new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 1

[CLS] Attention is All You Need for Training-Free Visual Token Pruning: Make VLM Inference Faster

Large vision-language models (VLMs) often rely on a substantial number of visual tokens when interacting with large language models (LLMs), which has proven to be inefficient. Recent efforts have aimed to accelerate VLM inference by pruning visual tokens. Most existing methods assess the importance of visual tokens based on the text-visual cross-attentions in LLMs. In this study, we find that the cross-attentions between text and visual tokens in LLMs are inaccurate. Pruning tokens based on these inaccurate attentions leads to significant performance degradation, especially at high reduction ratios. To this end, we introduce FasterVLM, a simple yet effective training-free visual token pruning method that evaluates the importance of visual tokens more accurately by utilizing attentions between the [CLS] token and image tokens from the visual encoder. Since FasterVLM eliminates redundant visual tokens immediately after the visual encoder, ensuring they do not interact with LLMs and resulting in faster VLM inference. It is worth noting that, benefiting from the accuracy of [CLS] cross-attentions, FasterVLM can prune 95\% of visual tokens while maintaining 90\% of the performance of LLaVA-1.5-7B. We apply FasterVLM to various VLMs, including LLaVA-1.5, LLaVA-NeXT, and Video-LLaVA, to demonstrate its effectiveness. Experimental results show that our FasterVLM maintains strong performance across various VLM architectures and reduction ratios, significantly outperforming existing text-visual attention-based methods. Our code is available at https://github.com/Theia-4869/FasterVLM.

  • 9 authors
·
Dec 2, 2024

From Head to Tail: Towards Balanced Representation in Large Vision-Language Models through Adaptive Data Calibration

Large Vision-Language Models (LVLMs) have achieved significant progress in combining visual comprehension with language generation. Despite this success, the training data of LVLMs still suffers from Long-Tail (LT) problems, where the data distribution is highly imbalanced. Previous works have mainly focused on traditional VLM architectures, i.e., CLIP or ViT, and specific tasks such as recognition and classification. Nevertheless, the exploration of LVLM (e.g. LLaVA) and more general tasks (e.g. Visual Question Answering and Visual Reasoning) remains under-explored. In this paper, we first conduct an in-depth analysis of the LT issues in LVLMs and identify two core causes: the overrepresentation of head concepts and the underrepresentation of tail concepts. Based on the above observation, we propose an Adaptive Data Refinement Framework (ADR), which consists of two stages: Data Rebalancing (DR) and Data Synthesis (DS). In the DR stage, we adaptively rebalance the redundant data based on entity distributions, while in the DS stage, we leverage Denoising Diffusion Probabilistic Models (DDPMs) and scarce images to supplement underrepresented portions. Through comprehensive evaluations across eleven benchmarks, our proposed ADR effectively mitigates the long-tail problem in the training data, improving the average performance of LLaVA 1.5 relatively by 4.36%, without increasing the training data volume.

  • 4 authors
·
Mar 17 2

RewardDance: Reward Scaling in Visual Generation

Reward Models (RMs) are critical for improving generation models via Reinforcement Learning (RL), yet the RM scaling paradigm in visual generation remains largely unexplored. It primarily due to fundamental limitations in existing approaches: CLIP-based RMs suffer from architectural and input modality constraints, while prevalent Bradley-Terry losses are fundamentally misaligned with the next-token prediction mechanism of Vision-Language Models (VLMs), hindering effective scaling. More critically, the RLHF optimization process is plagued by Reward Hacking issue, where models exploit flaws in the reward signal without improving true quality. To address these challenges, we introduce RewardDance, a scalable reward modeling framework that overcomes these barriers through a novel generative reward paradigm. By reformulating the reward score as the model's probability of predicting a "yes" token, indicating that the generated image outperforms a reference image according to specific criteria, RewardDance intrinsically aligns reward objectives with VLM architectures. This alignment unlocks scaling across two dimensions: (1) Model Scaling: Systematic scaling of RMs up to 26 billion parameters; (2) Context Scaling: Integration of task-specific instructions, reference examples, and chain-of-thought (CoT) reasoning. Extensive experiments demonstrate that RewardDance significantly surpasses state-of-the-art methods in text-to-image, text-to-video, and image-to-video generation. Crucially, we resolve the persistent challenge of "reward hacking": Our large-scale RMs exhibit and maintain high reward variance during RL fine-tuning, proving their resistance to hacking and ability to produce diverse, high-quality outputs. It greatly relieves the mode collapse problem that plagues smaller models.

PhysVLM: Enabling Visual Language Models to Understand Robotic Physical Reachability

Understanding the environment and a robot's physical reachability is crucial for task execution. While state-of-the-art vision-language models (VLMs) excel in environmental perception, they often generate inaccurate or impractical responses in embodied visual reasoning tasks due to a lack of understanding of robotic physical reachability. To address this issue, we propose a unified representation of physical reachability across diverse robots, i.e., Space-Physical Reachability Map (S-P Map), and PhysVLM, a vision-language model that integrates this reachability information into visual reasoning. Specifically, the S-P Map abstracts a robot's physical reachability into a generalized spatial representation, independent of specific robot configurations, allowing the model to focus on reachability features rather than robot-specific parameters. Subsequently, PhysVLM extends traditional VLM architectures by incorporating an additional feature encoder to process the S-P Map, enabling the model to reason about physical reachability without compromising its general vision-language capabilities. To train and evaluate PhysVLM, we constructed a large-scale multi-robot dataset, Phys100K, and a challenging benchmark, EQA-phys, which includes tasks for six different robots in both simulated and real-world environments. Experimental results demonstrate that PhysVLM outperforms existing models, achieving a 14\% improvement over GPT-4o on EQA-phys and surpassing advanced embodied VLMs such as RoboMamba and SpatialVLM on the RoboVQA-val and OpenEQA benchmarks. Additionally, the S-P Map shows strong compatibility with various VLMs, and its integration into GPT-4o-mini yields a 7.1\% performance improvement.

  • 7 authors
·
Mar 11

DyMU: Dynamic Merging and Virtual Unmerging for Efficient VLMs

We present DyMU, an efficient, training-free framework that dynamically reduces the computational burden of vision-language models (VLMs) while maintaining high task performance. Our approach comprises two key components. First, Dynamic Token Merging (DToMe) reduces the number of visual token embeddings by merging similar tokens based on image complexity, addressing the inherent inefficiency of fixed-length outputs in vision transformers. Second, Virtual Token Unmerging (VTU) simulates the expected token sequence for large language models (LLMs) by efficiently reconstructing the attention dynamics of a full sequence, thus preserving the downstream performance without additional fine-tuning. Unlike previous approaches, our method dynamically adapts token compression to the content of the image and operates completely training-free, making it readily applicable to most state-of-the-art VLM architectures. Extensive experiments on image and video understanding tasks demonstrate that DyMU can reduce the average visual token count by 32%-85% while achieving comparable performance to full-length models across diverse VLM architectures, including the recently popularized AnyRes-based visual encoders. Furthermore, through qualitative analyses, we demonstrate that DToMe effectively adapts token reduction based on image complexity and, unlike existing systems, provides users more control over computational costs. Project page: https://mikewangwzhl.github.io/dymu/.

  • 6 authors
·
Apr 23 2

Language Models as Black-Box Optimizers for Vision-Language Models

Vision-language models (VLMs) pre-trained on web-scale datasets have demonstrated remarkable capabilities on downstream tasks when fine-tuned with minimal data. However, many VLMs rely on proprietary data and are not open-source, which restricts the use of white-box approaches for fine-tuning. As such, we aim to develop a black-box approach to optimize VLMs through natural language prompts, thereby avoiding the need to access model parameters, feature embeddings, or even output logits. We propose employing chat-based LLMs to search for the best text prompt for VLMs. Specifically, we adopt an automatic hill-climbing procedure that converges to an effective prompt by evaluating the performance of current prompts and asking LLMs to refine them based on textual feedback, all within a conversational process without human-in-the-loop. In a challenging 1-shot image classification setup, our simple approach surpasses the white-box continuous prompting method (CoOp) by an average of 1.5% across 11 datasets including ImageNet. Our approach also outperforms both human-engineered and LLM-generated prompts. We highlight the advantage of conversational feedback that incorporates both positive and negative prompts, suggesting that LLMs can utilize the implicit gradient direction in textual feedback for a more efficient search. In addition, we find that the text prompts generated through our strategy are not only more interpretable but also transfer well across different VLM architectures in a black-box manner. Lastly, we demonstrate our framework on a state-of-the-art black-box VLM (DALL-E 3) for text-to-image optimization.

  • 7 authors
·
Sep 12, 2023

Vision-Language Model for Object Detection and Segmentation: A Review and Evaluation

Vision-Language Model (VLM) have gained widespread adoption in Open-Vocabulary (OV) object detection and segmentation tasks. Despite they have shown promise on OV-related tasks, their effectiveness in conventional vision tasks has thus far been unevaluated. In this work, we present the systematic review of VLM-based detection and segmentation, view VLM as the foundational model and conduct comprehensive evaluations across multiple downstream tasks for the first time: 1) The evaluation spans eight detection scenarios (closed-set detection, domain adaptation, crowded objects, etc.) and eight segmentation scenarios (few-shot, open-world, small object, etc.), revealing distinct performance advantages and limitations of various VLM architectures across tasks. 2) As for detection tasks, we evaluate VLMs under three finetuning granularities: zero prediction, visual fine-tuning, and text prompt, and further analyze how different finetuning strategies impact performance under varied task. 3) Based on empirical findings, we provide in-depth analysis of the correlations between task characteristics, model architectures, and training methodologies, offering insights for future VLM design. 4) We believe that this work shall be valuable to the pattern recognition experts working in the fields of computer vision, multimodal learning, and vision foundation models by introducing them to the problem, and familiarizing them with the current status of the progress while providing promising directions for future research. A project associated with this review and evaluation has been created at https://github.com/better-chao/perceptual_abilities_evaluation.

