coveted property, especially when it comes to the multiple sources involved in the dialogue system. To better plan and incorporate the use of multiple sources in generating personalized response, we firstly decompose it into three sub-tasks: Knowledge Source Selection, Knowledge Retrieval, and Response Generation. We then propose a novel Unified Multi-Source Retrieval-Augmented Generation system (UniMS-RAG) Specifically, we unify these three sub-tasks with different formulations into the same sequence-to-sequence paradigm during the training, to adaptively retrieve evidences and evaluate the relevance on-demand using special tokens, called acting tokens and evaluation tokens. Enabling language models to generate acting tokens facilitates interaction with various knowledge sources, allowing them to adapt their behavior to diverse task requirements. Meanwhile, evaluation tokens gauge the relevance score between the dialogue context and the retrieved evidence. In addition, we carefully design a self-refinement mechanism to iteratively refine the generated response considering 1) the consistency scores between the generated response and retrieved evidence; and 2) the relevance scores. Experiments on two personalized datasets (DuLeMon and KBP) show that UniMS-RAG achieves state-of-the-art performance on the knowledge source selection and response generation task with itself as a retriever in a unified manner. Extensive analyses and discussions are provided for shedding some new perspectives for personalized dialogue systems.
Efficient and Reproducible Biomedical Question Answering using Retrieval Augmented Generation
Biomedical question-answering (QA) systems require effective retrieval and generation components to ensure accuracy, efficiency, and scalability. This study systematically examines a Retrieval-Augmented Generation (RAG) system for biomedical QA, evaluating retrieval strategies and response time trade-offs. We first assess state-of-the-art retrieval methods, including BM25, BioBERT, MedCPT, and a hybrid approach, alongside common data stores such as Elasticsearch, MongoDB, and FAISS, on a ~10% subset of PubMed (2.4M documents) to measure indexing efficiency, retrieval latency, and retriever performance in the end-to-end RAG system. Based on these insights, we deploy the final RAG system on the full 24M PubMed corpus, comparing different retrievers' impact on overall performance. Evaluations of the retrieval depth show that retrieving 50 documents with BM25 before reranking with MedCPT optimally balances accuracy (0.90), recall (0.90), and response time (1.91s). BM25 retrieval time remains stable (82ms), while MedCPT incurs the main computational cost. These results highlight previously not well-known trade-offs in retrieval depth, efficiency, and scalability for biomedical QA. With open-source code, the system is fully reproducible and extensible.
Vendi-RAG: Adaptively Trading-Off Diversity And Quality Significantly Improves Retrieval Augmented Generation With LLMs
Retrieval-augmented generation (RAG) enhances large language models (LLMs) for domain-specific question-answering (QA) tasks by leveraging external knowledge sources. However, traditional RAG systems primarily focus on relevance-based retrieval and often struggle with redundancy, especially when reasoning requires connecting information from multiple sources. This paper introduces Vendi-RAG, a framework based on an iterative process that jointly optimizes retrieval diversity and answer quality. This joint optimization leads to significantly higher accuracy for multi-hop QA tasks. Vendi-RAG leverages the Vendi Score (VS), a flexible similarity-based diversity metric, to promote semantic diversity in document retrieval. It then uses an LLM judge that evaluates candidate answers, generated after a reasoning step, and outputs a score that the retriever uses to balance relevance and diversity among the retrieved documents during each iteration. Experiments on three challenging datasets -- HotpotQA, MuSiQue, and 2WikiMultiHopQA -- demonstrate Vendi-RAG's effectiveness in multi-hop reasoning tasks. The framework achieves significant accuracy improvements over traditional single-step and multi-step RAG approaches, with accuracy increases reaching up to +4.2% on HotpotQA, +4.1% on 2WikiMultiHopQA, and +1.3% on MuSiQue compared to Adaptive-RAG, the current best baseline. The benefits of Vendi-RAG are even more pronounced as the number of retrieved documents increases. Finally, we evaluated Vendi-RAG across different LLM backbones, including GPT-3.5, GPT-4, and GPT-4o-mini, and observed consistent improvements, demonstrating that the framework's advantages are model-agnostic.
C-3PO: Compact Plug-and-Play Proxy Optimization to Achieve Human-like Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) systems face a fundamental challenge in aligning independently developed retrievers and large language models (LLMs). Existing approaches typically involve modifying either component or introducing simple intermediate modules, resulting in practical limitations and sub-optimal performance. Inspired by human search behavior -- typically involving a back-and-forth process of proposing search queries and reviewing documents, we propose C-3PO, a proxy-centric framework that facilitates communication between retrievers and LLMs through a lightweight multi-agent system. Our framework implements three specialized agents that collaboratively optimize the entire RAG pipeline without altering the retriever and LLMs. These agents work together to assess the need for retrieval, generate effective queries, and select information suitable for the LLMs. To enable effective multi-agent coordination, we develop a tree-structured rollout approach for reward credit assignment in reinforcement learning. Extensive experiments in both in-domain and out-of-distribution scenarios demonstrate that C-3PO significantly enhances RAG performance while maintaining plug-and-play flexibility and superior generalization capabilities.
SK-VQA: Synthetic Knowledge Generation at Scale for Training Context-Augmented Multimodal LLMs
Synthetic data generation has gained significant attention recently for its utility in training large vision and language models. However, the application of synthetic data to the training of multimodal context-augmented generation systems has been relatively unexplored. This gap in existing work is important because existing vision and language models (VLMs) are not trained specifically for context-augmented generation. Resources for adapting such models are therefore crucial for enabling their use in retrieval-augmented generation (RAG) settings, where a retriever is used to gather relevant information that is then subsequently provided to a generative model via context augmentation. To address this challenging problem, we generate SK-VQA: a large synthetic multimodal dataset containing over 2 million question-answer pairs which require external knowledge to determine the final answer. Our dataset is both larger and significantly more diverse than existing resources of its kind, possessing over 11x more unique questions and containing images from a greater variety of sources than previously-proposed datasets. Through extensive experiments, we demonstrate that our synthetic dataset can not only serve as a challenging benchmark, but is also highly effective for adapting existing generative multimodal models for context-augmented generation.
RichRAG: Crafting Rich Responses for Multi-faceted Queries in Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) effectively addresses issues of static knowledge and hallucination in large language models. Existing studies mostly focus on question scenarios with clear user intents and concise answers. However, it is prevalent that users issue broad, open-ended queries with diverse sub-intents, for which they desire rich and long-form answers covering multiple relevant aspects. To tackle this important yet underexplored problem, we propose a novel RAG framework, namely RichRAG. It includes a sub-aspect explorer to identify potential sub-aspects of input questions, a multi-faceted retriever to build a candidate pool of diverse external documents related to these sub-aspects, and a generative list-wise ranker, which is a key module to provide the top-k most valuable documents for the final generator. These ranked documents sufficiently cover various query aspects and are aware of the generator's preferences, hence incentivizing it to produce rich and comprehensive responses for users. The training of our ranker involves a supervised fine-tuning stage to ensure the basic coverage of documents, and a reinforcement learning stage to align downstream LLM's preferences to the ranking of documents. Experimental results on two publicly available datasets prove that our framework effectively and efficiently provides comprehensive and satisfying responses to users.
LTRR: Learning To Rank Retrievers for LLMs
Retrieval-Augmented Generation (RAG) systems typically rely on a single fixed retriever, despite growing evidence that no single retriever performs optimally across all query types. In this paper, we explore a query routing approach that dynamically selects from a pool of retrievers based on the query, using both train-free heuristics and learned routing models. We frame routing as a learning-to-rank (LTR) problem and introduce LTRR, a framework that learns to rank retrievers by their expected utility gain to downstream LLM performance. Our experiments, conducted on synthetic QA data with controlled query type variations, show that routing-based RAG systems can outperform the best single-retriever-based systems. Performance gains are especially pronounced in models trained with the Answer Correctness (AC) metric and with pairwise learning approaches, especially with XGBoost. We also observe improvements in generalization to out-of-distribution queries. As part of the SIGIR 2025 LiveRAG challenge, our submitted system demonstrated the practical viability of our approach, achieving competitive performance in both answer correctness and faithfulness. These findings highlight the importance of both training methodology and metric selection in query routing for RAG systems.
Less LLM, More Documents: Searching for Improved RAG
Retrieval-Augmented Generation (RAG) couples document retrieval with large language models (LLMs). While scaling generators improves accuracy, it also raises cost and limits deployability. We explore an orthogonal axis: enlarging the retriever's corpus to reduce reliance on large LLMs. Experimental results show that corpus scaling consistently strengthens RAG and can often serve as a substitute for increasing model size, though with diminishing returns at larger scales. Small- and mid-sized generators paired with larger corpora often rival much larger models with smaller corpora; mid-sized models tend to gain the most, while tiny and large models benefit less. Our analysis shows that improvements arise primarily from increased coverage of answer-bearing passages, while utilization efficiency remains largely unchanged. These findings establish a principled corpus-generator trade-off: investing in larger corpora offers an effective path to stronger RAG, often comparable to enlarging the LLM itself.
Finding the Law: Enhancing Statutory Article Retrieval via Graph Neural Networks
Statutory article retrieval (SAR), the task of retrieving statute law articles relevant to a legal question, is a promising application of legal text processing. In particular, high-quality SAR systems can improve the work efficiency of legal professionals and provide basic legal assistance to citizens in need at no cost. Unlike traditional ad-hoc information retrieval, where each document is considered a complete source of information, SAR deals with texts whose full sense depends on complementary information from the topological organization of statute law. While existing works ignore these domain-specific dependencies, we propose a novel graph-augmented dense statute retriever (G-DSR) model that incorporates the structure of legislation via a graph neural network to improve dense retrieval performance. Experimental results show that our approach outperforms strong retrieval baselines on a real-world expert-annotated SAR dataset.
FB-RAG: Improving RAG with Forward and Backward Lookup
The performance of Retrieval Augmented Generation (RAG) systems relies heavily on the retriever quality and the size of the retrieved context. A large enough context ensures that the relevant information is present in the input context for the LLM, but also incorporates irrelevant content that has been shown to confuse the models. On the other hand, a smaller context reduces the irrelevant information, but it often comes at the risk of losing important information necessary to answer the input question. This duality is especially challenging to manage for complex queries that contain little information to retrieve the relevant chunks from the full context. To address this, we present a novel framework, called FB-RAG, which enhances the RAG pipeline by relying on a combination of backward lookup (overlap with the query) and forward lookup (overlap with candidate reasons and answers) to retrieve specific context chunks that are the most relevant for answering the input query. Our evaluations on 9 datasets from two leading benchmarks show that FB-RAG consistently outperforms RAG and Long Context baselines developed recently for these benchmarks. We further show that FB-RAG can improve performance while reducing latency. We perform qualitative analysis of the strengths and shortcomings of our approach, providing specific insights to guide future work.
W-RAG: Weakly Supervised Dense Retrieval in RAG for Open-domain Question Answering
In knowledge-intensive tasks such as open-domain question answering (OpenQA), Large Language Models (LLMs) often struggle to generate factual answers relying solely on their internal (parametric) knowledge. To address this limitation, Retrieval-Augmented Generation (RAG) systems enhance LLMs by retrieving relevant information from external sources, thereby positioning the retriever as a pivotal component. Although dense retrieval demonstrates state-of-the-art performance, its training poses challenges due to the scarcity of ground-truth evidence, largely attributed to the high costs of human annotation. In this paper, we propose W-RAG by utilizing the ranking capabilities of LLMs to create weakly labeled data for training dense retrievers. Specifically, we rerank the top-K passages retrieved via BM25 by assessing the probability that LLMs will generate the correct answer based on the question and each passage. The highest-ranking passages are then used as positive training examples for dense retrieval. Our comprehensive experiments across four publicly available OpenQA datasets demonstrate that our approach enhances both retrieval and OpenQA performance compared to baseline models.
Synthetic Multimodal Question Generation
Multimodal Retrieval Augmented Generation (MMRAG) is a powerful approach to question-answering over multimodal documents. A key challenge with evaluating MMRAG is the paucity of high-quality datasets matching the question styles and modalities of interest. In light of this, we propose SMMQG, a synthetic data generation framework. SMMQG leverages interplay between a retriever, large language model (LLM) and large multimodal model (LMM) to generate question and answer pairs directly from multimodal documents, with the questions conforming to specified styles and modalities. We use SMMQG to generate an MMRAG dataset of 1024 questions over Wikipedia documents and evaluate state-of-the-art models using it, revealing insights into model performance that are attainable only through style- and modality-specific evaluation data. Next, we measure the quality of data produced by SMMQG via a human study. We find that the quality of our synthetic data is on par with the quality of the crowdsourced benchmark MMQA and that downstream evaluation results using both datasets strongly concur.
Quantum-RAG and PunGPT2: Advancing Low-Resource Language Generation and Retrieval for the Punjabi Language
Despite the rapid advancement of large language models (LLMs), low-resource languages remain largely excluded from the NLP landscape. We present PunGPT2, the first fully open-source suite of Punjabi large language models, trained from scratch on a 35GB domain-diverse corpus encompassing literature, religious texts, news, and social discourse. Unlike prior multilingual approaches, PunGPT2 captures rich syntactic and morphological features unique to Punjabi through a tokenizer optimised with byte pair encoding and linguistically aligned pretraining objectives. To improve factual grounding and domain recall, we introduce Pun-RAG, a retrieval-augmented generation framework combining PunGPT2 with a dense FAISS retriever over a curated Punjabi knowledge base. We further develop Pun-Instruct, a parameter-efficient, instruction-tuned variant using QLoRA, enabling robust zero-shot and instruction-following performance with significantly reduced compute needs. As a key innovation, we propose Quantum-RAG, a novel hybrid retrieval system that fuses sparse (BM25) and dense methods with quantum-inspired semantic matching. By encoding queries using amplitude-based embeddings and retrieving via quantum kernel similarity, Quantum-RAG achieves improved contextual relevance with minimal memory overhead marking the first practical integration of quantum representations in low-resource language generation. Our models significantly outperform strong multilingual baselines (mBERT, mT5, MuRIL) in perplexity, factuality, and fluency. This work provides a scalable, reproducible blueprint for extending LLM capabilities to underrepresented languages and pioneers quantum-aware retrieval in low-resource NLP
Reducing Distraction in Long-Context Language Models by Focused Learning
Recent advancements in Large Language Models (LLMs) have significantly enhanced their capacity to process long contexts. However, effectively utilizing this long context remains a challenge due to the issue of distraction, where irrelevant information dominates lengthy contexts, causing LLMs to lose focus on the most relevant segments. To address this, we propose a novel training method that enhances LLMs' ability to discern relevant information through a unique combination of retrieval-based data augmentation and contrastive learning. Specifically, during fine-tuning with long contexts, we employ a retriever to extract the most relevant segments, serving as augmented inputs. We then introduce an auxiliary contrastive learning objective to explicitly ensure that outputs from the original context and the retrieved sub-context are closely aligned. Extensive experiments on long single-document and multi-document QA benchmarks demonstrate the effectiveness of our proposed method.
Optimizing What Matters: AUC-Driven Learning for Robust Neural Retrieval
Dual-encoder retrievers depend on the principle that relevant documents should score higher than irrelevant ones for a given query. Yet the dominant Noise Contrastive Estimation (NCE) objective, which underpins Contrastive Loss, optimizes a softened ranking surrogate that we rigorously prove is fundamentally oblivious to score separation quality and unrelated to AUC. This mismatch leads to poor calibration and suboptimal performance in downstream tasks like retrieval-augmented generation (RAG). To address this fundamental limitation, we introduce the MW loss, a new training objective that maximizes the Mann-Whitney U statistic, which is mathematically equivalent to the Area under the ROC Curve (AUC). MW loss encourages each positive-negative pair to be correctly ranked by minimizing binary cross entropy over score differences. We provide theoretical guarantees that MW loss directly upper-bounds the AoC, better aligning optimization with retrieval goals. We further promote ROC curves and AUC as natural threshold free diagnostics for evaluating retriever calibration and ranking quality. Empirically, retrievers trained with MW loss consistently outperform contrastive counterparts in AUC and standard retrieval metrics. Our experiments show that MW loss is an empirically superior alternative to Contrastive Loss, yielding better-calibrated and more discriminative retrievers for high-stakes applications like RAG.
Augmenting Black-box LLMs with Medical Textbooks for Clinical Question Answering
Large-scale language models (LLMs), such as ChatGPT, are capable of generating human-like responses for various downstream tasks, such as task-oriented dialogues and question answering. However, applying LLMs to medical domains remains challenging due to their inability to leverage domain-specific knowledge. In this study, we present the Large-scale Language Models Augmented with Medical Textbooks (LLM-AMT), which integrates authoritative medical textbooks as the cornerstone of its design, enhancing its proficiency in the specialized domain through plug-and-play modules, comprised of a Hybrid Textbook Retriever, supplemented by the Query Augmenter and the LLM Reader. Experimental evaluation on three open-domain medical question-answering tasks reveals a substantial enhancement in both the professionalism and accuracy of the LLM responses when utilizing LLM-AMT, exhibiting an improvement ranging from 11.4% to 13.2%. Despite being 100 times smaller, we found that medical textbooks as the retrieval corpus serves as a more valuable external knowledge source than Wikipedia in the medical domain. Our experiments show that textbook augmentation results in a performance improvement ranging from 9.7% to 12.2% over Wikipedia augmentation.
Clustered Retrieved Augmented Generation (CRAG)
Providing external knowledge to Large Language Models (LLMs) is a key point for using these models in real-world applications for several reasons, such as incorporating up-to-date content in a real-time manner, providing access to domain-specific knowledge, and contributing to hallucination prevention. The vector database-based Retrieval Augmented Generation (RAG) approach has been widely adopted to this end. Thus, any part of external knowledge can be retrieved and provided to some LLM as the input context. Despite RAG approach's success, it still might be unfeasible for some applications, because the context retrieved can demand a longer context window than the size supported by LLM. Even when the context retrieved fits into the context window size, the number of tokens might be expressive and, consequently, impact costs and processing time, becoming impractical for most applications. To address these, we propose CRAG, a novel approach able to effectively reduce the number of prompting tokens without degrading the quality of the response generated compared to a solution using RAG. Through our experiments, we show that CRAG can reduce the number of tokens by at least 46\%, achieving more than 90\% in some cases, compared to RAG. Moreover, the number of tokens with CRAG does not increase considerably when the number of reviews analyzed is higher, unlike RAG, where the number of tokens is almost 9x higher when there are 75 reviews compared to 4 reviews.
Retrieval-Augmented Generation-based Relation Extraction
Information Extraction (IE) is a transformative process that converts unstructured text data into a structured format by employing entity and relation extraction (RE) methodologies. The identification of the relation between a pair of entities plays a crucial role within this framework. Despite the existence of various techniques for relation extraction, their efficacy heavily relies on access to labeled data and substantial computational resources. In addressing these challenges, Large Language Models (LLMs) emerge as promising solutions; however, they might return hallucinating responses due to their own training data. To overcome these limitations, Retrieved-Augmented Generation-based Relation Extraction (RAG4RE) in this work is proposed, offering a pathway to enhance the performance of relation extraction tasks. This work evaluated the effectiveness of our RAG4RE approach utilizing different LLMs. Through the utilization of established benchmarks, such as TACRED, TACREV, Re-TACRED, and SemEval RE datasets, our aim is to comprehensively evaluate the efficacy of our RAG4RE approach. In particularly, we leverage prominent LLMs including Flan T5, Llama2, and Mistral in our investigation. The results of our study demonstrate that our RAG4RE approach surpasses performance of traditional RE approaches based solely on LLMs, particularly evident in the TACRED dataset and its variations. Furthermore, our approach exhibits remarkable performance compared to previous RE methodologies across both TACRED and TACREV datasets, underscoring its efficacy and potential for advancing RE tasks in natural language processing.
Augmentation-Adapted Retriever Improves Generalization of Language Models as Generic Plug-In
Retrieval augmentation can aid language models (LMs) in knowledge-intensive tasks by supplying them with external information. Prior works on retrieval augmentation usually jointly fine-tune the retriever and the LM, making them closely coupled. In this paper, we explore the scheme of generic retrieval plug-in: the retriever is to assist target LMs that may not be known beforehand or are unable to be fine-tuned together. To retrieve useful documents for unseen target LMs, we propose augmentation-adapted retriever (AAR), which learns LM's preferences obtained from a known source LM. Experiments on the MMLU and PopQA datasets demonstrate that our AAR trained with a small source LM is able to significantly improve the zero-shot generalization of larger target LMs ranging from 250M Flan-T5 to 175B InstructGPT. Further analysis indicates that the preferences of different LMs overlap, enabling AAR trained with a single source LM to serve as a generic plug-in for various target LMs. Our code is open-sourced at https://github.com/OpenMatch/Augmentation-Adapted-Retriever.
Long-range Language Modeling with Self-retrieval
Retrieval-augmented language models (LMs) have received much attention recently. However, typically the retriever is not trained jointly as a native component of the LM, but added to an already-pretrained LM, which limits the ability of the LM and the retriever to adapt to one another. In this work, we propose the Retrieval-Pretrained Transformer (RPT), an architecture and training procedure for jointly training a retrieval-augmented LM from scratch for the task of modeling long texts. Given a recently generated text chunk in a long document, the LM computes query representations, which are then used to retrieve earlier chunks in the document, located potentially tens of thousands of tokens before. Information from retrieved chunks is fused into the LM representations to predict the next target chunk. We train the retriever component with a semantic objective, where the goal is to retrieve chunks that increase the probability of the next chunk, according to a reference LM. We evaluate RPT on four long-range language modeling tasks, spanning books, code, and mathematical writing, and demonstrate that RPT improves retrieval quality and subsequently perplexity across the board compared to strong baselines.
GroUSE: A Benchmark to Evaluate Evaluators in Grounded Question Answering
Retrieval-Augmented Generation (RAG) has emerged as a common paradigm to use Large Language Models (LLMs) alongside private and up-to-date knowledge bases. In this work, we address the challenges of using LLM-as-a-Judge when evaluating grounded answers generated by RAG systems. To assess the calibration and discrimination capabilities of judge models, we identify 7 generator failure modes and introduce GroUSE (Grounded QA Unitary Scoring of Evaluators), a meta-evaluation benchmark of 144 unit tests. This benchmark reveals that existing automated RAG evaluation frameworks often overlook important failure modes, even when using GPT-4 as a judge. To improve on the current design of automated RAG evaluation frameworks, we propose a novel pipeline and find that while closed models perform well on GroUSE, state-of-the-art open-source judges do not generalize to our proposed criteria, despite strong correlation with GPT-4's judgement. Our findings suggest that correlation with GPT-4 is an incomplete proxy for the practical performance of judge models and should be supplemented with evaluations on unit tests for precise failure mode detection. We further show that finetuning Llama-3 on GPT-4's reasoning traces significantly boosts its evaluation capabilities, improving upon both correlation with GPT-4's evaluations and calibration on reference situations.
