Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs
Multi-modal Large Language Models (MLLMs) have shown remarkable capabilities in many vision-language tasks. Nevertheless, most MLLMs still lack the Referential Comprehension (RC) ability to identify a specific object or area in images, limiting their application in fine-grained perception tasks. This paper proposes a novel method to enhance the RC capability for MLLMs. Our model represents the referring object in the image using the coordinates of its bounding box and converts the coordinates into texts in a specific format. This allows the model to treat the coordinates as natural language. Moreover, we construct the instruction tuning dataset with various designed RC tasks at a low cost by unleashing the potential of annotations in existing datasets. To further boost the RC ability of the model, we propose a self-consistent bootstrapping method that extends dense object annotations of a dataset into high-quality referring-expression-bounding-box pairs. The model is trained end-to-end with a parameter-efficient tuning framework that allows both modalities to benefit from multi-modal instruction tuning. This framework requires fewer trainable parameters and less training data. Experimental results on conventional vision-language and RC tasks demonstrate the superior performance of our method. For instance, our model exhibits a 12.0% absolute accuracy improvement over Instruct-BLIP on VSR and surpasses Kosmos-2 by 24.7% on RefCOCO_val under zero-shot settings. We also attain the top position on the leaderboard of MMBench. The models, datasets, and codes are publicly available at https://github.com/SY-Xuan/Pink
StrucTexTv2: Masked Visual-Textual Prediction for Document Image Pre-training
In this paper, we present StrucTexTv2, an effective document image pre-training framework, by performing masked visual-textual prediction. It consists of two self-supervised pre-training tasks: masked image modeling and masked language modeling, based on text region-level image masking. The proposed method randomly masks some image regions according to the bounding box coordinates of text words. The objectives of our pre-training tasks are reconstructing the pixels of masked image regions and the corresponding masked tokens simultaneously. Hence the pre-trained encoder can capture more textual semantics in comparison to the masked image modeling that usually predicts the masked image patches. Compared to the masked multi-modal modeling methods for document image understanding that rely on both the image and text modalities, StrucTexTv2 models image-only input and potentially deals with more application scenarios free from OCR pre-processing. Extensive experiments on mainstream benchmarks of document image understanding demonstrate the effectiveness of StrucTexTv2. It achieves competitive or even new state-of-the-art performance in various downstream tasks such as image classification, layout analysis, table structure recognition, document OCR, and information extraction under the end-to-end scenario.
Layout and Task Aware Instruction Prompt for Zero-shot Document Image Question Answering
Layout-aware pre-trained models has achieved significant progress on document image question answering. They introduce extra learnable modules into existing language models to capture layout information within document images from text bounding box coordinates obtained by OCR tools. However, extra modules necessitate pre-training on extensive document images. This prevents these methods from directly utilizing off-the-shelf instruction-tuning language foundation models, which have recently shown promising potential in zero-shot learning. Instead, in this paper, we find that instruction-tuning language models like Claude and ChatGPT can understand layout by spaces and line breaks. Based on this observation, we propose the LAyout and Task aware Instruction Prompt (LATIN-Prompt), which consists of layout-aware document content and task-aware instruction. Specifically, the former uses appropriate spaces and line breaks to recover the layout information among text segments obtained by OCR tools, and the latter ensures that generated answers adhere to formatting requirements. Moreover, we propose the LAyout and Task aware Instruction Tuning (LATIN-Tuning) to improve the performance of small instruction-tuning models like Alpaca. Experimental results show that LATIN-Prompt enables zero-shot performance of Claude and ChatGPT to be comparable to the fine-tuning performance of SOTAs on document image question answering, and LATIN-Tuning enhances the zero-shot performance of Alpaca significantly. For example, LATIN-Prompt improves the performance of Claude and ChatGPT on DocVQA by 263% and 20% respectively. LATIN-Tuning improves the performance of Alpaca on DocVQA by 87.7%. Quantitative and qualitative analyses demonstrate the effectiveness of LATIN-Prompt and LATIN-Tuning. We provide the code in supplementary and will release it to facilitate future research.
NExT-Chat: An LMM for Chat, Detection and Segmentation
The development of large language models (LLMs) has greatly advanced the field of multimodal understanding, leading to the emergence of large multimodal models (LMMs). In order to enhance the level of visual comprehension, recent studies have equipped LMMs with region-level understanding capabilities by representing object bounding box coordinates as a series of text sequences (pixel2seq). In this paper, we introduce a novel paradigm for object location modeling called pixel2emb method, where we ask the LMM to output the location embeddings and then decoded by different decoders. This paradigm allows for different location formats (such as bounding boxes and masks) to be used in multimodal conversations Furthermore, this kind of embedding based location modeling enables the utilization of existing practices in localization tasks, such as detection and segmentation. In scenarios with limited resources, our pixel2emb demonstrates superior performance compared to existing state-of-the-art (SOTA) approaches in both the location input and output tasks under fair comparison. Leveraging the proposed pixel2emb method, we train an LMM named NExT-Chat and demonstrate its capability of handling multiple tasks like visual grounding, region caption, and grounded reasoning.
LLM Blueprint: Enabling Text-to-Image Generation with Complex and Detailed Prompts
Diffusion-based generative models have significantly advanced text-to-image generation but encounter challenges when processing lengthy and intricate text prompts describing complex scenes with multiple objects. While excelling in generating images from short, single-object descriptions, these models often struggle to faithfully capture all the nuanced details within longer and more elaborate textual inputs. In response, we present a novel approach leveraging Large Language Models (LLMs) to extract critical components from text prompts, including bounding box coordinates for foreground objects, detailed textual descriptions for individual objects, and a succinct background context. These components form the foundation of our layout-to-image generation model, which operates in two phases. The initial Global Scene Generation utilizes object layouts and background context to create an initial scene but often falls short in faithfully representing object characteristics as specified in the prompts. To address this limitation, we introduce an Iterative Refinement Scheme that iteratively evaluates and refines box-level content to align them with their textual descriptions, recomposing objects as needed to ensure consistency. Our evaluation on complex prompts featuring multiple objects demonstrates a substantial improvement in recall compared to baseline diffusion models. This is further validated by a user study, underscoring the efficacy of our approach in generating coherent and detailed scenes from intricate textual inputs.
Region-Level Context-Aware Multimodal Understanding
Despite significant progress, existing research on Multimodal Large Language Models (MLLMs) mainly focuses on general visual understanding, overlooking the ability to integrate textual context associated with objects for a more context-aware multimodal understanding -- an ability we refer to as Region-level Context-aware Multimodal Understanding (RCMU). To address this limitation, we first formulate the RCMU task, which requires models to respond to user instructions by integrating both image content and textual information of regions or objects. To equip MLLMs with RCMU capabilities, we propose Region-level Context-aware Visual Instruction Tuning (RCVIT), which incorporates object information into the model input and enables the model to utilize bounding box coordinates to effectively associate objects' visual content with their textual information. To address the lack of datasets, we introduce the RCMU dataset, a large-scale visual instruction tuning dataset that covers multiple RCMU tasks. We also propose RC\&P-Bench, a comprehensive benchmark that can evaluate the performance of MLLMs in RCMU and multimodal personalized understanding tasks. Additionally, we propose a reference-free evaluation metric to perform a comprehensive and fine-grained evaluation of the region-level context-aware image descriptions. By performing RCVIT on Qwen2-VL models with the RCMU dataset, we developed RC-Qwen2-VL models. Experimental results indicate that RC-Qwen2-VL models not only achieve outstanding performance on multiple RCMU tasks but also demonstrate successful applications in multimodal RAG and personalized conversation. Our data, model and benchmark are available at https://github.com/hongliang-wei/RC-MLLM
VISEM-Tracking: Human Spermatozoa Tracking Dataset
A manual assessment of sperm motility requires microscopy observation, which is challenging due to the fast-moving spermatozoa in the field of view. To obtain correct results, manual evaluation requires extensive training. Therefore, computer-assisted sperm analysis (CASA) has become increasingly used in clinics. Despite this, more data is needed to train supervised machine learning approaches in order to improve accuracy and reliability in the assessment of sperm motility and kinematics. In this regard, we provide a dataset called VISEM-Tracking with 20 video recordings of 30 seconds of wet sperm preparations with manually annotated bounding-box coordinates and a set of sperm characteristics analyzed by experts in the domain. In addition to the annotated data, we provide unlabeled video clips for easy-to-use access and analysis of the data via methods such as self- or unsupervised learning. As part of this paper, we present baseline sperm detection performances using the YOLOv5 deep learning model trained on the VISEM-Tracking dataset. As a result, we show that the dataset can be used to train complex deep learning models to analyze spermatozoa. The dataset is publicly available at https://zenodo.org/record/7293726.
Chest ImaGenome Dataset for Clinical Reasoning
Despite the progress in automatic detection of radiologic findings from chest X-ray (CXR) images in recent years, a quantitative evaluation of the explainability of these models is hampered by the lack of locally labeled datasets for different findings. With the exception of a few expert-labeled small-scale datasets for specific findings, such as pneumonia and pneumothorax, most of the CXR deep learning models to date are trained on global "weak" labels extracted from text reports, or trained via a joint image and unstructured text learning strategy. Inspired by the Visual Genome effort in the computer vision community, we constructed the first Chest ImaGenome dataset with a scene graph data structure to describe 242,072 images. Local annotations are automatically produced using a joint rule-based natural language processing (NLP) and atlas-based bounding box detection pipeline. Through a radiologist constructed CXR ontology, the annotations for each CXR are connected as an anatomy-centered scene graph, useful for image-level reasoning and multimodal fusion applications. Overall, we provide: i) 1,256 combinations of relation annotations between 29 CXR anatomical locations (objects with bounding box coordinates) and their attributes, structured as a scene graph per image, ii) over 670,000 localized comparison relations (for improved, worsened, or no change) between the anatomical locations across sequential exams, as well as ii) a manually annotated gold standard scene graph dataset from 500 unique patients.
GRIT: Teaching MLLMs to Think with Images
Recent studies have demonstrated the efficacy of using Reinforcement Learning (RL) in building reasoning models that articulate chains of thoughts prior to producing final answers. However, despite ongoing advances that aim at enabling reasoning for vision-language tasks, existing open-source visual reasoning models typically generate reasoning content with pure natural language, lacking explicit integration of visual information. This limits their ability to produce clearly articulated and visually grounded reasoning chains. To this end, we propose Grounded Reasoning with Images and Texts (GRIT), a novel method for training MLLMs to think with images. GRIT introduces a grounded reasoning paradigm, in which models generate reasoning chains that interleave natural language and explicit bounding box coordinates. These coordinates point to regions of the input image that the model consults during its reasoning process. Additionally, GRIT is equipped with a reinforcement learning approach, GRPO-GR, built upon the GRPO algorithm. GRPO-GR employs robust rewards focused on the final answer accuracy and format of the grounded reasoning output, which eliminates the need for data with reasoning chain annotations or explicit bounding box labels. As a result, GRIT achieves exceptional data efficiency, requiring as few as 20 image-question-answer triplets from existing datasets. Comprehensive evaluations demonstrate that GRIT effectively trains MLLMs to produce coherent and visually grounded reasoning chains, showing a successful unification of reasoning and grounding abilities.
OG-HFYOLO :Orientation gradient guidance and heterogeneous feature fusion for deformation table cell instance segmentation
Table structure recognition is a key task in document analysis. However, the geometric deformation in deformed tables causes a weak correlation between content information and structure, resulting in downstream tasks not being able to obtain accurate content information. To obtain fine-grained spatial coordinates of cells, we propose the OG-HFYOLO model, which enhances the edge response by Gradient Orientation-aware Extractor, combines a Heterogeneous Kernel Cross Fusion module and a scale-aware loss function to adapt to multi-scale objective features, and introduces mask-driven non-maximal suppression in the post-processing, which replaces the traditional bounding box suppression mechanism. Furthermore, we also propose a data generator, filling the gap in the dataset for fine-grained deformation table cell spatial coordinate localization, and derive a large-scale dataset named Deformation Wired Table (DWTAL). Experiments show that our proposed model demonstrates excellent segmentation accuracy on all mainstream instance segmentation models. The dataset and the source code are open source: https://github.com/justliulong/OGHFYOLO.
OmniNOCS: A unified NOCS dataset and model for 3D lifting of 2D objects
We propose OmniNOCS, a large-scale monocular dataset with 3D Normalized Object Coordinate Space (NOCS) maps, object masks, and 3D bounding box annotations for indoor and outdoor scenes. OmniNOCS has 20 times more object classes and 200 times more instances than existing NOCS datasets (NOCS-Real275, Wild6D). We use OmniNOCS to train a novel, transformer-based monocular NOCS prediction model (NOCSformer) that can predict accurate NOCS, instance masks and poses from 2D object detections across diverse classes. It is the first NOCS model that can generalize to a broad range of classes when prompted with 2D boxes. We evaluate our model on the task of 3D oriented bounding box prediction, where it achieves comparable results to state-of-the-art 3D detection methods such as Cube R-CNN. Unlike other 3D detection methods, our model also provides detailed and accurate 3D object shape and segmentation. We propose a novel benchmark for the task of NOCS prediction based on OmniNOCS, which we hope will serve as a useful baseline for future work in this area. Our dataset and code will be at the project website: https://omninocs.github.io.