  • 16 authors
·
Apr 13

Re-Align: Aligning Vision Language Models via Retrieval-Augmented Direct Preference Optimization

The emergence of large Vision Language Models (VLMs) has broadened the scope and capabilities of single-modal Large Language Models (LLMs) by integrating visual modalities, thereby unlocking transformative cross-modal applications in a variety of real-world scenarios. Despite their impressive performance, VLMs are prone to significant hallucinations, particularly in the form of cross-modal inconsistencies. Building on the success of Reinforcement Learning from Human Feedback (RLHF) in aligning LLMs, recent advancements have focused on applying direct preference optimization (DPO) on carefully curated datasets to mitigate these issues. Yet, such approaches typically introduce preference signals in a brute-force manner, neglecting the crucial role of visual information in the alignment process. In this paper, we introduce Re-Align, a novel alignment framework that leverages image retrieval to construct a dual-preference dataset, effectively incorporating both textual and visual preference signals. We further introduce rDPO, an extension of the standard direct preference optimization that incorporates an additional visual preference objective during fine-tuning. Our experimental results demonstrate that Re-Align not only mitigates hallucinations more effectively than previous methods but also yields significant performance gains in general visual question-answering (VQA) tasks. Moreover, we show that Re-Align maintains robustness and scalability across a wide range of VLM sizes and architectures. This work represents a significant step forward in aligning multimodal LLMs, paving the way for more reliable and effective cross-modal applications. We release all the code in https://github.com/taco-group/Re-Align.

  • 8 authors
·
Feb 18

VLM-FO1: Bridging the Gap Between High-Level Reasoning and Fine-Grained Perception in VLMs

Vision-Language Models (VLMs) excel at high-level scene understanding but falter on fine-grained perception tasks requiring precise localization. This failure stems from a fundamental mismatch, as generating exact numerical coordinates is a challenging task for language-centric architectures. In this paper, we introduce VLM-FO1, a novel framework that overcomes this limitation by reframing object-centric perception from a brittle coordinate generation problem into a robust feature retrieval task. Our method operates as a plug-and-play module that integrates with any pre-trained VLM. It leverages a Hybrid Fine-grained Region Encoder (HFRE), featuring a dual vision encoder, to generate powerful region tokens rich in both semantic and spatial detail. A token-based referencing system then enables the LLM to seamlessly reason about and ground language in these specific visual regions. Experiments show that VLM-FO1 achieves state-of-the-art performance across a diverse suite of benchmarks, demonstrating exceptional capabilities in object grounding, region generational understanding, and visual region reasoning. Crucially, our two-stage training strategy ensures that these perception gains are achieved without compromising the base model's general visual understanding capabilities. VLM-FO1 establishes an effective and flexible paradigm for building perception-aware VLMs, bridging the gap between high-level reasoning and fine-grained visual grounding.

omlab Om AI Lab
·
Sep 30 2

Fourier-VLM: Compressing Vision Tokens in the Frequency Domain for Large Vision-Language Models

Vision-Language Models (VLMs) typically replace the predefined image placeholder token (<image>) in textual instructions with visual features from an image encoder, forming the input to a backbone Large Language Model (LLM). However, the large number of vision tokens significantly increases the context length, leading to high computational overhead and inference latency. While previous efforts mitigate this by selecting only important visual features or leveraging learnable queries to reduce token count, they often compromise performance or introduce substantial extra costs. In response, we propose Fourier-VLM, a simple yet efficient method that compresses visual representations in the frequency domain. Our approach is motivated by the observation that vision features output from the vision encoder exhibit concentrated energy in low-frequency components. Leveraging this, we apply a low-pass filter to the vision features using a two-dimensional Discrete Cosine Transform (DCT). Notably, the DCT is efficiently computed via the Fast Fourier Transform (FFT) operator with a time complexity of O(nlog n), minimizing the extra computational cost while introducing no additional parameters. Extensive experiments across various image-based benchmarks demonstrate that Fourier-VLM achieves competitive performance with strong generalizability across both LLaVA and Qwen-VL architectures. Crucially, it reduce inference FLOPs by up to 83.8% and boots generation speed by 31.2% compared to LLaVA-v1.5, highlighting the superior efficiency and practicality.

  • 7 authors
·
Aug 8

UniFusion: Vision-Language Model as Unified Encoder in Image Generation

Although recent advances in visual generation have been remarkable, most existing architectures still depend on distinct encoders for images and text. This separation constrains diffusion models' ability to perform cross-modal reasoning and knowledge transfer. Prior attempts to bridge this gap often use the last layer information from VLM, employ multiple visual encoders, or train large unified models jointly for text and image generation, which demands substantial computational resources and large-scale data, limiting its accessibility.We present UniFusion, a diffusion-based generative model conditioned on a frozen large vision-language model (VLM) that serves as a unified multimodal encoder. At the core of UniFusion is the Layerwise Attention Pooling (LAP) mechanism that extracts both high level semantics and low level details from text and visual tokens of a frozen VLM to condition a diffusion generative model. We demonstrate that LAP outperforms other shallow fusion architectures on text-image alignment for generation and faithful transfer of visual information from VLM to the diffusion model which is key for editing. We propose VLM-Enabled Rewriting Injection with Flexibile Inference (VERIFI), which conditions a diffusion transformer (DiT) only on the text tokens generated by the VLM during in-model prompt rewriting. VERIFI combines the alignment of the conditioning distribution with the VLM's reasoning capabilities for increased capabilities and flexibility at inference. In addition, finetuning on editing task not only improves text-image alignment for generation, indicative of cross-modality knowledge transfer, but also exhibits tremendous generalization capabilities. Our model when trained on single image editing, zero-shot generalizes to multiple image references further motivating the unified encoder design of UniFusion.

adobe Adobe
·
Oct 14 3

Towards Generalist Robot Policies: What Matters in Building Vision-Language-Action Models

Foundation Vision Language Models (VLMs) exhibit strong capabilities in multi-modal representation learning, comprehension, and reasoning. By injecting action components into the VLMs, Vision-Language-Action Models (VLAs) can be naturally formed and also show promising performance. Existing work has demonstrated the effectiveness and generalization of VLAs in multiple scenarios and tasks. Nevertheless, the transfer from VLMs to VLAs is not trivial since existing VLAs differ in their backbones, action-prediction formulations, data distributions, and training recipes. This leads to a missing piece for a systematic understanding of the design choices of VLAs. In this work, we disclose the key factors that significantly influence the performance of VLA and focus on answering three essential design choices: which backbone to select, how to formulate the VLA architectures, and when to add cross-embodiment data. The obtained results convince us firmly to explain why we need VLA and develop a new family of VLAs, RoboVLMs, which require very few manual designs and achieve a new state-of-the-art performance in three simulation tasks and real-world experiments. Through our extensive experiments, which include over 8 VLM backbones, 4 policy architectures, and over 600 distinct designed experiments, we provide a detailed guidebook for the future design of VLAs. In addition to the study, the highly flexible RoboVLMs framework, which supports easy integrations of new VLMs and free combinations of various design choices, is made public to facilitate future research. We open-source all details, including codes, models, datasets, and toolkits, along with detailed training and evaluation recipes at: robovlms.github.io.

  • 10 authors
·
Dec 18, 2024

Vision-Language Models for Vision Tasks: A Survey

Most visual recognition studies rely heavily on crowd-labelled data in deep neural networks (DNNs) training, and they usually train a DNN for each single visual recognition task, leading to a laborious and time-consuming visual recognition paradigm. To address the two challenges, Vision-Language Models (VLMs) have been intensively investigated recently, which learns rich vision-language correlation from web-scale image-text pairs that are almost infinitely available on the Internet and enables zero-shot predictions on various visual recognition tasks with a single VLM. This paper provides a systematic review of visual language models for various visual recognition tasks, including: (1) the background that introduces the development of visual recognition paradigms; (2) the foundations of VLM that summarize the widely-adopted network architectures, pre-training objectives, and downstream tasks; (3) the widely-adopted datasets in VLM pre-training and evaluations; (4) the review and categorization of existing VLM pre-training methods, VLM transfer learning methods, and VLM knowledge distillation methods; (5) the benchmarking, analysis and discussion of the reviewed methods; (6) several research challenges and potential research directions that could be pursued in the future VLM studies for visual recognition. A project associated with this survey has been created at https://github.com/jingyi0000/VLM_survey.

  • 4 authors
·
Apr 2, 2023

UniEdit-I: Training-free Image Editing for Unified VLM via Iterative Understanding, Editing and Verifying

In recent years, unified vision-language models (VLMs) have rapidly advanced, effectively tackling both visual understanding and generation tasks within a single design. While many unified VLMs have explored various design choices, the recent hypothesis from OpenAI's GPT-4o suggests a promising generation pipeline: Understanding VLM->Visual Feature->Projector->Diffusion Model->Image. The understanding VLM is frozen, and only the generation-related modules are trained. This pipeline maintains the strong capability of understanding VLM while enabling the image generation ability of the unified VLM. Although this pipeline has shown very promising potential for the future development of unified VLM, how to easily enable image editing capability is still unexplored. In this paper, we introduce a novel training-free framework named UniEdit-I to enable the unified VLM with image editing capability via three iterative steps: understanding, editing, and verifying. 1. The understanding step analyzes the source image to create a source prompt through structured semantic analysis and makes minimal word replacements to form the target prompt based on the editing instruction. 2. The editing step introduces a time-adaptive offset, allowing for coherent editing from coarse to fine throughout the denoising process. 3. The verification step checks the alignment between the target prompt and the intermediate edited image, provides automatic consistency scores and corrective feedback, and determines whether to stop early or continue the editing loop. This understanding, editing, and verifying loop iterates until convergence, delivering high-fidelity editing in a training-free manner. We implemented our method based on the latest BLIP3-o and achieved state-of-the-art (SOTA) performance on the GEdit-Bench benchmark.