CaLoRAify: Calorie Estimation with Visual-Text Pairing and LoRA-Driven Visual Language Models
The obesity phenomenon, known as the heavy issue, is a leading cause of preventable chronic diseases worldwide. Traditional calorie estimation tools often rely on specific data formats or complex pipelines, limiting their practicality in real-world scenarios. Recently, vision-language models (VLMs) have excelled in understanding real-world contexts and enabling conversational interactions, making them ideal for downstream tasks such as ingredient analysis. However, applying VLMs to calorie estimation requires domain-specific data and alignment strategies. To this end, we curated CalData, a 330K image-text pair dataset tailored for ingredient recognition and calorie estimation, combining a large-scale recipe dataset with detailed nutritional instructions for robust vision-language training. Built upon this dataset, we present CaLoRAify, a novel VLM framework aligning ingredient recognition and calorie estimation via training with visual-text pairs. During inference, users only need a single monocular food image to estimate calories while retaining the flexibility of agent-based conversational interaction. With Low-rank Adaptation (LoRA) and Retrieve-augmented Generation (RAG) techniques, our system enhances the performance of foundational VLMs in the vertical domain of calorie estimation. Our code and data are fully open-sourced at https://github.com/KennyYao2001/16824-CaLORAify.
Improving Factuality with Explicit Working Memory
Large language models can generate factually inaccurate content, a problem known as hallucination. Recent works have built upon retrieved-augmented generation to improve factuality through iterative prompting but these methods are limited by the traditional RAG design. To address these challenges, we introduce EWE (Explicit Working Memory), a novel approach that enhances factuality in long-form text generation by integrating a working memory that receives real-time feedback from external resources. The memory is refreshed based on online fact-checking and retrieval feedback, allowing EWE to rectify false claims during the generation process and ensure more accurate and reliable outputs. Our experiments demonstrate that Ewe outperforms strong baselines on four fact-seeking long-form generation datasets, increasing the factuality metric, VeriScore, by 2 to 10 points absolute without sacrificing the helpfulness of the responses. Further analysis reveals that the design of rules for memory updates, configurations of memory units, and the quality of the retrieval datastore are crucial factors for influencing model performance.
Toward Optimal Search and Retrieval for RAG
Retrieval-augmented generation (RAG) is a promising method for addressing some of the memory-related challenges associated with Large Language Models (LLMs). Two separate systems form the RAG pipeline, the retriever and the reader, and the impact of each on downstream task performance is not well-understood. Here, we work towards the goal of understanding how retrievers can be optimized for RAG pipelines for common tasks such as Question Answering (QA). We conduct experiments focused on the relationship between retrieval and RAG performance on QA and attributed QA and unveil a number of insights useful to practitioners developing high-performance RAG pipelines. For example, lowering search accuracy has minor implications for RAG performance while potentially increasing retrieval speed and memory efficiency.
Variational Open-Domain Question Answering
Retrieval-augmented models have proven to be effective in natural language processing tasks, yet there remains a lack of research on their optimization using variational inference. We introduce the Variational Open-Domain (VOD) framework for end-to-end training and evaluation of retrieval-augmented models, focusing on open-domain question answering and language modelling. The VOD objective, a self-normalized estimate of the R\'enyi variational bound, approximates the task marginal likelihood and is evaluated under samples drawn from an auxiliary sampling distribution (cached retriever and/or approximate posterior). It remains tractable, even for retriever distributions defined on large corpora. We demonstrate VOD's versatility by training reader-retriever BERT-sized models on multiple-choice medical exam questions. On the MedMCQA dataset, we outperform the domain-tuned Med-PaLM by +5.3% despite using 2.500times fewer parameters. Our retrieval-augmented BioLinkBERT model scored 62.9% on the MedMCQA and 55.0% on the MedQA-USMLE. Last, we show the effectiveness of our learned retriever component in the context of medical semantic search.
To Retrieve or Not to Retrieve? Uncertainty Detection for Dynamic Retrieval Augmented Generation
Retrieval-Augmented Generation equips large language models with the capability to retrieve external knowledge, thereby mitigating hallucinations by incorporating information beyond the model's intrinsic abilities. However, most prior works have focused on invoking retrieval deterministically, which makes it unsuitable for tasks such as long-form question answering. Instead, dynamically performing retrieval by invoking it only when the underlying LLM lacks the required knowledge can be more efficient. In this context, we delve deeper into the question, "To Retrieve or Not to Retrieve?" by exploring multiple uncertainty detection methods. We evaluate these methods for the task of long-form question answering, employing dynamic retrieval, and present our comparisons. Our findings suggest that uncertainty detection metrics, such as Degree Matrix Jaccard and Eccentricity, can reduce the number of retrieval calls by almost half, with only a slight reduction in question-answering accuracy.
ARL2: Aligning Retrievers for Black-box Large Language Models via Self-guided Adaptive Relevance Labeling
Retrieval-augmented generation enhances large language models (LLMs) by incorporating relevant information from external knowledge sources. This enables LLMs to adapt to specific domains and mitigate hallucinations in knowledge-intensive tasks. However, existing retrievers are often misaligned with LLMs due to their separate training processes and the black-box nature of LLMs. To address this challenge, we propose ARL2, a retriever learning technique that harnesses LLMs as labelers. ARL2 leverages LLMs to annotate and score relevant evidence, enabling learning the retriever from robust LLM supervision. Furthermore, ARL2 uses an adaptive self-training strategy for curating high-quality and diverse relevance data, which can effectively reduce the annotation cost. Extensive experiments demonstrate the effectiveness of ARL2, achieving accuracy improvements of 5.4% on NQ and 4.6% on MMLU compared to the state-of-the-art methods. Additionally, ARL2 exhibits robust transfer learning capabilities and strong zero-shot generalization abilities. Our code will be published at https://github.com/zhanglingxi-cs/ARL2.
Enhancing Retrieval-Augmented Large Language Models with Iterative Retrieval-Generation Synergy
Large language models are powerful text processors and reasoners, but are still subject to limitations including outdated knowledge and hallucinations, which necessitates connecting them to the world. Retrieval-augmented large language models have raised extensive attention for grounding model generation on external knowledge. However, retrievers struggle to capture relevance, especially for queries with complex information needs. Recent work has proposed to improve relevance modeling by having large language models actively involved in retrieval, i.e., to improve retrieval with generation. In this paper, we show that strong performance can be achieved by a method we call Iter-RetGen, which synergizes retrieval and generation in an iterative manner. A model output shows what might be needed to finish a task, and thus provides an informative context for retrieving more relevant knowledge which in turn helps generate a better output in the next iteration. Compared with recent work which interleaves retrieval with generation when producing an output, Iter-RetGen processes all retrieved knowledge as a whole and largely preserves the flexibility in generation without structural constraints. We evaluate Iter-RetGen on multi-hop question answering, fact verification, and commonsense reasoning, and show that it can flexibly leverage parametric knowledge and non-parametric knowledge, and is superior to or competitive with state-of-the-art retrieval-augmented baselines while causing fewer overheads of retrieval and generation. We can further improve performance via generation-augmented retrieval adaptation.
Understanding Retrieval Robustness for Retrieval-Augmented Image Captioning
Recent advances in retrieval-augmented models for image captioning highlight the benefit of retrieving related captions for efficient, lightweight models with strong domain-transfer capabilities. While these models demonstrate the success of retrieval augmentation, retrieval models are still far from perfect in practice: the retrieved information can sometimes mislead the model, resulting in incorrect generation and worse performance. In this paper, we analyze the robustness of a retrieval-augmented captioning model SmallCap. Our analysis shows that the model is sensitive to tokens that appear in the majority of the retrieved captions, and the input attribution shows that those tokens are likely copied into the generated output. Given these findings, we propose to train the model by sampling retrieved captions from more diverse sets. This decreases the chance that the model learns to copy majority tokens, and improves both in-domain and cross-domain performance.
R^2AG: Incorporating Retrieval Information into Retrieval Augmented Generation
Retrieval augmented generation (RAG) has been applied in many scenarios to augment large language models (LLMs) with external documents provided by retrievers. However, a semantic gap exists between LLMs and retrievers due to differences in their training objectives and architectures. This misalignment forces LLMs to passively accept the documents provided by the retrievers, leading to incomprehension in the generation process, where the LLMs are burdened with the task of distinguishing these documents using their inherent knowledge. This paper proposes R^2AG, a novel enhanced RAG framework to fill this gap by incorporating Retrieval information into Retrieval Augmented Generation. Specifically, R^2AG utilizes the nuanced features from the retrievers and employs a R^2-Former to capture retrieval information. Then, a retrieval-aware prompting strategy is designed to integrate retrieval information into LLMs' generation. Notably, R^2AG suits low-source scenarios where LLMs and retrievers are frozen. Extensive experiments across five datasets validate the effectiveness, robustness, and efficiency of R^2AG. Our analysis reveals that retrieval information serves as an anchor to aid LLMs in the generation process, thereby filling the semantic gap.
Meta-prompting Optimized Retrieval-augmented Generation
Retrieval-augmented generation resorts to content retrieved from external sources in order to leverage the performance of large language models in downstream tasks. The excessive volume of retrieved content, the possible dispersion of its parts, or their out of focus range may happen nevertheless to eventually have a detrimental rather than an incremental effect. To mitigate this issue and improve retrieval-augmented generation, we propose a method to refine the retrieved content before it is included in the prompt by resorting to meta-prompting optimization. Put to empirical test with the demanding multi-hop question answering task from the StrategyQA dataset, the evaluation results indicate that this method outperforms a similar retrieval-augmented system but without this method by over 30%.
SUGAR: Leveraging Contextual Confidence for Smarter Retrieval
Bearing in mind the limited parametric knowledge of Large Language Models (LLMs), retrieval-augmented generation (RAG) which supplies them with the relevant external knowledge has served as an approach to mitigate the issue of hallucinations to a certain extent. However, uniformly retrieving supporting context makes response generation source-inefficient, as triggering the retriever is not always necessary, or even inaccurate, when a model gets distracted by noisy retrieved content and produces an unhelpful answer. Motivated by these issues, we introduce Semantic Uncertainty Guided Adaptive Retrieval (SUGAR), where we leverage context-based entropy to actively decide whether to retrieve and to further determine between single-step and multi-step retrieval. Our empirical results show that selective retrieval guided by semantic uncertainty estimation improves the performance across diverse question answering tasks, as well as achieves a more efficient inference.
Generation-Augmented Retrieval for Open-domain Question Answering
We propose Generation-Augmented Retrieval (GAR) for answering open-domain questions, which augments a query through text generation of heuristically discovered relevant contexts without external resources as supervision. We demonstrate that the generated contexts substantially enrich the semantics of the queries and GAR with sparse representations (BM25) achieves comparable or better performance than state-of-the-art dense retrieval methods such as DPR. We show that generating diverse contexts for a query is beneficial as fusing their results consistently yields better retrieval accuracy. Moreover, as sparse and dense representations are often complementary, GAR can be easily combined with DPR to achieve even better performance. GAR achieves state-of-the-art performance on Natural Questions and TriviaQA datasets under the extractive QA setup when equipped with an extractive reader, and consistently outperforms other retrieval methods when the same generative reader is used.
Making Retrieval-Augmented Language Models Robust to Irrelevant Context
Retrieval-augmented language models (RALMs) hold promise to produce language understanding systems that are are factual, efficient, and up-to-date. An important desideratum of RALMs, is that retrieved information helps model performance when it is relevant, and does not harm performance when it is not. This is particularly important in multi-hop reasoning scenarios, where misuse of irrelevant evidence can lead to cascading errors. However, recent work has shown that retrieval augmentation can sometimes have a negative effect on performance. In this work, we present a thorough analysis on five open-domain question answering benchmarks, characterizing cases when retrieval reduces accuracy. We then propose two methods to mitigate this issue. First, a simple baseline that filters out retrieved passages that do not entail question-answer pairs according to a natural language inference (NLI) model. This is effective in preventing performance reduction, but at a cost of also discarding relevant passages. Thus, we propose a method for automatically generating data to fine-tune the language model to properly leverage retrieved passages, using a mix of relevant and irrelevant contexts at training time. We empirically show that even 1,000 examples suffice to train the model to be robust to irrelevant contexts while maintaining high performance on examples with relevant ones.
Language Modeling with Editable External Knowledge
When the world changes, so does the text that humans write about it. How do we build language models that can be easily updated to reflect these changes? One popular approach is retrieval-augmented generation, in which new documents are inserted into a knowledge base and retrieved during prediction for downstream tasks. Most prior work on these systems have focused on improving behavior during prediction through better retrieval or reasoning. This paper introduces ERASE, which instead improves model behavior when new documents are acquired, by incrementally deleting or rewriting other entries in the knowledge base each time a document is added. In two new benchmark datasets evaluating models' ability to answer questions about a stream of news articles or conversations, ERASE improves accuracy relative to conventional retrieval-augmented generation by 7-13% (Mixtral-8x7B) and 6-10% (Llama-3-8B) absolute. Code and data are available at https://github.com/belindal/ERASE
Is Retriever Merely an Approximator of Reader?
The state of the art in open-domain question answering (QA) relies on an efficient retriever that drastically reduces the search space for the expensive reader. A rather overlooked question in the community is the relationship between the retriever and the reader, and in particular, if the whole purpose of the retriever is just a fast approximation for the reader. Our empirical evidence indicates that the answer is no, and that the reader and the retriever are complementary to each other even in terms of accuracy only. We make a careful conjecture that the architectural constraint of the retriever, which has been originally intended for enabling approximate search, seems to also make the model more robust in large-scale search. We then propose to distill the reader into the retriever so that the retriever absorbs the strength of the reader while keeping its own benefit. Experimental results show that our method can enhance the document recall rate as well as the end-to-end QA accuracy of off-the-shelf retrievers in open-domain QA tasks.
Ontology-Based Concept Distillation for Radiology Report Retrieval and Labeling
Retrieval-augmented learning based on radiology reports has emerged as a promising direction to improve performance on long-tail medical imaging tasks, such as rare disease detection in chest X-rays. Most existing methods rely on comparing high-dimensional text embeddings from models like CLIP or CXR-BERT, which are often difficult to interpret, computationally expensive, and not well-aligned with the structured nature of medical knowledge. We propose a novel, ontology-driven alternative for comparing radiology report texts based on clinically grounded concepts from the Unified Medical Language System (UMLS). Our method extracts standardised medical entities from free-text reports using an enhanced pipeline built on RadGraph-XL and SapBERT. These entities are linked to UMLS concepts (CUIs), enabling a transparent, interpretable set-based representation of each report. We then define a task-adaptive similarity measure based on a modified and weighted version of the Tversky Index that accounts for synonymy, negation, and hierarchical relationships between medical entities. This allows efficient and semantically meaningful similarity comparisons between reports. We demonstrate that our approach outperforms state-of-the-art embedding-based retrieval methods in a radiograph classification task on MIMIC-CXR, particularly in long-tail settings. Additionally, we use our pipeline to generate ontology-backed disease labels for MIMIC-CXR, offering a valuable new resource for downstream learning tasks. Our work provides more explainable, reliable, and task-specific retrieval strategies in clinical AI systems, especially when interpretability and domain knowledge integration are essential. Our code is available at https://github.com/Felix-012/ontology-concept-distillation
Augmenting Pre-trained Language Models with QA-Memory for Open-Domain Question Answering
Retrieval augmented language models have recently become the standard for knowledge intensive tasks. Rather than relying purely on latent semantics within the parameters of large neural models, these methods enlist a semi-parametric memory to encode an index of knowledge for the model to retrieve over. Most prior work has employed text passages as the unit of knowledge, which has high coverage at the cost of interpretability, controllability, and efficiency. The opposite properties arise in other methods which have instead relied on knowledge base (KB) facts. At the same time, more recent work has demonstrated the effectiveness of storing and retrieving from an index of Q-A pairs derived from text lewis2021paq. This approach yields a high coverage knowledge representation that maintains KB-like properties due to its representations being more atomic units of information. In this work we push this line of research further by proposing a question-answer augmented encoder-decoder model and accompanying pretraining strategy. This yields an end-to-end system that not only outperforms prior QA retrieval methods on single-hop QA tasks but also enables compositional reasoning, as demonstrated by strong performance on two multi-hop QA datasets. Together, these methods improve the ability to interpret and control the model while narrowing the performance gap with passage retrieval systems.
RAR-b: Reasoning as Retrieval Benchmark
Semantic textual similartiy (STS) and information retrieval tasks (IR) tasks have been the two major avenues to record the progress of embedding models in the past few years. Under the emerging Retrieval-augmented Generation (RAG) paradigm, we envision the need to evaluate next-level language understanding abilities of embedding models, and take a conscious look at the reasoning abilities stored in them. Addressing this, we pose the question: Can retrievers solve reasoning problems? By transforming reasoning tasks into retrieval tasks, we find that without specifically trained for reasoning-level language understanding, current state-of-the-art retriever models may still be far from being competent for playing the role of assisting LLMs, especially in reasoning-intensive tasks. Moreover, albeit trained to be aware of instructions, instruction-aware IR models are often better off without instructions in inference time for reasoning tasks, posing an overlooked retriever-LLM behavioral gap for the research community to align. However, recent decoder-based embedding models show great promise in narrowing the gap, highlighting the pathway for embedding models to achieve reasoning-level language understanding. We also show that, although current off-the-shelf re-ranker models fail on these tasks, injecting reasoning abilities into them through fine-tuning still appears easier than doing so to bi-encoders, and we are able to achieve state-of-the-art performance across all tasks by fine-tuning a reranking model. We release Reasoning as Retrieval Benchmark (RAR-b), a holistic suite of tasks and settings to evaluate the reasoning abilities stored in retriever models. RAR-b is available at https://github.com/gowitheflow-1998/RAR-b.
An Information Bottleneck Perspective for Effective Noise Filtering on Retrieval-Augmented Generation
Retrieval-augmented generation integrates the capabilities of large language models with relevant information retrieved from an extensive corpus, yet encounters challenges when confronted with real-world noisy data. One recent solution is to train a filter module to find relevant content but only achieve suboptimal noise compression. In this paper, we propose to introduce the information bottleneck theory into retrieval-augmented generation. Our approach involves the filtration of noise by simultaneously maximizing the mutual information between compression and ground output, while minimizing the mutual information between compression and retrieved passage. In addition, we derive the formula of information bottleneck to facilitate its application in novel comprehensive evaluations, the selection of supervised fine-tuning data, and the construction of reinforcement learning rewards. Experimental results demonstrate that our approach achieves significant improvements across various question answering datasets, not only in terms of the correctness of answer generation but also in the conciseness with 2.5% compression rate.
Improving Retrieval-Augmented Large Language Models via Data Importance Learning
Retrieval augmentation enables large language models to take advantage of external knowledge, for example on tasks like question answering and data imputation. However, the performance of such retrieval-augmented models is limited by the data quality of their underlying retrieval corpus. In this paper, we propose an algorithm based on multilinear extension for evaluating the data importance of retrieved data points. There are exponentially many terms in the multilinear extension, and one key contribution of this paper is a polynomial time algorithm that computes exactly, given a retrieval-augmented model with an additive utility function and a validation set, the data importance of data points in the retrieval corpus using the multilinear extension of the model's utility function. We further proposed an even more efficient ({\epsilon}, {\delta})-approximation algorithm. Our experimental results illustrate that we can enhance the performance of large language models by only pruning or reweighting the retrieval corpus, without requiring further training. For some tasks, this even allows a small model (e.g., GPT-JT), augmented with a search engine API, to outperform GPT-3.5 (without retrieval augmentation). Moreover, we show that weights based on multilinear extension can be computed efficiently in practice (e.g., in less than ten minutes for a corpus with 100 million elements).
RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
Retrieval-augmented language models can better adapt to changes in world state and incorporate long-tail knowledge. However, most existing methods retrieve only short contiguous chunks from a retrieval corpus, limiting holistic understanding of the overall document context. We introduce the novel approach of recursively embedding, clustering, and summarizing chunks of text, constructing a tree with differing levels of summarization from the bottom up. At inference time, our RAPTOR model retrieves from this tree, integrating information across lengthy documents at different levels of abstraction. Controlled experiments show that retrieval with recursive summaries offers significant improvements over traditional retrieval-augmented LMs on several tasks. On question-answering tasks that involve complex, multi-step reasoning, we show state-of-the-art results; for example, by coupling RAPTOR retrieval with the use of GPT-4, we can improve the best performance on the QuALITY benchmark by 20% in absolute accuracy.
RaDeR: Reasoning-aware Dense Retrieval Models
We propose RaDeR, a set of reasoning-based dense retrieval models trained with data derived from mathematical problem solving using large language models (LLMs). Our method leverages retrieval-augmented reasoning trajectories of an LLM and self-reflective relevance evaluation, enabling the creation of both diverse and hard-negative samples for reasoning-intensive relevance. RaDeR retrievers, trained for mathematical reasoning, effectively generalize to diverse reasoning tasks in the BRIGHT and RAR-b benchmarks, consistently outperforming strong baselines in overall performance. Notably, RaDeR achieves significantly higher performance than baselines on the Math and Coding splits. In addition, RaDeR presents the first dense retriever that outperforms BM25 when queries are Chain-of-Thought reasoning steps, underscoring the critical role of reasoning-based retrieval to augment reasoning language models. Furthermore, RaDeR achieves comparable or superior performance while using only 2.5% of the training data used by the concurrent work REASONIR, highlighting the quality of our synthesized training data.
RetroLLM: Empowering Large Language Models to Retrieve Fine-grained Evidence within Generation
Large language models (LLMs) exhibit remarkable generative capabilities but often suffer from hallucinations. Retrieval-augmented generation (RAG) offers an effective solution by incorporating external knowledge, but existing methods still face several limitations: additional deployment costs of separate retrievers, redundant input tokens from retrieved text chunks, and the lack of joint optimization of retrieval and generation. To address these issues, we propose RetroLLM, a unified framework that integrates retrieval and generation into a single, cohesive process, enabling LLMs to directly generate fine-grained evidence from the corpus with constrained decoding. Moreover, to mitigate false pruning in the process of constrained evidence generation, we introduce (1) hierarchical FM-Index constraints, which generate corpus-constrained clues to identify a subset of relevant documents before evidence generation, reducing irrelevant decoding space; and (2) a forward-looking constrained decoding strategy, which considers the relevance of future sequences to improve evidence accuracy. Extensive experiments on five open-domain QA datasets demonstrate RetroLLM's superior performance across both in-domain and out-of-domain tasks. The code is available at https://github.com/sunnynexus/RetroLLM.