AI Challenger : A Large-scale Dataset for Going Deeper in Image Understanding
Significant progress has been achieved in Computer Vision by leveraging large-scale image datasets. However, large-scale datasets for complex Computer Vision tasks beyond classification are still limited. This paper proposed a large-scale dataset named AIC (AI Challenger) with three sub-datasets, human keypoint detection (HKD), large-scale attribute dataset (LAD) and image Chinese captioning (ICC). In this dataset, we annotate class labels (LAD), keypoint coordinate (HKD), bounding box (HKD and LAD), attribute (LAD) and caption (ICC). These rich annotations bridge the semantic gap between low-level images and high-level concepts. The proposed dataset is an effective benchmark to evaluate and improve different computational methods. In addition, for related tasks, others can also use our dataset as a new resource to pre-train their models.
Extreme clicking for efficient object annotation
Manually annotating object bounding boxes is central to building computer vision datasets, and it is very time consuming (annotating ILSVRC [53] took 35s for one high-quality box [62]). It involves clicking on imaginary corners of a tight box around the object. This is difficult as these corners are often outside the actual object and several adjustments are required to obtain a tight box. We propose extreme clicking instead: we ask the annotator to click on four physical points on the object: the top, bottom, left- and right-most points. This task is more natural and these points are easy to find. We crowd-source extreme point annotations for PASCAL VOC 2007 and 2012 and show that (1) annotation time is only 7s per box, 5x faster than the traditional way of drawing boxes [62]; (2) the quality of the boxes is as good as the original ground-truth drawn the traditional way; (3) detectors trained on our annotations are as accurate as those trained on the original ground-truth. Moreover, our extreme clicking strategy not only yields box coordinates, but also four accurate boundary points. We show (4) how to incorporate them into GrabCut to obtain more accurate segmentations than those delivered when initializing it from bounding boxes; (5) semantic segmentations models trained on these segmentations outperform those trained on segmentations derived from bounding boxes.
Do Object Detection Localization Errors Affect Human Performance and Trust?
Bounding boxes are often used to communicate automatic object detection results to humans, aiding humans in a multitude of tasks. We investigate the relationship between bounding box localization errors and human task performance. We use observer performance studies on a visual multi-object counting task to measure both human trust and performance with different levels of bounding box accuracy. The results show that localization errors have no significant impact on human accuracy or trust in the system. Recall and precision errors impact both human performance and trust, suggesting that optimizing algorithms based on the F1 score is more beneficial in human-computer tasks. Lastly, the paper offers an improvement on bounding boxes in multi-object counting tasks with center dots, showing improved performance and better resilience to localization inaccuracy.
Bounding Box Stability against Feature Dropout Reflects Detector Generalization across Environments
Bounding boxes uniquely characterize object detection, where a good detector gives accurate bounding boxes of categories of interest. However, in the real-world where test ground truths are not provided, it is non-trivial to find out whether bounding boxes are accurate, thus preventing us from assessing the detector generalization ability. In this work, we find under feature map dropout, good detectors tend to output bounding boxes whose locations do not change much, while bounding boxes of poor detectors will undergo noticeable position changes. We compute the box stability score (BoS score) to reflect this stability. Specifically, given an image, we compute a normal set of bounding boxes and a second set after feature map dropout. To obtain BoS score, we use bipartite matching to find the corresponding boxes between the two sets and compute the average Intersection over Union (IoU) across the entire test set. We contribute to finding that BoS score has a strong, positive correlation with detection accuracy measured by mean average precision (mAP) under various test environments. This relationship allows us to predict the accuracy of detectors on various real-world test sets without accessing test ground truths, verified on canonical detection tasks such as vehicle detection and pedestrian detection. Code and data are available at https://github.com/YangYangGirl/BoS.
Center-based 3D Object Detection and Tracking
Three-dimensional objects are commonly represented as 3D boxes in a point-cloud. This representation mimics the well-studied image-based 2D bounding-box detection but comes with additional challenges. Objects in a 3D world do not follow any particular orientation, and box-based detectors have difficulties enumerating all orientations or fitting an axis-aligned bounding box to rotated objects. In this paper, we instead propose to represent, detect, and track 3D objects as points. Our framework, CenterPoint, first detects centers of objects using a keypoint detector and regresses to other attributes, including 3D size, 3D orientation, and velocity. In a second stage, it refines these estimates using additional point features on the object. In CenterPoint, 3D object tracking simplifies to greedy closest-point matching. The resulting detection and tracking algorithm is simple, efficient, and effective. CenterPoint achieved state-of-the-art performance on the nuScenes benchmark for both 3D detection and tracking, with 65.5 NDS and 63.8 AMOTA for a single model. On the Waymo Open Dataset, CenterPoint outperforms all previous single model method by a large margin and ranks first among all Lidar-only submissions. The code and pretrained models are available at https://github.com/tianweiy/CenterPoint.
Sequential Voting with Relational Box Fields for Active Object Detection
A key component of understanding hand-object interactions is the ability to identify the active object -- the object that is being manipulated by the human hand. In order to accurately localize the active object, any method must reason using information encoded by each image pixel, such as whether it belongs to the hand, the object, or the background. To leverage each pixel as evidence to determine the bounding box of the active object, we propose a pixel-wise voting function. Our pixel-wise voting function takes an initial bounding box as input and produces an improved bounding box of the active object as output. The voting function is designed so that each pixel inside of the input bounding box votes for an improved bounding box, and the box with the majority vote is selected as the output. We call the collection of bounding boxes generated inside of the voting function, the Relational Box Field, as it characterizes a field of bounding boxes defined in relationship to the current bounding box. While our voting function is able to improve the bounding box of the active object, one round of voting is typically not enough to accurately localize the active object. Therefore, we repeatedly apply the voting function to sequentially improve the location of the bounding box. However, since it is known that repeatedly applying a one-step predictor (i.e., auto-regressive processing with our voting function) can cause a data distribution shift, we mitigate this issue using reinforcement learning (RL). We adopt standard RL to learn the voting function parameters and show that it provides a meaningful improvement over a standard supervised learning approach. We perform experiments on two large-scale datasets: 100DOH and MECCANO, improving AP50 performance by 8% and 30%, respectively, over the state of the art.
Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression
Bounding box regression is the crucial step in object detection. In existing methods, while ell_n-norm loss is widely adopted for bounding box regression, it is not tailored to the evaluation metric, i.e., Intersection over Union (IoU). Recently, IoU loss and generalized IoU (GIoU) loss have been proposed to benefit the IoU metric, but still suffer from the problems of slow convergence and inaccurate regression. In this paper, we propose a Distance-IoU (DIoU) loss by incorporating the normalized distance between the predicted box and the target box, which converges much faster in training than IoU and GIoU losses. Furthermore, this paper summarizes three geometric factors in bounding box regression, \ie, overlap area, central point distance and aspect ratio, based on which a Complete IoU (CIoU) loss is proposed, thereby leading to faster convergence and better performance. By incorporating DIoU and CIoU losses into state-of-the-art object detection algorithms, e.g., YOLO v3, SSD and Faster RCNN, we achieve notable performance gains in terms of not only IoU metric but also GIoU metric. Moreover, DIoU can be easily adopted into non-maximum suppression (NMS) to act as the criterion, further boosting performance improvement. The source code and trained models are available at https://github.com/Zzh-tju/DIoU.
We don't need no bounding-boxes: Training object class detectors using only human verification
Training object class detectors typically requires a large set of images in which objects are annotated by bounding-boxes. However, manually drawing bounding-boxes is very time consuming. We propose a new scheme for training object detectors which only requires annotators to verify bounding-boxes produced automatically by the learning algorithm. Our scheme iterates between re-training the detector, re-localizing objects in the training images, and human verification. We use the verification signal both to improve re-training and to reduce the search space for re-localisation, which makes these steps different to what is normally done in a weakly supervised setting. Extensive experiments on PASCAL VOC 2007 show that (1) using human verification to update detectors and reduce the search space leads to the rapid production of high-quality bounding-box annotations; (2) our scheme delivers detectors performing almost as good as those trained in a fully supervised setting, without ever drawing any bounding-box; (3) as the verification task is very quick, our scheme substantially reduces total annotation time by a factor 6x-9x.
Objects as Points
Detection identifies objects as axis-aligned boxes in an image. Most successful object detectors enumerate a nearly exhaustive list of potential object locations and classify each. This is wasteful, inefficient, and requires additional post-processing. In this paper, we take a different approach. We model an object as a single point --- the center point of its bounding box. Our detector uses keypoint estimation to find center points and regresses to all other object properties, such as size, 3D location, orientation, and even pose. Our center point based approach, CenterNet, is end-to-end differentiable, simpler, faster, and more accurate than corresponding bounding box based detectors. CenterNet achieves the best speed-accuracy trade-off on the MS COCO dataset, with 28.1% AP at 142 FPS, 37.4% AP at 52 FPS, and 45.1% AP with multi-scale testing at 1.4 FPS. We use the same approach to estimate 3D bounding box in the KITTI benchmark and human pose on the COCO keypoint dataset. Our method performs competitively with sophisticated multi-stage methods and runs in real-time.
Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression
Intersection over Union (IoU) is the most popular evaluation metric used in the object detection benchmarks. However, there is a gap between optimizing the commonly used distance losses for regressing the parameters of a bounding box and maximizing this metric value. The optimal objective for a metric is the metric itself. In the case of axis-aligned 2D bounding boxes, it can be shown that IoU can be directly used as a regression loss. However, IoU has a plateau making it infeasible to optimize in the case of non-overlapping bounding boxes. In this paper, we address the weaknesses of IoU by introducing a generalized version as both a new loss and a new metric. By incorporating this generalized IoU (GIoU) as a loss into the state-of-the art object detection frameworks, we show a consistent improvement on their performance using both the standard, IoU based, and new, GIoU based, performance measures on popular object detection benchmarks such as PASCAL VOC and MS COCO.
Improving GUI Grounding with Explicit Position-to-Coordinate Mapping
GUI grounding, the task of mapping natural-language instructions to pixel coordinates, is crucial for autonomous agents, yet remains difficult for current VLMs. The core bottleneck is reliable patch-to-pixel mapping, which breaks when extrapolating to high-resolution displays unseen during training. Current approaches generate coordinates as text tokens directly from visual features, forcing the model to infer complex position-to-pixel mappings implicitly; as a result, accuracy degrades and failures proliferate on new resolutions. We address this with two complementary innovations. First, RULER tokens serve as explicit coordinate markers, letting the model reference positions similar to gridlines on a map and adjust rather than generate coordinates from scratch. Second, Interleaved MRoPE (I-MRoPE) improves spatial encoding by ensuring that width and height dimensions are represented equally, addressing the asymmetry of standard positional schemes. Experiments on ScreenSpot, ScreenSpot-V2, and ScreenSpot-Pro show consistent gains in grounding accuracy, with the largest improvements on high-resolution interfaces. By providing explicit spatial guidance rather than relying on implicit learning, our approach enables more reliable GUI automation across diverse resolutions and platforms.
Point2RBox: Combine Knowledge from Synthetic Visual Patterns for End-to-end Oriented Object Detection with Single Point Supervision
With the rapidly increasing demand for oriented object detection (OOD), recent research involving weakly-supervised detectors for learning rotated box (RBox) from the horizontal box (HBox) has attracted more and more attention. In this paper, we explore a more challenging yet label-efficient setting, namely single point-supervised OOD, and present our approach called Point2RBox. Specifically, we propose to leverage two principles: 1) Synthetic pattern knowledge combination: By sampling around each labeled point on the image, we spread the object feature to synthetic visual patterns with known boxes to provide the knowledge for box regression. 2) Transform self-supervision: With a transformed input image (e.g. scaled/rotated), the output RBoxes are trained to follow the same transformation so that the network can perceive the relative size/rotation between objects. The detector is further enhanced by a few devised techniques to cope with peripheral issues, e.g. the anchor/layer assignment as the size of the object is not available in our point supervision setting. To our best knowledge, Point2RBox is the first end-to-end solution for point-supervised OOD. In particular, our method uses a lightweight paradigm, yet it achieves a competitive performance among point-supervised alternatives, 41.05%/27.62%/80.01% on DOTA/DIOR/HRSC datasets.
Realistic and Controllable 3D Gaussian-Guided Object Editing for Driving Video Generation
Corner cases are crucial for training and validating autonomous driving systems, yet collecting them from the real world is often costly and hazardous. Editing objects within captured sensor data offers an effective alternative for generating diverse scenarios, commonly achieved through 3D Gaussian Splatting or image generative models. However, these approaches often suffer from limited visual fidelity or imprecise pose control. To address these issues, we propose G^2Editor, a framework designed for photorealistic and precise object editing in driving videos. Our method leverages a 3D Gaussian representation of the edited object as a dense prior, injected into the denoising process to ensure accurate pose control and spatial consistency. A scene-level 3D bounding box layout is employed to reconstruct occluded areas of non-target objects. Furthermore, to guide the appearance details of the edited object, we incorporate hierarchical fine-grained features as additional conditions during generation. Experiments on the Waymo Open Dataset demonstrate that G^2Editor effectively supports object repositioning, insertion, and deletion within a unified framework, outperforming existing methods in both pose controllability and visual quality, while also benefiting downstream data-driven tasks.