  • 7 authors
·
Aug 5

Manager: Aggregating Insights from Unimodal Experts in Two-Tower VLMs and MLLMs

Two-Tower Vision--Language Models (VLMs) have demonstrated strong performance across various downstream VL tasks. While BridgeTower further enhances performance by building bridges between encoders, it (i) suffers from ineffective layer-by-layer utilization of unimodal representations, (ii) restricts the flexible exploitation of different levels of unimodal semantic knowledge, and (iii) is limited to the evaluation on traditional low-resolution datasets only with the Two-Tower VLM architecture. In this work, we propose Manager, a lightweight, efficient and effective plugin that adaptively aggregates insights from different levels of pre-trained unimodal experts to facilitate more comprehensive VL alignment and fusion. First, under the Two-Tower VLM architecture, we introduce ManagerTower, a novel VLM that introduces the manager in each cross-modal layer. Whether with or without VL pre-training, ManagerTower outperforms previous strong baselines and achieves superior performance on 4 downstream VL tasks. Moreover, we extend our exploration to the latest Multimodal Large Language Model (MLLM) architecture. We demonstrate that LLaVA-OV-Manager significantly boosts the zero-shot performance of LLaVA-OV across different categories of capabilities, images, and resolutions on 20 downstream datasets, whether the multi-grid algorithm is enabled or not. In-depth analysis reveals that both our manager and the multi-grid algorithm can be viewed as a plugin that improves the visual representation by capturing more diverse visual details from two orthogonal perspectives (depth and width). Their synergy can mitigate the semantic ambiguity caused by the multi-grid algorithm and further improve performance. Code and models are available at https://github.com/LooperXX/ManagerTower.

  • 4 authors
·
Jun 13

Astrea: A MOE-based Visual Understanding Model with Progressive Alignment

Vision-Language Models (VLMs) based on Mixture-of-Experts (MoE) architectures have emerged as a pivotal paradigm in multimodal understanding, offering a powerful framework for integrating visual and linguistic information. However, the increasing complexity and diversity of tasks present significant challenges in coordinating load balancing across heterogeneous visual experts, where optimizing one specialist's performance often compromises others' capabilities. To address task heterogeneity and expert load imbalance, we propose Astrea, a novel multi-expert collaborative VLM architecture based on progressive pre-alignment. Astrea introduces three key innovations: 1) A heterogeneous expert coordination mechanism that integrates four specialized models (detection, segmentation, classification, captioning) into a comprehensive expert matrix covering essential visual comprehension elements; 2) A dynamic knowledge fusion strategy featuring progressive pre-alignment to harmonize experts within the VLM latent space through contrastive learning, complemented by probabilistically activated stochastic residual connections to preserve knowledge continuity; 3) An enhanced optimization framework utilizing momentum contrastive learning for long-range dependency modeling and adaptive weight allocators for real-time expert contribution calibration. Extensive evaluations across 12 benchmark tasks spanning VQA, image captioning, and cross-modal retrieval demonstrate Astrea's superiority over state-of-the-art models, achieving an average performance gain of +4.7\%. This study provides the first empirical demonstration that progressive pre-alignment strategies enable VLMs to overcome task heterogeneity limitations, establishing new methodological foundations for developing general-purpose multimodal agents.

  • 15 authors
·
Mar 12

E-ViLM: Efficient Video-Language Model via Masked Video Modeling with Semantic Vector-Quantized Tokenizer

To build scalable models for challenging real-world tasks, it is important to learn from diverse, multi-modal data in various forms (e.g., videos, text, and images). Among the existing works, a plethora of them have focused on leveraging large but cumbersome cross-modal architectures. Regardless of their effectiveness, larger architectures unavoidably prevent the models from being extended to real-world applications, so building a lightweight VL architecture and an efficient learning schema is of great practical value. In this paper, we propose an Efficient Video-Language Model (dubbed as E-ViLM) and a masked video modeling (MVM) schema, assisted with a semantic vector-quantized tokenizer. In particular, our E-ViLM learns to reconstruct the semantic labels of masked video regions, produced by the pre-trained vector-quantized tokenizer, which discretizes the continuous visual signals into labels. We show that with our simple MVM task and regular VL pre-training modelings, our E-ViLM, despite its compactness, is able to learn expressive representations from Video-Language corpus and generalize well to extensive Video-Language tasks including video question answering, text-to-video retrieval, etc. In particular, our E-ViLM obtains obvious efficiency improvements by reaching competing performances with faster inference speed, i.e., our model reaches 39.3% Top-1 accuracy on the MSRVTT benchmark, retaining 91.4% of the accuracy of state-of-the-art larger VL architecture with only 15% parameters and 94.8% fewer GFLOPs. We also provide extensive ablative studies that validate the effectiveness of our proposed learning schema for E-ViLM.

  • 4 authors
·
Nov 28, 2023

From Pixels to Words -- Towards Native Vision-Language Primitives at Scale

The edifice of native Vision-Language Models (VLMs) has emerged as a rising contender to typical modular VLMs, shaped by evolving model architectures and training paradigms. Yet, two lingering clouds cast shadows over its widespread exploration and promotion: (-) What fundamental constraints set native VLMs apart from modular ones, and to what extent can these barriers be overcome? (-) How to make research in native VLMs more accessible and democratized, thereby accelerating progress in the field. In this paper, we clarify these challenges and outline guiding principles for constructing native VLMs. Specifically, one native VLM primitive should: (i) effectively align pixel and word representations within a shared semantic space; (ii) seamlessly integrate the strengths of formerly separate vision and language modules; (iii) inherently embody various cross-modal properties that support unified vision-language encoding, aligning, and reasoning. Hence, we launch NEO, a novel family of native VLMs built from first principles, capable of rivaling top-tier modular counterparts across diverse real-world scenarios. With only 390M image-text examples, NEO efficiently develops visual perception from scratch while mitigating vision-language conflicts inside a dense and monolithic model crafted from our elaborate primitives. We position NEO as a cornerstone for scalable and powerful native VLMs, paired with a rich set of reusable components that foster a cost-effective and extensible ecosystem. Our code and models are publicly available at: https://github.com/EvolvingLMMs-Lab/NEO.

SenseTime SenseTime
·
Oct 16 2

Inducing High Energy-Latency of Large Vision-Language Models with Verbose Images

Large vision-language models (VLMs) such as GPT-4 have achieved exceptional performance across various multi-modal tasks. However, the deployment of VLMs necessitates substantial energy consumption and computational resources. Once attackers maliciously induce high energy consumption and latency time (energy-latency cost) during inference of VLMs, it will exhaust computational resources. In this paper, we explore this attack surface about availability of VLMs and aim to induce high energy-latency cost during inference of VLMs. We find that high energy-latency cost during inference of VLMs can be manipulated by maximizing the length of generated sequences. To this end, we propose verbose images, with the goal of crafting an imperceptible perturbation to induce VLMs to generate long sentences during inference. Concretely, we design three loss objectives. First, a loss is proposed to delay the occurrence of end-of-sequence (EOS) token, where EOS token is a signal for VLMs to stop generating further tokens. Moreover, an uncertainty loss and a token diversity loss are proposed to increase the uncertainty over each generated token and the diversity among all tokens of the whole generated sequence, respectively, which can break output dependency at token-level and sequence-level. Furthermore, a temporal weight adjustment algorithm is proposed, which can effectively balance these losses. Extensive experiments demonstrate that our verbose images can increase the length of generated sequences by 7.87 times and 8.56 times compared to original images on MS-COCO and ImageNet datasets, which presents potential challenges for various applications. Our code is available at https://github.com/KuofengGao/Verbose_Images.

  • 7 authors
·
Jan 20, 2024

MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning

Starting from the resurgence of deep learning, vision-language models (VLMs) benefiting from large language models (LLMs) have never been so popular. However, while LLMs can utilize extensive background knowledge and task information with in-context learning, most VLMs still struggle with understanding complex multi-modal prompts with multiple images. The issue can traced back to the architectural design of VLMs or pre-training data. Specifically, the current VLMs primarily emphasize utilizing multi-modal data with a single image some, rather than multi-modal prompts with interleaved multiple images and text. Even though some newly proposed VLMs could handle user prompts with multiple images, pre-training data does not provide more sophisticated multi-modal prompts than interleaved image and text crawled from the web. We propose MMICL to address the issue by considering both the model and data perspectives. We introduce a well-designed architecture capable of seamlessly integrating visual and textual context in an interleaved manner and MIC dataset to reduce the gap between the training data and the complex user prompts in real-world applications, including: 1) multi-modal context with interleaved images and text, 2) textual references for each image, and 3) multi-image data with spatial, logical, or temporal relationships. Our experiments confirm that MMICL achieves new stat-of-the-art zero-shot and few-shot performance on a wide range of general vision-language tasks, especially for complex reasoning benchmarks including MME and MMBench. Our analysis demonstrates that MMICL effectively deals with the challenge of complex multi-modal prompt understanding. The experiments on ScienceQA-IMG also show that MMICL successfully alleviates the issue of language bias in VLMs, which we believe is the reason behind the advanced performance of MMICL.