DIVER: A Multi-Stage Approach for Reasoning-intensive Information Retrieval
Retrieval-augmented generation has achieved strong performance on knowledge-intensive tasks where query-document relevance can be identified through direct lexical or semantic matches. However, many real-world queries involve abstract reasoning, analogical thinking, or multi-step inference, which existing retrievers often struggle to capture. To address this challenge, we present DIVER, a retrieval pipeline tailored for reasoning-intensive information retrieval. DIVER consists of four components: document processing to improve input quality, LLM-driven query expansion via iterative document interaction, a reasoning-enhanced retriever fine-tuned on synthetic multi-domain data with hard negatives, and a pointwise reranker that combines LLM-assigned helpfulness scores with retrieval scores. On the BRIGHT benchmark, DIVER achieves state-of-the-art nDCG@10 scores of 41.6 and 28.9 on original queries, consistently outperforming competitive reasoning-aware models. These results demonstrate the effectiveness of reasoning-aware retrieval strategies in complex real-world tasks. Our code and retrieval model will be released soon.
Reliable, Adaptable, and Attributable Language Models with Retrieval
Parametric language models (LMs), which are trained on vast amounts of web data, exhibit remarkable flexibility and capability. However, they still face practical challenges such as hallucinations, difficulty in adapting to new data distributions, and a lack of verifiability. In this position paper, we advocate for retrieval-augmented LMs to replace parametric LMs as the next generation of LMs. By incorporating large-scale datastores during inference, retrieval-augmented LMs can be more reliable, adaptable, and attributable. Despite their potential, retrieval-augmented LMs have yet to be widely adopted due to several obstacles: specifically, current retrieval-augmented LMs struggle to leverage helpful text beyond knowledge-intensive tasks such as question answering, have limited interaction between retrieval and LM components, and lack the infrastructure for scaling. To address these, we propose a roadmap for developing general-purpose retrieval-augmented LMs. This involves a reconsideration of datastores and retrievers, the exploration of pipelines with improved retriever-LM interaction, and significant investment in infrastructure for efficient training and inference.
Meta Knowledge for Retrieval Augmented Large Language Models
Retrieval Augmented Generation (RAG) is a technique used to augment Large Language Models (LLMs) with contextually relevant, time-critical, or domain-specific information without altering the underlying model parameters. However, constructing RAG systems that can effectively synthesize information from large and diverse set of documents remains a significant challenge. We introduce a novel data-centric RAG workflow for LLMs, transforming the traditional retrieve-then-read system into a more advanced prepare-then-rewrite-then-retrieve-then-read framework, to achieve higher domain expert-level understanding of the knowledge base. Our methodology relies on generating metadata and synthetic Questions and Answers (QA) for each document, as well as introducing the new concept of Meta Knowledge Summary (MK Summary) for metadata-based clusters of documents. The proposed innovations enable personalized user-query augmentation and in-depth information retrieval across the knowledge base. Our research makes two significant contributions: using LLMs as evaluators and employing new comparative performance metrics, we demonstrate that (1) using augmented queries with synthetic question matching significantly outperforms traditional RAG pipelines that rely on document chunking (p < 0.01), and (2) meta knowledge-augmented queries additionally significantly improve retrieval precision and recall, as well as the final answers breadth, depth, relevancy, and specificity. Our methodology is cost-effective, costing less than $20 per 2000 research papers using Claude 3 Haiku, and can be adapted with any fine-tuning of either the language or embedding models to further enhance the performance of end-to-end RAG pipelines.
Enhancing Retrieval and Managing Retrieval: A Four-Module Synergy for Improved Quality and Efficiency in RAG Systems
Retrieval-augmented generation (RAG) techniques leverage the in-context learning capabilities of large language models (LLMs) to produce more accurate and relevant responses. Originating from the simple 'retrieve-then-read' approach, the RAG framework has evolved into a highly flexible and modular paradigm. A critical component, the Query Rewriter module, enhances knowledge retrieval by generating a search-friendly query. This method aligns input questions more closely with the knowledge base. Our research identifies opportunities to enhance the Query Rewriter module to Query Rewriter+ by generating multiple queries to overcome the Information Plateaus associated with a single query and by rewriting questions to eliminate Ambiguity, thereby clarifying the underlying intent. We also find that current RAG systems exhibit issues with Irrelevant Knowledge; to overcome this, we propose the Knowledge Filter. These two modules are both based on the instruction-tuned Gemma-2B model, which together enhance response quality. The final identified issue is Redundant Retrieval; we introduce the Memory Knowledge Reservoir and the Retriever Trigger to solve this. The former supports the dynamic expansion of the RAG system's knowledge base in a parameter-free manner, while the latter optimizes the cost for accessing external knowledge, thereby improving resource utilization and response efficiency. These four RAG modules synergistically improve the response quality and efficiency of the RAG system. The effectiveness of these modules has been validated through experiments and ablation studies across six common QA datasets. The source code can be accessed at https://github.com/Ancientshi/ERM4.
K-COMP: Retrieval-Augmented Medical Domain Question Answering With Knowledge-Injected Compressor
Retrieval-augmented question answering (QA) integrates external information and thereby increases the QA accuracy of reader models that lack domain knowledge. However, documents retrieved for closed domains require high expertise, so the reader model may have difficulty fully comprehending the text. Moreover, the retrieved documents contain thousands of tokens, some unrelated to the question. As a result, the documents include some inaccurate information, which could lead the reader model to mistrust the passages and could result in hallucinations. To solve these problems, we propose K-comp (Knowledge-injected compressor) which provides the knowledge required to answer correctly. The compressor automatically generates the prior knowledge necessary to facilitate the answer process prior to compression of the retrieved passages. Subsequently, the passages are compressed autoregressively, with the generated knowledge being integrated into the compression process. This process ensures alignment between the question intent and the compressed context. By augmenting this prior knowledge and concise context, the reader models are guided toward relevant answers and trust the context.
Decomposing Complex Queries for Tip-of-the-tongue Retrieval
When re-finding items, users who forget or are uncertain about identifying details often rely on creative strategies for expressing their information needs -- complex queries that describe content elements (e.g., book characters or events), information beyond the document text (e.g., descriptions of book covers), or personal context (e.g., when they read a book). This retrieval setting, called tip of the tongue (TOT), is especially challenging for models heavily reliant on lexical and semantic overlap between query and document text. In this work, we introduce a simple yet effective framework for handling such complex queries by decomposing the query into individual clues, routing those as sub-queries to specialized retrievers, and ensembling the results. This approach allows us to take advantage of off-the-shelf retrievers (e.g., CLIP for retrieving images of book covers) or incorporate retriever-specific logic (e.g., date constraints). We show that our framework incorportating query decompositions into retrievers can improve gold book recall up to 7% relative again for Recall@5 on a new collection of 14,441 real-world query-book pairs from an online community for resolving TOT inquiries.
POLYRAG: Integrating Polyviews into Retrieval-Augmented Generation for Medical Applications
Large language models (LLMs) have become a disruptive force in the industry, introducing unprecedented capabilities in natural language processing, logical reasoning and so on. However, the challenges of knowledge updates and hallucination issues have limited the application of LLMs in medical scenarios, where retrieval-augmented generation (RAG) can offer significant assistance. Nevertheless, existing retrieve-then-read approaches generally digest the retrieved documents, without considering the timeliness, authoritativeness and commonality of retrieval. We argue that these approaches can be suboptimal, especially in real-world applications where information from different sources might conflict with each other and even information from the same source in different time scale might be different, and totally relying on this would deteriorate the performance of RAG approaches. We propose PolyRAG that carefully incorporate judges from different perspectives and finally integrate the polyviews for retrieval augmented generation in medical applications. Due to the scarcity of real-world benchmarks for evaluation, to bridge the gap we propose PolyEVAL, a benchmark consists of queries and documents collected from real-world medical scenarios (including medical policy, hospital & doctor inquiry and healthcare) with multiple tagging (e.g., timeliness, authoritativeness) on them. Extensive experiments and analysis on PolyEVAL have demonstrated the superiority of PolyRAG.
RULE: Reliable Multimodal RAG for Factuality in Medical Vision Language Models
The recent emergence of Medical Large Vision Language Models (Med-LVLMs) has enhanced medical diagnosis. However, current Med-LVLMs frequently encounter factual issues, often generating responses that do not align with established medical facts. Retrieval-Augmented Generation (RAG), which utilizes external knowledge, can improve the factual accuracy of these models but introduces two major challenges. First, limited retrieved contexts might not cover all necessary information, while excessive retrieval can introduce irrelevant and inaccurate references, interfering with the model's generation. Second, in cases where the model originally responds correctly, applying RAG can lead to an over-reliance on retrieved contexts, resulting in incorrect answers. To address these issues, we propose RULE, which consists of two components. First, we introduce a provably effective strategy for controlling factuality risk through the calibrated selection of the number of retrieved contexts. Second, based on samples where over-reliance on retrieved contexts led to errors, we curate a preference dataset to fine-tune the model, balancing its dependence on inherent knowledge and retrieved contexts for generation. We demonstrate the effectiveness of RULE on three medical VQA datasets, achieving an average improvement of 20.8% in factual accuracy. We publicly release our benchmark and code in https://github.com/richard-peng-xia/RULE.
RA-ISF: Learning to Answer and Understand from Retrieval Augmentation via Iterative Self-Feedback
Large language models (LLMs) demonstrate exceptional performance in numerous tasks but still heavily rely on knowledge stored in their parameters. Moreover, updating this knowledge incurs high training costs. Retrieval-augmented generation (RAG) methods address this issue by integrating external knowledge. The model can answer questions it couldn't previously by retrieving knowledge relevant to the query. This approach improves performance in certain scenarios for specific tasks. However, if irrelevant texts are retrieved, it may impair model performance. In this paper, we propose Retrieval Augmented Iterative Self-Feedback (RA-ISF), a framework that iteratively decomposes tasks and processes them in three submodules to enhance the model's problem-solving capabilities. Experiments show that our method outperforms existing benchmarks, performing well on models like GPT3.5, Llama2, significantly enhancing factual reasoning capabilities and reducing hallucinations.
Optimizing Retrieval-Augmented Generation: Analysis of Hyperparameter Impact on Performance and Efficiency
Large language models achieve high task performance yet often hallucinate or rely on outdated knowledge. Retrieval-augmented generation (RAG) addresses these gaps by coupling generation with external search. We analyse how hyperparameters influence speed and quality in RAG systems, covering Chroma and Faiss vector stores, chunking policies, cross-encoder re-ranking, and temperature, and we evaluate six metrics: faithfulness, answer correctness, answer relevancy, context precision, context recall, and answer similarity. Chroma processes queries 13% faster, whereas Faiss yields higher retrieval precision, revealing a clear speed-accuracy trade-off. Naive fixed-length chunking with small windows and minimal overlap outperforms semantic segmentation while remaining the quickest option. Re-ranking provides modest gains in retrieval quality yet increases runtime by roughly a factor of 5, so its usefulness depends on latency constraints. These results help practitioners balance computational cost and accuracy when tuning RAG systems for transparent, up-to-date responses. Finally, we re-evaluate the top configurations with a corrective RAG workflow and show that their advantages persist when the model can iteratively request additional evidence. We obtain a near-perfect context precision (99%), which demonstrates that RAG systems can achieve extremely high retrieval accuracy with the right combination of hyperparameters, with significant implications for applications where retrieval quality directly impacts downstream task performance, such as clinical decision support in healthcare.
Retrieval-Augmented Generation by Evidence Retroactivity in LLMs
Retrieval-augmented generation has gained significant attention due to its ability to integrate relevant external knowledge, enhancing the accuracy and reliability of the LLMs' responses. Most of the existing methods apply a dynamic multiple retrieval-generating process, to address multi-hop complex questions by decomposing them into sub-problems. However, these methods rely on an unidirectional forward reasoning paradigm, where errors from insufficient reasoning steps or inherent flaws in current retrieval systems are irreversible, potentially derailing the entire reasoning chain. For the first time, this work introduces Retroactive Retrieval-Augmented Generation (RetroRAG), a novel framework to build a retroactive reasoning paradigm. RetroRAG revises and updates the evidence, redirecting the reasoning chain to the correct direction. RetroRAG constructs an evidence-collation-discovery framework to search, generate, and refine credible evidence. It synthesizes inferential evidence related to the key entities in the question from the existing source knowledge and formulates search queries to uncover additional information. As new evidence is found, RetroRAG continually updates and organizes this information, enhancing its ability to locate further necessary evidence. Paired with an Answerer to generate and evaluate outputs, RetroRAG is capable of refining its reasoning process iteratively until a reliable answer is obtained. Empirical evaluations show that RetroRAG significantly outperforms existing methods.
The Neglected Tails of Vision-Language Models
Vision-language models (VLMs) excel in zero-shot recognition but their performance varies greatly across different visual concepts. For example, although CLIP achieves impressive accuracy on ImageNet (60-80%), its performance drops below 10% for more than ten concepts like night snake, presumably due to their limited presence in the pretraining data. However, measuring the frequency of concepts in VLMs' large-scale datasets is challenging. We address this by using large language models (LLMs) to count the number of pretraining texts that contain synonyms of these concepts. Our analysis confirms that popular datasets, such as LAION, exhibit a long-tailed concept distribution, yielding biased performance in VLMs. We also find that downstream applications of VLMs, including visual chatbots (e.g., GPT-4V) and text-to-image models (e.g., Stable Diffusion), often fail to recognize or generate images of rare concepts identified by our method. To mitigate the imbalanced performance of zero-shot VLMs, we propose REtrieval-Augmented Learning (REAL). First, instead of prompting VLMs using the original class names, REAL uses their most frequent synonyms found in pretraining texts. This simple change already outperforms costly human-engineered and LLM-enriched prompts over nine benchmark datasets. Second, REAL trains a linear classifier on a small yet balanced set of pretraining data retrieved using concept synonyms. REAL surpasses the previous zero-shot SOTA, using 400x less storage and 10,000x less training time!
Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models
Retrieval-augmented language models (RALMs) represent a substantial advancement in the capabilities of large language models, notably in reducing factual hallucination by leveraging external knowledge sources. However, the reliability of the retrieved information is not always guaranteed. The retrieval of irrelevant data can lead to misguided responses, and potentially causing the model to overlook its inherent knowledge, even when it possesses adequate information to address the query. Moreover, standard RALMs often struggle to assess whether they possess adequate knowledge, both intrinsic and retrieved, to provide an accurate answer. In situations where knowledge is lacking, these systems should ideally respond with "unknown" when the answer is unattainable. In response to these challenges, we introduces Chain-of-Noting (CoN), a novel approach aimed at improving the robustness of RALMs in facing noisy, irrelevant documents and in handling unknown scenarios. The core idea of CoN is to generate sequential reading notes for retrieved documents, enabling a thorough evaluation of their relevance to the given question and integrating this information to formulate the final answer. We employed ChatGPT to create training data for CoN, which was subsequently trained on an LLaMa-2 7B model. Our experiments across four open-domain QA benchmarks show that RALMs equipped with CoN significantly outperform standard RALMs. Notably, CoN achieves an average improvement of +7.9 in EM score given entirely noisy retrieved documents and +10.5 in rejection rates for real-time questions that fall outside the pre-training knowledge scope.
Optimization of embeddings storage for RAG systems using quantization and dimensionality reduction techniques
Retrieval-Augmented Generation enhances language models by retrieving relevant information from external knowledge bases, relying on high-dimensional vector embeddings typically stored in float32 precision. However, storing these embeddings at scale presents significant memory challenges. To address this issue, we systematically investigate on MTEB benchmark two complementary optimization strategies: quantization, evaluating standard formats (float16, int8, binary) and low-bit floating-point types (float8), and dimensionality reduction, assessing methods like PCA, Kernel PCA, UMAP, Random Projections and Autoencoders. Our results show that float8 quantization achieves a 4x storage reduction with minimal performance degradation (<0.3%), significantly outperforming int8 quantization at the same compression level, being simpler to implement. PCA emerges as the most effective dimensionality reduction technique. Crucially, combining moderate PCA (e.g., retaining 50% dimensions) with float8 quantization offers an excellent trade-off, achieving 8x total compression with less performance impact than using int8 alone (which provides only 4x compression). To facilitate practical application, we propose a methodology based on visualizing the performance-storage trade-off space to identify the optimal configuration that maximizes performance within their specific memory constraints.
Retrieval Feedback Memory Enhancement Large Model Retrieval Generation Method
Large Language Models (LLMs) have shown remarkable capabilities across diverse tasks, yet they face inherent limitations such as constrained parametric knowledge and high retraining costs. Retrieval-Augmented Generation (RAG) augments the generation process by retrieving externally stored knowledge absent from the models internal parameters. However, RAG methods face challenges such as information loss and redundant retrievals during multi-round queries, accompanying the difficulties in precisely characterizing knowledge gaps for complex tasks. To address these problems, we propose Retrieval Feedback and Memory Retrieval Augmented Generation(RFM-RAG), which transforms the stateless retrieval of previous methods into stateful continuous knowledge management by constructing a dynamic evidence pool. Specifically, our method generates refined queries describing the models knowledge gaps using relational triples from questions and evidence from the dynamic evidence pool; Retrieves critical external knowledge to iteratively update this evidence pool; Employs a R-Feedback Model to evaluate evidence completeness until convergence. Compared to traditional RAG methods, our approach enables persistent storage of retrieved passages and effectively distills key information from passages to construct clearly new queries. Experiments on three public QA benchmarks demonstrate that RFM-RAG outperforms previous methods and improves overall system accuracy.
RAVEN: Multitask Retrieval Augmented Vision-Language Learning
The scaling of large language models to encode all the world's knowledge in model parameters is unsustainable and has exacerbated resource barriers. Retrieval-Augmented Generation (RAG) presents a potential solution, yet its application to vision-language models (VLMs) is under explored. Existing methods focus on models designed for single tasks. Furthermore, they're limited by the need for resource intensive pre training, additional parameter requirements, unaddressed modality prioritization and lack of clear benefit over non-retrieval baselines. This paper introduces RAVEN, a multitask retrieval augmented VLM framework that enhances base VLMs through efficient, task specific fine-tuning. By integrating retrieval augmented samples without the need for additional retrieval-specific parameters, we show that the model acquires retrieval properties that are effective across multiple tasks. Our results and extensive ablations across retrieved modalities for the image captioning and VQA tasks indicate significant performance improvements compared to non retrieved baselines +1 CIDEr on MSCOCO, +4 CIDEr on NoCaps and nearly a +3\% accuracy on specific VQA question types. This underscores the efficacy of applying RAG approaches to VLMs, marking a stride toward more efficient and accessible multimodal learning.
Med-R^3: Enhancing Medical Retrieval-Augmented Reasoning of LLMs via Progressive Reinforcement Learning
In medical scenarios, effectively retrieving external knowledge and leveraging it for rigorous logical reasoning is of significant importance. Despite their potential, existing work has predominantly focused on enhancing either retrieval or reasoning capabilities of the models in isolation, with little attention given to their joint optimization, which leads to limited coordination between the two processes. Additionally, current methods rely heavily on supervised fine-tuning (SFT), which can cause models to memorize existing problem-solving pathways, thereby restricting their generalization ability when confronted with novel problem contexts. Furthermore, while some studies have explored to improve retrieval-augmented reasoning in general domains via reinforcement learning, their reward function designs do not adequately capture the specific demands of the medical domain. To address these challenges, we introduce **Med-R^3**, a **Med**ical **R**etrieval-augmented **R**easoning framework driven by progressive **R**einforcement learning. In this framework, we first develop the model's ability to perform logical reasoning over medical problems. Subsequently, on the basis of this foundation, we adaptively optimize the retrieval capability to better align with the characteristics of knowledge corpus and external information utilization throughout the reasoning process. Finally, we conduct joint optimization of the model's retrieval and reasoning coordination. Extensive experiments indicate that **Med-R^3** could achieve state-of-the-art performances, with LLaMA3.1-8B-Instruct + Med-R^3 surpassing closed-sourced GPT-4o-mini by 3.93\% at a comparable parameter scale, while Qwen2.5-14B augmented with Med-R^3 shows a more substantial gain of 13.53\%.
Retrieve Anything To Augment Large Language Models
Large language models (LLMs) face significant challenges stemming from the inherent limitations in knowledge, memory, alignment, and action. These challenges cannot be addressed by LLMs alone, but should rely on assistance from the external world, such as knowledge base, memory store, demonstration examples, and tools. Retrieval augmentation stands as a vital mechanism for bridging the gap between LLMs and the external assistance. However, conventional methods encounter two pressing issues. On one hand, the general-purpose retrievers are not properly optimized for the retrieval augmentation of LLMs. On the other hand, the task-specific retrievers lack the required versatility, hindering their performance across the diverse retrieval augmentation scenarios. In this work, we present a novel approach, the LLM Embedder, which comprehensively support the diverse needs of LLMs' retrieval augmentation with one unified embedding model. Training such an unified model is non-trivial, as various retrieval tasks aim to capture distinct semantic relationships, often subject to mutual interference. To address this challenge, we systematically optimize our training methodology. This includes reward formulation based on LLMs' feedback, the stabilization of knowledge distillation, multi-task fine-tuning with explicit instructions, and the use of homogeneous in-batch negative sampling. These optimization strategies contribute to the outstanding empirical performance of the LLM-Embedder. Notably, it yields remarkable enhancements in retrieval augmentation for LLMs, surpassing both general-purpose and task-specific retrievers in various evaluation scenarios. This project is made publicly available at https://github.com/FlagOpen/FlagEmbedding.
Active Retrieval Augmented Generation
Despite the remarkable ability of large language models (LMs) to comprehend and generate language, they have a tendency to hallucinate and create factually inaccurate output. Augmenting LMs by retrieving information from external knowledge resources is one promising solution. Most existing retrieval augmented LMs employ a retrieve-and-generate setup that only retrieves information once based on the input. This is limiting, however, in more general scenarios involving generation of long texts, where continually gathering information throughout generation is essential. In this work, we provide a generalized view of active retrieval augmented generation, methods that actively decide when and what to retrieve across the course of the generation. We propose Forward-Looking Active REtrieval augmented generation (FLARE), a generic method which iteratively uses a prediction of the upcoming sentence to anticipate future content, which is then utilized as a query to retrieve relevant documents to regenerate the sentence if it contains low-confidence tokens. We test FLARE along with baselines comprehensively over 4 long-form knowledge-intensive generation tasks/datasets. FLARE achieves superior or competitive performance on all tasks, demonstrating the effectiveness of our method. Code and datasets are available at https://github.com/jzbjyb/FLARE.
Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting
Retrieval augmented generation (RAG) combines the generative abilities of large language models (LLMs) with external knowledge sources to provide more accurate and up-to-date responses. Recent RAG advancements focus on improving retrieval outcomes through iterative LLM refinement or self-critique capabilities acquired through additional instruction tuning of LLMs. In this work, we introduce Speculative RAG - a framework that leverages a larger generalist LM to efficiently verify multiple RAG drafts produced in parallel by a smaller, distilled specialist LM. Each draft is generated from a distinct subset of retrieved documents, offering diverse perspectives on the evidence while reducing input token counts per draft. This approach enhances comprehension of each subset and mitigates potential position bias over long context. Our method accelerates RAG by delegating drafting to the smaller specialist LM, with the larger generalist LM performing a single verification pass over the drafts. Extensive experiments demonstrate that Speculative RAG achieves state-of-the-art performance with reduced latency on TriviaQA, MuSiQue, PubHealth, and ARC-Challenge benchmarks. It notably enhances accuracy by up to 12.97% while reducing latency by 51% compared to conventional RAG systems on PubHealth.