V2P: From Background Suppression to Center Peaking for Robust GUI Grounding Task
Precise localization of GUI elements is crucial for the development of GUI agents. Traditional methods rely on bounding box or center-point regression, neglecting spatial interaction uncertainty and visual-semantic hierarchies. Recent methods incorporate attention mechanisms but still face two key issues: (1) ignoring processing background regions causes attention drift from the desired area, and (2) uniform labeling fails to distinguish between center and edges of the target UI element, leading to click imprecision. Inspired by how humans visually process and interact with GUI elements, we propose the Valley-to-Peak (V2P) method to address these issues. To mitigate background distractions, V2P introduces a suppression attention mechanism that minimizes the model's focus on irrelevant regions to highlight the intended region. For the issue of center-edge distinction, V2P applies a Fitts' Law-inspired approach by modeling GUI interactions as 2D Gaussian heatmaps where the weight gradually decreases from the center towards the edges. The weight distribution follows a Gaussian function, with the variance determined by the target's size. Consequently, V2P effectively isolates the target area and teaches the model to concentrate on the most essential point of the UI element. The model trained by V2P achieves the performance with 92.3% and 50.5% on two benchmarks ScreenSpot-v2 and ScreenSpot-Pro. Ablations further confirm each component's contribution, highlighting V2P's generalizability for precise GUI grounding tasks.
Three Ways to Improve Verbo-visual Fusion for Dense 3D Visual Grounding
3D visual grounding is the task of localizing the object in a 3D scene which is referred by a description in natural language. With a wide range of applications ranging from autonomous indoor robotics to AR/VR, the task has recently risen in popularity. A common formulation to tackle 3D visual grounding is grounding-by-detection, where localization is done via bounding boxes. However, for real-life applications that require physical interactions, a bounding box insufficiently describes the geometry of an object. We therefore tackle the problem of dense 3D visual grounding, i.e. referral-based 3D instance segmentation. We propose a dense 3D grounding network ConcreteNet, featuring three novel stand-alone modules which aim to improve grounding performance for challenging repetitive instances, i.e. instances with distractors of the same semantic class. First, we introduce a bottom-up attentive fusion module that aims to disambiguate inter-instance relational cues, next we construct a contrastive training scheme to induce separation in the latent space, and finally we resolve view-dependent utterances via a learned global camera token. ConcreteNet ranks 1st on the challenging ScanRefer online benchmark by a considerable +9.43% accuracy at 50% IoU and has won the ICCV 3rd Workshop on Language for 3D Scenes "3D Object Localization" challenge.
Spatial Self-Distillation for Object Detection with Inaccurate Bounding Boxes
Object detection via inaccurate bounding boxes supervision has boosted a broad interest due to the expensive high-quality annotation data or the occasional inevitability of low annotation quality (\eg tiny objects). The previous works usually utilize multiple instance learning (MIL), which highly depends on category information, to select and refine a low-quality box. Those methods suffer from object drift, group prediction and part domination problems without exploring spatial information. In this paper, we heuristically propose a Spatial Self-Distillation based Object Detector (SSD-Det) to mine spatial information to refine the inaccurate box in a self-distillation fashion. SSD-Det utilizes a Spatial Position Self-Distillation (SPSD) module to exploit spatial information and an interactive structure to combine spatial information and category information, thus constructing a high-quality proposal bag. To further improve the selection procedure, a Spatial Identity Self-Distillation (SISD) module is introduced in SSD-Det to obtain spatial confidence to help select the best proposals. Experiments on MS-COCO and VOC datasets with noisy box annotation verify our method's effectiveness and achieve state-of-the-art performance. The code is available at https://github.com/ucas-vg/PointTinyBenchmark/tree/SSD-Det.
Promptable Fire Segmentation: Unleashing SAM2's Potential for Real-Time Mobile Deployment with Strategic Bounding Box Guidance
Fire segmentation remains a critical challenge in computer vision due to flames' irregular boundaries, translucent edges, and highly variable intensities. While the Segment Anything Models (SAM and SAM2) have demonstrated impressive cross-domain generalization capabilities, their effectiveness in fire segmentation -- particularly under mobile deployment constraints -- remains largely unexplored. This paper presents the first comprehensive evaluation of SAM2 variants for fire segmentation, focusing on bounding box prompting strategies to enhance deployment feasibility. We systematically evaluate four SAM2.1 variants (tiny, small, base_plus, large) alongside mobile-oriented variants (TinySAM, MobileSAM) across three fire datasets using multiple prompting strategies: automatic, single positive point (SP), single positive point + single negative point (SP+SN), multiple positive points (MP), bounding box (Box), and hybrid variants (Box+SP and Box+MP). Our experimental results demonstrate that bounding box prompts consistently outperform automatic and single point-based approaches, with Box+MP achieving the highest mean IoU (0.64) and Dice coefficient (0.75) on the Khan dataset. Lightweight variants such as TinySAM and MobileSAM further reduce memory and computational costs, making them more suitable for latency-tolerant edge scenarios. Overall, this work provides critical insights for deploying promptable segmentation models in fire monitoring systems and establishes benchmarks for future research in domain-specific SAM applications. Code is available at: https://github.com/UEmmanuel5/ProFSAM
PSA-SSL: Pose and Size-aware Self-Supervised Learning on LiDAR Point Clouds
Self-supervised learning (SSL) on 3D point clouds has the potential to learn feature representations that can transfer to diverse sensors and multiple downstream perception tasks. However, recent SSL approaches fail to define pretext tasks that retain geometric information such as object pose and scale, which can be detrimental to the performance of downstream localization and geometry-sensitive 3D scene understanding tasks, such as 3D semantic segmentation and 3D object detection. We propose PSA-SSL, a novel extension to point cloud SSL that learns object pose and size-aware (PSA) features. Our approach defines a self-supervised bounding box regression pretext task, which retains object pose and size information. Furthermore, we incorporate LiDAR beam pattern augmentation on input point clouds, which encourages learning sensor-agnostic features. Our experiments demonstrate that with a single pretrained model, our light-weight yet effective extensions achieve significant improvements on 3D semantic segmentation with limited labels across popular autonomous driving datasets (Waymo, nuScenes, SemanticKITTI). Moreover, our approach outperforms other state-of-the-art SSL methods on 3D semantic segmentation (using up to 10 times less labels), as well as on 3D object detection. Our code will be released on https://github.com/TRAILab/PSA-SSL.
Text Spotting Transformers
In this paper, we present TExt Spotting TRansformers (TESTR), a generic end-to-end text spotting framework using Transformers for text detection and recognition in the wild. TESTR builds upon a single encoder and dual decoders for the joint text-box control point regression and character recognition. Other than most existing literature, our method is free from Region-of-Interest operations and heuristics-driven post-processing procedures; TESTR is particularly effective when dealing with curved text-boxes where special cares are needed for the adaptation of the traditional bounding-box representations. We show our canonical representation of control points suitable for text instances in both Bezier curve and polygon annotations. In addition, we design a bounding-box guided polygon detection (box-to-polygon) process. Experiments on curved and arbitrarily shaped datasets demonstrate state-of-the-art performances of the proposed TESTR algorithm.
Probing the Role of Positional Information in Vision-Language Models
In most Vision-Language models (VL), the understanding of the image structure is enabled by injecting the position information (PI) about objects in the image. In our case study of LXMERT, a state-of-the-art VL model, we probe the use of the PI in the representation and study its effect on Visual Question Answering. We show that the model is not capable of leveraging the PI for the image-text matching task on a challenge set where only position differs. Yet, our experiments with probing confirm that the PI is indeed present in the representation. We introduce two strategies to tackle this: (i) Positional Information Pre-training and (ii) Contrastive Learning on PI using Cross-Modality Matching. Doing so, the model can correctly classify if images with detailed PI statements match. Additionally to the 2D information from bounding boxes, we introduce the object's depth as new feature for a better object localization in the space. Even though we were able to improve the model properties as defined by our probes, it only has a negligible effect on the downstream performance. Our results thus highlight an important issue of multimodal modeling: the mere presence of information detectable by a probing classifier is not a guarantee that the information is available in a cross-modal setup.
GeoGround: A Unified Large Vision-Language Model. for Remote Sensing Visual Grounding
Remote sensing (RS) visual grounding aims to use natural language expression to locate specific objects (in the form of the bounding box or segmentation mask) in RS images, enhancing human interaction with intelligent RS interpretation systems. Early research in this area was primarily based on horizontal bounding boxes (HBBs), but as more diverse RS datasets have become available, tasks involving oriented bounding boxes (OBBs) and segmentation masks have emerged. In practical applications, different targets require different grounding types: HBB can localize an object's position, OBB provides its orientation, and mask depicts its shape. However, existing specialized methods are typically tailored to a single type of RS visual grounding task and are hard to generalize across tasks. In contrast, large vision-language models (VLMs) exhibit powerful multi-task learning capabilities but struggle to handle dense prediction tasks like segmentation. This paper proposes GeoGround, a novel framework that unifies support for HBB, OBB, and mask RS visual grounding tasks, allowing flexible output selection. Rather than customizing the architecture of VLM, our work aims to elegantly support pixel-level visual grounding output through the Text-Mask technique. We define prompt-assisted and geometry-guided learning to enhance consistency across different signals. To support model training, we present refGeo, a large-scale RS visual instruction-following dataset containing 161k image-text pairs. Experimental results show that GeoGround demonstrates strong performance across four RS visual grounding tasks, matching or surpassing the performance of specialized methods on multiple benchmarks. Code available at https://github.com/zytx121/GeoGround
Panoptic Scene Graph Generation
Existing research addresses scene graph generation (SGG) -- a critical technology for scene understanding in images -- from a detection perspective, i.e., objects are detected using bounding boxes followed by prediction of their pairwise relationships. We argue that such a paradigm causes several problems that impede the progress of the field. For instance, bounding box-based labels in current datasets usually contain redundant classes like hairs, and leave out background information that is crucial to the understanding of context. In this work, we introduce panoptic scene graph generation (PSG), a new problem task that requires the model to generate a more comprehensive scene graph representation based on panoptic segmentations rather than rigid bounding boxes. A high-quality PSG dataset, which contains 49k well-annotated overlapping images from COCO and Visual Genome, is created for the community to keep track of its progress. For benchmarking, we build four two-stage baselines, which are modified from classic methods in SGG, and two one-stage baselines called PSGTR and PSGFormer, which are based on the efficient Transformer-based detector, i.e., DETR. While PSGTR uses a set of queries to directly learn triplets, PSGFormer separately models the objects and relations in the form of queries from two Transformer decoders, followed by a prompting-like relation-object matching mechanism. In the end, we share insights on open challenges and future directions.
Coordinate Quantized Neural Implicit Representations for Multi-view Reconstruction
In recent years, huge progress has been made on learning neural implicit representations from multi-view images for 3D reconstruction. As an additional input complementing coordinates, using sinusoidal functions as positional encodings plays a key role in revealing high frequency details with coordinate-based neural networks. However, high frequency positional encodings make the optimization unstable, which results in noisy reconstructions and artifacts in empty space. To resolve this issue in a general sense, we introduce to learn neural implicit representations with quantized coordinates, which reduces the uncertainty and ambiguity in the field during optimization. Instead of continuous coordinates, we discretize continuous coordinates into discrete coordinates using nearest interpolation among quantized coordinates which are obtained by discretizing the field in an extremely high resolution. We use discrete coordinates and their positional encodings to learn implicit functions through volume rendering. This significantly reduces the variations in the sample space, and triggers more multi-view consistency constraints on intersections of rays from different views, which enables to infer implicit function in a more effective way. Our quantized coordinates do not bring any computational burden, and can seamlessly work upon the latest methods. Our evaluations under the widely used benchmarks show our superiority over the state-of-the-art. Our code is available at https://github.com/MachinePerceptionLab/CQ-NIR.
BoxDreamer: Dreaming Box Corners for Generalizable Object Pose Estimation
This paper presents a generalizable RGB-based approach for object pose estimation, specifically designed to address challenges in sparse-view settings. While existing methods can estimate the poses of unseen objects, their generalization ability remains limited in scenarios involving occlusions and sparse reference views, restricting their real-world applicability. To overcome these limitations, we introduce corner points of the object bounding box as an intermediate representation of the object pose. The 3D object corners can be reliably recovered from sparse input views, while the 2D corner points in the target view are estimated through a novel reference-based point synthesizer, which works well even in scenarios involving occlusions. As object semantic points, object corners naturally establish 2D-3D correspondences for object pose estimation with a PnP algorithm. Extensive experiments on the YCB-Video and Occluded-LINEMOD datasets show that our approach outperforms state-of-the-art methods, highlighting the effectiveness of the proposed representation and significantly enhancing the generalization capabilities of object pose estimation, which is crucial for real-world applications.
3D Bounding Box Estimation Using Deep Learning and Geometry
We present a method for 3D object detection and pose estimation from a single image. In contrast to current techniques that only regress the 3D orientation of an object, our method first regresses relatively stable 3D object properties using a deep convolutional neural network and then combines these estimates with geometric constraints provided by a 2D object bounding box to produce a complete 3D bounding box. The first network output estimates the 3D object orientation using a novel hybrid discrete-continuous loss, which significantly outperforms the L2 loss. The second output regresses the 3D object dimensions, which have relatively little variance compared to alternatives and can often be predicted for many object types. These estimates, combined with the geometric constraints on translation imposed by the 2D bounding box, enable us to recover a stable and accurate 3D object pose. We evaluate our method on the challenging KITTI object detection benchmark both on the official metric of 3D orientation estimation and also on the accuracy of the obtained 3D bounding boxes. Although conceptually simple, our method outperforms more complex and computationally expensive approaches that leverage semantic segmentation, instance level segmentation and flat ground priors and sub-category detection. Our discrete-continuous loss also produces state of the art results for 3D viewpoint estimation on the Pascal 3D+ dataset.