  • 10 authors
·
Sep 14, 2023 1

BlueLM-V-3B: Algorithm and System Co-Design for Multimodal Large Language Models on Mobile Devices

The emergence and growing popularity of multimodal large language models (MLLMs) have significant potential to enhance various aspects of daily life, from improving communication to facilitating learning and problem-solving. Mobile phones, as essential daily companions, represent the most effective and accessible deployment platform for MLLMs, enabling seamless integration into everyday tasks. However, deploying MLLMs on mobile phones presents challenges due to limitations in memory size and computational capability, making it difficult to achieve smooth and real-time processing without extensive optimization. In this paper, we present BlueLM-V-3B, an algorithm and system co-design approach specifically tailored for the efficient deployment of MLLMs on mobile platforms. To be specific, we redesign the dynamic resolution scheme adopted by mainstream MLLMs and implement system optimization for hardware-aware deployment to optimize model inference on mobile phones. BlueLM-V-3B boasts the following key highlights: (1) Small Size: BlueLM-V-3B features a language model with 2.7B parameters and a vision encoder with 400M parameters. (2) Fast Speed: BlueLM-V-3B achieves a generation speed of 24.4 token/s on the MediaTek Dimensity 9300 processor with 4-bit LLM weight quantization. (3) Strong Performance: BlueLM-V-3B has attained the highest average score of 66.1 on the OpenCompass benchmark among models with leq 4B parameters and surpassed a series of models with much larger parameter sizes (e.g., MiniCPM-V-2.6, InternVL2-8B).

  • 22 authors
·
Nov 15, 2024 5

HoVLE: Unleashing the Power of Monolithic Vision-Language Models with Holistic Vision-Language Embedding

The rapid advance of Large Language Models (LLMs) has catalyzed the development of Vision-Language Models (VLMs). Monolithic VLMs, which avoid modality-specific encoders, offer a promising alternative to the compositional ones but face the challenge of inferior performance. Most existing monolithic VLMs require tuning pre-trained LLMs to acquire vision abilities, which may degrade their language capabilities. To address this dilemma, this paper presents a novel high-performance monolithic VLM named HoVLE. We note that LLMs have been shown capable of interpreting images, when image embeddings are aligned with text embeddings. The challenge for current monolithic VLMs actually lies in the lack of a holistic embedding module for both vision and language inputs. Therefore, HoVLE introduces a holistic embedding module that converts visual and textual inputs into a shared space, allowing LLMs to process images in the same way as texts. Furthermore, a multi-stage training strategy is carefully designed to empower the holistic embedding module. It is first trained to distill visual features from a pre-trained vision encoder and text embeddings from the LLM, enabling large-scale training with unpaired random images and text tokens. The whole model further undergoes next-token prediction on multi-modal data to align the embeddings. Finally, an instruction-tuning stage is incorporated. Our experiments show that HoVLE achieves performance close to leading compositional models on various benchmarks, outperforming previous monolithic models by a large margin. Model available at https://huggingface.co/OpenGVLab/HoVLE.

  • 11 authors
·
Dec 20, 2024

Turbo: Informativity-Driven Acceleration Plug-In for Vision-Language Large Models

Vision-Language Large Models (VLMs) recently become primary backbone of AI, due to the impressive performance. However, their expensive computation costs, i.e., throughput and delay, impede potentials in the real-world scenarios. To achieve acceleration for VLMs, most existing methods focus on the model perspective: pruning, distillation, quantization, but completely overlook the data-perspective redundancy. To fill the overlook, this paper pioneers the severity of data redundancy, and designs one plug-and-play Turbo module guided by information degree to prune inefficient tokens from visual or textual data. In pursuit of efficiency-performance trade-offs, information degree takes two crucial factors into consideration: mutual redundancy and semantic value. Concretely, the former evaluates data duplication between sequential tokens; while the latter evaluates each token by its contribution to the overall semantics. As a result, tokens with high information degree carry less redundancy and stronger semantics. For VLMs' calculation, Turbo works as a user-friendly plug-in that sorts data referring to information degree, utilizing only top-level ones to save costs. Its advantages are multifaceted, e.g., being generally compatible to various VLMs across understanding and generation, simple use without re-training and trivial engineering efforts. On multiple VLMs benchmarks, we fully experiment to demonstrate the good acceleration of Turbo, under negligible performance drop.

  • 9 authors
·
Jul 16, 2024

FastVLM: Efficient Vision Encoding for Vision Language Models

Scaling the input image resolution is essential for enhancing the performance of Vision Language Models (VLMs), particularly in text-rich image understanding tasks. However, popular visual encoders such as ViTs become inefficient at high resolutions due to the large number of tokens and high encoding latency caused by stacked self-attention layers. At different operational resolutions, the vision encoder of a VLM can be optimized along two axes: reducing encoding latency and minimizing the number of visual tokens passed to the LLM, thereby lowering overall latency. Based on a comprehensive efficiency analysis of the interplay between image resolution, vision latency, token count, and LLM size, we introduce FastVLM, a model that achieves an optimized trade-off between latency, model size and accuracy. FastVLM incorporates FastViTHD, a novel hybrid vision encoder designed to output fewer tokens and significantly reduce encoding time for high-resolution images. Unlike previous methods, FastVLM achieves the optimal balance between visual token count and image resolution solely by scaling the input image, eliminating the need for additional token pruning and simplifying the model design. In the LLaVA-1.5 setup, FastVLM achieves 3.2times improvement in time-to-first-token (TTFT) while maintaining similar performance on VLM benchmarks compared to prior works. Compared to LLaVa-OneVision at the highest resolution (1152times1152), FastVLM achieves comparable performance on key benchmarks like SeedBench and MMMU, using the same 0.5B LLM, but with 85times faster TTFT and a vision encoder that is 3.4times smaller.

  • 11 authors
·
Dec 17, 2024 6

Global-Local Tree Search for Language Guided 3D Scene Generation

Large Vision-Language Models (VLMs), such as GPT-4, have achieved remarkable success across various fields. However, there are few studies on 3D indoor scene generation with VLMs. This paper considers this task as a planning problem subject to spatial and layout common sense constraints. To solve the problem with a VLM, we propose a new global-local tree search algorithm. Globally, the method places each object sequentially and explores multiple placements during each placement process, where the problem space is represented as a tree. To reduce the depth of the tree, we decompose the scene structure hierarchically, i.e. room level, region level, floor object level, and supported object level. The algorithm independently generates the floor objects in different regions and supported objects placed on different floor objects. Locally, we also decompose the sub-task, the placement of each object, into multiple steps. The algorithm searches the tree of problem space. To leverage the VLM model to produce positions of objects, we discretize the top-down view space as a dense grid and fill each cell with diverse emojis to make to cells distinct. We prompt the VLM with the emoji grid and the VLM produces a reasonable location for the object by describing the position with the name of emojis. The quantitative and qualitative experimental results illustrate our approach generates more plausible 3D scenes than state-of-the-art approaches. Our source code is available at https://github.com/dw-dengwei/TreeSearchGen .

  • 3 authors
·
Mar 24 2

Complementary Subspace Low-Rank Adaptation of Vision-Language Models for Few-Shot Classification

Vision language model (VLM) has been designed for large scale image-text alignment as a pretrained foundation model. For downstream few shot classification tasks, parameter efficient fine-tuning (PEFT) VLM has gained much popularity in the computer vision community. PEFT methods like prompt tuning and linear adapter have been studied for fine-tuning VLM while low rank adaptation (LoRA) algorithm has rarely been considered for few shot fine-tuning VLM. The main obstacle to use LoRA for few shot fine-tuning is the catastrophic forgetting problem. Because the visual language alignment knowledge is important for the generality in few shot learning, whereas low rank adaptation interferes with the most informative direction of the pretrained weight matrix. We propose the complementary subspace low rank adaptation (Comp-LoRA) method to regularize the catastrophic forgetting problem in few shot VLM finetuning. In detail, we optimize the low rank matrix in the complementary subspace, thus preserving the general vision language alignment ability of VLM when learning the novel few shot information. We conduct comparison experiments of the proposed Comp-LoRA method and other PEFT methods on fine-tuning VLM for few shot classification. And we also present the suppression on the catastrophic forgetting problem of our proposed method against directly applying LoRA to VLM. The results show that the proposed method surpasses the baseline method by about +1.0\% Top-1 accuracy and preserves the VLM zero-shot performance over the baseline method by about +1.3\% Top-1 accuracy.

  • 6 authors
·
Jan 24

HiRED: Attention-Guided Token Dropping for Efficient Inference of High-Resolution Vision-Language Models in Resource-Constrained Environments

High-resolution Vision-Language Models (VLMs) have been widely used in multimodal tasks to enhance accuracy by preserving detailed image information. However, these models often generate excessive visual tokens due to encoding multiple partitions of the input image. Processing these excessive visual tokens is computationally challenging, especially in resource-constrained environments with commodity GPUs. To support high-resolution images while meeting resource constraints, we propose High-Resolution Early Dropping (HiRED), a token-dropping scheme that operates within a fixed token budget before the Large Language Model (LLM) stage. HiRED can be integrated with existing high-resolution VLMs in a plug-and-play manner, as it requires no additional training while still maintaining superior accuracy. We strategically use the vision encoder's attention in the initial layers to assess the visual content of each image partition and allocate the token budget accordingly. Then, using the attention in the final layer, we select the most important visual tokens from each partition within the allocated budget, dropping the rest. Empirically, when applied to LLaVA-Next-7B on NVIDIA TESLA P40 GPU, HiRED with a 20% token budget increases token generation throughput by 4.7, reduces first-token generation latency by 15 seconds, and saves 2.3 GB of GPU memory for a single inference.