Reinforced Information Retrieval
While retrieval techniques are widely used in practice, they still face significant challenges in cross-domain scenarios. Recently, generation-augmented methods have emerged as a promising solution to this problem. These methods enhance raw queries by incorporating additional information from an LLM-based generator, facilitating more direct retrieval of relevant documents. However, existing methods struggle with highly specialized situations that require extensive domain expertise. To address this problem, we present Reinforced-IR, a novel approach that jointly adapts a pre-trained retriever and generator for precise cross-domain retrieval. A key innovation of Reinforced-IR is its Self-Boosting framework, which enables retriever and generator to learn from each other's feedback. Specifically, the generator is reinforced to generate query augmentations that enhance the retriever's performance, while the retriever is trained to better discriminate the relevant documents identified by the generator. This iterative process allows the end-to-end retrieval performance to be progressively optimized using an unlabeled corpus from the target domain. In our experiment, Reinforced-IR outperforms existing domain adaptation methods by a large margin, leading to substantial improvements in retrieval quality across a wide range of application scenarios.
Understanding the Impact of Confidence in Retrieval Augmented Generation: A Case Study in the Medical Domain
Retrieval Augmented Generation (RAG) complements the knowledge of Large Language Models (LLMs) by leveraging external information to enhance response accuracy for queries. This approach is widely applied in several fields by taking its advantage of injecting the most up-to-date information, and researchers are focusing on understanding and improving this aspect to unlock the full potential of RAG in such high-stakes applications. However, despite the potential of RAG to address these needs, the mechanisms behind the confidence levels of its outputs remain underexplored, although the confidence of information is very critical in some domains, such as finance, healthcare, and medicine. Our study focuses the impact of RAG on confidence within the medical domain under various configurations and models. We evaluate confidence by treating the model's predicted probability as its output and calculating Expected Calibration Error (ECE) and Adaptive Calibration Error (ACE) scores based on the probabilities and accuracy. In addition, we analyze whether the order of retrieved documents within prompts calibrates the confidence. Our findings reveal large variation in confidence and accuracy depending on the model, settings, and the format of input prompts. These results underscore the necessity of optimizing configurations based on the specific model and conditions.
Retrieval Augmented Generation and Understanding in Vision: A Survey and New Outlook
Retrieval-augmented generation (RAG) has emerged as a pivotal technique in artificial intelligence (AI), particularly in enhancing the capabilities of large language models (LLMs) by enabling access to external, reliable, and up-to-date knowledge sources. In the context of AI-Generated Content (AIGC), RAG has proven invaluable by augmenting model outputs with supplementary, relevant information, thus improving their quality. Recently, the potential of RAG has extended beyond natural language processing, with emerging methods integrating retrieval-augmented strategies into the computer vision (CV) domain. These approaches aim to address the limitations of relying solely on internal model knowledge by incorporating authoritative external knowledge bases, thereby improving both the understanding and generation capabilities of vision models. This survey provides a comprehensive review of the current state of retrieval-augmented techniques in CV, focusing on two main areas: (I) visual understanding and (II) visual generation. In the realm of visual understanding, we systematically review tasks ranging from basic image recognition to complex applications such as medical report generation and multimodal question answering. For visual content generation, we examine the application of RAG in tasks related to image, video, and 3D generation. Furthermore, we explore recent advancements in RAG for embodied AI, with a particular focus on applications in planning, task execution, multimodal perception, interaction, and specialized domains. Given that the integration of retrieval-augmented techniques in CV is still in its early stages, we also highlight the key limitations of current approaches and propose future research directions to drive the development of this promising area.
R1-Searcher++: Incentivizing the Dynamic Knowledge Acquisition of LLMs via Reinforcement Learning
Large Language Models (LLMs) are powerful but prone to hallucinations due to static knowledge. Retrieval-Augmented Generation (RAG) helps by injecting external information, but current methods often are costly, generalize poorly, or ignore the internal knowledge of the model. In this paper, we introduce R1-Searcher++, a novel framework designed to train LLMs to adaptively leverage both internal and external knowledge sources. R1-Searcher++ employs a two-stage training strategy: an initial SFT Cold-start phase for preliminary format learning, followed by RL for Dynamic Knowledge Acquisition. The RL stage uses outcome-supervision to encourage exploration, incorporates a reward mechanism for internal knowledge utilization, and integrates a memorization mechanism to continuously assimilate retrieved information, thereby enriching the model's internal knowledge. By leveraging internal knowledge and external search engine, the model continuously improves its capabilities, enabling efficient retrieval-augmented reasoning. Our experiments demonstrate that R1-Searcher++ outperforms previous RAG and reasoning methods and achieves efficient retrieval. The code is available at https://github.com/RUCAIBox/R1-Searcher-plus.
RetrievalQA: Assessing Adaptive Retrieval-Augmented Generation for Short-form Open-Domain Question Answering
Adaptive retrieval-augmented generation (ARAG) aims to dynamically determine the necessity of retrieval for queries instead of retrieving indiscriminately to enhance the efficiency and relevance of the sourced information. However, previous works largely overlook the evaluation of ARAG approaches, leading to their effectiveness being understudied. This work presents a benchmark, RetrievalQA, comprising 1,271 short-form questions covering new world and long-tail knowledge. The knowledge necessary to answer the questions is absent from LLMs; therefore, external information must be retrieved to answer correctly. This makes RetrievalQA a suitable testbed to evaluate existing ARAG methods. We observe that calibration-based methods heavily rely on threshold tuning, while vanilla prompting is inadequate for guiding LLMs to make reliable retrieval decisions. Based on our findings, we propose Time-Aware Adaptive Retrieval (TA-ARE), a simple yet effective method that helps LLMs assess the necessity of retrieval without calibration or additional training. The dataset and code will be available at https://github.com/hyintell/RetrievalQA
Dynamic Injection of Entity Knowledge into Dense Retrievers
Dense retrievers often struggle with queries involving less-frequent entities due to their limited entity knowledge. We propose the Knowledgeable Passage Retriever (KPR), a BERT-based retriever enhanced with a context-entity attention layer and dynamically updatable entity embeddings. This design enables KPR to incorporate external entity knowledge without retraining. Experiments on three datasets show that KPR consistently improves retrieval accuracy, achieving a substantial 12.6% gain on the EntityQuestions dataset over the model without KPR extensions. When built on the off-the-shelf bge-base retriever, KPR achieves state-of-the-art performance among similarly sized models on two datasets. Code and models will be released soon.
Careful Queries, Credible Results: Teaching RAG Models Advanced Web Search Tools with Reinforcement Learning
Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by integrating up-to-date external knowledge, yet real-world web environments present unique challenges. These limitations manifest as two key challenges: pervasive misinformation in the web environment, which introduces unreliable or misleading content that can degrade retrieval accuracy, and the underutilization of web tools, which, if effectively employed, could enhance query precision and help mitigate this noise, ultimately improving the retrieval results in RAG systems. To address these issues, we propose WebFilter, a novel RAG framework that generates source-restricted queries and filters out unreliable content. This approach combines a retrieval filtering mechanism with a behavior- and outcome-driven reward strategy, optimizing both query formulation and retrieval outcomes. Extensive experiments demonstrate that WebFilter improves answer quality and retrieval precision, outperforming existing RAG methods on both in-domain and out-of-domain benchmarks.
Benchmarking Retrieval-Augmented Large Language Models in Biomedical NLP: Application, Robustness, and Self-Awareness
Large language models (LLM) have demonstrated remarkable capabilities in various biomedical natural language processing (NLP) tasks, leveraging the demonstration within the input context to adapt to new tasks. However, LLM is sensitive to the selection of demonstrations. To address the hallucination issue inherent in LLM, retrieval-augmented LLM (RAL) offers a solution by retrieving pertinent information from an established database. Nonetheless, existing research work lacks rigorous evaluation of the impact of retrieval-augmented large language models on different biomedical NLP tasks. This deficiency makes it challenging to ascertain the capabilities of RAL within the biomedical domain. Moreover, the outputs from RAL are affected by retrieving the unlabeled, counterfactual, or diverse knowledge that is not well studied in the biomedical domain. However, such knowledge is common in the real world. Finally, exploring the self-awareness ability is also crucial for the RAL system. So, in this paper, we systematically investigate the impact of RALs on 5 different biomedical tasks (triple extraction, link prediction, classification, question answering, and natural language inference). We analyze the performance of RALs in four fundamental abilities, including unlabeled robustness, counterfactual robustness, diverse robustness, and negative awareness. To this end, we proposed an evaluation framework to assess the RALs' performance on different biomedical NLP tasks and establish four different testbeds based on the aforementioned fundamental abilities. Then, we evaluate 3 representative LLMs with 3 different retrievers on 5 tasks over 9 datasets.
Atlas: Few-shot Learning with Retrieval Augmented Language Models
Large language models have shown impressive few-shot results on a wide range of tasks. However, when knowledge is key for such results, as is the case for tasks such as question answering and fact checking, massive parameter counts to store knowledge seem to be needed. Retrieval augmented models are known to excel at knowledge intensive tasks without the need for as many parameters, but it is unclear whether they work in few-shot settings. In this work we present Atlas, a carefully designed and pre-trained retrieval augmented language model able to learn knowledge intensive tasks with very few training examples. We perform evaluations on a wide range of tasks, including MMLU, KILT and NaturalQuestions, and study the impact of the content of the document index, showing that it can easily be updated. Notably, Atlas reaches over 42% accuracy on Natural Questions using only 64 examples, outperforming a 540B parameters model by 3% despite having 50x fewer parameters.
Retrieval-Augmented Generation with Estimation of Source Reliability
Retrieval-Augmented Generation (RAG) is an effective approach to enhance the factual accuracy of large language models (LLMs) by retrieving information from external databases, which are typically composed of diverse sources, to supplement the limited internal knowledge of LLMs. However, the standard RAG often risks retrieving incorrect information, as it relies solely on relevance between a query and a document, overlooking the heterogeneous reliability of these sources. To address this issue, we propose Reliability-Aware RAG (RA-RAG), a new multi-source RAG framework that estimates the reliability of sources and leverages this information to prioritize highly reliable and relevant documents, ensuring more robust and accurate response generation. Specifically, RA-RAG first estimates source reliability by cross-checking information across multiple sources. It then retrieves documents from the top-kappa reliable and relevant sources and aggregates their information using weighted majority voting (WMV), where the selective retrieval ensures scalability while not compromising the performance. Comprehensive experiments show that RA-RAG consistently outperforms baselines in scenarios with heterogeneous source reliability while scaling efficiently as the number of sources increases. Furthermore, we demonstrate the ability of RA-RAG to estimate real-world sources' reliability, highlighting its practical applicability. Our code and data are available at \href{https://github.com/ml-postech/RA-RAG{RA-RAG}.}
FunnelRAG: A Coarse-to-Fine Progressive Retrieval Paradigm for RAG
Retrieval-Augmented Generation (RAG) prevails in Large Language Models. It mainly consists of retrieval and generation. The retrieval modules (a.k.a. retrievers) aim to find useful information used to facilitate generation modules (a.k.a. generators). As such, generators' performance largely depends on the effectiveness and efficiency of retrievers. However, the retrieval paradigm that we design and use remains flat, which treats the retrieval procedures as a one-off deal with constant granularity. Despite effectiveness, we argue that they suffer from two limitations: (1) flat retrieval exerts a significant burden on one retriever; (2) constant granularity limits the ceiling of retrieval performance. In this work, we propose a progressive retrieval paradigm with coarse-to-fine granularity for RAG, termed FunnelRAG, so as to balance effectiveness and efficiency. Specifically, FunnelRAG establishes a progressive retrieval pipeline by collaborating coarse-to-fine granularity, large-to-small quantity, and low-to-high capacity, which can relieve the burden on one retriever and also promote the ceiling of retrieval performance. Extensive experiments manifest that FunnelRAG achieves comparable retrieval performance while the time overhead is reduced by nearly 40 percent.
CORE-RAG: Lossless Compression for Retrieval-Augmented LLMs via Reinforcement Learning
Retrieval-Augmented Generation (RAG) has emerged as a promising approach to enhance the timeliness of knowledge updates and the factual accuracy of responses in large language models. However, incorporating a large number of retrieved documents significantly increases input length, leading to higher computational costs. Existing approaches to document compression tailored for RAG often degrade task performance, as they typically rely on predefined heuristics in the absence of clear compression guidelines. These heuristics fail to ensure that the compressed content effectively supports downstream tasks. To address these limitations, we propose CORE, a novel method for lossless context compression in RAG. CORE is optimized end-to-end and does not depend on predefined compression labels, which are often impractical to obtain. Instead, it leverages downstream task performance as a feedback signal, iteratively refining the compression policy to enhance task effectiveness. Extensive experiments across four datasets demonstrate the effectiveness of CORE. With a high compression ratio of 3%, CORE not only prevents performance degradation compared to including full documents (i.e., without compression) but also improves the average Exact Match (EM) score by 3.3 points. The code for CORE will be released soon.
Reverse Image Retrieval Cues Parametric Memory in Multimodal LLMs
Despite impressive advances in recent multimodal large language models (MLLMs), state-of-the-art models such as from the GPT-4 suite still struggle with knowledge-intensive tasks. To address this, we consider Reverse Image Retrieval (RIR) augmented generation, a simple yet effective strategy to augment MLLMs with web-scale reverse image search results. RIR robustly improves knowledge-intensive visual question answering (VQA) of GPT-4V by 37-43%, GPT-4 Turbo by 25-27%, and GPT-4o by 18-20% in terms of open-ended VQA evaluation metrics. To our surprise, we discover that RIR helps the model to better access its own world knowledge. Concretely, our experiments suggest that RIR augmentation helps by providing further visual and textual cues without necessarily containing the direct answer to a query. In addition, we elucidate cases in which RIR can hurt performance and conduct a human evaluation. Finally, we find that the overall advantage of using RIR makes it difficult for an agent that can choose to use RIR to perform better than an approach where RIR is the default setting.
Evaluating the Effectiveness and Scalability of LLM-Based Data Augmentation for Retrieval
Compact dual-encoder models are widely used for retrieval owing to their efficiency and scalability. However, such models often underperform compared to their Large Language Model (LLM)-based retrieval counterparts, likely due to their limited world knowledge. While LLM-based data augmentation has been proposed as a strategy to bridge this performance gap, there is insufficient understanding of its effectiveness and scalability to real-world retrieval problems. Existing research does not systematically explore key factors such as the optimal augmentation scale, the necessity of using large augmentation models, and whether diverse augmentations improve generalization, particularly in out-of-distribution (OOD) settings. This work presents a comprehensive study of the effectiveness of LLM augmentation for retrieval, comprising over 100 distinct experimental settings of retrieval models, augmentation models and augmentation strategies. We find that, while augmentation enhances retrieval performance, its benefits diminish beyond a certain augmentation scale, even with diverse augmentation strategies. Surprisingly, we observe that augmentation with smaller LLMs can achieve performance competitive with larger augmentation models. Moreover, we examine how augmentation effectiveness varies with retrieval model pre-training, revealing that augmentation provides the most benefit to models which are not well pre-trained. Our insights pave the way for more judicious and efficient augmentation strategies, thus enabling informed decisions and maximizing retrieval performance while being more cost-effective. Code and augmented datasets accompanying this work are publicly available at https://aka.ms/DAGR.
How faithful are RAG models? Quantifying the tug-of-war between RAG and LLMs' internal prior
Retrieval augmented generation (RAG) is often used to fix hallucinations and provide up-to-date knowledge for large language models (LLMs). However, in cases when the LLM alone incorrectly answers a question, does providing the correct retrieved content always fix the error? Conversely, in cases where the retrieved content is incorrect, does the LLM know to ignore the wrong information, or does it recapitulate the error? To answer these questions, we systematically analyze the tug-of-war between a LLM's internal knowledge (i.e. its prior) and the retrieved information in settings when they disagree. We test GPT-4 and other LLMs on question-answering abilities across datasets with and without reference documents. As expected, providing the correct retrieved information fixes most model mistakes (94% accuracy). However, when the reference document is perturbed with increasing levels of wrong values, the LLM is more likely to recite the incorrect, modified information when its internal prior is weaker but is more resistant when its prior is stronger. Similarly, we also find that the more the modified information deviates from the model's prior, the less likely the model is to prefer it. These results highlight an underlying tension between a model's prior knowledge and the information presented in reference documents.
Re-ranking the Context for Multimodal Retrieval Augmented Generation
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external knowledge to generate a response within a context with improved accuracy and reduced hallucinations. However, multi-modal RAG systems face unique challenges: (i) the retrieval process may select irrelevant entries to user query (e.g., images, documents), and (ii) vision-language models or multi-modal language models like GPT-4o may hallucinate when processing these entries to generate RAG output. In this paper, we aim to address the first challenge, i.e, improving the selection of relevant context from the knowledge-base in retrieval phase of the multi-modal RAG. Specifically, we leverage the relevancy score (RS) measure designed in our previous work for evaluating the RAG performance to select more relevant entries in retrieval process. The retrieval based on embeddings, say CLIP-based embedding, and cosine similarity usually perform poorly particularly for multi-modal data. We show that by using a more advanced relevancy measure, one can enhance the retrieval process by selecting more relevant pieces from the knowledge-base and eliminate the irrelevant pieces from the context by adaptively selecting up-to-k entries instead of fixed number of entries. Our evaluation using COCO dataset demonstrates significant enhancement in selecting relevant context and accuracy of the generated response.
Shall We Pretrain Autoregressive Language Models with Retrieval? A Comprehensive Study
Large decoder-only language models (LMs) can be largely improved in terms of perplexity by retrieval (e.g., RETRO), but its impact on text generation quality and downstream task accuracy is unclear. Thus, it is still an open question: shall we pretrain large autoregressive LMs with retrieval? To answer it, we perform a comprehensive study on a scalable pre-trained retrieval-augmented LM (i.e., RETRO) compared with standard GPT and retrieval-augmented GPT incorporated at fine-tuning or inference stages. We first provide the recipe to reproduce RETRO up to 9.5B parameters while retrieving a text corpus with 330B tokens. Based on that, we have the following novel findings: i) RETRO outperforms GPT on text generation with much less degeneration (i.e., repetition), moderately higher factual accuracy, and slightly lower toxicity with a nontoxic retrieval database. ii) On the LM Evaluation Harness benchmark, RETRO largely outperforms GPT on knowledge-intensive tasks, but is on par with GPT on other tasks. Furthermore, we introduce a simple variant of the model, RETRO++, which largely improves open-domain QA results of original RETRO (e.g., EM score +8.6 on Natural Question) and significantly outperforms retrieval-augmented GPT in both fine-tuning and zero-shot evaluation settings. Our findings highlight the promising direction of pretraining autoregressive LMs with retrieval as future foundation models. We release our implementation at: https://github.com/NVIDIA/Megatron-LM#retro.
BERGEN: A Benchmarking Library for Retrieval-Augmented Generation
Retrieval-Augmented Generation allows to enhance Large Language Models with external knowledge. In response to the recent popularity of generative LLMs, many RAG approaches have been proposed, which involve an intricate number of different configurations such as evaluation datasets, collections, metrics, retrievers, and LLMs. Inconsistent benchmarking poses a major challenge in comparing approaches and understanding the impact of each component in the pipeline. In this work, we study best practices that lay the groundwork for a systematic evaluation of RAG and present BERGEN, an end-to-end library for reproducible research standardizing RAG experiments. In an extensive study focusing on QA, we benchmark different state-of-the-art retrievers, rerankers, and LLMs. Additionally, we analyze existing RAG metrics and datasets. Our open-source library BERGEN is available under https://github.com/naver/bergen.
Adaptive Retrieval Without Self-Knowledge? Bringing Uncertainty Back Home
Retrieval Augmented Generation (RAG) improves correctness of Question Answering (QA) and addresses hallucinations in Large Language Models (LLMs), yet greatly increase computational costs. Besides, RAG is not always needed as may introduce irrelevant information. Recent adaptive retrieval methods integrate LLMs' intrinsic knowledge with external information appealing to LLM self-knowledge, but they often neglect efficiency evaluations and comparisons with uncertainty estimation techniques. We bridge this gap by conducting a comprehensive analysis of 35 adaptive retrieval methods, including 8 recent approaches and 27 uncertainty estimation techniques, across 6 datasets using 10 metrics for QA performance, self-knowledge, and efficiency. Our findings show that uncertainty estimation techniques often outperform complex pipelines in terms of efficiency and self-knowledge, while maintaining comparable QA performance.
Pre-computed memory or on-the-fly encoding? A hybrid approach to retrieval augmentation makes the most of your compute
Retrieval-augmented language models such as Fusion-in-Decoder are powerful, setting the state of the art on a variety of knowledge-intensive tasks. However, they are also expensive, due to the need to encode a large number of retrieved passages. Some work avoids this cost by pre-encoding a text corpus into a memory and retrieving dense representations directly. However, pre-encoding memory incurs a severe quality penalty as the memory representations are not conditioned on the current input. We propose LUMEN, a hybrid between these two extremes, pre-computing the majority of the retrieval representation and completing the encoding on the fly using a live encoder that is conditioned on the question and fine-tuned for the task. We show that LUMEN significantly outperforms pure memory on multiple question-answering tasks while being much cheaper than FiD, and outperforms both for any given compute budget. Moreover, the advantage of LUMEN over FiD increases with model size.
MBA-RAG: a Bandit Approach for Adaptive Retrieval-Augmented Generation through Question Complexity
Retrieval Augmented Generation (RAG) has proven to be highly effective in boosting the generative performance of language model in knowledge-intensive tasks. However, existing RAG framework either indiscriminately perform retrieval or rely on rigid single-class classifiers to select retrieval methods, leading to inefficiencies and suboptimal performance across queries of varying complexity. To address these challenges, we propose a reinforcement learning-based framework that dynamically selects the most suitable retrieval strategy based on query complexity. % our solution Our approach leverages a multi-armed bandit algorithm, which treats each retrieval method as a distinct ``arm'' and adapts the selection process by balancing exploration and exploitation. Additionally, we introduce a dynamic reward function that balances accuracy and efficiency, penalizing methods that require more retrieval steps, even if they lead to a correct result. Our method achieves new state of the art results on multiple single-hop and multi-hop datasets while reducing retrieval costs. Our code are available at https://github.com/FUTUREEEEEE/MBA .