Treemaps with Bounded Aspect Ratio
Treemaps are a popular technique to visualize hierarchical data. The input is a weighted tree tree where the weight of each node is the sum of the weights of its children. A treemap for tree is a hierarchical partition of a rectangle into simply connected regions, usually rectangles. Each region represents a node of tree and its area is proportional to the weight of the corresponding node. An important quality criterion for treemaps is the aspect ratio of its regions. One cannot bound the aspect ratio if the regions are restricted to be rectangles. In contrast, polygonal partitions, that use convex polygons, have bounded aspect ratio. We are the first to obtain convex partitions with optimal aspect ratio O(depth(tree)). However, depth(tree) still depends on the input tree. Hence we introduce a new type of treemaps, namely orthoconvex treemaps, where regions representing leaves are rectangles, L-, and S-shapes, and regions representing internal nodes are orthoconvex polygons. We prove that any input tree, irrespective of the weights of the nodes and the depth of the tree, admits an orthoconvex treemap of constant aspect ratio. We also obtain several specialized results for single-level treemaps, that is, treemaps where the input tree has depth~1.
CenterNet3D: An Anchor Free Object Detector for Point Cloud
Accurate and fast 3D object detection from point clouds is a key task in autonomous driving. Existing one-stage 3D object detection methods can achieve real-time performance, however, they are dominated by anchor-based detectors which are inefficient and require additional post-processing. In this paper, we eliminate anchors and model an object as a single point--the center point of its bounding box. Based on the center point, we propose an anchor-free CenterNet3D network that performs 3D object detection without anchors. Our CenterNet3D uses keypoint estimation to find center points and directly regresses 3D bounding boxes. However, because inherent sparsity of point clouds, 3D object center points are likely to be in empty space which makes it difficult to estimate accurate boundaries. To solve this issue, we propose an extra corner attention module to enforce the CNN backbone to pay more attention to object boundaries. Besides, considering that one-stage detectors suffer from the discordance between the predicted bounding boxes and corresponding classification confidences, we develop an efficient keypoint-sensitive warping operation to align the confidences to the predicted bounding boxes. Our proposed CenterNet3D is non-maximum suppression free which makes it more efficient and simpler. We evaluate CenterNet3D on the widely used KITTI dataset and more challenging nuScenes dataset. Our method outperforms all state-of-the-art anchor-based one-stage methods and has comparable performance to two-stage methods as well. It has an inference speed of 20 FPS and achieves the best speed and accuracy trade-off. Our source code will be released at https://github.com/wangguojun2018/CenterNet3d.
Detect Anything via Next Point Prediction
Object detection has long been dominated by traditional coordinate regression-based models, such as YOLO, DETR, and Grounding DINO. Although recent efforts have attempted to leverage MLLMs to tackle this task, they face challenges like low recall rate, duplicate predictions, coordinate misalignment, etc. In this work, we bridge this gap and propose Rex-Omni, a 3B-scale MLLM that achieves state-of-the-art object perception performance. On benchmarks like COCO and LVIS, Rex-Omni attains performance comparable to or exceeding regression-based models (e.g., DINO, Grounding DINO) in a zero-shot setting. This is enabled by three key designs: 1) Task Formulation: we use special tokens to represent quantized coordinates from 0 to 999, reducing the model's learning difficulty and improving token efficiency for coordinate prediction; 2) Data Engines: we construct multiple data engines to generate high-quality grounding, referring, and pointing data, providing semantically rich supervision for training; \3) Training Pipelines: we employ a two-stage training process, combining supervised fine-tuning on 22 million data with GRPO-based reinforcement post-training. This RL post-training leverages geometry-aware rewards to effectively bridge the discrete-to-continuous coordinate prediction gap, improve box accuracy, and mitigate undesirable behaviors like duplicate predictions that stem from the teacher-guided nature of the initial SFT stage. Beyond conventional detection, Rex-Omni's inherent language understanding enables versatile capabilities such as object referring, pointing, visual prompting, GUI grounding, spatial referring, OCR and key-pointing, all systematically evaluated on dedicated benchmarks. We believe that Rex-Omni paves the way for more versatile and language-aware visual perception systems.
Projecting Points to Axes: Oriented Object Detection via Point-Axis Representation
This paper introduces the point-axis representation for oriented object detection, emphasizing its flexibility and geometrically intuitive nature with two key components: points and axes. 1) Points delineate the spatial extent and contours of objects, providing detailed shape descriptions. 2) Axes define the primary directionalities of objects, providing essential orientation cues crucial for precise detection. The point-axis representation decouples location and rotation, addressing the loss discontinuity issues commonly encountered in traditional bounding box-based approaches. For effective optimization without introducing additional annotations, we propose the max-projection loss to supervise point set learning and the cross-axis loss for robust axis representation learning. Further, leveraging this representation, we present the Oriented DETR model, seamlessly integrating the DETR framework for precise point-axis prediction and end-to-end detection. Experimental results demonstrate significant performance improvements in oriented object detection tasks.
PolyFormer: Referring Image Segmentation as Sequential Polygon Generation
In this work, instead of directly predicting the pixel-level segmentation masks, the problem of referring image segmentation is formulated as sequential polygon generation, and the predicted polygons can be later converted into segmentation masks. This is enabled by a new sequence-to-sequence framework, Polygon Transformer (PolyFormer), which takes a sequence of image patches and text query tokens as input, and outputs a sequence of polygon vertices autoregressively. For more accurate geometric localization, we propose a regression-based decoder, which predicts the precise floating-point coordinates directly, without any coordinate quantization error. In the experiments, PolyFormer outperforms the prior art by a clear margin, e.g., 5.40% and 4.52% absolute improvements on the challenging RefCOCO+ and RefCOCOg datasets. It also shows strong generalization ability when evaluated on the referring video segmentation task without fine-tuning, e.g., achieving competitive 61.5% J&F on the Ref-DAVIS17 dataset.
H2RBox: Horizontal Box Annotation is All You Need for Oriented Object Detection
Oriented object detection emerges in many applications from aerial images to autonomous driving, while many existing detection benchmarks are annotated with horizontal bounding box only which is also less costive than fine-grained rotated box, leading to a gap between the readily available training corpus and the rising demand for oriented object detection. This paper proposes a simple yet effective oriented object detection approach called H2RBox merely using horizontal box annotation for weakly-supervised training, which closes the above gap and shows competitive performance even against those trained with rotated boxes. The cores of our method are weakly- and self-supervised learning, which predicts the angle of the object by learning the consistency of two different views. To our best knowledge, H2RBox is the first horizontal box annotation-based oriented object detector. Compared to an alternative i.e. horizontal box-supervised instance segmentation with our post adaption to oriented object detection, our approach is not susceptible to the prediction quality of mask and can perform more robustly in complex scenes containing a large number of dense objects and outliers. Experimental results show that H2RBox has significant performance and speed advantages over horizontal box-supervised instance segmentation methods, as well as lower memory requirements. While compared to rotated box-supervised oriented object detectors, our method shows very close performance and speed. The source code is available at PyTorch-based https://github.com/yangxue0827/h2rbox-mmrotate{MMRotate} and Jittor-based https://github.com/yangxue0827/h2rbox-jittor{JDet}.
xView: Objects in Context in Overhead Imagery
We introduce a new large-scale dataset for the advancement of object detection techniques and overhead object detection research. This satellite imagery dataset enables research progress pertaining to four key computer vision frontiers. We utilize a novel process for geospatial category detection and bounding box annotation with three stages of quality control. Our data is collected from WorldView-3 satellites at 0.3m ground sample distance, providing higher resolution imagery than most public satellite imagery datasets. We compare xView to other object detection datasets in both natural and overhead imagery domains and then provide a baseline analysis using the Single Shot MultiBox Detector. xView is one of the largest and most diverse publicly available object-detection datasets to date, with over 1 million objects across 60 classes in over 1,400 km^2 of imagery.
Image-based Geo-localization for Robotics: Are Black-box Vision-Language Models there yet?
The advances in Vision-Language models (VLMs) offer exciting opportunities for robotic applications involving image geo-localization, the problem of identifying the geo-coordinates of a place based on visual data only. Recent research works have focused on using a VLM as embeddings extractor for geo-localization, however, the most sophisticated VLMs may only be available as black boxes that are accessible through an API, and come with a number of limitations: there is no access to training data, model features and gradients; retraining is not possible; the number of predictions may be limited by the API; training on model outputs is often prohibited; and queries are open-ended. The utilization of a VLM as a stand-alone, zero-shot geo-localization system using a single text-based prompt is largely unexplored. To bridge this gap, this paper undertakes the first systematic study, to the best of our knowledge, to investigate the potential of some of the state-of-the-art VLMs as stand-alone, zero-shot geo-localization systems in a black-box setting with realistic constraints. We consider three main scenarios for this thorough investigation: a) fixed text-based prompt; b) semantically-equivalent text-based prompts; and c) semantically-equivalent query images. We also take into account the auto-regressive and probabilistic generation process of the VLMs when investigating their utility for geo-localization task by using model consistency as a metric in addition to traditional accuracy. Our work provides new insights in the capabilities of different VLMs for the above-mentioned scenarios.
hSDB-instrument: Instrument Localization Database for Laparoscopic and Robotic Surgeries
Automated surgical instrument localization is an important technology to understand the surgical process and in order to analyze them to provide meaningful guidance during surgery or surgical index after surgery to the surgeon. We introduce a new dataset that reflects the kinematic characteristics of surgical instruments for automated surgical instrument localization of surgical videos. The hSDB(hutom Surgery DataBase)-instrument dataset consists of instrument localization information from 24 cases of laparoscopic cholecystecomy and 24 cases of robotic gastrectomy. Localization information for all instruments is provided in the form of a bounding box for object detection. To handle class imbalance problem between instruments, synthesized instruments modeled in Unity for 3D models are included as training data. Besides, for 3D instrument data, a polygon annotation is provided to enable instance segmentation of the tool. To reflect the kinematic characteristics of all instruments, they are annotated with head and body parts for laparoscopic instruments, and with head, wrist, and body parts for robotic instruments separately. Annotation data of assistive tools (specimen bag, needle, etc.) that are frequently used for surgery are also included. Moreover, we provide statistical information on the hSDB-instrument dataset and the baseline localization performances of the object detection networks trained by the MMDetection library and resulting analyses.
R-SCoRe: Revisiting Scene Coordinate Regression for Robust Large-Scale Visual Localization
Learning-based visual localization methods that use scene coordinate regression (SCR) offer the advantage of smaller map sizes. However, on datasets with complex illumination changes or image-level ambiguities, it remains a less robust alternative to feature matching methods. This work aims to close the gap. We introduce a covisibility graph-based global encoding learning and data augmentation strategy, along with a depth-adjusted reprojection loss to facilitate implicit triangulation. Additionally, we revisit the network architecture and local feature extraction module. Our method achieves state-of-the-art on challenging large-scale datasets without relying on network ensembles or 3D supervision. On Aachen Day-Night, we are 10times more accurate than previous SCR methods with similar map sizes and require at least 5times smaller map sizes than any other SCR method while still delivering superior accuracy. Code will be available at: https://github.com/cvg/scrstudio .
Semantic-decoupled Spatial Partition Guided Point-supervised Oriented Object Detection
Recent remote sensing tech advancements drive imagery growth, making oriented object detection rapid development, yet hindered by labor-intensive annotation for high-density scenes. Oriented object detection with point supervision offers a cost-effective solution for densely packed scenes in remote sensing, yet existing methods suffer from inadequate sample assignment and instance confusion due to rigid rule-based designs. To address this, we propose SSP (Semantic-decoupled Spatial Partition), a unified framework that synergizes rule-driven prior injection and data-driven label purification. Specifically, SSP introduces two core innovations: 1) Pixel-level Spatial Partition-based Sample Assignment, which compactly estimates the upper and lower bounds of object scales and mines high-quality positive samples and hard negative samples through spatial partitioning of pixel maps. 2) Semantic Spatial Partition-based Box Extraction, which derives instances from spatial partitions modulated by semantic maps and reliably converts them into bounding boxes to form pseudo-labels for supervising the learning of downstream detectors. Experiments on DOTA-v1.0 and others demonstrate SSP\' s superiority: it achieves 45.78% mAP under point supervision, outperforming SOTA method PointOBB-v2 by 4.10%. Furthermore, when integrated with ORCNN and ReDet architectures, the SSP framework achieves mAP values of 47.86% and 48.50%, respectively. The code is available at https://github.com/antxinyuan/ssp.
SuperMapNet for Long-Range and High-Accuracy Vectorized HD Map Construction
Vectorized HD map is essential for autonomous driving. Remarkable work has been achieved in recent years, but there are still major issues: (1) in the generation of the BEV features, single modality-based methods are of limited perception capability, while direct concatenation-based multi-modal methods fail to capture synergies and disparities between different modalities, resulting in limited ranges with feature holes; (2) in the classification and localization of map elements, only point information is used without the consideration of element infor-mation and neglects the interaction between point information and element information, leading to erroneous shapes and element entanglement with low accuracy. To address above issues, we introduce SuperMapNet for long-range and high-accuracy vectorized HD map construction. It uses both camera images and LiDAR point clouds as input, and first tightly couple semantic information from camera images and geometric information from LiDAR point clouds by a cross-attention based synergy enhancement module and a flow-based disparity alignment module for long-range BEV feature generation. And then, local features from point queries and global features from element queries are tightly coupled by three-level interactions for high-accuracy classification and localization, where Point2Point interaction learns local geometric information between points of the same element and of each point, Element2Element interaction learns relation constraints between different elements and semantic information of each elements, and Point2Element interaction learns complement element information for its constituent points. Experiments on the nuScenes and Argoverse2 datasets demonstrate superior performances, surpassing SOTAs over 14.9/8.8 mAP and 18.5/3.1 mAP under hard/easy settings, respectively. The code is made publicly available1.