  • 6 authors
·
Aug 20, 2024 2

CogACT: A Foundational Vision-Language-Action Model for Synergizing Cognition and Action in Robotic Manipulation

The advancement of large Vision-Language-Action (VLA) models has significantly improved robotic manipulation in terms of language-guided task execution and generalization to unseen scenarios. While existing VLAs adapted from pretrained large Vision-Language-Models (VLM) have demonstrated promising generalizability, their task performance is still unsatisfactory as indicated by the low tasks success rates in different environments. In this paper, we present a new advanced VLA architecture derived from VLM. Unlike previous works that directly repurpose VLM for action prediction by simple action quantization, we propose a omponentized VLA architecture that has a specialized action module conditioned on VLM output. We systematically study the design of the action module and demonstrates the strong performance enhancement with diffusion action transformers for action sequence modeling, as well as their favorable scaling behaviors. We also conduct comprehensive experiments and ablation studies to evaluate the efficacy of our models with varied designs. The evaluation on 5 robot embodiments in simulation and real work shows that our model not only significantly surpasses existing VLAs in task performance and but also exhibits remarkable adaptation to new robots and generalization to unseen objects and backgrounds. It exceeds the average success rates of OpenVLA which has similar model size (7B) with ours by over 35% in simulated evaluation and 55% in real robot experiments. It also outperforms the large RT-2-X model (55B) by 18% absolute success rates in simulation. Code and models can be found on our project page (https://cogact.github.io/).

  • 18 authors
·
Nov 29, 2024

Rendering-Aware Reinforcement Learning for Vector Graphics Generation

Scalable Vector Graphics (SVG) offer a powerful format for representing visual designs as interpretable code. Recent advances in vision-language models (VLMs) have enabled high-quality SVG generation by framing the problem as a code generation task and leveraging large-scale pretraining. VLMs are particularly suitable for this task as they capture both global semantics and fine-grained visual patterns, while transferring knowledge across vision, natural language, and code domains. However, existing VLM approaches often struggle to produce faithful and efficient SVGs because they never observe the rendered images during training. Although differentiable rendering for autoregressive SVG code generation remains unavailable, rendered outputs can still be compared to original inputs, enabling evaluative feedback suitable for reinforcement learning (RL). We introduce RLRF(Reinforcement Learning from Rendering Feedback), an RL method that enhances SVG generation in autoregressive VLMs by leveraging feedback from rendered SVG outputs. Given an input image, the model generates SVG roll-outs that are rendered and compared to the original image to compute a reward. This visual fidelity feedback guides the model toward producing more accurate, efficient, and semantically coherent SVGs. RLRF significantly outperforms supervised fine-tuning, addressing common failure modes and enabling precise, high-quality SVG generation with strong structural understanding and generalization.

  • 15 authors
·
May 27 3

InternLM-XComposer2-4KHD: A Pioneering Large Vision-Language Model Handling Resolutions from 336 Pixels to 4K HD

The Large Vision-Language Model (LVLM) field has seen significant advancements, yet its progression has been hindered by challenges in comprehending fine-grained visual content due to limited resolution. Recent efforts have aimed to enhance the high-resolution understanding capabilities of LVLMs, yet they remain capped at approximately 1500 x 1500 pixels and constrained to a relatively narrow resolution range. This paper represents InternLM-XComposer2-4KHD, a groundbreaking exploration into elevating LVLM resolution capabilities up to 4K HD (3840 x 1600) and beyond. Concurrently, considering the ultra-high resolution may not be necessary in all scenarios, it supports a wide range of diverse resolutions from 336 pixels to 4K standard, significantly broadening its scope of applicability. Specifically, this research advances the patch division paradigm by introducing a novel extension: dynamic resolution with automatic patch configuration. It maintains the training image aspect ratios while automatically varying patch counts and configuring layouts based on a pre-trained Vision Transformer (ViT) (336 x 336), leading to dynamic training resolution from 336 pixels to 4K standard. Our research demonstrates that scaling training resolution up to 4K HD leads to consistent performance enhancements without hitting the ceiling of potential improvements. InternLM-XComposer2-4KHD shows superb capability that matches or even surpasses GPT-4V and Gemini Pro in 10 of the 16 benchmarks. The InternLM-XComposer2-4KHD model series with 7B parameters are publicly available at https://github.com/InternLM/InternLM-XComposer.

  • 24 authors
·
Apr 9, 2024 1

MMCircuitEval: A Comprehensive Multimodal Circuit-Focused Benchmark for Evaluating LLMs

The emergence of multimodal large language models (MLLMs) presents promising opportunities for automation and enhancement in Electronic Design Automation (EDA). However, comprehensively evaluating these models in circuit design remains challenging due to the narrow scope of existing benchmarks. To bridge this gap, we introduce MMCircuitEval, the first multimodal benchmark specifically designed to assess MLLM performance comprehensively across diverse EDA tasks. MMCircuitEval comprises 3614 meticulously curated question-answer (QA) pairs spanning digital and analog circuits across critical EDA stages - ranging from general knowledge and specifications to front-end and back-end design. Derived from textbooks, technical question banks, datasheets, and real-world documentation, each QA pair undergoes rigorous expert review for accuracy and relevance. Our benchmark uniquely categorizes questions by design stage, circuit type, tested abilities (knowledge, comprehension, reasoning, computation), and difficulty level, enabling detailed analysis of model capabilities and limitations. Extensive evaluations reveal significant performance gaps among existing LLMs, particularly in back-end design and complex computations, highlighting the critical need for targeted training datasets and modeling approaches. MMCircuitEval provides a foundational resource for advancing MLLMs in EDA, facilitating their integration into real-world circuit design workflows. Our benchmark is available at https://github.com/cure-lab/MMCircuitEval.

  • 22 authors
·
Jul 20

Agentic 3D Scene Generation with Spatially Contextualized VLMs

Despite recent advances in multimodal content generation enabled by vision-language models (VLMs), their ability to reason about and generate structured 3D scenes remains largely underexplored. This limitation constrains their utility in spatially grounded tasks such as embodied AI, immersive simulations, and interactive 3D applications. We introduce a new paradigm that enables VLMs to generate, understand, and edit complex 3D environments by injecting a continually evolving spatial context. Constructed from multimodal input, this context consists of three components: a scene portrait that provides a high-level semantic blueprint, a semantically labeled point cloud capturing object-level geometry, and a scene hypergraph that encodes rich spatial relationships, including unary, binary, and higher-order constraints. Together, these components provide the VLM with a structured, geometry-aware working memory that integrates its inherent multimodal reasoning capabilities with structured 3D understanding for effective spatial reasoning. Building on this foundation, we develop an agentic 3D scene generation pipeline in which the VLM iteratively reads from and updates the spatial context. The pipeline features high-quality asset generation with geometric restoration, environment setup with automatic verification, and ergonomic adjustment guided by the scene hypergraph. Experiments show that our framework can handle diverse and challenging inputs, achieving a level of generalization not observed in prior work. Further results demonstrate that injecting spatial context enables VLMs to perform downstream tasks such as interactive scene editing and path planning, suggesting strong potential for spatially intelligent systems in computer graphics, 3D vision, and embodied applications.

  • 3 authors
·
May 26

StreamingVLM: Real-Time Understanding for Infinite Video Streams

Vision-language models (VLMs) could power real-time assistants and autonomous agents, but they face a critical challenge: understanding near-infinite video streams without escalating latency and memory usage. Processing entire videos with full attention leads to quadratic computational costs and poor performance on long videos. Meanwhile, simple sliding window methods are also flawed, as they either break coherence or suffer from high latency due to redundant recomputation. In this paper, we introduce StreamingVLM, a model designed for real-time, stable understanding of infinite visual input. Our approach is a unified framework that aligns training with streaming inference. During inference, we maintain a compact KV cache by reusing states of attention sinks, a short window of recent vision tokens, and a long window of recent text tokens. This streaming ability is instilled via a simple supervised fine-tuning (SFT) strategy that applies full attention on short, overlapped video chunks, which effectively mimics the inference-time attention pattern without training on prohibitively long contexts. For evaluation, we build Inf-Streams-Eval, a new benchmark with videos averaging over two hours that requires dense, per-second alignment between frames and text. On Inf-Streams-Eval, StreamingVLM achieves a 66.18% win rate against GPT-4O mini and maintains stable, real-time performance at up to 8 FPS on a single NVIDIA H100. Notably, our SFT strategy also enhances general VQA abilities without any VQA-specific fine-tuning, improving performance on LongVideoBench by +4.30 and OVOBench Realtime by +5.96. Code is available at https://github.com/mit-han-lab/streaming-vlm.