HetaRAG: Hybrid Deep Retrieval-Augmented Generation across Heterogeneous Data Stores
Retrieval-augmented generation (RAG) has become a dominant paradigm for mitigating knowledge hallucination and staleness in large language models (LLMs) while preserving data security. By retrieving relevant evidence from private, domain-specific corpora and injecting it into carefully engineered prompts, RAG delivers trustworthy responses without the prohibitive cost of fine-tuning. Traditional retrieval-augmented generation (RAG) systems are text-only and often rely on a single storage backend, most commonly a vector database. In practice, this monolithic design suffers from unavoidable trade-offs: vector search captures semantic similarity yet loses global context; knowledge graphs excel at relational precision but struggle with recall; full-text indexes are fast and exact yet semantically blind; and relational engines such as MySQL provide strong transactional guarantees but no semantic understanding. We argue that these heterogeneous retrieval paradigms are complementary, and propose a principled fusion scheme to orchestrate them synergistically, mitigating the weaknesses of any single modality. In this work we introduce HetaRAG, a hybrid, deep-retrieval augmented generation framework that orchestrates cross-modal evidence from heterogeneous data stores. We plan to design a system that unifies vector indices, knowledge graphs, full-text engines, and structured databases into a single retrieval plane, dynamically routing and fusing evidence to maximize recall, precision, and contextual fidelity. To achieve this design goal, we carried out preliminary explorations and constructed an initial RAG pipeline; this technical report provides a brief overview. The partial code is available at https://github.com/KnowledgeXLab/HetaRAG.
CONFLARE: CONFormal LArge language model REtrieval
Retrieval-augmented generation (RAG) frameworks enable large language models (LLMs) to retrieve relevant information from a knowledge base and incorporate it into the context for generating responses. This mitigates hallucinations and allows for the updating of knowledge without retraining the LLM. However, RAG does not guarantee valid responses if retrieval fails to identify the necessary information as the context for response generation. Also, if there is contradictory content, the RAG response will likely reflect only one of the two possible responses. Therefore, quantifying uncertainty in the retrieval process is crucial for ensuring RAG trustworthiness. In this report, we introduce a four-step framework for applying conformal prediction to quantify retrieval uncertainty in RAG frameworks. First, a calibration set of questions answerable from the knowledge base is constructed. Each question's embedding is compared against document embeddings to identify the most relevant document chunks containing the answer and record their similarity scores. Given a user-specified error rate ({\alpha}), these similarity scores are then analyzed to determine a similarity score cutoff threshold. During inference, all chunks with similarity exceeding this threshold are retrieved to provide context to the LLM, ensuring the true answer is captured in the context with a (1-{\alpha}) confidence level. We provide a Python package that enables users to implement the entire workflow proposed in our work, only using LLMs and without human intervention.
Multi-Head RAG: Solving Multi-Aspect Problems with LLMs
Retrieval Augmented Generation (RAG) enhances the abilities of Large Language Models (LLMs) by enabling the retrieval of documents into the LLM context to provide more accurate and relevant responses. Existing RAG solutions do not focus on queries that may require fetching multiple documents with substantially different contents. Such queries occur frequently, but are challenging because the embeddings of these documents may be distant in the embedding space, making it hard to retrieve them all. This paper introduces Multi-Head RAG (MRAG), a novel scheme designed to address this gap with a simple yet powerful idea: leveraging activations of Transformer's multi-head attention layer, instead of the decoder layer, as keys for fetching multi-aspect documents. The driving motivation is that different attention heads can learn to capture different data aspects. Harnessing the corresponding activations results in embeddings that represent various facets of data items and queries, improving the retrieval accuracy for complex queries. We provide an evaluation methodology and metrics, synthetic datasets, and real-world use cases to demonstrate MRAG's effectiveness, showing improvements of up to 20% in relevance over standard RAG baselines. MRAG can be seamlessly integrated with existing RAG frameworks and benchmarking tools like RAGAS as well as different classes of data stores.
Zero-Indexing Internet Search Augmented Generation for Large Language Models
Retrieval augmented generation has emerged as an effective method to enhance large language model performance. This approach typically relies on an internal retrieval module that uses various indexing mechanisms to manage a static pre-processed corpus. However, such a paradigm often falls short when it is necessary to integrate the most up-to-date information that has not been updated into the corpus during generative inference time. In this paper, we explore an alternative approach that leverages standard search engine APIs to dynamically integrate the latest online information (without maintaining any index for any fixed corpus), thereby improving the quality of generated content. We design a collaborative LLM-based paradigm, where we include: (i) a parser-LLM that determines if the Internet augmented generation is demanded and extracts the search keywords if so with a single inference; (ii) a mixed ranking strategy that re-ranks the retrieved HTML files to eliminate bias introduced from the search engine API; and (iii) an extractor-LLM that can accurately and efficiently extract relevant information from the fresh content in each HTML file. We conduct extensive empirical studies to evaluate the performance of this Internet search augmented generation paradigm. The experimental results demonstrate that our method generates content with significantly improved quality. Our system has been successfully deployed in a production environment to serve 01.AI's generative inference requests.
An Efficient Memory-Augmented Transformer for Knowledge-Intensive NLP Tasks
Access to external knowledge is essential for many natural language processing tasks, such as question answering and dialogue. Existing methods often rely on a parametric model that stores knowledge in its parameters, or use a retrieval-augmented model that has access to an external knowledge source. Parametric and retrieval-augmented models have complementary strengths in terms of computational efficiency and predictive accuracy. To combine the strength of both approaches, we propose the Efficient Memory-Augmented Transformer (EMAT) -- it encodes external knowledge into a key-value memory and exploits the fast maximum inner product search for memory querying. We also introduce pre-training tasks that allow EMAT to encode informative key-value representations, and to learn an implicit strategy to integrate multiple memory slots into the transformer. Experiments on various knowledge-intensive tasks such as question answering and dialogue datasets show that, simply augmenting parametric models (T5-base) using our method produces more accurate results (e.g., 25.8 -> 44.3 EM on NQ) while retaining a high throughput (e.g., 1000 queries/s on NQ). Compared to retrieval-augmented models, EMAT runs substantially faster across the board and produces more accurate results on WoW and ELI5. Our code and datasets are available at https://github. com/uclnlp/EMAT.
Probing-RAG: Self-Probing to Guide Language Models in Selective Document Retrieval
Retrieval-Augmented Generation (RAG) enhances language models by retrieving and incorporating relevant external knowledge. However, traditional retrieve-and-generate processes may not be optimized for real-world scenarios, where queries might require multiple retrieval steps or none at all. In this paper, we propose a Probing-RAG, which utilizes the hidden state representations from the intermediate layers of language models to adaptively determine the necessity of additional retrievals for a given query. By employing a pre-trained prober, Probing-RAG effectively captures the model's internal cognition, enabling reliable decision-making about retrieving external documents. Experimental results across five open-domain QA datasets demonstrate that Probing-RAG outperforms previous methods while reducing the number of redundant retrieval steps.
BRIEF-Pro: Universal Context Compression with Short-to-Long Synthesis for Fast and Accurate Multi-Hop Reasoning
As retrieval-augmented generation (RAG) tackles complex tasks, increasingly expanded contexts offer richer information, but at the cost of higher latency and increased cognitive load on the model. To mitigate this bottleneck, especially for intricate multi-hop questions, we introduce BRIEF-Pro. It is a universal, lightweight compressor that distills relevant evidence for a given query from retrieved documents into a concise summary for seamless integration into in-context RAG. Using seed data consisting of relatively short contexts (fewer than 1k words), BRIEF-Pro is trained to perform abstractive compression of extended contexts exceeding 10k words across a wide range of scenarios. Furthermore, BRIEF-Pro offers flexible user control over summary length by allowing users to specify the desired number of sentences. Experiments on four open-domain multi-hop question-answering datasets show that BRIEF-Pro generates more concise and relevant summaries, enhancing performance across small, large, and proprietary language models. With the 70B reader model, 32x compression by BRIEF-Pro improves QA performance by 4.67% on average over LongLLMLingua's 9x, while requiring only 23% of its computational overhead.
Towards Adaptive Memory-Based Optimization for Enhanced Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG), by integrating non-parametric knowledge from external knowledge bases into models, has emerged as a promising approach to enhancing response accuracy while mitigating factual errors and hallucinations. This method has been widely applied in tasks such as Question Answering (QA). However, existing RAG methods struggle with open-domain QA tasks because they perform independent retrieval operations and directly incorporate the retrieved information into generation without maintaining a summarizing memory or using adaptive retrieval strategies, leading to noise from redundant information and insufficient information integration. To address these challenges, we propose Adaptive memory-based optimization for enhanced RAG (Amber) for open-domain QA tasks, which comprises an Agent-based Memory Updater, an Adaptive Information Collector, and a Multi-granular Content Filter, working together within an iterative memory updating paradigm. Specifically, Amber integrates and optimizes the language model's memory through a multi-agent collaborative approach, ensuring comprehensive knowledge integration from previous retrieval steps. It dynamically adjusts retrieval queries and decides when to stop retrieval based on the accumulated knowledge, enhancing retrieval efficiency and effectiveness. Additionally, it reduces noise by filtering irrelevant content at multiple levels, retaining essential information to improve overall model performance. We conduct extensive experiments on several open-domain QA datasets, and the results demonstrate the superiority and effectiveness of our method and its components. The source code is available https://anonymous.4open.science/r/Amber-B203/.
Knowing You Don't Know: Learning When to Continue Search in Multi-round RAG through Self-Practicing
Retrieval Augmented Generation (RAG) has shown strong capability in enhancing language models' knowledge and reducing AI generative hallucinations, driving its widespread use. However, complex tasks requiring multi-round retrieval remain challenging, and early attempts tend to be overly optimistic without a good sense of self-skepticism. Current multi-round RAG systems may continue searching even when enough information has already been retrieved, or they may provide incorrect answers without having sufficient information or knowledge. Existing solutions either require large amounts of expensive human-labeled process supervision data or lead to subpar performance. This paper aims to address these limitations by introducing a new framework, SIM-RAG, to explicitly enhance RAG systems' self-awareness and multi-round retrieval capabilities. To train SIM-RAG, we first let a RAG system self-practice multi-round retrieval, augmenting existing question-answer pairs with intermediate inner monologue reasoning steps to generate synthetic training data. For each pair, the system may explore multiple retrieval paths, which are labeled as successful if they reach the correct answer and unsuccessful otherwise. Using this data, we train a lightweight information sufficiency Critic. At inference time, the Critic evaluates whether the RAG system has retrieved sufficient information at each round, guiding retrieval decisions and improving system-level self-awareness through in-context reinforcement learning. Experiments across multiple prominent RAG benchmarks show that SIM-RAG is an effective multi-round RAG solution. Furthermore, this framework is system-efficient, adding a lightweight component to RAG without requiring modifications to existing LLMs or search engines, and data-efficient, eliminating the need for costly human-annotated mid-step retrieval process supervision data.
Question Decomposition for Retrieval-Augmented Generation
Grounding large language models (LLMs) in verifiable external sources is a well-established strategy for generating reliable answers. Retrieval-augmented generation (RAG) is one such approach, particularly effective for tasks like question answering: it retrieves passages that are semantically related to the question and then conditions the model on this evidence. However, multi-hop questions, such as "Which company among NVIDIA, Apple, and Google made the biggest profit in 2023?," challenge RAG because relevant facts are often distributed across multiple documents rather than co-occurring in one source, making it difficult for standard RAG to retrieve sufficient information. To address this, we propose a RAG pipeline that incorporates question decomposition: (i) an LLM decomposes the original query into sub-questions, (ii) passages are retrieved for each sub-question, and (iii) the merged candidate pool is reranked to improve the coverage and precision of the retrieved evidence. We show that question decomposition effectively assembles complementary documents, while reranking reduces noise and promotes the most relevant passages before answer generation. Although reranking itself is standard, we show that pairing an off-the-shelf cross-encoder reranker with LLM-driven question decomposition bridges the retrieval gap on multi-hop questions and provides a practical, drop-in enhancement, without any extra training or specialized indexing. We evaluate our approach on the MultiHop-RAG and HotpotQA, showing gains in retrieval (MRR@10: +36.7%) and answer accuracy (F1: +11.6%) over standard RAG baselines.
Similarity is Not All You Need: Endowing Retrieval Augmented Generation with Multi Layered Thoughts
In recent years, large language models (LLMs) have made remarkable achievements in various domains. However, the untimeliness and cost of knowledge updates coupled with hallucination issues of LLMs have curtailed their applications in knowledge intensive tasks, where retrieval augmented generation (RAG) can be of help. Nevertheless, existing retrieval augmented models typically use similarity as a bridge between queries and documents and follow a retrieve then read procedure. In this work, we argue that similarity is not always the panacea and totally relying on similarity would sometimes degrade the performance of retrieval augmented generation. To this end, we propose MetRag, a Multi layEred Thoughts enhanced Retrieval Augmented Generation framework. To begin with, beyond existing similarity oriented thought, we embrace a small scale utility model that draws supervision from an LLM for utility oriented thought and further come up with a smarter model by comprehensively combining the similarity and utility oriented thoughts. Furthermore, given the fact that the retrieved document set tends to be huge and using them in isolation makes it difficult to capture the commonalities and characteristics among them, we propose to make an LLM as a task adaptive summarizer to endow retrieval augmented generation with compactness-oriented thought. Finally, with multi layered thoughts from the precedent stages, an LLM is called for knowledge augmented generation. Extensive experiments on knowledge-intensive tasks have demonstrated the superiority of MetRag.
Benchmarking Retrieval-Augmented Generation for Medicine
While large language models (LLMs) have achieved state-of-the-art performance on a wide range of medical question answering (QA) tasks, they still face challenges with hallucinations and outdated knowledge. Retrieval-augmented generation (RAG) is a promising solution and has been widely adopted. However, a RAG system can involve multiple flexible components, and there is a lack of best practices regarding the optimal RAG setting for various medical purposes. To systematically evaluate such systems, we propose the Medical Information Retrieval-Augmented Generation Evaluation (MIRAGE), a first-of-its-kind benchmark including 7,663 questions from five medical QA datasets. Using MIRAGE, we conducted large-scale experiments with over 1.8 trillion prompt tokens on 41 combinations of different corpora, retrievers, and backbone LLMs through the MedRAG toolkit introduced in this work. Overall, MedRAG improves the accuracy of six different LLMs by up to 18% over chain-of-thought prompting, elevating the performance of GPT-3.5 and Mixtral to GPT-4-level. Our results show that the combination of various medical corpora and retrievers achieves the best performance. In addition, we discovered a log-linear scaling property and the "lost-in-the-middle" effects in medical RAG. We believe our comprehensive evaluations can serve as practical guidelines for implementing RAG systems for medicine.
FlashBack:Efficient Retrieval-Augmented Language Modeling for Long Context Inference
Retrieval-Augmented Language Modeling (RALM) by integrating large language models (LLM) with relevant documents from an external corpus is a proven method for enabling the LLM to generate information beyond the scope of its pre-training corpus. Previous work using utilizing retrieved content by simply prepending retrieved contents to the input poses a high runtime issue, which degrades the inference efficiency of the LLMs because they fail to use the Key-Value (KV) cache efficiently. In this paper, we propose FlashBack, a modular RALM designed to improve the inference efficiency of RALM with appending context pattern while maintaining decent performance after specific fine-tuning without heavily destruct the knowledge integrity of the LLM. FlashBack appends retrieved documents at the end of the context for efficiently utilizing the KV cache instead of prepending them. Our experiment shows that the inference speed of FlashBack is up to 4times faster than the prepending method on a 7B LLM (Llama 2). Via bypassing unnecessary re-computation, it demonstrates an advancement by achieving significantly faster inference speed, and this heightened efficiency will substantially reduce inferential cost. Our code will be publicly available.
MSRS: Evaluating Multi-Source Retrieval-Augmented Generation
Retrieval-augmented systems are typically evaluated in settings where information required to answer the query can be found within a single source or the answer is short-form or factoid-based. However, many real-world applications demand the ability to integrate and summarize information scattered across multiple sources, where no single source is sufficient to respond to the user's question. In such settings, the retrieval component of a RAG pipeline must recognize a variety of relevance signals, and the generation component must connect and synthesize information across multiple sources. We present a scalable framework for constructing evaluation benchmarks that challenge RAG systems to integrate information across distinct sources and generate long-form responses. Using our framework, we build two new benchmarks on Multi-Source Retrieval and Synthesis: MSRS-Story and MSRS-Meet, representing narrative synthesis and summarization tasks, respectively, that require retrieval from large collections. Our extensive experiments with various RAG pipelines -- including sparse and dense retrievers combined with frontier LLMs -- reveal that generation quality is highly dependent on retrieval effectiveness, which varies greatly by task. While multi-source synthesis proves challenging even in an oracle retrieval setting, we find that reasoning models significantly outperform standard LLMs at this distinct step.
Collapse of Dense Retrievers: Short, Early, and Literal Biases Outranking Factual Evidence
Dense retrieval models are commonly used in Information Retrieval (IR) applications, such as Retrieval-Augmented Generation (RAG). Since they often serve as the first step in these systems, their robustness is critical to avoid failures. In this work, by repurposing a relation extraction dataset (e.g. Re-DocRED), we design controlled experiments to quantify the impact of heuristic biases, such as favoring shorter documents, in retrievers like Dragon+ and Contriever. Our findings reveal significant vulnerabilities: retrievers often rely on superficial patterns like over-prioritizing document beginnings, shorter documents, repeated entities, and literal matches. Additionally, they tend to overlook whether the document contains the query's answer, lacking deep semantic understanding. Notably, when multiple biases combine, models exhibit catastrophic performance degradation, selecting the answer-containing document in less than 3% of cases over a biased document without the answer. Furthermore, we show that these biases have direct consequences for downstream applications like RAG, where retrieval-preferred documents can mislead LLMs, resulting in a 34% performance drop than not providing any documents at all.
Retrieval Augmentation for Commonsense Reasoning: A Unified Approach
A common thread of retrieval-augmented methods in the existing literature focuses on retrieving encyclopedic knowledge, such as Wikipedia, which facilitates well-defined entity and relation spaces that can be modeled. However, applying such methods to commonsense reasoning tasks faces two unique challenges, i.e., the lack of a general large-scale corpus for retrieval and a corresponding effective commonsense retriever. In this paper, we systematically investigate how to leverage commonsense knowledge retrieval to improve commonsense reasoning tasks. We proposed a unified framework of retrieval-augmented commonsense reasoning (called RACo), including a newly constructed commonsense corpus with over 20 million documents and novel strategies for training a commonsense retriever. We conducted experiments on four different commonsense reasoning tasks. Extensive evaluation results showed that our proposed RACo can significantly outperform other knowledge-enhanced method counterparts, achieving new SoTA performance on the CommonGen and CREAK leaderboards.
BTR: Binary Token Representations for Efficient Retrieval Augmented Language Models
Retrieval augmentation addresses many critical problems in large language models such as hallucination, staleness, and privacy leaks. However, running retrieval-augmented language models (LMs) is slow and difficult to scale due to processing large amounts of retrieved text. We introduce binary token representations (BTR), which use 1-bit vectors to precompute every token in passages, significantly reducing computation during inference. Despite the potential loss of accuracy, our new calibration techniques and training objectives restore performance. Combined with offline and runtime compression, this only requires 127GB of disk space for encoding 3 billion tokens in Wikipedia. Our experiments show that on five knowledge-intensive NLP tasks, BTR accelerates state-of-the-art inference by up to 4x and reduces storage by over 100x while maintaining over 95% task performance.
RAGtifier: Evaluating RAG Generation Approaches of State-of-the-Art RAG Systems for the SIGIR LiveRAG Competition
Retrieval-Augmented Generation (RAG) enriches Large Language Models (LLMs) by combining their internal, parametric knowledge with external, non-parametric sources, with the goal of improving factual correctness and minimizing hallucinations. The LiveRAG 2025 challenge explores RAG solutions to maximize accuracy on DataMorgana's QA pairs, which are composed of single-hop and multi-hop questions. The challenge provides access to sparse OpenSearch and dense Pinecone indices of the Fineweb 10BT dataset. It restricts model use to LLMs with up to 10B parameters and final answer generation with Falcon-3-10B. A judge-LLM assesses the submitted answers along with human evaluators. By exploring distinct retriever combinations and RAG solutions under the challenge conditions, our final solution emerged using InstructRAG in combination with a Pinecone retriever and a BGE reranker. Our solution achieved a correctness score of 1.13 and a faithfulness score of 0.55, placing fourth in the SIGIR 2025 LiveRAG Challenge.
WikiContradict: A Benchmark for Evaluating LLMs on Real-World Knowledge Conflicts from Wikipedia
Retrieval-augmented generation (RAG) has emerged as a promising solution to mitigate the limitations of large language models (LLMs), such as hallucinations and outdated information. However, it remains unclear how LLMs handle knowledge conflicts arising from different augmented retrieved passages, especially when these passages originate from the same source and have equal trustworthiness. In this work, we conduct a comprehensive evaluation of LLM-generated answers to questions that have varying answers based on contradictory passages from Wikipedia, a dataset widely regarded as a high-quality pre-training resource for most LLMs. Specifically, we introduce WikiContradict, a benchmark consisting of 253 high-quality, human-annotated instances designed to assess LLM performance when augmented with retrieved passages containing real-world knowledge conflicts. We benchmark a diverse range of both closed and open-source LLMs under different QA scenarios, including RAG with a single passage, and RAG with 2 contradictory passages. Through rigorous human evaluations on a subset of WikiContradict instances involving 5 LLMs and over 3,500 judgements, we shed light on the behaviour and limitations of these models. For instance, when provided with two passages containing contradictory facts, all models struggle to generate answers that accurately reflect the conflicting nature of the context, especially for implicit conflicts requiring reasoning. Since human evaluation is costly, we also introduce an automated model that estimates LLM performance using a strong open-source language model, achieving an F-score of 0.8. Using this automated metric, we evaluate more than 1,500 answers from seven LLMs across all WikiContradict instances. To facilitate future work, we release WikiContradict on: https://ibm.biz/wikicontradict.
RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems
Retrieval-augmented generation (RAG) greatly benefits language models (LMs) by providing additional context for tasks such as document-based question answering (DBQA). Despite its potential, the power of RAG is highly dependent on its configuration, raising the question: What is the optimal RAG configuration? To answer this, we introduce the RAGGED framework to analyze and optimize RAG systems. On a set of representative DBQA tasks, we study two classic sparse and dense retrievers, and four top-performing LMs in encoder-decoder and decoder-only architectures. Through RAGGED, we uncover that different models suit substantially varied RAG setups. While encoder-decoder models monotonically improve with more documents, we find decoder-only models can only effectively use < 5 documents, despite often having a longer context window. RAGGED offers further insights into LMs' context utilization habits, where we find that encoder-decoder models rely more on contexts and are thus more sensitive to retrieval quality, while decoder-only models tend to rely on knowledge memorized during training.