Integrating Boxes and Masks: A Multi-Object Framework for Unified Visual Tracking and Segmentation
Tracking any given object(s) spatially and temporally is a common purpose in Visual Object Tracking (VOT) and Video Object Segmentation (VOS). Joint tracking and segmentation have been attempted in some studies but they often lack full compatibility of both box and mask in initialization and prediction, and mainly focus on single-object scenarios. To address these limitations, this paper proposes a Multi-object Mask-box Integrated framework for unified Tracking and Segmentation, dubbed MITS. Firstly, the unified identification module is proposed to support both box and mask reference for initialization, where detailed object information is inferred from boxes or directly retained from masks. Additionally, a novel pinpoint box predictor is proposed for accurate multi-object box prediction, facilitating target-oriented representation learning. All target objects are processed simultaneously from encoding to propagation and decoding, as a unified pipeline for VOT and VOS. Experimental results show MITS achieves state-of-the-art performance on both VOT and VOS benchmarks. Notably, MITS surpasses the best prior VOT competitor by around 6% on the GOT-10k test set, and significantly improves the performance of box initialization on VOS benchmarks. The code is available at https://github.com/yoxu515/MITS.
DETR3D: 3D Object Detection from Multi-view Images via 3D-to-2D Queries
We introduce a framework for multi-camera 3D object detection. In contrast to existing works, which estimate 3D bounding boxes directly from monocular images or use depth prediction networks to generate input for 3D object detection from 2D information, our method manipulates predictions directly in 3D space. Our architecture extracts 2D features from multiple camera images and then uses a sparse set of 3D object queries to index into these 2D features, linking 3D positions to multi-view images using camera transformation matrices. Finally, our model makes a bounding box prediction per object query, using a set-to-set loss to measure the discrepancy between the ground-truth and the prediction. This top-down approach outperforms its bottom-up counterpart in which object bounding box prediction follows per-pixel depth estimation, since it does not suffer from the compounding error introduced by a depth prediction model. Moreover, our method does not require post-processing such as non-maximum suppression, dramatically improving inference speed. We achieve state-of-the-art performance on the nuScenes autonomous driving benchmark.
SFSORT: Scene Features-based Simple Online Real-Time Tracker
This paper introduces SFSORT, the world's fastest multi-object tracking system based on experiments conducted on MOT Challenge datasets. To achieve an accurate and computationally efficient tracker, this paper employs a tracking-by-detection method, following the online real-time tracking approach established in prior literature. By introducing a novel cost function called the Bounding Box Similarity Index, this work eliminates the Kalman Filter, leading to reduced computational requirements. Additionally, this paper demonstrates the impact of scene features on enhancing object-track association and improving track post-processing. Using a 2.2 GHz Intel Xeon CPU, the proposed method achieves an HOTA of 61.7\% with a processing speed of 2242 Hz on the MOT17 dataset and an HOTA of 60.9\% with a processing speed of 304 Hz on the MOT20 dataset. The tracker's source code, fine-tuned object detection model, and tutorials are available at https://github.com/gitmehrdad/SFSORT.
Geographic Location Encoding with Spherical Harmonics and Sinusoidal Representation Networks
Learning feature representations of geographical space is vital for any machine learning model that integrates geolocated data, spanning application domains such as remote sensing, ecology, or epidemiology. Recent work mostly embeds coordinates using sine and cosine projections based on Double Fourier Sphere (DFS) features -- these embeddings assume a rectangular data domain even on global data, which can lead to artifacts, especially at the poles. At the same time, relatively little attention has been paid to the exact design of the neural network architectures these functional embeddings are combined with. This work proposes a novel location encoder for globally distributed geographic data that combines spherical harmonic basis functions, natively defined on spherical surfaces, with sinusoidal representation networks (SirenNets) that can be interpreted as learned Double Fourier Sphere embedding. We systematically evaluate the cross-product of positional embeddings and neural network architectures across various classification and regression benchmarks and synthetic evaluation datasets. In contrast to previous approaches that require the combination of both positional encoding and neural networks to learn meaningful representations, we show that both spherical harmonics and sinusoidal representation networks are competitive on their own but set state-of-the-art performances across tasks when combined. We provide source code at www.github.com/marccoru/locationencoder
LooseControl: Lifting ControlNet for Generalized Depth Conditioning
We present LooseControl to allow generalized depth conditioning for diffusion-based image generation. ControlNet, the SOTA for depth-conditioned image generation, produces remarkable results but relies on having access to detailed depth maps for guidance. Creating such exact depth maps, in many scenarios, is challenging. This paper introduces a generalized version of depth conditioning that enables many new content-creation workflows. Specifically, we allow (C1) scene boundary control for loosely specifying scenes with only boundary conditions, and (C2) 3D box control for specifying layout locations of the target objects rather than the exact shape and appearance of the objects. Using LooseControl, along with text guidance, users can create complex environments (e.g., rooms, street views, etc.) by specifying only scene boundaries and locations of primary objects. Further, we provide two editing mechanisms to refine the results: (E1) 3D box editing enables the user to refine images by changing, adding, or removing boxes while freezing the style of the image. This yields minimal changes apart from changes induced by the edited boxes. (E2) Attribute editing proposes possible editing directions to change one particular aspect of the scene, such as the overall object density or a particular object. Extensive tests and comparisons with baselines demonstrate the generality of our method. We believe that LooseControl can become an important design tool for easily creating complex environments and be extended to other forms of guidance channels. Code and more information are available at https://shariqfarooq123.github.io/loose-control/ .
Ellipse R-CNN: Learning to Infer Elliptical Object from Clustering and Occlusion
Images of heavily occluded objects in cluttered scenes, such as fruit clusters in trees, are hard to segment. To further retrieve the 3D size and 6D pose of each individual object in such cases, bounding boxes are not reliable from multiple views since only a little portion of the object's geometry is captured. We introduce the first CNN-based ellipse detector, called Ellipse R-CNN, to represent and infer occluded objects as ellipses. We first propose a robust and compact ellipse regression based on the Mask R-CNN architecture for elliptical object detection. Our method can infer the parameters of multiple elliptical objects even they are occluded by other neighboring objects. For better occlusion handling, we exploit refined feature regions for the regression stage, and integrate the U-Net structure for learning different occlusion patterns to compute the final detection score. The correctness of ellipse regression is validated through experiments performed on synthetic data of clustered ellipses. We further quantitatively and qualitatively demonstrate that our approach outperforms the state-of-the-art model (i.e., Mask R-CNN followed by ellipse fitting) and its three variants on both synthetic and real datasets of occluded and clustered elliptical objects.
Understanding Augmentation-based Self-Supervised Representation Learning via RKHS Approximation and Regression
Data augmentation is critical to the empirical success of modern self-supervised representation learning, such as contrastive learning and masked language modeling. However, a theoretical understanding of the exact role of augmentation remains limited. Recent work has built the connection between self-supervised learning and the approximation of the top eigenspace of a graph Laplacian operator, suggesting that learning a linear probe atop such representation can be connected to RKHS regression. Building on this insight, this work delves into a statistical analysis of augmentation-based pretraining. Starting from the isometry property, a geometric characterization of the target function given by the augmentation, we disentangle the effects of the model and the augmentation, and prove two generalization bounds that are free of model complexity. Our first bound works for an arbitrary encoder, where the prediction error is decomposed as the sum of an estimation error incurred by fitting a linear probe with RKHS regression, and an approximation error entailed by RKHS approximation. Our second bound specifically addresses the case where the encoder is near-optimal, that is it approximates the top-d eigenspace of the RKHS induced by the augmentation. A key ingredient in our analysis is the augmentation complexity, which we use to quantitatively compare different augmentations and analyze their impact on downstream performance.
CGB-DM: Content and Graphic Balance Layout Generation with Transformer-based Diffusion Model
Layout generation is the foundation task of intelligent design, which requires the integration of visual aesthetics and harmonious expression of content delivery. However, existing methods still face challenges in generating precise and visually appealing layouts, including blocking, overlap, or spatial misalignment between layouts, which are closely related to the spatial structure of graphic layouts. We find that these methods overly focus on content information and lack constraints on layout spatial structure, resulting in an imbalance of learning content-aware and graphic-aware features. To tackle this issue, we propose Content and Graphic Balance Layout Generation with Transformer-based Diffusion Model (CGB-DM). Specifically, we first design a regulator that balances the predicted content and graphic weight, overcoming the tendency of paying more attention to the content on canvas. Secondly, we introduce a graphic constraint of saliency bounding box to further enhance the alignment of geometric features between layout representations and images. In addition, we adapt a transformer-based diffusion model as the backbone, whose powerful generation capability ensures the quality in layout generation. Extensive experimental results indicate that our method has achieved state-of-the-art performance in both quantitative and qualitative evaluations. Our model framework can also be expanded to other graphic design fields.
Superpowering Open-Vocabulary Object Detectors for X-ray Vision
Open-vocabulary object detection (OvOD) is set to revolutionize security screening by enabling systems to recognize any item in X-ray scans. However, developing effective OvOD models for X-ray imaging presents unique challenges due to data scarcity and the modality gap that prevents direct adoption of RGB-based solutions. To overcome these limitations, we propose RAXO, a training-free framework that repurposes off-the-shelf RGB OvOD detectors for robust X-ray detection. RAXO builds high-quality X-ray class descriptors using a dual-source retrieval strategy. It gathers relevant RGB images from the web and enriches them via a novel X-ray material transfer mechanism, eliminating the need for labeled databases. These visual descriptors replace text-based classification in OvOD, leveraging intra-modal feature distances for robust detection. Extensive experiments demonstrate that RAXO consistently improves OvOD performance, providing an average mAP increase of up to 17.0 points over base detectors. To further support research in this emerging field, we also introduce DET-COMPASS, a new benchmark featuring bounding box annotations for over 300 object categories, enabling large-scale evaluation of OvOD in X-ray. Code and dataset available at: https://github.com/PAGF188/RAXO.
ProbPose: A Probabilistic Approach to 2D Human Pose Estimation
Current Human Pose Estimation methods have achieved significant improvements. However, state-of-the-art models ignore out-of-image keypoints and use uncalibrated heatmaps as keypoint location representations. To address these limitations, we propose ProbPose, which predicts for each keypoint: a calibrated probability of keypoint presence at each location in the activation window, the probability of being outside of it, and its predicted visibility. To address the lack of evaluation protocols for out-of-image keypoints, we introduce the CropCOCO dataset and the Extended OKS (Ex-OKS) metric, which extends OKS to out-of-image points. Tested on COCO, CropCOCO, and OCHuman, ProbPose shows significant gains in out-of-image keypoint localization while also improving in-image localization through data augmentation. Additionally, the model improves robustness along the edges of the bounding box and offers better flexibility in keypoint evaluation. The code and models are available on https://mirapurkrabek.github.io/ProbPose/ for research purposes.
BoxSnake: Polygonal Instance Segmentation with Box Supervision
Box-supervised instance segmentation has gained much attention as it requires only simple box annotations instead of costly mask or polygon annotations. However, existing box-supervised instance segmentation models mainly focus on mask-based frameworks. We propose a new end-to-end training technique, termed BoxSnake, to achieve effective polygonal instance segmentation using only box annotations for the first time. Our method consists of two loss functions: (1) a point-based unary loss that constrains the bounding box of predicted polygons to achieve coarse-grained segmentation; and (2) a distance-aware pairwise loss that encourages the predicted polygons to fit the object boundaries. Compared with the mask-based weakly-supervised methods, BoxSnake further reduces the performance gap between the predicted segmentation and the bounding box, and shows significant superiority on the Cityscapes dataset. The code has been available publicly.
PixelWeb: The First Web GUI Dataset with Pixel-Wise Labels
Graphical User Interface (GUI) datasets are crucial for various downstream tasks. However, GUI datasets often generate annotation information through automatic labeling, which commonly results in inaccurate GUI element BBox annotations, including missing, duplicate, or meaningless BBoxes. These issues can degrade the performance of models trained on these datasets, limiting their effectiveness in real-world applications. Additionally, existing GUI datasets only provide BBox annotations visually, which restricts the development of visually related GUI downstream tasks. To address these issues, we introduce PixelWeb, a large-scale GUI dataset containing over 100,000 annotated web pages. PixelWeb is constructed using a novel automatic annotation approach that integrates visual feature extraction and Document Object Model (DOM) structure analysis through two core modules: channel derivation and layer analysis. Channel derivation ensures accurate localization of GUI elements in cases of occlusion and overlapping elements by extracting BGRA four-channel bitmap annotations. Layer analysis uses the DOM to determine the visibility and stacking order of elements, providing precise BBox annotations. Additionally, PixelWeb includes comprehensive metadata such as element images, contours, and mask annotations. Manual verification by three independent annotators confirms the high quality and accuracy of PixelWeb annotations. Experimental results on GUI element detection tasks show that PixelWeb achieves performance on the mAP95 metric that is 3-7 times better than existing datasets. We believe that PixelWeb has great potential for performance improvement in downstream tasks such as GUI generation and automated user interaction.