  • 7 authors
·
Oct 10 2

BridgeVLA: Input-Output Alignment for Efficient 3D Manipulation Learning with Vision-Language Models

Recently, leveraging pre-trained vision-language models (VLMs) for building vision-language-action (VLA) models has emerged as a promising approach to effective robot manipulation learning. However, only few methods incorporate 3D signals into VLMs for action prediction, and they do not fully leverage the spatial structure inherent in 3D data, leading to low sample efficiency. In this paper, we introduce BridgeVLA, a novel 3D VLA model that (1) projects 3D inputs to multiple 2D images, ensuring input alignment with the VLM backbone, and (2) utilizes 2D heatmaps for action prediction, unifying the input and output spaces within a consistent 2D image space. In addition, we propose a scalable pre-training method that equips the VLM backbone with the capability to predict 2D heatmaps before downstream policy learning. Extensive experiments show the proposed method is able to learn 3D manipulation efficiently and effectively. BridgeVLA outperforms state-of-the-art baseline methods across three simulation benchmarks. In RLBench, it improves the average success rate from 81.4% to 88.2%. In COLOSSEUM, it demonstrates significantly better performance in challenging generalization settings, boosting the average success rate from 56.7% to 64.0%. In GemBench, it surpasses all the comparing baseline methods in terms of average success rate. In real-robot experiments, BridgeVLA outperforms a state-of-the-art baseline method by 32% on average. It generalizes robustly in multiple out-of-distribution settings, including visual disturbances and unseen instructions. Remarkably, it is able to achieve a success rate of 96.8% on 10+ tasks with only 3 trajectories per task, highlighting its extraordinary sample efficiency. Project Website:https://bridgevla.github.io/

  • 9 authors
·
Jun 9 2

OmniManip: Towards General Robotic Manipulation via Object-Centric Interaction Primitives as Spatial Constraints

The development of general robotic systems capable of manipulating in unstructured environments is a significant challenge. While Vision-Language Models(VLM) excel in high-level commonsense reasoning, they lack the fine-grained 3D spatial understanding required for precise manipulation tasks. Fine-tuning VLM on robotic datasets to create Vision-Language-Action Models(VLA) is a potential solution, but it is hindered by high data collection costs and generalization issues. To address these challenges, we propose a novel object-centric representation that bridges the gap between VLM's high-level reasoning and the low-level precision required for manipulation. Our key insight is that an object's canonical space, defined by its functional affordances, provides a structured and semantically meaningful way to describe interaction primitives, such as points and directions. These primitives act as a bridge, translating VLM's commonsense reasoning into actionable 3D spatial constraints. In this context, we introduce a dual closed-loop, open-vocabulary robotic manipulation system: one loop for high-level planning through primitive resampling, interaction rendering and VLM checking, and another for low-level execution via 6D pose tracking. This design ensures robust, real-time control without requiring VLM fine-tuning. Extensive experiments demonstrate strong zero-shot generalization across diverse robotic manipulation tasks, highlighting the potential of this approach for automating large-scale simulation data generation.

  • 6 authors
·
Jan 7 3

Fine-Tuning Florence2 for Enhanced Object Detection in Un-constructed Environments: Vision-Language Model Approach

Vision-Language Models (VLMs) have emerged as powerful tools in artificial intelli-gence, capable of integrating textual and visual data for a unified understanding of complex scenes. While models such as Florence2, built on transformer architectures, have shown promise across general tasks, their performance in object detection within unstructured or cluttered environments remains underexplored. In this study, we fi-ne-tuned the Florence2 model for object detection tasks in non-constructed, complex environments. A comprehensive experimental framework was established involving multiple hardware configurations (NVIDIA T4, L4, and A100 GPUs), optimizers (AdamW, SGD), and varied hyperparameters including learning rates and LoRA (Low-Rank Adaptation) setups. Model training and evaluation were conducted on challenging datasets representative of real-world, disordered settings. The optimized Florence2 models exhibited significant improvements in object detection accuracy, with Mean Average Precision (mAP) metrics approaching or matching those of estab-lished models such as YOLOv8, YOLOv9, and YOLOv10. The integration of LoRA and careful fine-tuning of transformer layers contributed notably to these gains. Our find-ings highlight the adaptability of transformer-based VLMs like Florence2 for do-main-specific tasks, particularly in visually complex environments. The study under-scores the potential of fine-tuned VLMs to rival traditional convolution-based detec-tors, offering a flexible and scalable approach for advanced vision applications in re-al-world, unstructured settings.

  • 5 authors
·
Mar 6

GIRAFFE: Design Choices for Extending the Context Length of Visual Language Models

Visual Language Models (VLMs) demonstrate impressive capabilities in processing multimodal inputs, yet applications such as visual agents, which require handling multiple images and high-resolution videos, demand enhanced long-range modeling. Moreover, existing open-source VLMs lack systematic exploration into extending their context length, and commercial models often provide limited details. To tackle this, we aim to establish an effective solution that enhances long context performance of VLMs while preserving their capacities in short context scenarios. Towards this goal, we make the best design choice through extensive experiment settings from data curation to context window extending and utilizing: (1) we analyze data sources and length distributions to construct ETVLM - a data recipe to balance the performance across scenarios; (2) we examine existing position extending methods, identify their limitations and propose M-RoPE++ as an enhanced approach; we also choose to solely instruction-tune the backbone with mixed-source data; (3) we discuss how to better utilize extended context windows and propose hybrid-resolution training. Built on the Qwen-VL series model, we propose Giraffe, which is effectively extended to 128K lengths. Evaluated on extensive long context VLM benchmarks such as VideoMME and Viusal Haystacks, our Giraffe achieves state-of-the-art performance among similarly sized open-source long VLMs and is competitive with commercial model GPT-4V. We will open-source the code, data, and models.

  • 4 authors
·
Dec 17, 2024

Advancing vision-language models in front-end development via data synthesis

Modern front-end (FE) development, especially when leveraging the unique features of frameworks like React and Vue, presents distinctive challenges. These include managing modular architectures, ensuring synchronization between data and visual outputs for declarative rendering, and adapting reusable components to various scenarios. Such complexities make it particularly difficult for state-of-the-art large vision-language models (VLMs) to generate accurate and functional code directly from design images. To address these challenges, we propose a reflective agentic workflow that synthesizes high-quality image-text data to capture the diverse characteristics of FE development. This workflow automates the extraction of self-containedA \textbf{self-contained code snippet is one that encapsulates all necessary logic, styling, and dependencies, ensuring it functions independently without requiring external imports or context.} code snippets from real-world projects, renders the corresponding visual outputs, and generates detailed descriptions that link design elements to functional code. To further expand the scope and utility of the synthesis, we introduce three data synthesis strategies: Evolution-based synthesis, which enables scalable and diverse dataset expansion; Waterfall-Model-based synthesis, which generates logically coherent code derived from system requirements; and Additive Development synthesis, which iteratively increases the complexity of human-authored components. We build a large vision-language model, Flame, trained on the synthesized datasets and demonstrate its effectiveness in generating React code via the pass@k metric. Our results suggest that a code VLM trained to interpret images before code generation may achieve better performance.

  • 5 authors
·
Mar 3

PIVOT: Iterative Visual Prompting Elicits Actionable Knowledge for VLMs

Vision language models (VLMs) have shown impressive capabilities across a variety of tasks, from logical reasoning to visual understanding. This opens the door to richer interaction with the world, for example robotic control. However, VLMs produce only textual outputs, while robotic control and other spatial tasks require outputting continuous coordinates, actions, or trajectories. How can we enable VLMs to handle such settings without fine-tuning on task-specific data? In this paper, we propose a novel visual prompting approach for VLMs that we call Prompting with Iterative Visual Optimization (PIVOT), which casts tasks as iterative visual question answering. In each iteration, the image is annotated with a visual representation of proposals that the VLM can refer to (e.g., candidate robot actions, localizations, or trajectories). The VLM then selects the best ones for the task. These proposals are iteratively refined, allowing the VLM to eventually zero in on the best available answer. We investigate PIVOT on real-world robotic navigation, real-world manipulation from images, instruction following in simulation, and additional spatial inference tasks such as localization. We find, perhaps surprisingly, that our approach enables zero-shot control of robotic systems without any robot training data, navigation in a variety of environments, and other capabilities. Although current performance is far from perfect, our work highlights potentials and limitations of this new regime and shows a promising approach for Internet-Scale VLMs in robotic and spatial reasoning domains. Website: pivot-prompt.github.io and HuggingFace: https://huggingface.co/spaces/pivot-prompt/pivot-prompt-demo.

  • 23 authors
·
Feb 12, 2024 2

LaViDa: A Large Diffusion Language Model for Multimodal Understanding

Modern Vision-Language Models (VLMs) can solve a wide range of tasks requiring visual reasoning. In real-world scenarios, desirable properties for VLMs include fast inference and controllable generation (e.g., constraining outputs to adhere to a desired format). However, existing autoregressive (AR) VLMs like LLaVA struggle in these aspects. Discrete diffusion models (DMs) offer a promising alternative, enabling parallel decoding for faster inference and bidirectional context for controllable generation through text-infilling. While effective in language-only settings, DMs' potential for multimodal tasks is underexplored. We introduce LaViDa, a family of VLMs built on DMs. We build LaViDa by equipping DMs with a vision encoder and jointly fine-tune the combined parts for multimodal instruction following. To address challenges encountered, LaViDa incorporates novel techniques such as complementary masking for effective training, prefix KV cache for efficient inference, and timestep shifting for high-quality sampling. Experiments show that LaViDa achieves competitive or superior performance to AR VLMs on multi-modal benchmarks such as MMMU, while offering unique advantages of DMs, including flexible speed-quality tradeoff, controllability, and bidirectional reasoning. On COCO captioning, LaViDa surpasses Open-LLaVa-Next-8B by +4.1 CIDEr with 1.92x speedup. On bidirectional tasks, it achieves +59% improvement on Constrained Poem Completion. These results demonstrate LaViDa as a strong alternative to AR VLMs. Code and models will be released in the camera-ready version.