GLIMMER: generalized late-interaction memory reranker
Memory-augmentation is a powerful approach for efficiently incorporating external information into language models, but leads to reduced performance relative to retrieving text. Recent work introduced LUMEN, a memory-retrieval hybrid that partially pre-computes memory and updates memory representations on the fly with a smaller live encoder. We propose GLIMMER, which improves on this approach through 1) exploiting free access to the powerful memory representations by applying a shallow reranker on top of memory to drastically improve retrieval quality at low cost, and 2) incorporating multi-task training to learn a general and higher quality memory and live encoder. GLIMMER achieves strong gains in performance at faster speeds compared to LUMEN and FiD on the KILT benchmark of knowledge-intensive tasks.
A Tale of Trust and Accuracy: Base vs. Instruct LLMs in RAG Systems
Retrieval Augmented Generation (RAG) represents a significant advancement in artificial intelligence combining a retrieval phase with a generative phase, with the latter typically being powered by large language models (LLMs). The current common practices in RAG involve using "instructed" LLMs, which are fine-tuned with supervised training to enhance their ability to follow instructions and are aligned with human preferences using state-of-the-art techniques. Contrary to popular belief, our study demonstrates that base models outperform their instructed counterparts in RAG tasks by 20% on average under our experimental settings. This finding challenges the prevailing assumptions about the superiority of instructed LLMs in RAG applications. Further investigations reveal a more nuanced situation, questioning fundamental aspects of RAG and suggesting the need for broader discussions on the topic; or, as Fromm would have it, "Seldom is a glance at the statistics enough to understand the meaning of the figures".
Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation
Retrieval-augmented generation (RAG) has shown impressive capability in providing reliable answer predictions and addressing hallucination problems. A typical RAG implementation uses powerful retrieval models to extract external information and large language models (LLMs) to generate answers. In contrast, recent LLM-based retrieval has gained attention for its substantial improvements in information retrieval (IR) due to the LLMs' semantic understanding capability. However, directly applying LLM to RAG systems presents challenges. This may cause feature locality problems as massive parametric knowledge can hinder effective usage of global information across the corpus; for example, an LLM-based retriever often inputs document summaries instead of full documents. Moreover, various pre-trained tasks in LLMs introduce variance, further weakening performance as a retriever. To address these issues, we propose a novel two-stage fine-tuning architecture called Invar-RAG. In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning to tackle feature locality issues. To enhance retrieval performance, we develop two patterns (invariant and variant patterns) and an invariance loss to reduce LLM variance. In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information. Experimental results show that Invar-RAG significantly outperforms existing baselines across three open-domain question answering (ODQA) datasets. Code is available in the Supplementary Material for reproducibility.
Cooperative Retriever and Ranker in Deep Recommenders
Deep recommender systems (DRS) are intensively applied in modern web services. To deal with the massive web contents, DRS employs a two-stage workflow: retrieval and ranking, to generate its recommendation results. The retriever aims to select a small set of relevant candidates from the entire items with high efficiency; while the ranker, usually more precise but time-consuming, is supposed to further refine the best items from the retrieved candidates. Traditionally, the two components are trained either independently or within a simple cascading pipeline, which is prone to poor collaboration effect. Though some latest works suggested to train retriever and ranker jointly, there still exist many severe limitations: item distribution shift between training and inference, false negative, and misalignment of ranking order. As such, it remains to explore effective collaborations between retriever and ranker.
RLCoder: Reinforcement Learning for Repository-Level Code Completion
Repository-level code completion aims to generate code for unfinished code snippets within the context of a specified repository. Existing approaches mainly rely on retrieval-augmented generation strategies due to limitations in input sequence length. However, traditional lexical-based retrieval methods like BM25 struggle to capture code semantics, while model-based retrieval methods face challenges due to the lack of labeled data for training. Therefore, we propose RLCoder, a novel reinforcement learning framework, which can enable the retriever to learn to retrieve useful content for code completion without the need for labeled data. Specifically, we iteratively evaluate the usefulness of retrieved content based on the perplexity of the target code when provided with the retrieved content as additional context, and provide feedback to update the retriever parameters. This iterative process enables the retriever to learn from its successes and failures, gradually improving its ability to retrieve relevant and high-quality content. Considering that not all situations require information beyond code files and not all retrieved context is helpful for generation, we also introduce a stop signal mechanism, allowing the retriever to decide when to retrieve and which candidates to retain autonomously. Extensive experimental results demonstrate that RLCoder consistently outperforms state-of-the-art methods on CrossCodeEval and RepoEval, achieving 12.2% EM improvement over previous methods. Moreover, experiments show that our framework can generalize across different programming languages and further improve previous methods like RepoCoder. We provide the code and data at https://github.com/DeepSoftwareAnalytics/RLCoder.
Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks
Retrieval-augmented generation (RAG) has gained traction as a powerful approach for enhancing language models by integrating external knowledge sources. However, RAG introduces challenges such as retrieval latency, potential errors in document selection, and increased system complexity. With the advent of large language models (LLMs) featuring significantly extended context windows, this paper proposes an alternative paradigm, cache-augmented generation (CAG) that bypasses real-time retrieval. Our method involves preloading all relevant resources, especially when the documents or knowledge for retrieval are of a limited and manageable size, into the LLM's extended context and caching its runtime parameters. During inference, the model utilizes these preloaded parameters to answer queries without additional retrieval steps. Comparative analyses reveal that CAG eliminates retrieval latency and minimizes retrieval errors while maintaining context relevance. Performance evaluations across multiple benchmarks highlight scenarios where long-context LLMs either outperform or complement traditional RAG pipelines. These findings suggest that, for certain applications, particularly those with a constrained knowledge base, CAG provide a streamlined and efficient alternative to RAG, achieving comparable or superior results with reduced complexity.
RPO: Retrieval Preference Optimization for Robust Retrieval-Augmented Generation
While Retrieval-Augmented Generation (RAG) has exhibited promise in utilizing external knowledge, its generation process heavily depends on the quality and accuracy of the retrieved context. Large language models (LLMs) struggle to evaluate the correctness of non-parametric knowledge retrieved externally when it differs from internal memorization, leading to knowledge conflicts during response generation. To this end, we introduce the Retrieval Preference Optimization (RPO), a lightweight and effective alignment method to adaptively leverage multi-source knowledge based on retrieval relevance. An implicit representation of retrieval relevance is derived and incorporated into the reward model to integrate retrieval evaluation and response generation into a single model, solving the problem that previous methods necessitate the additional procedure to assess the retrieval quality. Notably, RPO is the only RAG-dedicated alignment approach that quantifies the awareness of retrieval relevance in training, overcoming mathematical obstacles. Experiments on four datasets demonstrate that RPO outperforms RAG by 4-10% in accuracy without any extra component, exhibiting its robust generalization.
UniversalRAG: Retrieval-Augmented Generation over Multiple Corpora with Diverse Modalities and Granularities
Retrieval-Augmented Generation (RAG) has shown substantial promise in improving factual accuracy by grounding model responses with external knowledge relevant to queries. However, most existing RAG approaches are limited to a text-only corpus, and while recent efforts have extended RAG to other modalities such as images and videos, they typically operate over a single modality-specific corpus. In contrast, real-world queries vary widely in the type of knowledge they require, which a single type of knowledge source cannot address. To address this, we introduce UniversalRAG, a novel RAG framework designed to retrieve and integrate knowledge from heterogeneous sources with diverse modalities and granularities. Specifically, motivated by the observation that forcing all modalities into a unified representation space derived from a single combined corpus causes a modality gap, where the retrieval tends to favor items from the same modality as the query, we propose a modality-aware routing mechanism that dynamically identifies the most appropriate modality-specific corpus and performs targeted retrieval within it. Also, beyond modality, we organize each modality into multiple granularity levels, enabling fine-tuned retrieval tailored to the complexity and scope of the query. We validate UniversalRAG on 8 benchmarks spanning multiple modalities, showing its superiority over modality-specific and unified baselines.
PrismRAG: Boosting RAG Factuality with Distractor Resilience and Strategized Reasoning
Retrieval-augmented generation (RAG) often falls short when retrieved context includes confusing semi-relevant passages, or when answering questions require deep contextual understanding and reasoning. We propose an efficient fine-tuning framework, called PrismRAG, that (i) trains the model with distractor-aware QA pairs mixing gold evidence with subtle distractor passages, and (ii) instills reasoning-centric habits that make the LLM plan, rationalize, and synthesize without relying on extensive human engineered instructions. Evaluated across 12 open-book RAG QA benchmarks spanning diverse application domains and scenarios, PrismRAG improves average factuality by 5.4%, outperforming state-of-the-art solutions.
Tool Calling: Enhancing Medication Consultation via Retrieval-Augmented Large Language Models
Large-scale language models (LLMs) have achieved remarkable success across various language tasks but suffer from hallucinations and temporal misalignment. To mitigate these shortcomings, Retrieval-augmented generation (RAG) has been utilized to provide external knowledge to facilitate the answer generation. However, applying such models to the medical domain faces several challenges due to the lack of domain-specific knowledge and the intricacy of real-world scenarios. In this study, we explore LLMs with RAG framework for knowledge-intensive tasks in the medical field. To evaluate the capabilities of LLMs, we introduce MedicineQA, a multi-round dialogue benchmark that simulates the real-world medication consultation scenario and requires LLMs to answer with retrieved evidence from the medicine database. MedicineQA contains 300 multi-round question-answering pairs, each embedded within a detailed dialogue history, highlighting the challenge posed by this knowledge-intensive task to current LLMs. We further propose a new Distill-Retrieve-Read framework instead of the previous Retrieve-then-Read. Specifically, the distillation and retrieval process utilizes a tool calling mechanism to formulate search queries that emulate the keyword-based inquiries used by search engines. With experimental results, we show that our framework brings notable performance improvements and surpasses the previous counterparts in the evidence retrieval process in terms of evidence retrieval accuracy. This advancement sheds light on applying RAG to the medical domain.
MemoRAG: Moving towards Next-Gen RAG Via Memory-Inspired Knowledge Discovery
Retrieval-Augmented Generation (RAG) leverages retrieval tools to access external databases, thereby enhancing the generation quality of large language models (LLMs) through optimized context. However, the existing retrieval methods are constrained inherently, as they can only perform relevance matching between explicitly stated queries and well-formed knowledge, but unable to handle tasks involving ambiguous information needs or unstructured knowledge. Consequently, existing RAG systems are primarily effective for straightforward question-answering tasks. In this work, we propose MemoRAG, a novel retrieval-augmented generation paradigm empowered by long-term memory. MemoRAG adopts a dual-system architecture. On the one hand, it employs a light but long-range LLM to form the global memory of database. Once a task is presented, it generates draft answers, cluing the retrieval tools to locate useful information within the database. On the other hand, it leverages an expensive but expressive LLM, which generates the ultimate answer based on the retrieved information. Building on this general framework, we further optimize MemoRAG's performance by enhancing its cluing mechanism and memorization capacity. In our experiment, MemoRAG achieves superior performance across a variety of evaluation tasks, including both complex ones where conventional RAG fails and straightforward ones where RAG is commonly applied.
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Horizon Generation
We explore how iterative revising a chain of thoughts with the help of information retrieval significantly improves large language models' reasoning and generation ability in long-horizon generation tasks, while hugely mitigating hallucination. In particular, the proposed method -- *retrieval-augmented thoughts* (RAT) -- revises each thought step one by one with retrieved information relevant to the task query, the current and the past thought steps, after the initial zero-shot CoT is generated. Applying RAT to GPT-3.5, GPT-4, and CodeLLaMA-7b substantially improves their performances on various long-horizon generation tasks; on average of relatively increasing rating scores by 13.63% on code generation, 16.96% on mathematical reasoning, 19.2% on creative writing, and 42.78% on embodied task planning. The demo page can be found at https://craftjarvis.github.io/RAT
ReGeS: Reciprocal Retrieval-Generation Synergy for Conversational Recommender Systems
Connecting conversation with external domain knowledge is vital for conversational recommender systems (CRS) to correctly understand user preferences. However, existing solutions either require domain-specific engineering, which limits flexibility, or rely solely on large language models, which increases the risk of hallucination. While Retrieval-Augmented Generation (RAG) holds promise, its naive use in CRS is hindered by noisy dialogues that weaken retrieval and by overlooked nuances among similar items. We propose ReGeS, a reciprocal Retrieval-Generation Synergy framework that unifies generation-augmented retrieval to distill informative user intent from conversations and retrieval-augmented generation to differentiate subtle item features. This synergy obviates the need for extra annotations, reduces hallucinations, and simplifies continuous updates. Experiments on multiple CRS benchmarks show that ReGeS achieves state-of-the-art performance in recommendation accuracy, demonstrating the effectiveness of reciprocal synergy for knowledge-intensive CRS tasks.
Frustratingly Simple Retrieval Improves Challenging, Reasoning-Intensive Benchmarks
Retrieval-augmented Generation (RAG) has primarily been studied in limited settings, such as factoid question answering; more challenging, reasoning-intensive benchmarks have seen limited success from minimal RAG. In this work, we challenge this prevailing view on established, reasoning-intensive benchmarks: MMLU, MMLU Pro, AGI Eval, GPQA, and MATH. We identify a key missing component in prior work: a usable, web-scale datastore aligned with the breadth of pretraining data. To this end, we introduce CompactDS: a diverse, high-quality, web-scale datastore that achieves high retrieval accuracy and subsecond latency on a single-node. The key insights are (1) most web content can be filtered out without sacrificing coverage, and a compact, high-quality subset is sufficient; and (2) combining in-memory approximate nearest neighbor (ANN) retrieval and on-disk exact search balances speed and recall. Using CompactDS, we show that a minimal RAG pipeline achieves consistent accuracy improvements across all benchmarks and model sizes (8B--70B), with relative gains of 10% on MMLU, 33% on MMLU Pro, 14% on GPQA, and 19% on MATH. No single data source suffices alone, highlighting the importance of diversity of sources (web crawls, curated math, academic papers, textbooks). Finally, we show that our carefully designed in-house datastore matches or outperforms web search engines such as Google Search, as well as recently proposed, complex agent-based RAG systems--all while maintaining simplicity, reproducibility, and self-containment. We release CompactDS and our retrieval pipeline, supporting future research exploring retrieval-based AI systems.
RAG and RAU: A Survey on Retrieval-Augmented Language Model in Natural Language Processing
Large Language Models (LLMs) have catalyzed significant advancements in Natural Language Processing (NLP), yet they encounter challenges such as hallucination and the need for domain-specific knowledge. To mitigate these, recent methodologies have integrated information retrieved from external resources with LLMs, substantially enhancing their performance across NLP tasks. This survey paper addresses the absence of a comprehensive overview on Retrieval-Augmented Language Models (RALMs), both Retrieval-Augmented Generation (RAG) and Retrieval-Augmented Understanding (RAU), providing an in-depth examination of their paradigm, evolution, taxonomy, and applications. The paper discusses the essential components of RALMs, including Retrievers, Language Models, and Augmentations, and how their interactions lead to diverse model structures and applications. RALMs demonstrate utility in a spectrum of tasks, from translation and dialogue systems to knowledge-intensive applications. The survey includes several evaluation methods of RALMs, emphasizing the importance of robustness, accuracy, and relevance in their assessment. It also acknowledges the limitations of RALMs, particularly in retrieval quality and computational efficiency, offering directions for future research. In conclusion, this survey aims to offer a structured insight into RALMs, their potential, and the avenues for their future development in NLP. The paper is supplemented with a Github Repository containing the surveyed works and resources for further study: https://github.com/2471023025/RALM_Survey.
Query Optimization for Parametric Knowledge Refinement in Retrieval-Augmented Large Language Models
We introduce the Extract-Refine-Retrieve-Read (ERRR) framework, a novel approach designed to bridge the pre-retrieval information gap in Retrieval-Augmented Generation (RAG) systems through query optimization tailored to meet the specific knowledge requirements of Large Language Models (LLMs). Unlike conventional query optimization techniques used in RAG, the ERRR framework begins by extracting parametric knowledge from LLMs, followed by using a specialized query optimizer for refining these queries. This process ensures the retrieval of only the most pertinent information essential for generating accurate responses. Moreover, to enhance flexibility and reduce computational costs, we propose a trainable scheme for our pipeline that utilizes a smaller, tunable model as the query optimizer, which is refined through knowledge distillation from a larger teacher model. Our evaluations on various question-answering (QA) datasets and with different retrieval systems show that ERRR consistently outperforms existing baselines, proving to be a versatile and cost-effective module for improving the utility and accuracy of RAG systems.
Observations on Building RAG Systems for Technical Documents
Retrieval augmented generation (RAG) for technical documents creates challenges as embeddings do not often capture domain information. We review prior art for important factors affecting RAG and perform experiments to highlight best practices and potential challenges to build RAG systems for technical documents.
Two-layer retrieval augmented generation framework for low-resource medical question-answering: proof of concept using Reddit data
Retrieval augmented generation (RAG) provides the capability to constrain generative model outputs, and mitigate the possibility of hallucination, by providing relevant in-context text. The number of tokens a generative large language model (LLM) can incorporate as context is finite, thus limiting the volume of knowledge from which to generate an answer. We propose a two-layer RAG framework for query-focused answer generation and evaluate a proof-of-concept for this framework in the context of query-focused summary generation from social media forums, focusing on emerging drug-related information. The evaluations demonstrate the effectiveness of the two-layer framework in resource constrained settings to enable researchers in obtaining near real-time data from users.
A MapReduce Approach to Effectively Utilize Long Context Information in Retrieval Augmented Language Models
While holding great promise for improving and facilitating healthcare, large language models (LLMs) struggle to produce up-to-date responses on evolving topics due to outdated knowledge or hallucination. Retrieval-augmented generation (RAG) is a pivotal innovation that improves the accuracy and relevance of LLM responses by integrating LLMs with a search engine and external sources of knowledge. However, the quality of RAG responses can be largely impacted by the rank and density of key information in the retrieval results, such as the "lost-in-the-middle" problem. In this work, we aim to improve the robustness and reliability of the RAG workflow in the medical domain. Specifically, we propose a map-reduce strategy, BriefContext, to combat the "lost-in-the-middle" issue without modifying the model weights. We demonstrated the advantage of the workflow with various LLM backbones and on multiple QA datasets. This method promises to improve the safety and reliability of LLMs deployed in healthcare domains.
A Compressive Memory-based Retrieval Approach for Event Argument Extraction
Recent works have demonstrated the effectiveness of retrieval augmentation in the Event Argument Extraction (EAE) task. However, existing retrieval-based EAE methods have two main limitations: (1) input length constraints and (2) the gap between the retriever and the inference model. These issues limit the diversity and quality of the retrieved information. In this paper, we propose a Compressive Memory-based Retrieval (CMR) mechanism for EAE, which addresses the two limitations mentioned above. Our compressive memory, designed as a dynamic matrix that effectively caches retrieved information and supports continuous updates, overcomes the limitations of the input length. Additionally, after pre-loading all candidate demonstrations into the compressive memory, the model further retrieves and filters relevant information from memory based on the input query, bridging the gap between the retriever and the inference model. Extensive experiments show that our method achieves new state-of-the-art performance on three public datasets (RAMS, WikiEvents, ACE05), significantly outperforming existing retrieval-based EAE methods.
Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey
Retrieval-Augmented Generation (RAG) is an advanced technique designed to address the challenges of Artificial Intelligence-Generated Content (AIGC). By integrating context retrieval into content generation, RAG provides reliable and up-to-date external knowledge, reduces hallucinations, and ensures relevant context across a wide range of tasks. However, despite RAG's success and potential, recent studies have shown that the RAG paradigm also introduces new risks, including robustness issues, privacy concerns, adversarial attacks, and accountability issues. Addressing these risks is critical for future applications of RAG systems, as they directly impact their trustworthiness. Although various methods have been developed to improve the trustworthiness of RAG methods, there is a lack of a unified perspective and framework for research in this topic. Thus, in this paper, we aim to address this gap by providing a comprehensive roadmap for developing trustworthy RAG systems. We place our discussion around five key perspectives: reliability, privacy, safety, fairness, explainability, and accountability. For each perspective, we present a general framework and taxonomy, offering a structured approach to understanding the current challenges, evaluating existing solutions, and identifying promising future research directions. To encourage broader adoption and innovation, we also highlight the downstream applications where trustworthy RAG systems have a significant impact.
Retrieval-Augmented Data Augmentation for Low-Resource Domain Tasks
Despite large successes of recent language models on diverse tasks, they suffer from severe performance degeneration in low-resource settings with limited training data available. Many existing works tackle this problem by generating synthetic data from the training data and then training models on them, recently using Large Language Models (LLMs). However, in low-resource settings, the amount of seed data samples to use for data augmentation is very small, which makes generated samples suboptimal and less diverse. To tackle this challenge, we propose a novel method that augments training data by incorporating a wealth of examples from other datasets, along with the given training data. Specifically, we first retrieve the relevant instances from other datasets, such as their input-output pairs or contexts, based on their similarities with the given seed data, and then prompt LLMs to generate new samples with the contextual information within and across the original and retrieved samples. This approach can ensure that the generated data is not only relevant but also more diverse than what could be achieved using the limited seed data alone. We validate our proposed Retrieval-Augmented Data Augmentation (RADA) framework on multiple datasets under low-resource settings of training and test-time data augmentation scenarios, on which it outperforms existing LLM-powered data augmentation baselines.
MMKB-RAG: A Multi-Modal Knowledge-Based Retrieval-Augmented Generation Framework
Recent advancements in large language models (LLMs) and multi-modal LLMs have been remarkable. However, these models still rely solely on their parametric knowledge, which limits their ability to generate up-to-date information and increases the risk of producing erroneous content. Retrieval-Augmented Generation (RAG) partially mitigates these challenges by incorporating external data sources, yet the reliance on databases and retrieval systems can introduce irrelevant or inaccurate documents, ultimately undermining both performance and reasoning quality. In this paper, we propose Multi-Modal Knowledge-Based Retrieval-Augmented Generation (MMKB-RAG), a novel multi-modal RAG framework that leverages the inherent knowledge boundaries of models to dynamically generate semantic tags for the retrieval process. This strategy enables the joint filtering of retrieved documents, retaining only the most relevant and accurate references. Extensive experiments on knowledge-based visual question-answering tasks demonstrate the efficacy of our approach: on the E-VQA dataset, our method improves performance by +4.2% on the Single-Hop subset and +0.4% on the full dataset, while on the InfoSeek dataset, it achieves gains of +7.8% on the Unseen-Q subset, +8.2% on the Unseen-E subset, and +8.1% on the full dataset. These results highlight significant enhancements in both accuracy and robustness over the current state-of-the-art MLLM and RAG frameworks.