A General Gaussian Heatmap Label Assignment for Arbitrary-Oriented Object Detection
Recently, many arbitrary-oriented object detection (AOOD) methods have been proposed and attracted widespread attention in many fields. However, most of them are based on anchor-boxes or standard Gaussian heatmaps. Such label assignment strategy may not only fail to reflect the shape and direction characteristics of arbitrary-oriented objects, but also have high parameter-tuning efforts. In this paper, a novel AOOD method called General Gaussian Heatmap Label Assignment (GGHL) is proposed. Specifically, an anchor-free object-adaptation label assignment (OLA) strategy is presented to define the positive candidates based on two-dimensional (2-D) oriented Gaussian heatmaps, which reflect the shape and direction features of arbitrary-oriented objects. Based on OLA, an oriented-bounding-box (OBB) representation component (ORC) is developed to indicate OBBs and adjust the Gaussian center prior weights to fit the characteristics of different objects adaptively through neural network learning. Moreover, a joint-optimization loss (JOL) with area normalization and dynamic confidence weighting is designed to refine the misalign optimal results of different subtasks. Extensive experiments on public datasets demonstrate that the proposed GGHL improves the AOOD performance with low parameter-tuning and time costs. Furthermore, it is generally applicable to most AOOD methods to improve their performance including lightweight models on embedded platforms.
GeoCLIP: Clip-Inspired Alignment between Locations and Images for Effective Worldwide Geo-localization
Worldwide Geo-localization aims to pinpoint the precise location of images taken anywhere on Earth. This task has considerable challenges due to immense variation in geographic landscapes. The image-to-image retrieval-based approaches fail to solve this problem on a global scale as it is not feasible to construct a large gallery of images covering the entire world. Instead, existing approaches divide the globe into discrete geographic cells, transforming the problem into a classification task. However, their performance is limited by the predefined classes and often results in inaccurate localizations when an image's location significantly deviates from its class center. To overcome these limitations, we propose GeoCLIP, a novel CLIP-inspired Image-to-GPS retrieval approach that enforces alignment between the image and its corresponding GPS locations. GeoCLIP's location encoder models the Earth as a continuous function by employing positional encoding through random Fourier features and constructing a hierarchical representation that captures information at varying resolutions to yield a semantically rich high-dimensional feature suitable to use even beyond geo-localization. To the best of our knowledge, this is the first work employing GPS encoding for geo-localization. We demonstrate the efficacy of our method via extensive experiments and ablations on benchmark datasets. We achieve competitive performance with just 20% of training data, highlighting its effectiveness even in limited-data settings. Furthermore, we qualitatively demonstrate geo-localization using a text query by leveraging CLIP backbone of our image encoder. The project webpage is available at: https://vicentevivan.github.io/GeoCLIP
ESAD: Endoscopic Surgeon Action Detection Dataset
In this work, we take aim towards increasing the effectiveness of surgical assistant robots. We intended to make assistant robots safer by making them aware about the actions of surgeon, so it can take appropriate assisting actions. In other words, we aim to solve the problem of surgeon action detection in endoscopic videos. To this, we introduce a challenging dataset for surgeon action detection in real-world endoscopic videos. Action classes are picked based on the feedback of surgeons and annotated by medical professional. Given a video frame, we draw bounding box around surgical tool which is performing action and label it with action label. Finally, we presenta frame-level action detection baseline model based on recent advances in ob-ject detection. Results on our new dataset show that our presented dataset provides enough interesting challenges for future method and it can serveas strong benchmark corresponding research in surgeon action detection in endoscopic videos.
Sample, Crop, Track: Self-Supervised Mobile 3D Object Detection for Urban Driving LiDAR
Deep learning has led to great progress in the detection of mobile (i.e. movement-capable) objects in urban driving scenes in recent years. Supervised approaches typically require the annotation of large training sets; there has thus been great interest in leveraging weakly, semi- or self-supervised methods to avoid this, with much success. Whilst weakly and semi-supervised methods require some annotation, self-supervised methods have used cues such as motion to relieve the need for annotation altogether. However, a complete absence of annotation typically degrades their performance, and ambiguities that arise during motion grouping can inhibit their ability to find accurate object boundaries. In this paper, we propose a new self-supervised mobile object detection approach called SCT. This uses both motion cues and expected object sizes to improve detection performance, and predicts a dense grid of 3D oriented bounding boxes to improve object discovery. We significantly outperform the state-of-the-art self-supervised mobile object detection method TCR on the KITTI tracking benchmark, and achieve performance that is within 30% of the fully supervised PV-RCNN++ method for IoUs <= 0.5.
LucidDreaming: Controllable Object-Centric 3D Generation
With the recent development of generative models, Text-to-3D generations have also seen significant growth. Nonetheless, achieving precise control over 3D generation continues to be an arduous task, as using text to control often leads to missing objects and imprecise locations. Contemporary strategies for enhancing controllability in 3D generation often entail the introduction of additional parameters, such as customized diffusion models. This often induces hardness in adapting to different diffusion models or creating distinct objects. In this paper, we present LucidDreaming as an effective pipeline capable of fine-grained control over 3D generation. It requires only minimal input of 3D bounding boxes, which can be deduced from a simple text prompt using a Large Language Model. Specifically, we propose clipped ray sampling to separately render and optimize objects with user specifications. We also introduce object-centric density blob bias, fostering the separation of generated objects. With individual rendering and optimizing of objects, our method excels not only in controlled content generation from scratch but also within the pre-trained NeRF scenes. In such scenarios, existing generative approaches often disrupt the integrity of the original scene, and current editing methods struggle to synthesize new content in empty spaces. We show that our method exhibits remarkable adaptability across a spectrum of mainstream Score Distillation Sampling-based 3D generation frameworks, and achieves superior alignment of 3D content when compared to baseline approaches. We also provide a dataset of prompts with 3D bounding boxes, benchmarking 3D spatial controllability.
UAVDB: Trajectory-Guided Adaptable Bounding Boxes for UAV Detection
The widespread deployment of Unmanned Aerial Vehicles (UAVs) in surveillance, security, and airspace management has created an urgent demand for precise, scalable, and efficient UAV detection. However, existing datasets often suffer from limited scale diversity and inaccurate annotations, hindering robust model development. This paper introduces UAVDB, a high-resolution UAV detection dataset constructed using Patch Intensity Convergence (PIC). This novel technique automatically generates high-fidelity bounding box annotations from UAV trajectory data~li2020reconstruction, eliminating the need for manual labeling. UAVDB features single-class annotations with a fixed-camera setup and consists of RGB frames capturing UAVs across various scales, from large-scale UAVs to near-single-pixel representations, along with challenging backgrounds that pose difficulties for modern detectors. We first validate the accuracy and efficiency of PIC-generated bounding boxes by comparing Intersection over Union (IoU) performance and runtime against alternative annotation methods, demonstrating that PIC achieves higher annotation accuracy while being more efficient. Subsequently, we benchmark UAVDB using state-of-the-art (SOTA) YOLO-series detectors, establishing UAVDB as a valuable resource for advancing long-range and high-resolution UAV detection.
Yes, we CANN: Constrained Approximate Nearest Neighbors for local feature-based visual localization
Large-scale visual localization systems continue to rely on 3D point clouds built from image collections using structure-from-motion. While the 3D points in these models are represented using local image features, directly matching a query image's local features against the point cloud is challenging due to the scale of the nearest-neighbor search problem. Many recent approaches to visual localization have thus proposed a hybrid method, where first a global (per image) embedding is used to retrieve a small subset of database images, and local features of the query are matched only against those. It seems to have become common belief that global embeddings are critical for said image-retrieval in visual localization, despite the significant downside of having to compute two feature types for each query image. In this paper, we take a step back from this assumption and propose Constrained Approximate Nearest Neighbors (CANN), a joint solution of k-nearest-neighbors across both the geometry and appearance space using only local features. We first derive the theoretical foundation for k-nearest-neighbor retrieval across multiple metrics and then showcase how CANN improves visual localization. Our experiments on public localization benchmarks demonstrate that our method significantly outperforms both state-of-the-art global feature-based retrieval and approaches using local feature aggregation schemes. Moreover, it is an order of magnitude faster in both index and query time than feature aggregation schemes for these datasets. Code will be released.
Rank-DETR for High Quality Object Detection
Modern detection transformers (DETRs) use a set of object queries to predict a list of bounding boxes, sort them by their classification confidence scores, and select the top-ranked predictions as the final detection results for the given input image. A highly performant object detector requires accurate ranking for the bounding box predictions. For DETR-based detectors, the top-ranked bounding boxes suffer from less accurate localization quality due to the misalignment between classification scores and localization accuracy, thus impeding the construction of high-quality detectors. In this work, we introduce a simple and highly performant DETR-based object detector by proposing a series of rank-oriented designs, combinedly called Rank-DETR. Our key contributions include: (i) a rank-oriented architecture design that can prompt positive predictions and suppress the negative ones to ensure lower false positive rates, as well as (ii) a rank-oriented loss function and matching cost design that prioritizes predictions of more accurate localization accuracy during ranking to boost the AP under high IoU thresholds. We apply our method to improve the recent SOTA methods (e.g., H-DETR and DINO-DETR) and report strong COCO object detection results when using different backbones such as ResNet-50, Swin-T, and Swin-L, demonstrating the effectiveness of our approach. Code is available at https://github.com/LeapLabTHU/Rank-DETR.
Surgical tool classification and localization: results and methods from the MICCAI 2022 SurgToolLoc challenge
The ability to automatically detect and track surgical instruments in endoscopic videos can enable transformational interventions. Assessing surgical performance and efficiency, identifying skilled tool use and choreography, and planning operational and logistical aspects of OR resources are just a few of the applications that could benefit. Unfortunately, obtaining the annotations needed to train machine learning models to identify and localize surgical tools is a difficult task. Annotating bounding boxes frame-by-frame is tedious and time-consuming, yet large amounts of data with a wide variety of surgical tools and surgeries must be captured for robust training. Moreover, ongoing annotator training is needed to stay up to date with surgical instrument innovation. In robotic-assisted surgery, however, potentially informative data like timestamps of instrument installation and removal can be programmatically harvested. The ability to rely on tool installation data alone would significantly reduce the workload to train robust tool-tracking models. With this motivation in mind we invited the surgical data science community to participate in the challenge, SurgToolLoc 2022. The goal was to leverage tool presence data as weak labels for machine learning models trained to detect tools and localize them in video frames with bounding boxes. We present the results of this challenge along with many of the team's efforts. We conclude by discussing these results in the broader context of machine learning and surgical data science. The training data used for this challenge consisting of 24,695 video clips with tool presence labels is also being released publicly and can be accessed at https://console.cloud.google.com/storage/browser/isi-surgtoolloc-2022.
Weakly Supervised 3D Object Detection via Multi-Level Visual Guidance
Weakly supervised 3D object detection aims to learn a 3D detector with lower annotation cost, e.g., 2D labels. Unlike prior work which still relies on few accurate 3D annotations, we propose a framework to study how to leverage constraints between 2D and 3D domains without requiring any 3D labels. Specifically, we employ visual data from three perspectives to establish connections between 2D and 3D domains. First, we design a feature-level constraint to align LiDAR and image features based on object-aware regions. Second, the output-level constraint is developed to enforce the overlap between 2D and projected 3D box estimations. Finally, the training-level constraint is utilized by producing accurate and consistent 3D pseudo-labels that align with the visual data. We conduct extensive experiments on the KITTI dataset to validate the effectiveness of the proposed three constraints. Without using any 3D labels, our method achieves favorable performance against state-of-the-art approaches and is competitive with the method that uses 500-frame 3D annotations. Code will be made publicly available at https://github.com/kuanchihhuang/VG-W3D.
A Massively Parallel Dynamic Programming for Approximate Rectangle Escape Problem
Sublinear time complexity is required by the massively parallel computation (MPC) model. Breaking dynamic programs into a set of sparse dynamic programs that can be divided, solved, and merged in sublinear time. The rectangle escape problem (REP) is defined as follows: For n axis-aligned rectangles inside an axis-aligned bounding box B, extend each rectangle in only one of the four directions: up, down, left, or right until it reaches B and the density k is minimized, where k is the maximum number of extensions of rectangles to the boundary that pass through a point inside bounding box B. REP is NP-hard for k>1. If the rectangles are points of a grid (or unit squares of a grid), the problem is called the square escape problem (SEP) and it is still NP-hard. We give a 2-approximation algorithm for SEP with kgeq2 with time complexity O(n^{3/2}k^2). This improves the time complexity of existing algorithms which are at least quadratic. Also, the approximation ratio of our algorithm for kgeq 3 is 3/2 which is tight. We also give a 8-approximation algorithm for REP with time complexity O(nlog n+nk) and give a MPC version of this algorithm for k=O(1) which is the first parallel algorithm for this problem.
Frustum PointNets for 3D Object Detection from RGB-D Data
In this work, we study 3D object detection from RGB-D data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often obscuring natural 3D patterns and invariances of 3D data, we directly operate on raw point clouds by popping up RGB-D scans. However, a key challenge of this approach is how to efficiently localize objects in point clouds of large-scale scenes (region proposal). Instead of solely relying on 3D proposals, our method leverages both mature 2D object detectors and advanced 3D deep learning for object localization, achieving efficiency as well as high recall for even small objects. Benefited from learning directly in raw point clouds, our method is also able to precisely estimate 3D bounding boxes even under strong occlusion or with very sparse points. Evaluated on KITTI and SUN RGB-D 3D detection benchmarks, our method outperforms the state of the art by remarkable margins while having real-time capability.