  • 10 authors
·
May 22 2

DepthLM: Metric Depth From Vision Language Models

Vision language models (VLMs) can flexibly address various vision tasks through text interactions. Although successful in semantic understanding, state-of-the-art VLMs including GPT-5 still struggle in understanding 3D from 2D inputs. On the other hand, expert pure vision models achieve super-human accuracy in metric depth estimation, a key 3D understanding task. However, they require task-specific architectures and losses. Such difference motivates us to ask: Can VLMs reach expert-level accuracy without architecture or loss change? We take per-pixel metric depth estimation as the representative task and show that the answer is yes! Surprisingly, comprehensive analysis shows that text-based supervised-finetuning with sparse labels is sufficient for VLMs to unlock strong 3D understanding, no dense prediction head or complex regression/regularization loss is needed. The bottleneck for VLMs lies actually in pixel reference and cross-dataset camera ambiguity, which we address through visual prompting and intrinsic-conditioned augmentation. With much smaller models, our method DepthLM surpasses the accuracy of most advanced VLMs by over 2x, making VLMs for the first time comparable with pure vision models. Interestingly, without explicit enforcement during training, VLMs trained with DepthLM naturally avoids over-smoothing, having much fewer flying points at boundary regions than pure vision models. The simplicity of DepthLM also enables a single VLM to cover various 3D tasks beyond metric depth. Our code and model will be released at the link below.

facebook AI at Meta
·
Sep 29 1

Is your VLM Sky-Ready? A Comprehensive Spatial Intelligence Benchmark for UAV Navigation

Vision-Language Models (VLMs), leveraging their powerful visual perception and reasoning capabilities, have been widely applied in Unmanned Aerial Vehicle (UAV) tasks. However, the spatial intelligence capabilities of existing VLMs in UAV scenarios remain largely unexplored, raising concerns about their effectiveness in navigating and interpreting dynamic environments. To bridge this gap, we introduce SpatialSky-Bench, a comprehensive benchmark specifically designed to evaluate the spatial intelligence capabilities of VLMs in UAV navigation. Our benchmark comprises two categories-Environmental Perception and Scene Understanding-divided into 13 subcategories, including bounding boxes, color, distance, height, and landing safety analysis, among others. Extensive evaluations of various mainstream open-source and closed-source VLMs reveal unsatisfactory performance in complex UAV navigation scenarios, highlighting significant gaps in their spatial capabilities. To address this challenge, we developed the SpatialSky-Dataset, a comprehensive dataset containing 1M samples with diverse annotations across various scenarios. Leveraging this dataset, we introduce Sky-VLM, a specialized VLM designed for UAV spatial reasoning across multiple granularities and contexts. Extensive experimental results demonstrate that Sky-VLM achieves state-of-the-art performance across all benchmark tasks, paving the way for the development of VLMs suitable for UAV scenarios. The source code is available at https://github.com/linglingxiansen/SpatialSKy.

  • 10 authors
·
Nov 17

Evaluating small vision-language models as AI assistants for radio astronomical source analysis tasks

The advent of next-generation radio telescopes is set to transform radio astronomy by producing massive data volumes that challenge traditional processing methods. Deep learning techniques have shown strong potential in automating radio analysis tasks, yet are often constrained by the limited availability of large annotated datasets. Recent progress in self-supervised learning has led to foundational radio vision models, but adapting them for new tasks typically requires coding expertise, limiting their accessibility to a broader astronomical community. Text-based AI interfaces offer a promising alternative by enabling task-specific queries and example-driven learning. In this context, Large Language Models (LLMs), with their remarkable zero-shot capabilities, are increasingly used in scientific domains. However, deploying large-scale models remains resource-intensive, and there is a growing demand for AI systems that can reason over both visual and textual data in astronomical analysis. This study explores small-scale Vision-Language Models (VLMs) as AI assistants for radio astronomy, combining LLM capabilities with vision transformers. We fine-tuned the LLaVA VLM on a dataset of 59k radio images from multiple surveys, enriched with 38k image-caption pairs from the literature. The fine-tuned models show clear improvements over base models in radio-specific tasks, achieving ~30% F1-score gains in extended source detection, but they underperform pure vision models and exhibit ~20% drop on general multimodal tasks. Inclusion of caption data and LoRA fine-tuning enhances instruction-following and helps recover ~10% accuracy on standard benchmarks. This work lays the foundation for future advancements in radio VLMs, highlighting their potential and limitations, such as the need for better multimodal alignment, higher-quality datasets, and mitigation of catastrophic forgetting.

  • 8 authors
·
Mar 31

GEOBench-VLM: Benchmarking Vision-Language Models for Geospatial Tasks

While numerous recent benchmarks focus on evaluating generic Vision-Language Models (VLMs), they fall short in addressing the unique demands of geospatial applications. Generic VLM benchmarks are not designed to handle the complexities of geospatial data, which is critical for applications such as environmental monitoring, urban planning, and disaster management. Some of the unique challenges in geospatial domain include temporal analysis for changes, counting objects in large quantities, detecting tiny objects, and understanding relationships between entities occurring in Remote Sensing imagery. To address this gap in the geospatial domain, we present GEOBench-VLM, a comprehensive benchmark specifically designed to evaluate VLMs on geospatial tasks, including scene understanding, object counting, localization, fine-grained categorization, and temporal analysis. Our benchmark features over 10,000 manually verified instructions and covers a diverse set of variations in visual conditions, object type, and scale. We evaluate several state-of-the-art VLMs to assess their accuracy within the geospatial context. The results indicate that although existing VLMs demonstrate potential, they face challenges when dealing with geospatial-specific examples, highlighting the room for further improvements. Specifically, the best-performing GPT4o achieves only 40\% accuracy on MCQs, which is only double the random guess performance. Our benchmark is publicly available at https://github.com/The-AI-Alliance/GEO-Bench-VLM .

  • 8 authors
·
Nov 28, 2024

UniBench: Visual Reasoning Requires Rethinking Vision-Language Beyond Scaling

Significant research efforts have been made to scale and improve vision-language model (VLM) training approaches. Yet, with an ever-growing number of benchmarks, researchers are tasked with the heavy burden of implementing each protocol, bearing a non-trivial computational cost, and making sense of how all these benchmarks translate into meaningful axes of progress. To facilitate a systematic evaluation of VLM progress, we introduce UniBench: a unified implementation of 50+ VLM benchmarks spanning a comprehensive range of carefully categorized capabilities from object recognition to spatial awareness, counting, and much more. We showcase the utility of UniBench for measuring progress by evaluating nearly 60 publicly available vision-language models, trained on scales of up to 12.8B samples. We find that while scaling training data or model size can boost many vision-language model capabilities, scaling offers little benefit for reasoning or relations. Surprisingly, we also discover today's best VLMs struggle on simple digit recognition and counting tasks, e.g. MNIST, which much simpler networks can solve. Where scale falls short, we find that more precise interventions, such as data quality or tailored-learning objectives offer more promise. For practitioners, we also offer guidance on selecting a suitable VLM for a given application. Finally, we release an easy-to-run UniBench code-base with the full set of 50+ benchmarks and comparisons across 59 models as well as a distilled, representative set of benchmarks that runs in 5 minutes on a single GPU.

  • 6 authors
·
Aug 8, 2024 2

VILA^2: VILA Augmented VILA

Visual language models (VLMs) have rapidly progressed, driven by the success of large language models (LLMs). While model architectures and training infrastructures advance rapidly, data curation remains under-explored. When data quantity and quality become a bottleneck, existing work either directly crawls more raw data from the Internet that does not have a guarantee of data quality or distills from black-box commercial models (e.g., GPT-4V / Gemini) causing the performance upper bounded by that model. In this work, we introduce a novel approach that includes a self-augment step and a specialist-augment step to iteratively improve data quality and model performance. In the self-augment step, a VLM recaptions its own pretraining data to enhance data quality, and then retrains from scratch using this refined dataset to improve model performance. This process can iterate for several rounds. Once self-augmentation saturates, we employ several specialist VLMs finetuned from the self-augmented VLM with domain-specific expertise, to further infuse specialist knowledge into the generalist VLM through task-oriented recaptioning and retraining. With the combined self-augmented and specialist-augmented training, we introduce VILA^2 (VILA-augmented-VILA), a VLM family that consistently improves the accuracy on a wide range of tasks over prior art, and achieves new state-of-the-art results on MMMU leaderboard among open-sourced models.

  • 9 authors
·
Jul 24, 2024 7

MBQ: Modality-Balanced Quantization for Large Vision-Language Models

Vision-Language Models (VLMs) have enabled a variety of real-world applications. The large parameter size of VLMs brings large memory and computation overhead which poses significant challenges for deployment. Post-Training Quantization (PTQ) is an effective technique to reduce the memory and computation overhead. Existing PTQ methods mainly focus on large language models (LLMs), without considering the differences across other modalities. In this paper, we discover that there is a significant difference in sensitivity between language and vision tokens in large VLMs. Therefore, treating tokens from different modalities equally, as in existing PTQ methods, may over-emphasize the insensitive modalities, leading to significant accuracy loss. To deal with the above issue, we propose a simple yet effective method, Modality-Balanced Quantization (MBQ), for large VLMs. Specifically, MBQ incorporates the different sensitivities across modalities during the calibration process to minimize the reconstruction loss for better quantization parameters. Extensive experiments show that MBQ can significantly improve task accuracy by up to 4.4% and 11.6% under W3 and W4A8 quantization for 7B to 70B VLMs, compared to SOTA baselines. Additionally, we implement a W3 GPU kernel that fuses the dequantization and GEMV operators, achieving a 1.4x speedup on LLaVA-onevision-7B on the RTX 4090. The code is available at https://github.com/thu-nics/MBQ.