PrefRAG: Preference-Driven Multi-Source Retrieval Augmented Generation
Retrieval-Augmented Generation (RAG) has emerged as a reliable external knowledge augmentation technique to mitigate hallucination issues and parameterized knowledge limitations in Large Language Models (LLMs). Existing adaptive RAG (ARAG) systems excel at in-depth exploration within a single source but struggle to effectively and controllably explore different retrieval sources, as they fail to foresee their internal knowledge features. We develop a novel multi-source ARAG system, PrefRAG, which enhances RAG by enabling in-depth and controllable exploration of diverse retrieval sources through preference-driven adaptive retrieval and self-reflection. PrefRAG first fully explores controllable local sources in adaptive retrieval and supplements with the web when appropriate, ultimately selecting the optimal source for knowledge observation. Subsequently, PrefRAG feeds answer quality feedback into the retrieval process, optimizing it from the generation perspective to produce higher-quality responses. Extensive experiments confirm its superiority, high retrieval efficiency, and knowledge controllability. PrefRAG outperforms Vanilla RAG and the leading MS-ARAG by up to 25.6% and 13.9% respectively. Additionally, PrefRAG trained with DPO achieves higher performance. The code and data are available at https://github.com/QingFei1/PrefRAG.git.
Beyond RAG vs. Long-Context: Learning Distraction-Aware Retrieval for Efficient Knowledge Grounding
Retrieval-Augmented Generation (RAG) is a framework for grounding Large Language Models (LLMs) in external, up-to-date information. However, recent advancements in context window size allow LLMs to process inputs of up to 128K tokens or more, offering an alternative strategy: supplying the full document context directly to the model, rather than relying on RAG to retrieve a subset of contexts. Nevertheless, this emerging alternative strategy has notable limitations: (i) it is token-inefficient to handle large and potentially redundant contexts; (ii) it exacerbates the `lost in the middle' phenomenon; and (iii) under limited model capacity, it amplifies distraction, ultimately degrading LLM output quality. In this paper, we propose LDAR (Learning Distraction-Aware Retrieval), an adaptive retriever that learns to retrieve contexts in a way that mitigates interference from distracting passages, thereby achieving significantly higher performance with reduced token usage compared to long-context approaches. Extensive experiments across diverse LLM architectures and six knowledge-intensive benchmarks demonstrate the effectiveness and robustness of our approach, highlighting the importance of balancing the trade-off between information coverage and distraction.
ARAGOG: Advanced RAG Output Grading
Retrieval-Augmented Generation (RAG) is essential for integrating external knowledge into Large Language Model (LLM) outputs. While the literature on RAG is growing, it primarily focuses on systematic reviews and comparisons of new state-of-the-art (SoTA) techniques against their predecessors, with a gap in extensive experimental comparisons. This study begins to address this gap by assessing various RAG methods' impacts on retrieval precision and answer similarity. We found that Hypothetical Document Embedding (HyDE) and LLM reranking significantly enhance retrieval precision. However, Maximal Marginal Relevance (MMR) and Cohere rerank did not exhibit notable advantages over a baseline Naive RAG system, and Multi-query approaches underperformed. Sentence Window Retrieval emerged as the most effective for retrieval precision, despite its variable performance on answer similarity. The study confirms the potential of the Document Summary Index as a competent retrieval approach. All resources related to this research are publicly accessible for further investigation through our GitHub repository ARAGOG (https://github.com/predlico/ARAGOG). We welcome the community to further this exploratory study in RAG systems.
AIC CTU system at AVeriTeC: Re-framing automated fact-checking as a simple RAG task
This paper describes our 3^{rd} place submission in the AVeriTeC shared task in which we attempted to address the challenge of fact-checking with evidence retrieved in the wild using a simple scheme of Retrieval-Augmented Generation (RAG) designed for the task, leveraging the predictive power of Large Language Models. We release our codebase and explain its two modules - the Retriever and the Evidence & Label generator - in detail, justifying their features such as MMR-reranking and Likert-scale confidence estimation. We evaluate our solution on AVeriTeC dev and test set and interpret the results, picking the GPT-4o as the most appropriate model for our pipeline at the time of our publication, with Llama 3.1 70B being a promising open-source alternative. We perform an empirical error analysis to see that faults in our predictions often coincide with noise in the data or ambiguous fact-checks, provoking further research and data augmentation.
ImpRAG: Retrieval-Augmented Generation with Implicit Queries
Retrieval-Augmented Generation (RAG) systems traditionally treat retrieval and generation as separate processes, requiring explicit textual queries to connect them. This separation can limit the ability of models to generalize across diverse tasks. In this work, we propose a query-free RAG system, named ImpRAG, which integrates retrieval and generation into a unified model. ImpRAG allows models to implicitly express their information needs, eliminating the need for human-specified queries. By dividing pretrained decoder-only language models into specialized layer groups, ImpRAG optimizes retrieval and generation tasks simultaneously. Our approach employs a two-stage inference process, using the same model parameters and forward pass for both retrieval and generation, thereby minimizing the disparity between retrievers and language models. Experiments on 8 knowledge-intensive tasks demonstrate that ImpRAG achieves 3.6-11.5 improvements in exact match scores on unseen tasks with diverse formats, highlighting its effectiveness in enabling models to articulate their own information needs and generalize across tasks. Our analysis underscores the importance of balancing retrieval and generation parameters and leveraging generation perplexities as retrieval training objectives for enhanced performance.
Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection
Despite their remarkable capabilities, large language models (LLMs) often produce responses containing factual inaccuracies due to their sole reliance on the parametric knowledge they encapsulate. Retrieval-Augmented Generation (RAG), an ad hoc approach that augments LMs with retrieval of relevant knowledge, decreases such issues. However, indiscriminately retrieving and incorporating a fixed number of retrieved passages, regardless of whether retrieval is necessary, or passages are relevant, diminishes LM versatility or can lead to unhelpful response generation. We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG) that enhances an LM's quality and factuality through retrieval and self-reflection. Our framework trains a single arbitrary LM that adaptively retrieves passages on-demand, and generates and reflects on retrieved passages and its own generations using special tokens, called reflection tokens. Generating reflection tokens makes the LM controllable during the inference phase, enabling it to tailor its behavior to diverse task requirements. Experiments show that Self-RAG (7B and 13B parameters) significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks. Specifically, Self-RAG outperforms ChatGPT and retrieval-augmented Llama2-chat on Open-domain QA, reasoning and fact verification tasks, and it shows significant gains in improving factuality and citation accuracy for long-form generations relative to these models.
Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs) in knowledge-intensive tasks such as those from medical domain. However, the sensitive nature of the medical domain necessitates a completely accurate and trustworthy system. While existing RAG benchmarks primarily focus on the standard retrieve-answer setting, they overlook many practical scenarios that measure crucial aspects of a reliable medical system. This paper addresses this gap by providing a comprehensive evaluation framework for medical question-answering (QA) systems in a RAG setting for these situations, including sufficiency, integration, and robustness. We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets for testing LLMs' ability to handle these specific scenarios. Utilizing MedRGB, we conduct extensive evaluations of both state-of-the-art commercial LLMs and open-source models across multiple retrieval conditions. Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents. We further analyze the LLMs' reasoning processes to provides valuable insights and future directions for developing RAG systems in this critical medical domain.
An Empirical Study of Retrieval-Augmented Code Generation: Challenges and Opportunities
Code generation aims to automatically generate code snippets of specific programming language according to natural language descriptions. The continuous advancements in deep learning, particularly pre-trained models, have empowered the code generation task to achieve remarkable performance. One main challenge of pre-trained models for code generation is the semantic gap between natural language requirements and source code. To address the issue, prior studies typically adopt a retrieval-augmented framework for the task, where the similar code snippets collected by a retrieval process can be leveraged to help understand the requirements and provide guidance for the generation process. However, there is a lack of systematic study on the application of this framework for code generation, including the impact of the final generated results and the specific usage of the framework. In this paper, we choose three popular pre-trained code models, namely CodeGen, UniXcoder, and CodeT5, to assess the impact of the quality and utilization of retrieved code on the retrieval-augmented framework. Our analysis shows that the retrieval-augmented framework is beneficial for improving the performance of the existing pre-trained models. We also provide suggestions on the utilization of the retrieval-augmented code generation framework: BM25 and Sequential Integration Fusion are recommended due to their convenience and superior performance. Sketch Filling Fusion, which extracts a sketch of relevant code, could help the model improve its performance further. Additionally, we conduct experiments to investigate the influence of the retrieval-augmented framework on large language models for code generation, showing the effectiveness of the framework, and we discuss the trade-off between performance improvement and computational costs in each phase within the framework.
Efficient Dynamic Clustering-Based Document Compression for Retrieval-Augmented-Generation
Retrieval-Augmented Generation (RAG) has emerged as a widely adopted approach for knowledge integration during large language model (LLM) inference in recent years. However, current RAG implementations face challenges in effectively addressing noise, repetition and redundancy in retrieved content, primarily due to their limited ability to exploit fine-grained inter-document relationships. To address these limitations, we propose an Efficient Dynamic Clustering-based document Compression framework (EDC\textsuperscript{2-RAG}) that effectively utilizes latent inter-document relationships while simultaneously removing irrelevant information and redundant content. We validate our approach, built upon GPT-3.5, on widely used knowledge-QA and hallucination-detected datasets. The results show that this method achieves consistent performance improvements across various scenarios and experimental settings, demonstrating strong robustness and applicability. Our code and datasets can be found at https://github.com/Tsinghua-dhy/EDC-2-RAG.
Enhancing LLM Intelligence with ARM-RAG: Auxiliary Rationale Memory for Retrieval Augmented Generation
Large Language Models (LLMs) are smart but forgetful. Recent studies, (e.g., (Bubeck et al., 2023)) on modern LLMs have shown that they are capable of performing amazing tasks typically necessitating human-level intelligence. However, unlike humans, frozen LLMs do not improve over time; they neither acquire new knowledge nor learn from their successes or failures. Some approaches to improving the intelligence of LLMs include fine-tuning models based on problem-solving performance (Zelikman et al., 2022), and building bigger and more sophisticated models (Bubeck et al., 2023). However, these methods have the drawback of requiring substantial data and computational resources to retrain existing models. In this paper, we explore the use of Retrieval Augmented Generation, also known as RAG (Lewis et al., 2021) to improve problem-solving performance. We propose ARM-RAG (Auxiliary Rationale Memory for Retrieval Augmented Generation), a system that learns from its successes without incurring high training costs. We demonstrate that the storage and subsequent retrieval of reasoning chains have a positive influence on performance in grade-school math problems.
RuleRAG: Rule-guided retrieval-augmented generation with language models for question answering
Retrieval-augmented generation (RAG) framework has shown promising potential in knowledge-intensive question answering (QA) by retrieving external corpus and generating based on augmented context. However, existing approaches only consider the query itself, neither specifying the retrieval preferences for the retrievers nor informing the generators of how to refer to the retrieved documents for the answers, which poses a significant challenge to the QA performance. To address these issues, we propose Rule-Guided Retrieval-Augmented Generation with LMs, which explicitly introduces symbolic rules as demonstrations for in-context learning (RuleRAG-ICL) to guide retrievers to retrieve logically related documents in the directions of rules and uniformly guide generators to generate answers attributed by the guidance of the same set of rules. Moreover, the combination of queries and rules can be further used as supervised fine-tuning data to update retrievers and generators (RuleRAG-FT) to achieve better rule-based instruction following capability, leading to retrieve more supportive results and generate more acceptable answers. To emphasize the attribution of rules, we construct five rule-aware QA benchmarks, including three temporal and two static scenarios, and equip RuleRAG with several kinds of retrievers and generators. Experiments demonstrate that training-free RuleRAG-ICL effectively improves the retrieval quality of +89.2% in Recall@10 scores and generation accuracy of +103.1% in exact match scores over standard RAG on average across the five benchmarks, and further fine-tuned RuleRAG-FT consistently yields more significant performance enhancement. Extensive analyses indicate that RuleRAG scales well with increasing numbers of retrieved documents and exhibits generalization ability for untrained rules.
Modular RAG: Transforming RAG Systems into LEGO-like Reconfigurable Frameworks
Retrieval-augmented Generation (RAG) has markedly enhanced the capabilities of Large Language Models (LLMs) in tackling knowledge-intensive tasks. The increasing demands of application scenarios have driven the evolution of RAG, leading to the integration of advanced retrievers, LLMs and other complementary technologies, which in turn has amplified the intricacy of RAG systems. However, the rapid advancements are outpacing the foundational RAG paradigm, with many methods struggling to be unified under the process of "retrieve-then-generate". In this context, this paper examines the limitations of the existing RAG paradigm and introduces the modular RAG framework. By decomposing complex RAG systems into independent modules and specialized operators, it facilitates a highly reconfigurable framework. Modular RAG transcends the traditional linear architecture, embracing a more advanced design that integrates routing, scheduling, and fusion mechanisms. Drawing on extensive research, this paper further identifies prevalent RAG patterns-linear, conditional, branching, and looping-and offers a comprehensive analysis of their respective implementation nuances. Modular RAG presents innovative opportunities for the conceptualization and deployment of RAG systems. Finally, the paper explores the potential emergence of new operators and paradigms, establishing a solid theoretical foundation and a practical roadmap for the continued evolution and practical deployment of RAG technologies.
Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG
Retrieval-augmented generation (RAG) empowers large language models (LLMs) to utilize external knowledge sources. The increasing capacity of LLMs to process longer input sequences opens up avenues for providing more retrieved information, to potentially enhance the quality of generated outputs. It is plausible to assume that a larger retrieval set would contain more relevant information (higher recall), that might result in improved performance. However, our empirical findings demonstrate that for many long-context LLMs, the quality of generated output initially improves first, but then subsequently declines as the number of retrieved passages increases. This paper investigates this phenomenon, identifying the detrimental impact of retrieved "hard negatives" as a key contributor. To mitigate this and enhance the robustness of long-context LLM-based RAG, we propose both training-free and training-based approaches. We first showcase the effectiveness of retrieval reordering as a simple yet powerful training-free optimization. Furthermore, we explore training-based methods, specifically RAG-specific implicit LLM fine-tuning and RAG-oriented fine-tuning with intermediate reasoning, demonstrating their capacity for substantial performance gains. Finally, we conduct a systematic analysis of design choices for these training-based methods, including data distribution, retriever selection, and training context length.
A Methodology for Evaluating RAG Systems: A Case Study On Configuration Dependency Validation
Retrieval-augmented generation (RAG) is an umbrella of different components, design decisions, and domain-specific adaptations to enhance the capabilities of large language models and counter their limitations regarding hallucination and outdated and missing knowledge. Since it is unclear which design decisions lead to a satisfactory performance, developing RAG systems is often experimental and needs to follow a systematic and sound methodology to gain sound and reliable results. However, there is currently no generally accepted methodology for RAG evaluation despite a growing interest in this technology. In this paper, we propose a first blueprint of a methodology for a sound and reliable evaluation of RAG systems and demonstrate its applicability on a real-world software engineering research task: the validation of configuration dependencies across software technologies. In summary, we make two novel contributions: (i) A novel, reusable methodological design for evaluating RAG systems, including a demonstration that represents a guideline, and (ii) a RAG system, which has been developed following this methodology, that achieves the highest accuracy in the field of dependency validation. For the blueprint's demonstration, the key insights are the crucial role of choosing appropriate baselines and metrics, the necessity for systematic RAG refinements derived from qualitative failure analysis, as well as the reporting practices of key design decision to foster replication and evaluation.
Improving Retrieval Augmented Language Model with Self-Reasoning
The Retrieval-Augmented Language Model (RALM) has shown remarkable performance on knowledge-intensive tasks by incorporating external knowledge during inference, which mitigates the factual hallucinations inherited in large language models (LLMs). Despite these advancements, challenges persist in the implementation of RALMs, particularly concerning their reliability and traceability. To be specific, the irrelevant document retrieval may result in unhelpful response generation or even deteriorate the performance of LLMs, while the lack of proper citations in generated outputs complicates efforts to verify the trustworthiness of the models. To this end, we propose a novel self-reasoning framework aimed at improving the reliability and traceability of RALMs, whose core idea is to leverage reasoning trajectories generated by the LLM itself. The framework involves constructing self-reason trajectories with three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process. We have evaluated our framework across four public datasets (two short-form QA datasets, one long-form QA dataset, and one fact verification dataset) to demonstrate the superiority of our method, which can outperform existing state-of-art models and can achieve comparable performance with GPT-4, while only using 2,000 training samples.
TRACE the Evidence: Constructing Knowledge-Grounded Reasoning Chains for Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) offers an effective approach for addressing question answering (QA) tasks. However, the imperfections of the retrievers in RAG models often result in the retrieval of irrelevant information, which could introduce noises and degrade the performance, especially when handling multi-hop questions that require multiple steps of reasoning. To enhance the multi-hop reasoning ability of RAG models, we propose TRACE. TRACE constructs knowledge-grounded reasoning chains, which are a series of logically connected knowledge triples, to identify and integrate supporting evidence from the retrieved documents for answering questions. Specifically, TRACE employs a KG Generator to create a knowledge graph (KG) from the retrieved documents, and then uses an Autoregressive Reasoning Chain Constructor to build reasoning chains. Experimental results on three multi-hop QA datasets show that TRACE achieves an average performance improvement of up to 14.03% compared to using all the retrieved documents. Moreover, the results indicate that using reasoning chains as context, rather than the entire documents, is often sufficient to correctly answer questions.
StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization
Retrieval-augmented generation (RAG) is a key means to effectively enhance large language models (LLMs) in many knowledge-based tasks. However, existing RAG methods struggle with knowledge-intensive reasoning tasks, because useful information required to these tasks are badly scattered. This characteristic makes it difficult for existing RAG methods to accurately identify key information and perform global reasoning with such noisy augmentation. In this paper, motivated by the cognitive theories that humans convert raw information into various structured knowledge when tackling knowledge-intensive reasoning, we proposes a new framework, StructRAG, which can identify the optimal structure type for the task at hand, reconstruct original documents into this structured format, and infer answers based on the resulting structure. Extensive experiments across various knowledge-intensive tasks show that StructRAG achieves state-of-the-art performance, particularly excelling in challenging scenarios, demonstrating its potential as an effective solution for enhancing LLMs in complex real-world applications.
INSTRUCTIR: A Benchmark for Instruction Following of Information Retrieval Models
Despite the critical need to align search targets with users' intention, retrievers often only prioritize query information without delving into the users' intended search context. Enhancing the capability of retrievers to understand intentions and preferences of users, akin to language model instructions, has the potential to yield more aligned search targets. Prior studies restrict the application of instructions in information retrieval to a task description format, neglecting the broader context of diverse and evolving search scenarios. Furthermore, the prevailing benchmarks utilized for evaluation lack explicit tailoring to assess instruction-following ability, thereby hindering progress in this field. In response to these limitations, we propose a novel benchmark,INSTRUCTIR, specifically designed to evaluate instruction-following ability in information retrieval tasks. Our approach focuses on user-aligned instructions tailored to each query instance, reflecting the diverse characteristics inherent in real-world search scenarios. Through experimental analysis, we observe that retrievers fine-tuned to follow task-style instructions, such as INSTRUCTOR, can underperform compared to their non-instruction-tuned counterparts. This underscores potential overfitting issues inherent in constructing retrievers trained on existing instruction-aware retrieval datasets.
Oreo: A Plug-in Context Reconstructor to Enhance Retrieval-Augmented Generation
Despite the remarkable capabilities of Large Language Models (LLMs) in various NLP tasks, they remain vulnerable to hallucinations due to their limited parametric knowledge and lack of domain-specific expertise. Retrieval-Augmented Generation (RAG) addresses this challenge by incorporating external document retrieval to augment the knowledge base of LLMs. In this approach, RAG retrieves document chunks from an external corpus in response to a query, which are then used as context for the downstream language model to generate an answer. However, these retrieved knowledge sources often include irrelevant or erroneous information, undermining the effectiveness of RAG in downstream tasks. To overcome this limitation, we introduce a compact, efficient, and pluggable module designed to refine external knowledge sources before feeding them to the generator. The module reconstructs retrieved content by extracting the most relevant and supportive information and reorganising it into a concise, query-specific format. Through a three-stage training paradigm - comprising supervised fine-tuning, contrastive multi-task learning, and reinforcement learning-based alignment - it prioritises critical knowledge and aligns it with the generator's preferences. This method enables LLMs to produce outputs that are more accurate, reliable, and contextually appropriate.
Enhancing Multilingual Information Retrieval in Mixed Human Resources Environments: A RAG Model Implementation for Multicultural Enterprise
The advent of Large Language Models has revolutionized information retrieval, ushering in a new era of expansive knowledge accessibility. While these models excel in providing open-world knowledge, effectively extracting answers in diverse linguistic environments with varying levels of literacy remains a formidable challenge. Retrieval Augmented Generation (RAG) emerges as a promising solution, bridging the gap between information availability and multilingual comprehension. However, deploying RAG models in real-world scenarios demands careful consideration of various factors. This paper addresses the critical challenges associated with implementing RAG models in multicultural environments. We delve into essential considerations, including data feeding strategies, timely updates, mitigation of hallucinations, prevention of erroneous responses, and optimization of delivery speed. Our work involves the integration of a diverse array of tools, meticulously combined to facilitate the seamless adoption of RAG models across languages and literacy levels within a multicultural organizational context. Through strategic tweaks in our approaches, we achieve not only effectiveness but also efficiency, ensuring the accelerated and accurate delivery of information in a manner that is tailored to the unique requirements of multilingual and multicultural settings.
VideoRAG: Retrieval-Augmented Generation over Video Corpus
Retrieval-Augmented Generation (RAG) is a powerful strategy to address the issue of generating factually incorrect outputs in foundation models by retrieving external knowledge relevant to queries and incorporating it into their generation process. However, existing RAG approaches have primarily focused on textual information, with some recent advancements beginning to consider images, and they largely overlook videos, a rich source of multimodal knowledge capable of representing events, processes, and contextual details more effectively than any other modality. While a few recent studies explore the integration of videos in the response generation process, they either predefine query-associated videos without retrieving them according to queries, or convert videos into the textual descriptions without harnessing their multimodal richness. To tackle these, we introduce VideoRAG, a novel framework that not only dynamically retrieves relevant videos based on their relevance with queries but also utilizes both visual and textual information of videos in the output generation. Further, to operationalize this, our method revolves around the recent advance of Large Video Language Models (LVLMs), which enable the direct processing of video content to represent it for retrieval and seamless integration of the retrieved videos jointly with queries. We experimentally validate the effectiveness of VideoRAG, showcasing that it is superior to relevant baselines.