AutoStory: Generating Diverse Storytelling Images with Minimal Human Effort
Story visualization aims to generate a series of images that match the story described in texts, and it requires the generated images to satisfy high quality, alignment with the text description, and consistency in character identities. Given the complexity of story visualization, existing methods drastically simplify the problem by considering only a few specific characters and scenarios, or requiring the users to provide per-image control conditions such as sketches. However, these simplifications render these methods incompetent for real applications. To this end, we propose an automated story visualization system that can effectively generate diverse, high-quality, and consistent sets of story images, with minimal human interactions. Specifically, we utilize the comprehension and planning capabilities of large language models for layout planning, and then leverage large-scale text-to-image models to generate sophisticated story images based on the layout. We empirically find that sparse control conditions, such as bounding boxes, are suitable for layout planning, while dense control conditions, e.g., sketches and keypoints, are suitable for generating high-quality image content. To obtain the best of both worlds, we devise a dense condition generation module to transform simple bounding box layouts into sketch or keypoint control conditions for final image generation, which not only improves the image quality but also allows easy and intuitive user interactions. In addition, we propose a simple yet effective method to generate multi-view consistent character images, eliminating the reliance on human labor to collect or draw character images.
Towards Learning Monocular 3D Object Localization From 2D Labels using the Physical Laws of Motion
We present a novel method for precise 3D object localization in single images from a single calibrated camera using only 2D labels. No expensive 3D labels are needed. Thus, instead of using 3D labels, our model is trained with easy-to-annotate 2D labels along with the physical knowledge of the object's motion. Given this information, the model can infer the latent third dimension, even though it has never seen this information during training. Our method is evaluated on both synthetic and real-world datasets, and we are able to achieve a mean distance error of just 6 cm in our experiments on real data. The results indicate the method's potential as a step towards learning 3D object location estimation, where collecting 3D data for training is not feasible.
NBMOD: Find It and Grasp It in Noisy Background
Grasping objects is a fundamental yet important capability of robots, and many tasks such as sorting and picking rely on this skill. The prerequisite for stable grasping is the ability to correctly identify suitable grasping positions. However, finding appropriate grasping points is challenging due to the diverse shapes, varying density distributions, and significant differences between the barycenter of various objects. In the past few years, researchers have proposed many methods to address the above-mentioned issues and achieved very good results on publicly available datasets such as the Cornell dataset and the Jacquard dataset. The problem is that the backgrounds of Cornell and Jacquard datasets are relatively simple - typically just a whiteboard, while in real-world operational environments, the background could be complex and noisy. Moreover, in real-world scenarios, robots usually only need to grasp fixed types of objects. To address the aforementioned issues, we proposed a large-scale grasp detection dataset called NBMOD: Noisy Background Multi-Object Dataset for grasp detection, which consists of 31,500 RGB-D images of 20 different types of fruits. Accurate prediction of angles has always been a challenging problem in the detection task of oriented bounding boxes. This paper presents a Rotation Anchor Mechanism (RAM) to address this issue. Considering the high real-time requirement of robotic systems, we propose a series of lightweight architectures called RA-GraspNet (GraspNet with Rotation Anchor): RARA (network with Rotation Anchor and Region Attention), RAST (network with Rotation Anchor and Semi Transformer), and RAGT (network with Rotation Anchor and Global Transformer) to tackle this problem. Among them, the RAGT-3/3 model achieves an accuracy of 99% on the NBMOD dataset. The NBMOD and our code are available at https://github.com/kmittle/Grasp-Detection-NBMOD.
Detection, Pose Estimation and Segmentation for Multiple Bodies: Closing the Virtuous Circle
Human pose estimation methods work well on isolated people but struggle with multiple-bodies-in-proximity scenarios. Previous work has addressed this problem by conditioning pose estimation by detected bounding boxes or keypoints, but overlooked instance masks. We propose to iteratively enforce mutual consistency of bounding boxes, instance masks, and poses. The introduced BBox-Mask-Pose (BMP) method uses three specialized models that improve each other's output in a closed loop. All models are adapted for mutual conditioning, which improves robustness in multi-body scenes. MaskPose, a new mask-conditioned pose estimation model, is the best among top-down approaches on OCHuman. BBox-Mask-Pose pushes SOTA on OCHuman dataset in all three tasks - detection, instance segmentation, and pose estimation. It also achieves SOTA performance on COCO pose estimation. The method is especially good in scenes with large instances overlap, where it improves detection by 39% over the baseline detector. With small specialized models and faster runtime, BMP is an effective alternative to large human-centered foundational models. Code and models are available on https://MiraPurkrabek.github.io/BBox-Mask-Pose.
High-dimensional Location Estimation via Norm Concentration for Subgamma Vectors
In location estimation, we are given n samples from a known distribution f shifted by an unknown translation lambda, and want to estimate lambda as precisely as possible. Asymptotically, the maximum likelihood estimate achieves the Cram\'er-Rao bound of error mathcal N(0, 1{nmathcal I}), where mathcal I is the Fisher information of f. However, the n required for convergence depends on f, and may be arbitrarily large. We build on the theory using smoothed estimators to bound the error for finite n in terms of mathcal I_r, the Fisher information of the r-smoothed distribution. As n to infty, r to 0 at an explicit rate and this converges to the Cram\'er-Rao bound. We (1) improve the prior work for 1-dimensional f to converge for constant failure probability in addition to high probability, and (2) extend the theory to high-dimensional distributions. In the process, we prove a new bound on the norm of a high-dimensional random variable whose 1-dimensional projections are subgamma, which may be of independent interest.
GeoCalib: Learning Single-image Calibration with Geometric Optimization
From a single image, visual cues can help deduce intrinsic and extrinsic camera parameters like the focal length and the gravity direction. This single-image calibration can benefit various downstream applications like image editing and 3D mapping. Current approaches to this problem are based on either classical geometry with lines and vanishing points or on deep neural networks trained end-to-end. The learned approaches are more robust but struggle to generalize to new environments and are less accurate than their classical counterparts. We hypothesize that they lack the constraints that 3D geometry provides. In this work, we introduce GeoCalib, a deep neural network that leverages universal rules of 3D geometry through an optimization process. GeoCalib is trained end-to-end to estimate camera parameters and learns to find useful visual cues from the data. Experiments on various benchmarks show that GeoCalib is more robust and more accurate than existing classical and learned approaches. Its internal optimization estimates uncertainties, which help flag failure cases and benefit downstream applications like visual localization. The code and trained models are publicly available at https://github.com/cvg/GeoCalib.
BUFFER-X: Towards Zero-Shot Point Cloud Registration in Diverse Scenes
Recent advances in deep learning-based point cloud registration have improved generalization, yet most methods still require retraining or manual parameter tuning for each new environment. In this paper, we identify three key factors limiting generalization: (a) reliance on environment-specific voxel size and search radius, (b) poor out-of-domain robustness of learning-based keypoint detectors, and (c) raw coordinate usage, which exacerbates scale discrepancies. To address these issues, we present a zero-shot registration pipeline called BUFFER-X by (a) adaptively determining voxel size/search radii, (b) using farthest point sampling to bypass learned detectors, and (c) leveraging patch-wise scale normalization for consistent coordinate bounds. In particular, we present a multi-scale patch-based descriptor generation and a hierarchical inlier search across scales to improve robustness in diverse scenes. We also propose a novel generalizability benchmark using 11 datasets that cover various indoor/outdoor scenarios and sensor modalities, demonstrating that BUFFER-X achieves substantial generalization without prior information or manual parameter tuning for the test datasets. Our code is available at https://github.com/MIT-SPARK/BUFFER-X.
CoDA: Collaborative Novel Box Discovery and Cross-modal Alignment for Open-vocabulary 3D Object Detection
Open-vocabulary 3D Object Detection (OV-3DDet) aims to detect objects from an arbitrary list of categories within a 3D scene, which remains seldom explored in the literature. There are primarily two fundamental problems in OV-3DDet, i.e., localizing and classifying novel objects. This paper aims at addressing the two problems simultaneously via a unified framework, under the condition of limited base categories. To localize novel 3D objects, we propose an effective 3D Novel Object Discovery strategy, which utilizes both the 3D box geometry priors and 2D semantic open-vocabulary priors to generate pseudo box labels of the novel objects. To classify novel object boxes, we further develop a cross-modal alignment module based on discovered novel boxes, to align feature spaces between 3D point cloud and image/text modalities. Specifically, the alignment process contains a class-agnostic and a class-discriminative alignment, incorporating not only the base objects with annotations but also the increasingly discovered novel objects, resulting in an iteratively enhanced alignment. The novel box discovery and crossmodal alignment are jointly learned to collaboratively benefit each other. The novel object discovery can directly impact the cross-modal alignment, while a better feature alignment can, in turn, boost the localization capability, leading to a unified OV-3DDet framework, named CoDA, for simultaneous novel object localization and classification. Extensive experiments on two challenging datasets (i.e., SUN-RGBD and ScanNet) demonstrate the effectiveness of our method and also show a significant mAP improvement upon the best-performing alternative method by 80%. Codes and pre-trained models are released on the project page.
PostoMETRO: Pose Token Enhanced Mesh Transformer for Robust 3D Human Mesh Recovery
With the recent advancements in single-image-based human mesh recovery, there is a growing interest in enhancing its performance in certain extreme scenarios, such as occlusion, while maintaining overall model accuracy. Although obtaining accurately annotated 3D human poses under occlusion is challenging, there is still a wealth of rich and precise 2D pose annotations that can be leveraged. However, existing works mostly focus on directly leveraging 2D pose coordinates to estimate 3D pose and mesh. In this paper, we present PostoMETRO(Pose token enhanced MEsh TRansfOrmer), which integrates occlusion-resilient 2D pose representation into transformers in a token-wise manner. Utilizing a specialized pose tokenizer, we efficiently condense 2D pose data to a compact sequence of pose tokens and feed them to the transformer together with the image tokens. This process not only ensures a rich depiction of texture from the image but also fosters a robust integration of pose and image information. Subsequently, these combined tokens are queried by vertex and joint tokens to decode 3D coordinates of mesh vertices and human joints. Facilitated by the robust pose token representation and the effective combination, we are able to produce more precise 3D coordinates, even under extreme scenarios like occlusion. Experiments on both standard and occlusion-specific benchmarks demonstrate the effectiveness of PostoMETRO. Qualitative results further illustrate the clarity of how 2D pose can help 3D reconstruction. Code will be made available.
Geometry-Aware Learning of Maps for Camera Localization
Maps are a key component in image-based camera localization and visual SLAM systems: they are used to establish geometric constraints between images, correct drift in relative pose estimation, and relocalize cameras after lost tracking. The exact definitions of maps, however, are often application-specific and hand-crafted for different scenarios (e.g. 3D landmarks, lines, planes, bags of visual words). We propose to represent maps as a deep neural net called MapNet, which enables learning a data-driven map representation. Unlike prior work on learning maps, MapNet exploits cheap and ubiquitous sensory inputs like visual odometry and GPS in addition to images and fuses them together for camera localization. Geometric constraints expressed by these inputs, which have traditionally been used in bundle adjustment or pose-graph optimization, are formulated as loss terms in MapNet training and also used during inference. In addition to directly improving localization accuracy, this allows us to update the MapNet (i.e., maps) in a self-supervised manner using additional unlabeled video sequences from the scene. We also propose a novel parameterization for camera rotation which is better suited for deep-learning based camera pose regression. Experimental results on both the indoor 7-Scenes dataset and the outdoor Oxford RobotCar dataset show significant performance improvement over prior work. The MapNet project webpage is https://goo.gl/mRB3Au.
Weak-to-Strong 3D Object Detection with X-Ray Distillation
This paper addresses the critical challenges of sparsity and occlusion in LiDAR-based 3D object detection. Current methods often rely on supplementary modules or specific architectural designs, potentially limiting their applicability to new and evolving architectures. To our knowledge, we are the first to propose a versatile technique that seamlessly integrates into any existing framework for 3D Object Detection, marking the first instance of Weak-to-Strong generalization in 3D computer vision. We introduce a novel framework, X-Ray Distillation with Object-Complete Frames, suitable for both supervised and semi-supervised settings, that leverages the temporal aspect of point cloud sequences. This method extracts crucial information from both previous and subsequent LiDAR frames, creating Object-Complete frames that represent objects from multiple viewpoints, thus addressing occlusion and sparsity. Given the limitation of not being able to generate Object-Complete frames during online inference, we utilize Knowledge Distillation within a Teacher-Student framework. This technique encourages the strong Student model to emulate the behavior of the weaker Teacher, which processes simple and informative Object-Complete frames, effectively offering a comprehensive view of objects as if seen through X-ray vision. Our proposed methods surpass state-of-the-art in semi-supervised learning by 1-1.5 mAP and enhance the performance of five established supervised models by 1-2 mAP on standard autonomous driving datasets, even with default hyperparameters. Code for Object-Complete frames is available here: https://github.com/sakharok13/X-Ray-Teacher-Patching-Tools.