  • 13 authors
·
Dec 27, 2024

BEAF: Observing BEfore-AFter Changes to Evaluate Hallucination in Vision-language Models

Vision language models (VLMs) perceive the world through a combination of a visual encoder and a large language model (LLM). The visual encoder, pre-trained on large-scale vision-text datasets, provides zero-shot generalization to visual data, and the LLM endows its high reasoning ability to VLMs. It leads VLMs to achieve high performance on wide benchmarks without fine-tuning, exhibiting zero or few-shot capability. However, recent studies show that VLMs are vulnerable to hallucination. This undesirable behavior degrades reliability and credibility, thereby making users unable to fully trust the output from VLMs. To enhance trustworthiness and better tackle the hallucination of VLMs, we curate a new evaluation dataset, called the BEfore-AFter hallucination dataset (BEAF), and introduce new metrics: True Understanding (TU), IGnorance (IG), StuBbornness (SB), and InDecision (ID). Unlike prior works that focus only on constructing questions and answers, the key idea of our benchmark is to manipulate visual scene information by image editing models and to design the metrics based on scene changes. This allows us to clearly assess whether VLMs correctly understand a given scene by observing the ability to perceive changes. We also visualize image-wise object relationship by virtue of our two-axis view: vision and text. Upon evaluating VLMs with our dataset, we observed that our metrics reveal different aspects of VLM hallucination that have not been reported before. Project page: https://beafbench.github.io/

  • 4 authors
·
Jul 18, 2024

LLMC+: Benchmarking Vision-Language Model Compression with a Plug-and-play Toolkit

Large Vision-Language Models (VLMs) exhibit impressive multi-modal capabilities but suffer from prohibitive computational and memory demands, due to their long visual token sequences and massive parameter sizes. To address these issues, recent works have proposed training-free compression methods. However, existing efforts often suffer from three major limitations: (1) Current approaches do not decompose techniques into comparable modules, hindering fair evaluation across spatial and temporal redundancy. (2) Evaluation confined to simple single-turn tasks, failing to reflect performance in realistic scenarios. (3) Isolated use of individual compression techniques, without exploring their joint potential. To overcome these gaps, we introduce LLMC+, a comprehensive VLM compression benchmark with a versatile, plug-and-play toolkit. LLMC+ supports over 20 algorithms across five representative VLM families and enables systematic study of token-level and model-level compression. Our benchmark reveals that: (1) Spatial and temporal redundancies demand distinct technical strategies. (2) Token reduction methods degrade significantly in multi-turn dialogue and detail-sensitive tasks. (3) Combining token and model compression achieves extreme compression with minimal performance loss. We believe LLMC+ will facilitate fair evaluation and inspire future research in efficient VLM. Our code is available at https://github.com/ModelTC/LightCompress.

  • 10 authors
·
Aug 13

OpenFACADES: An Open Framework for Architectural Caption and Attribute Data Enrichment via Street View Imagery

Building properties, such as height, usage, and material composition, play a crucial role in spatial data infrastructures, supporting applications such as energy simulation, risk assessment, and environmental modeling. Despite their importance, comprehensive and high-quality building attribute data remain scarce in many urban areas. Recent advances have enabled the extraction and tagging of objective building attributes using remote sensing and street-level imagery. However, establishing a method and pipeline that integrates diverse open datasets, acquires holistic building imagery at scale, and infers comprehensive building attributes remains a significant challenge. Among the first, this study bridges the gaps by introducing OpenFACADES, an open framework that leverages multimodal crowdsourced data to enrich building profiles with both objective attributes and semantic descriptors through multimodal large language models. Our methodology proceeds in three major steps. First, we integrate street-level image metadata from Mapillary with OpenStreetMap geometries via isovist analysis, effectively identifying images that provide suitable vantage points for observing target buildings. Second, we automate the detection of building facades in panoramic imagery and tailor a reprojection approach to convert objects into holistic perspective views that approximate real-world observation. Third, we introduce an innovative approach that harnesses and systematically investigates the capabilities of open-source large vision-language models (VLMs) for multi-attribute prediction and open-vocabulary captioning in building-level analytics, leveraging a globally sourced dataset of 30,180 labeled images from seven cities. Evaluation shows that fine-tuned VLM excel in multi-attribute inference, outperforming single-attribute computer vision models and zero-shot ChatGPT-4o.

  • 5 authors
·
Apr 1

Large VLM-based Vision-Language-Action Models for Robotic Manipulation: A Survey

Robotic manipulation, a key frontier in robotics and embodied AI, requires precise motor control and multimodal understanding, yet traditional rule-based methods fail to scale or generalize in unstructured, novel environments. In recent years, Vision-Language-Action (VLA) models, built upon Large Vision-Language Models (VLMs) pretrained on vast image-text datasets, have emerged as a transformative paradigm. This survey provides the first systematic, taxonomy-oriented review of large VLM-based VLA models for robotic manipulation. We begin by clearly defining large VLM-based VLA models and delineating two principal architectural paradigms: (1) monolithic models, encompassing single-system and dual-system designs with differing levels of integration; and (2) hierarchical models, which explicitly decouple planning from execution via interpretable intermediate representations. Building on this foundation, we present an in-depth examination of large VLM-based VLA models: (1) integration with advanced domains, including reinforcement learning, training-free optimization, learning from human videos, and world model integration; (2) synthesis of distinctive characteristics, consolidating architectural traits, operational strengths, and the datasets and benchmarks that support their development; (3) identification of promising directions, including memory mechanisms, 4D perception, efficient adaptation, multi-agent cooperation, and other emerging capabilities. This survey consolidates recent advances to resolve inconsistencies in existing taxonomies, mitigate research fragmentation, and fill a critical gap through the systematic integration of studies at the intersection of large VLMs and robotic manipulation. We provide a regularly updated project page to document ongoing progress: https://github.com/JiuTian-VL/Large-VLM-based-VLA-for-Robotic-Manipulation

  • 7 authors
·
Aug 18

Prism: A Framework for Decoupling and Assessing the Capabilities of VLMs

Vision Language Models (VLMs) demonstrate remarkable proficiency in addressing a wide array of visual questions, which requires strong perception and reasoning faculties. Assessing these two competencies independently is crucial for model refinement, despite the inherent difficulty due to the intertwined nature of seeing and reasoning in existing VLMs. To tackle this issue, we present Prism, an innovative framework designed to disentangle the perception and reasoning processes involved in visual question solving. Prism comprises two distinct stages: a perception stage that utilizes a VLM to extract and articulate visual information in textual form, and a reasoning stage that formulates responses based on the extracted visual information using a Large Language Model (LLM). This modular design enables the systematic comparison and assessment of both proprietary and open-source VLM for their perception and reasoning strengths. Our analytical framework provides several valuable insights, underscoring Prism's potential as a cost-effective solution for vision-language tasks. By combining a streamlined VLM focused on perception with a powerful LLM tailored for reasoning, Prism achieves superior results in general vision-language tasks while substantially cutting down on training and operational expenses. Quantitative evaluations show that Prism, when configured with a vanilla 2B LLaVA and freely accessible GPT-3.5, delivers performance on par with VLMs 10 times larger on the rigorous multimodal benchmark MMStar. The project is released at: https://github.com/SparksJoe/Prism.

  • 9 authors
·
Jun 20, 2024 2

MiniCPM-V: A GPT-4V Level MLLM on Your Phone

The recent surge of Multimodal Large Language Models (MLLMs) has fundamentally reshaped the landscape of AI research and industry, shedding light on a promising path toward the next AI milestone. However, significant challenges remain preventing MLLMs from being practical in real-world applications. The most notable challenge comes from the huge cost of running an MLLM with a massive number of parameters and extensive computation. As a result, most MLLMs need to be deployed on high-performing cloud servers, which greatly limits their application scopes such as mobile, offline, energy-sensitive, and privacy-protective scenarios. In this work, we present MiniCPM-V, a series of efficient MLLMs deployable on end-side devices. By integrating the latest MLLM techniques in architecture, pretraining and alignment, the latest MiniCPM-Llama3-V 2.5 has several notable features: (1) Strong performance, outperforming GPT-4V-1106, Gemini Pro and Claude 3 on OpenCompass, a comprehensive evaluation over 11 popular benchmarks, (2) strong OCR capability and 1.8M pixel high-resolution image perception at any aspect ratio, (3) trustworthy behavior with low hallucination rates, (4) multilingual support for 30+ languages, and (5) efficient deployment on mobile phones. More importantly, MiniCPM-V can be viewed as a representative example of a promising trend: The model sizes for achieving usable (e.g., GPT-4V) level performance are rapidly decreasing, along with the fast growth of end-side computation capacity. This jointly shows that GPT-4V level MLLMs deployed on end devices are becoming increasingly possible, unlocking a wider spectrum of real-world AI applications in the near future.

  • 23 authors
·
Aug 3, 2024 7

BlenderGym: Benchmarking Foundational Model Systems for Graphics Editing

3D graphics editing is crucial in applications like movie production and game design, yet it remains a time-consuming process that demands highly specialized domain expertise. Automating this process is challenging because graphical editing requires performing a variety of tasks, each requiring distinct skill sets. Recently, vision-language models (VLMs) have emerged as a powerful framework for automating the editing process, but their development and evaluation are bottlenecked by the lack of a comprehensive benchmark that requires human-level perception and presents real-world editing complexity. In this work, we present BlenderGym, the first comprehensive VLM system benchmark for 3D graphics editing. BlenderGym evaluates VLM systems through code-based 3D reconstruction tasks. We evaluate closed- and open-source VLM systems and observe that even the state-of-the-art VLM system struggles with tasks relatively easy for human Blender users. Enabled by BlenderGym, we study how inference scaling techniques impact VLM's performance on graphics editing tasks. Notably, our findings reveal that the verifier used to guide the scaling of generation can itself be improved through inference scaling, complementing recent insights on inference scaling of LLM generation in coding and math tasks. We further show that inference compute is not uniformly effective and can be optimized by strategically distributing it between generation and verification.

  • 5 authors
·
Apr 2 2