Retrieval Augmented Instruction Tuning for Open NER with Large Language Models
The strong capability of large language models (LLMs) has been applied to information extraction (IE) through either retrieval augmented prompting or instruction tuning (IT). However, the best way to incorporate information with LLMs for IE remains an open question. In this paper, we explore Retrieval Augmented Instruction Tuning (RA-IT) for IE, focusing on the task of open named entity recognition (NER). Specifically, for each training sample, we retrieve semantically similar examples from the training dataset as the context and prepend them to the input of the original instruction. To evaluate our RA-IT approach more thoroughly, we construct a Chinese IT dataset for open NER and evaluate RA-IT in both English and Chinese scenarios. Experimental results verify the effectiveness of RA-IT across various data sizes and in both English and Chinese scenarios. We also conduct thorough studies to explore the impacts of various retrieval strategies in the proposed RA-IT framework. Code and data are available at: https://github.com/Emma1066/Retrieval-Augmented-IT-OpenNER
Online-Optimized RAG for Tool Use and Function Calling
In many applications, retrieval-augmented generation (RAG) drives tool use and function calling by embedding the (user) queries and matching them to pre-specified tool/function descriptions. In this paper, we address an embedding misalignment issue that often arises in practical applications due to imperfect embedding models or noisy descriptions; such misalignment may lead to incorrect retrieval and task failure. We introduce Online-Optimized RAG, a deployment-time framework that continually adapts retrieval embeddings from live interactions using minimal feedback (e.g., task success). Online-Optimized RAG applies lightweight online gradient updates with negligible per-query latency and requires no changes to the underlying LLM. The method is plug-and-play: it supports both single- and multi-hop tool use, dynamic tool inventories, and K-retrieval with re-ranking. We provide a problem-dependent theoretical analysis that quantifies how the method's performance depends on the initialization quality of the embeddings and other related quantities. Across diverse tool-use and document-retrieval scenarios, our Online-Optimized RAG consistently improves tool selection accuracy and end-task success, thus providing a simple, practical path to robust, self-improving RAG systems.
UniRAG: Universal Retrieval Augmentation for Multi-Modal Large Language Models
Recently, Multi-Modal(MM) Large Language Models(LLMs) have unlocked many complex use-cases that require MM understanding (e.g., image captioning or visual question answering) and MM generation (e.g., text-guided image generation or editing) capabilities. To further improve the output fidelity of MM-LLMs we introduce the model-agnostic UniRAG technique that adds relevant retrieved information to prompts as few-shot examples during inference. Unlike the common belief that Retrieval Augmentation (RA) mainly improves generation or understanding of uncommon entities, our evaluation results on the MSCOCO dataset with common entities show that both proprietary models like GPT4 and Gemini-Pro and smaller open-source models like Llava, LaVIT, and Emu2 significantly enhance their generation quality when their input prompts are augmented with relevant information retrieved by MM retrievers like UniIR models.
Beyond Chunks and Graphs: Retrieval-Augmented Generation through Triplet-Driven Thinking
Retrieval-augmented generation (RAG) is critical for reducing hallucinations and incorporating external knowledge into Large Language Models (LLMs). However, advanced RAG systems face a trade-off between performance and efficiency. Multi-round RAG approaches achieve strong reasoning but incur excessive LLM calls and token costs, while Graph RAG methods suffer from computationally expensive, error-prone graph construction and retrieval redundancy. To address these challenges, we propose T^2RAG, a novel framework that operates on a simple, graph-free knowledge base of atomic triplets. T^2RAG leverages an LLM to decompose questions into searchable triplets with placeholders, which it then iteratively resolves by retrieving evidence from the triplet database. Empirical results show that T^2RAG significantly outperforms state-of-the-art multi-round and Graph RAG methods, achieving an average performance gain of up to 11\% across six datasets while reducing retrieval costs by up to 45\%. Our code is available at https://github.com/rockcor/T2RAG
MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot
Retrieval-augmented generation (RAG) is a well-suited technique for retrieving privacy-sensitive Electronic Health Records (EHR). It can serve as a key module of the healthcare copilot, helping reduce misdiagnosis for healthcare practitioners and patients. However, the diagnostic accuracy and specificity of existing heuristic-based RAG models used in the medical domain are inadequate, particularly for diseases with similar manifestations. This paper proposes MedRAG, a RAG model enhanced by knowledge graph (KG)-elicited reasoning for the medical domain that retrieves diagnosis and treatment recommendations based on manifestations. MedRAG systematically constructs a comprehensive four-tier hierarchical diagnostic KG encompassing critical diagnostic differences of various diseases. These differences are dynamically integrated with similar EHRs retrieved from an EHR database, and reasoned within a large language model. This process enables more accurate and specific decision support, while also proactively providing follow-up questions to enhance personalized medical decision-making. MedRAG is evaluated on both a public dataset DDXPlus and a private chronic pain diagnostic dataset (CPDD) collected from Tan Tock Seng Hospital, and its performance is compared against various existing RAG methods. Experimental results show that, leveraging the information integration and relational abilities of the KG, our MedRAG provides more specific diagnostic insights and outperforms state-of-the-art models in reducing misdiagnosis rates. Our code will be available at https://github.com/SNOWTEAM2023/MedRAG
RAGChecker: A Fine-grained Framework for Diagnosing Retrieval-Augmented Generation
Despite Retrieval-Augmented Generation (RAG) has shown promising capability in leveraging external knowledge, a comprehensive evaluation of RAG systems is still challenging due to the modular nature of RAG, evaluation of long-form responses and reliability of measurements. In this paper, we propose a fine-grained evaluation framework, RAGChecker, that incorporates a suite of diagnostic metrics for both the retrieval and generation modules. Meta evaluation verifies that RAGChecker has significantly better correlations with human judgments than other evaluation metrics. Using RAGChecker, we evaluate 8 RAG systems and conduct an in-depth analysis of their performance, revealing insightful patterns and trade-offs in the design choices of RAG architectures. The metrics of RAGChecker can guide researchers and practitioners in developing more effective RAG systems.
CoFE-RAG: A Comprehensive Full-chain Evaluation Framework for Retrieval-Augmented Generation with Enhanced Data Diversity
Retrieval-Augmented Generation (RAG) aims to enhance large language models (LLMs) to generate more accurate and reliable answers with the help of the retrieved context from external knowledge sources, thereby reducing the incidence of hallucinations. Despite the advancements, evaluating these systems remains a crucial research area due to the following issues: (1) Limited data diversity: The insufficient diversity of knowledge sources and query types constrains the applicability of RAG systems; (2) Obscure problems location: Existing evaluation methods have difficulty in locating the stage of the RAG pipeline where problems occur; (3) Unstable retrieval evaluation: These methods often fail to effectively assess retrieval performance, particularly when the chunking strategy changes. To tackle these challenges, we propose a Comprehensive Full-chain Evaluation (CoFE-RAG) framework to facilitate thorough evaluation across the entire RAG pipeline, including chunking, retrieval, reranking, and generation. To effectively evaluate the first three phases, we introduce multi-granularity keywords, including coarse-grained and fine-grained keywords, to assess the retrieved context instead of relying on the annotation of golden chunks. Moreover, we release a holistic benchmark dataset tailored for diverse data scenarios covering a wide range of document formats and query types. We demonstrate the utility of the CoFE-RAG framework by conducting experiments to evaluate each stage of RAG systems. Our evaluation method provides unique insights into the effectiveness of RAG systems in handling diverse data scenarios, offering a more nuanced understanding of their capabilities and limitations.
In-Context Retrieval-Augmented Language Models
Retrieval-Augmented Language Modeling (RALM) methods, that condition a language model (LM) on relevant documents from a grounding corpus during generation, have been shown to significantly improve language modeling while also providing a natural source attribution mechanism. Existing RALM approaches focus on modifying the LM architecture in order to facilitate the incorporation of external information, significantly complicating deployment. This paper proposes an under-explored alternative, which we dub In-Context RALM: leaving the LM architecture unchanged and prepending grounding documents to the input. We show that in-context RALM which uses off-the-shelf general purpose retrievers provides surprisingly large LM gains across model sizes and diverse corpora. We also demonstrate that the document retrieval and ranking mechanism can be specialized to the RALM setting to further boost performance. We conclude that in-context RALM has considerable potential to increase the prevalence of LM grounding, particularly in settings where a pretrained LM must be used without modification or even via API access. To that end, we make our code publicly available.
Optimizing Retrieval Strategies for Financial Question Answering Documents in Retrieval-Augmented Generation Systems
Retrieval-Augmented Generation (RAG) has emerged as a promising framework to mitigate hallucinations in Large Language Models (LLMs), yet its overall performance is dependent on the underlying retrieval system. In the finance domain, documents such as 10-K reports pose distinct challenges due to domain-specific vocabulary and multi-hierarchical tabular data. In this work, we introduce an efficient, end-to-end RAG pipeline that enhances retrieval for financial documents through a three-phase approach: pre-retrieval, retrieval, and post-retrieval. In the pre-retrieval phase, various query and corpus preprocessing techniques are employed to enrich input data. During the retrieval phase, we fine-tuned state-of-the-art (SOTA) embedding models with domain-specific knowledge and implemented a hybrid retrieval strategy that combines dense and sparse representations. Finally, the post-retrieval phase leverages Direct Preference Optimization (DPO) training and document selection methods to further refine the results. Evaluations on seven financial question answering datasets-FinDER, FinQABench, FinanceBench, TATQA, FinQA, ConvFinQA, and MultiHiertt-demonstrate substantial improvements in retrieval performance, leading to more accurate and contextually appropriate generation. These findings highlight the critical role of tailored retrieval techniques in advancing the effectiveness of RAG systems for financial applications. A fully replicable pipeline is available on GitHub: https://github.com/seohyunwoo-0407/GAR.
Controlled Retrieval-augmented Context Evaluation for Long-form RAG
Retrieval-augmented generation (RAG) enhances large language models by incorporating context retrieved from external knowledge sources. While the effectiveness of the retrieval module is typically evaluated with relevance-based ranking metrics, such metrics may be insufficient to reflect the retrieval's impact on the final RAG result, especially in long-form generation scenarios. We argue that providing a comprehensive retrieval-augmented context is important for long-form RAG tasks like report generation and propose metrics for assessing the context independent of generation. We introduce CRUX, a Controlled Retrieval-aUgmented conteXt evaluation framework designed to directly assess retrieval-augmented contexts. This framework uses human-written summaries to control the information scope of knowledge, enabling us to measure how well the context covers information essential for long-form generation. CRUX uses question-based evaluation to assess RAG's retrieval in a fine-grained manner. Empirical results show that CRUX offers more reflective and diagnostic evaluation. Our findings also reveal substantial room for improvement in current retrieval methods, pointing to promising directions for advancing RAG's retrieval. Our data and code are publicly available to support and advance future research on retrieval.
The Power of Noise: Redefining Retrieval for RAG Systems
Retrieval-Augmented Generation (RAG) systems represent a significant advancement over traditional Large Language Models (LLMs). RAG systems enhance their generation ability by incorporating external data retrieved through an Information Retrieval (IR) phase, overcoming the limitations of standard LLMs, which are restricted to their pre-trained knowledge and limited context window. Most research in this area has predominantly concentrated on the generative aspect of LLMs within RAG systems. Our study fills this gap by thoroughly and critically analyzing the influence of IR components on RAG systems. This paper analyzes which characteristics a retriever should possess for an effective RAG's prompt formulation, focusing on the type of documents that should be retrieved. We evaluate various elements, such as the relevance of the documents to the prompt, their position, and the number included in the context. Our findings reveal, among other insights, that including irrelevant documents can unexpectedly enhance performance by more than 30% in accuracy, contradicting our initial assumption of diminished quality. These results underscore the need for developing specialized strategies to integrate retrieval with language generation models, thereby laying the groundwork for future research in this field.
RAG Does Not Work for Enterprises
Retrieval-Augmented Generation (RAG) improves the accuracy and relevance of large language model outputs by incorporating knowledge retrieval. However, implementing RAG in enterprises poses challenges around data security, accuracy, scalability, and integration. This paper explores the unique requirements for enterprise RAG, surveys current approaches and limitations, and discusses potential advances in semantic search, hybrid queries, and optimized retrieval. It proposes an evaluation framework to validate enterprise RAG solutions, including quantitative testing, qualitative analysis, ablation studies, and industry case studies. This framework aims to help demonstrate the ability of purpose-built RAG architectures to deliver accuracy and relevance improvements with enterprise-grade security, compliance and integration. The paper concludes with implications for enterprise deployments, limitations, and future research directions. Close collaboration between researchers and industry partners may accelerate progress in developing and deploying retrieval-augmented generation technology.
A Survey on Retrieval-Augmented Text Generation
Recently, retrieval-augmented text generation attracted increasing attention of the computational linguistics community. Compared with conventional generation models, retrieval-augmented text generation has remarkable advantages and particularly has achieved state-of-the-art performance in many NLP tasks. This paper aims to conduct a survey about retrieval-augmented text generation. It firstly highlights the generic paradigm of retrieval-augmented generation, and then it reviews notable approaches according to different tasks including dialogue response generation, machine translation, and other generation tasks. Finally, it points out some important directions on top of recent methods to facilitate future research.
A Survey on Knowledge-Oriented Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has gained significant attention in recent years for its potential to enhance natural language understanding and generation by combining large-scale retrieval systems with generative models. RAG leverages external knowledge sources, such as documents, databases, or structured data, to improve model performance and generate more accurate and contextually relevant outputs. This survey aims to provide a comprehensive overview of RAG by examining its fundamental components, including retrieval mechanisms, generation processes, and the integration between the two. We discuss the key characteristics of RAG, such as its ability to augment generative models with dynamic external knowledge, and the challenges associated with aligning retrieved information with generative objectives. We also present a taxonomy that categorizes RAG methods, ranging from basic retrieval-augmented approaches to more advanced models incorporating multi-modal data and reasoning capabilities. Additionally, we review the evaluation benchmarks and datasets commonly used to assess RAG systems, along with a detailed exploration of its applications in fields such as question answering, summarization, and information retrieval. Finally, we highlight emerging research directions and opportunities for improving RAG systems, such as enhanced retrieval efficiency, model interpretability, and domain-specific adaptations. This paper concludes by outlining the prospects for RAG in addressing real-world challenges and its potential to drive further advancements in natural language processing.
From RAGs to rich parameters: Probing how language models utilize external knowledge over parametric information for factual queries
Retrieval Augmented Generation (RAG) enriches the ability of language models to reason using external context to augment responses for a given user prompt. This approach has risen in popularity due to practical applications in various applications of language models in search, question/answering, and chat-bots. However, the exact nature of how this approach works isn't clearly understood. In this paper, we mechanistically examine the RAG pipeline to highlight that language models take shortcut and have a strong bias towards utilizing only the context information to answer the question, while relying minimally on their parametric memory. We probe this mechanistic behavior in language models with: (i) Causal Mediation Analysis to show that the parametric memory is minimally utilized when answering a question and (ii) Attention Contributions and Knockouts to show that the last token residual stream do not get enriched from the subject token in the question, but gets enriched from other informative tokens in the context. We find this pronounced shortcut behaviour true across both LLaMa and Phi family of models.
BRIGHT+: Upgrading the BRIGHT Benchmark with MARCUS, a Multi-Agent RAG Clean-Up Suite
Retrieval-Augmented Generation (RAG) systems require corpora that are both structurally clean and semantically coherent. BRIGHT is a recent and influential benchmark designed to evaluate complex multi-hop retrieval across diverse, high-reasoning domains. However, its practical effectiveness is limited by common web-crawled artifacts - such as content redundancy and semantic discontinuity - that impair retrieval accuracy and downstream reasoning. Notably, we find that such issues are concentrated in seven StackExchange-derived subdomains, while other domains (e.g., Coding and Theorem-based content) remain relatively clean. In this study, we present MARCUS, a multi-agent pipeline that leverages large language models (LLMs) to systematically clean and re-chunk BRIGHT into a higher-quality corpus: BRIGHT-Plus. MARCUS applies dedicated agents for structural noise removal and semantic segmentation, preserving answer-bearing spans while improving contextual integrity. Experimental evaluations demonstrate that BRIGHT-Plus yields consistent and significant improvements in both retrieval accuracy and multi-hop reasoning across a diverse set of retrievers. We release both the BRIGHT-Plus corpus and the MARCUS pipeline to support future research on robust, reasoning-centric retrieval.
Enhancing Retrieval-Augmented Generation: A Study of Best Practices
Retrieval-Augmented Generation (RAG) systems have recently shown remarkable advancements by integrating retrieval mechanisms into language models, enhancing their ability to produce more accurate and contextually relevant responses. However, the influence of various components and configurations within RAG systems remains underexplored. A comprehensive understanding of these elements is essential for tailoring RAG systems to complex retrieval tasks and ensuring optimal performance across diverse applications. In this paper, we develop several advanced RAG system designs that incorporate query expansion, various novel retrieval strategies, and a novel Contrastive In-Context Learning RAG. Our study systematically investigates key factors, including language model size, prompt design, document chunk size, knowledge base size, retrieval stride, query expansion techniques, Contrastive In-Context Learning knowledge bases, multilingual knowledge bases, and Focus Mode retrieving relevant context at sentence-level. Through extensive experimentation, we provide a detailed analysis of how these factors influence response quality. Our findings offer actionable insights for developing RAG systems, striking a balance between contextual richness and retrieval-generation efficiency, thereby paving the way for more adaptable and high-performing RAG frameworks in diverse real-world scenarios. Our code and implementation details are publicly available.
Remember, Retrieve and Generate: Understanding Infinite Visual Concepts as Your Personalized Assistant
The development of large language models (LLMs) has significantly enhanced the capabilities of multimodal LLMs (MLLMs) as general assistants. However, lack of user-specific knowledge still restricts their application in human's daily life. In this paper, we introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization. Starting from a general MLLM, we turn it into a personalized assistant in three steps. (a) Remember: We design a key-value database to store user-related information, e.g., user's name, avatar and other attributes. (b) Retrieve: When the user initiates a conversation, RAP will retrieve relevant information from the database using a multimodal retriever. (c) Generate: The input query and retrieved concepts' information are fed into MLLMs to generate personalized, knowledge-augmented responses. Unlike previous methods, RAP allows real-time concept editing via updating the external database. To further improve generation quality and alignment with user-specific information, we design a pipeline for data collection and create a specialized dataset for personalized training of MLLMs. Based on the dataset, we train a series of MLLMs as personalized multimodal assistants. By pretraining on large-scale dataset, RAP-MLLMs can generalize to infinite visual concepts without additional finetuning. Our models demonstrate outstanding flexibility and generation quality across a variety of tasks, such as personalized image captioning, question answering and visual recognition. The code, data and models are available at https://github.com/Hoar012/RAP-MLLM.
Rewriting the Code: A Simple Method for Large Language Model Augmented Code Search
In code search, the Generation-Augmented Retrieval (GAR) framework, which generates exemplar code snippets to augment queries, has emerged as a promising strategy to address the principal challenge of modality misalignment between code snippets and natural language queries, particularly with the demonstrated code generation capabilities of Large Language Models (LLMs). Nevertheless, our preliminary investigations indicate that the improvements conferred by such an LLM-augmented framework are somewhat constrained. This limitation could potentially be ascribed to the fact that the generated codes, albeit functionally accurate, frequently display a pronounced stylistic deviation from the ground truth code in the codebase. In this paper, we extend the foundational GAR framework and propose a simple yet effective method that additionally Rewrites the Code (ReCo) within the codebase for style normalization. Experimental results demonstrate that ReCo significantly boosts retrieval accuracy across sparse (up to 35.7%), zero-shot dense (up to 27.6%), and fine-tuned dense (up to 23.6%) retrieval settings in diverse search scenarios. To further elucidate the advantages of ReCo and stimulate research in code style normalization, we introduce Code Style Similarity, the first metric tailored to quantify stylistic similarities in code. Notably, our empirical findings reveal the inadequacy of existing metrics in capturing stylistic nuances.
Tevatron 2.0: Unified Document Retrieval Toolkit across Scale, Language, and Modality
Recent advancements in large language models (LLMs) have driven interest in billion-scale retrieval models with strong generalization across retrieval tasks and languages. Additionally, progress in large vision-language models has created new opportunities for multimodal retrieval. In response, we have updated the Tevatron toolkit, introducing a unified pipeline that enables researchers to explore retriever models at different scales, across multiple languages, and with various modalities. This demo paper highlights the toolkit's key features, bridging academia and industry by supporting efficient training, inference, and evaluation of neural retrievers. We showcase a unified dense retriever achieving strong multilingual and multimodal effectiveness, and conduct a cross-modality zero-shot study to demonstrate its research potential. Alongside, we release OmniEmbed, to the best of our knowledge, the first embedding model that unifies text, image document, video, and audio retrieval, serving as a baseline for future research.
Does RAG Really Perform Bad For Long-Context Processing?
The efficient processing of long context poses a serious challenge for large language models (LLMs). Recently, retrieval-augmented generation (RAG) has emerged as a promising strategy for this problem, as it enables LLMs to make selective use of the long context for efficient computation. However, existing RAG approaches lag behind other long-context processing methods due to inherent limitations on inaccurate retrieval and fragmented contexts. To address these challenges, we introduce RetroLM, a novel RAG framework for long-context processing. Unlike traditional methods, RetroLM employs KV-level retrieval augmentation, where it partitions the LLM's KV cache into contiguous pages and retrieves the most crucial ones for efficient computation. This approach enhances robustness to retrieval inaccuracy, facilitates effective utilization of fragmented contexts, and saves the cost from repeated computation. Building on this framework, we further develop a specialized retriever for precise retrieval of critical pages and conduct unsupervised post-training to optimize the model's ability to leverage retrieved information. We conduct comprehensive evaluations with a variety of benchmarks, including LongBench, InfiniteBench, and RULER, where RetroLM significantly outperforms existing long-context LLMs and efficient long-context processing methods, particularly in tasks requiring intensive reasoning or extremely long-context comprehension.
LLM-Assisted Question-Answering on Technical Documents Using Structured Data-Aware Retrieval Augmented Generation
Large Language Models (LLMs) are capable of natural language understanding and generation. But they face challenges such as hallucination and outdated knowledge. Fine-tuning is one possible solution, but it is resource-intensive and must be repeated with every data update. Retrieval-Augmented Generation (RAG) offers an efficient solution by allowing LLMs to access external knowledge sources. However, traditional RAG pipelines struggle with retrieving information from complex technical documents with structured data such as tables and images. In this work, we propose a RAG pipeline, capable of handling tables and images in documents, for technical documents that support both scanned and searchable formats. Its retrieval process combines vector similarity search with a fine-tuned reranker based on Gemma-2-9b-it. The reranker is trained using RAFT (Retrieval-Augmented Fine-Tuning) on a custom dataset designed to improve context identification for question answering. Our evaluation demonstrates that the proposed pipeline achieves a high faithfulness score of 94% (RAGas) and 96% (DeepEval), and an answer relevancy score of 87% (RAGas) and 93% (DeepEval). Comparative analysis demonstrates that the proposed architecture is superior to general RAG pipelines in terms of table-based questions and handling questions outside context.

 
			 
			 
			 
			 
			 
			 
			 
			 
			 
	 
	 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
	 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			