V-DETR: DETR with Vertex Relative Position Encoding for 3D Object Detection
We introduce a highly performant 3D object detector for point clouds using the DETR framework. The prior attempts all end up with suboptimal results because they fail to learn accurate inductive biases from the limited scale of training data. In particular, the queries often attend to points that are far away from the target objects, violating the locality principle in object detection. To address the limitation, we introduce a novel 3D Vertex Relative Position Encoding (3DV-RPE) method which computes position encoding for each point based on its relative position to the 3D boxes predicted by the queries in each decoder layer, thus providing clear information to guide the model to focus on points near the objects, in accordance with the principle of locality. In addition, we systematically improve the pipeline from various aspects such as data normalization based on our understanding of the task. We show exceptional results on the challenging ScanNetV2 benchmark, achieving significant improvements over the previous 3DETR in AP_{25}/AP_{50} from 65.0\%/47.0\% to 77.8\%/66.0\%, respectively. In addition, our method sets a new record on ScanNetV2 and SUN RGB-D datasets.Code will be released at http://github.com/yichaoshen-MS/V-DETR.
PointOBB: Learning Oriented Object Detection via Single Point Supervision
Single point-supervised object detection is gaining attention due to its cost-effectiveness. However, existing approaches focus on generating horizontal bounding boxes (HBBs) while ignoring oriented bounding boxes (OBBs) commonly used for objects in aerial images. This paper proposes PointOBB, the first single Point-based OBB generation method, for oriented object detection. PointOBB operates through the collaborative utilization of three distinctive views: an original view, a resized view, and a rotated/flipped (rot/flp) view. Upon the original view, we leverage the resized and rot/flp views to build a scale augmentation module and an angle acquisition module, respectively. In the former module, a Scale-Sensitive Consistency (SSC) loss is designed to enhance the deep network's ability to perceive the object scale. For accurate object angle predictions, the latter module incorporates self-supervised learning to predict angles, which is associated with a scale-guided Dense-to-Sparse (DS) matching strategy for aggregating dense angles corresponding to sparse objects. The resized and rot/flp views are switched using a progressive multi-view switching strategy during training to achieve coupled optimization of scale and angle. Experimental results on the DIOR-R and DOTA-v1.0 datasets demonstrate that PointOBB achieves promising performance, and significantly outperforms potential point-supervised baselines.
Dual Mean-Teacher: An Unbiased Semi-Supervised Framework for Audio-Visual Source Localization
Audio-Visual Source Localization (AVSL) aims to locate sounding objects within video frames given the paired audio clips. Existing methods predominantly rely on self-supervised contrastive learning of audio-visual correspondence. Without any bounding-box annotations, they struggle to achieve precise localization, especially for small objects, and suffer from blurry boundaries and false positives. Moreover, the naive semi-supervised method is poor in fully leveraging the information of abundant unlabeled data. In this paper, we propose a novel semi-supervised learning framework for AVSL, namely Dual Mean-Teacher (DMT), comprising two teacher-student structures to circumvent the confirmation bias issue. Specifically, two teachers, pre-trained on limited labeled data, are employed to filter out noisy samples via the consensus between their predictions, and then generate high-quality pseudo-labels by intersecting their confidence maps. The sufficient utilization of both labeled and unlabeled data and the proposed unbiased framework enable DMT to outperform current state-of-the-art methods by a large margin, with CIoU of 90.4% and 48.8% on Flickr-SoundNet and VGG-Sound Source, obtaining 8.9%, 9.6% and 4.6%, 6.4% improvements over self- and semi-supervised methods respectively, given only 3% positional-annotations. We also extend our framework to some existing AVSL methods and consistently boost their performance.
Convex Hull-based Algebraic Constraint for Visual Quadric SLAM
Using Quadrics as the object representation has the benefits of both generality and closed-form projection derivation between image and world spaces. Although numerous constraints have been proposed for dual quadric reconstruction, we found that many of them are imprecise and provide minimal improvements to localization.After scrutinizing the existing constraints, we introduce a concise yet more precise convex hull-based algebraic constraint for object landmarks, which is applied to object reconstruction, frontend pose estimation, and backend bundle adjustment.This constraint is designed to fully leverage precise semantic segmentation, effectively mitigating mismatches between complex-shaped object contours and dual quadrics.Experiments on public datasets demonstrate that our approach is applicable to both monocular and RGB-D SLAM and achieves improved object mapping and localization than existing quadric SLAM methods. The implementation of our method is available at https://github.com/tiev-tongji/convexhull-based-algebraic-constraint.
Segmentation is All You Need
Region proposal mechanisms are essential for existing deep learning approaches to object detection in images. Although they can generally achieve a good detection performance under normal circumstances, their recall in a scene with extreme cases is unacceptably low. This is mainly because bounding box annotations contain much environment noise information, and non-maximum suppression (NMS) is required to select target boxes. Therefore, in this paper, we propose the first anchor-free and NMS-free object detection model called weakly supervised multimodal annotation segmentation (WSMA-Seg), which utilizes segmentation models to achieve an accurate and robust object detection without NMS. In WSMA-Seg, multimodal annotations are proposed to achieve an instance-aware segmentation using weakly supervised bounding boxes; we also develop a run-data-based following algorithm to trace contours of objects. In addition, we propose a multi-scale pooling segmentation (MSP-Seg) as the underlying segmentation model of WSMA-Seg to achieve a more accurate segmentation and to enhance the detection accuracy of WSMA-Seg. Experimental results on multiple datasets show that the proposed WSMA-Seg approach outperforms the state-of-the-art detectors.
Curvature-Aware Training for Coordinate Networks
Coordinate networks are widely used in computer vision due to their ability to represent signals as compressed, continuous entities. However, training these networks with first-order optimizers can be slow, hindering their use in real-time applications. Recent works have opted for shallow voxel-based representations to achieve faster training, but this sacrifices memory efficiency. This work proposes a solution that leverages second-order optimization methods to significantly reduce training times for coordinate networks while maintaining their compressibility. Experiments demonstrate the effectiveness of this approach on various signal modalities, such as audio, images, videos, shape reconstruction, and neural radiance fields.
Geo-Sign: Hyperbolic Contrastive Regularisation for Geometrically Aware Sign Language Translation
Recent progress in Sign Language Translation (SLT) has focussed primarily on improving the representational capacity of large language models to incorporate Sign Language features. This work explores an alternative direction: enhancing the geometric properties of skeletal representations themselves. We propose Geo-Sign, a method that leverages the properties of hyperbolic geometry to model the hierarchical structure inherent in sign language kinematics. By projecting skeletal features derived from Spatio-Temporal Graph Convolutional Networks (ST-GCNs) into the Poincar\'e ball model, we aim to create more discriminative embeddings, particularly for fine-grained motions like finger articulations. We introduce a hyperbolic projection layer, a weighted Fr\'echet mean aggregation scheme, and a geometric contrastive loss operating directly in hyperbolic space. These components are integrated into an end-to-end translation framework as a regularisation function, to enhance the representations within the language model. This work demonstrates the potential of hyperbolic geometry to improve skeletal representations for Sign Language Translation, improving on SOTA RGB methods while preserving privacy and improving computational efficiency. Code available here: https://github.com/ed-fish/geo-sign.
MonoPlace3D: Learning 3D-Aware Object Placement for 3D Monocular Detection
Current monocular 3D detectors are held back by the limited diversity and scale of real-world datasets. While data augmentation certainly helps, it's particularly difficult to generate realistic scene-aware augmented data for outdoor settings. Most current approaches to synthetic data generation focus on realistic object appearance through improved rendering techniques. However, we show that where and how objects are positioned is just as crucial for training effective 3D monocular detectors. The key obstacle lies in automatically determining realistic object placement parameters - including position, dimensions, and directional alignment when introducing synthetic objects into actual scenes. To address this, we introduce MonoPlace3D, a novel system that considers the 3D scene content to create realistic augmentations. Specifically, given a background scene, MonoPlace3D learns a distribution over plausible 3D bounding boxes. Subsequently, we render realistic objects and place them according to the locations sampled from the learned distribution. Our comprehensive evaluation on two standard datasets KITTI and NuScenes, demonstrates that MonoPlace3D significantly improves the accuracy of multiple existing monocular 3D detectors while being highly data efficient.
Learning correspondences of cardiac motion from images using biomechanics-informed modeling
Learning spatial-temporal correspondences in cardiac motion from images is important for understanding the underlying dynamics of cardiac anatomical structures. Many methods explicitly impose smoothness constraints such as the L_2 norm on the displacement vector field (DVF), while usually ignoring biomechanical feasibility in the transformation. Other geometric constraints either regularize specific regions of interest such as imposing incompressibility on the myocardium or introduce additional steps such as training a separate network-based regularizer on physically simulated datasets. In this work, we propose an explicit biomechanics-informed prior as regularization on the predicted DVF in modeling a more generic biomechanically plausible transformation within all cardiac structures without introducing additional training complexity. We validate our methods on two publicly available datasets in the context of 2D MRI data and perform extensive experiments to illustrate the effectiveness and robustness of our proposed methods compared to other competing regularization schemes. Our proposed methods better preserve biomechanical properties by visual assessment and show advantages in segmentation performance using quantitative evaluation metrics. The code is publicly available at https://github.com/Voldemort108X/bioinformed_reg.
HccePose(BF): Predicting Front \& Back Surfaces to Construct Ultra-Dense 2D-3D Correspondences for Pose Estimation
In pose estimation for seen objects, a prevalent pipeline involves using neural networks to predict dense 3D coordinates of the object surface on 2D images, which are then used to establish dense 2D-3D correspondences. However, current methods primarily focus on more efficient encoding techniques to improve the precision of predicted 3D coordinates on the object's front surface, overlooking the potential benefits of incorporating the back surface and interior of the object. To better utilize the full surface and interior of the object, this study predicts 3D coordinates of both the object's front and back surfaces and densely samples 3D coordinates between them. This process creates ultra-dense 2D-3D correspondences, effectively enhancing pose estimation accuracy based on the Perspective-n-Point (PnP) algorithm. Additionally, we propose Hierarchical Continuous Coordinate Encoding (HCCE) to provide a more accurate and efficient representation of front and back surface coordinates. Experimental results show that, compared to existing state-of-the-art (SOTA) methods on the BOP website, the proposed approach outperforms across seven classic BOP core datasets. Code is available at https://github.com/WangYuLin-SEU/HCCEPose.
PEnG: Pose-Enhanced Geo-Localisation
Cross-view Geo-localisation is typically performed at a coarse granularity, because densely sampled satellite image patches overlap heavily. This heavy overlap would make disambiguating patches very challenging. However, by opting for sparsely sampled patches, prior work has placed an artificial upper bound on the localisation accuracy that is possible. Even a perfect oracle system cannot achieve accuracy greater than the average separation of the tiles. To solve this limitation, we propose combining cross-view geo-localisation and relative pose estimation to increase precision to a level practical for real-world application. We develop PEnG, a 2-stage system which first predicts the most likely edges from a city-scale graph representation upon which a query image lies. It then performs relative pose estimation within these edges to determine a precise position. PEnG presents the first technique to utilise both viewpoints available within cross-view geo-localisation datasets to enhance precision to a sub-metre level, with some examples achieving centimetre level accuracy. Our proposed ensemble achieves state-of-the-art precision - with relative Top-5m retrieval improvements on previous works of 213%. Decreasing the median euclidean distance error by 96.90% from the previous best of 734m down to 22.77m, when evaluating with 90 degree horizontal FOV images. Code will be made available: tavisshore.co.uk/PEnG
Fat Polygonal Partitions with Applications to Visualization and Embeddings
Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in R^d. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space: we give a rm polylog(Delta)-approximation algorithm for embedding n-point ultrametrics into R^d with minimum distortion, where Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.
Vertebra-Focused Landmark Detection for Scoliosis Assessment
Adolescent idiopathic scoliosis (AIS) is a lifetime disease that arises in children. Accurate estimation of Cobb angles of the scoliosis is essential for clinicians to make diagnosis and treatment decisions. The Cobb angles are measured according to the vertebrae landmarks. Existing regression-based methods for the vertebra landmark detection typically suffer from large dense mapping parameters and inaccurate landmark localization. The segmentation-based methods tend to predict connected or corrupted vertebra masks. In this paper, we propose a novel vertebra-focused landmark detection method. Our model first localizes the vertebra centers, based on which it then traces the four corner landmarks of the vertebra through the learned corner offset. In this way, our method is able to keep the order of the landmarks. The comparison results demonstrate the merits of our method in both Cobb angle measurement and landmark detection on low-contrast and ambiguous X-ray images. Code is available at: https://github.com/yijingru/Vertebra-Landmark-Detection.
GLACE: Global Local Accelerated Coordinate Encoding
Scene coordinate regression (SCR) methods are a family of visual localization methods that directly regress 2D-3D matches for camera pose estimation. They are effective in small-scale scenes but face significant challenges in large-scale scenes that are further amplified in the absence of ground truth 3D point clouds for supervision. Here, the model can only rely on reprojection constraints and needs to implicitly triangulate the points. The challenges stem from a fundamental dilemma: The network has to be invariant to observations of the same landmark at different viewpoints and lighting conditions, etc., but at the same time discriminate unrelated but similar observations. The latter becomes more relevant and severe in larger scenes. In this work, we tackle this problem by introducing the concept of co-visibility to the network. We propose GLACE, which integrates pre-trained global and local encodings and enables SCR to scale to large scenes with only a single small-sized network. Specifically, we propose a novel feature diffusion technique that implicitly groups the reprojection constraints with co-visibility and avoids overfitting to trivial solutions. Additionally, our position decoder parameterizes the output positions for large-scale scenes more effectively. Without using 3D models or depth maps for supervision, our method achieves state-of-the-art results on large-scale scenes with a low-map-size model. On Cambridge landmarks, with a single model, we achieve 17% lower median position error than Poker, the ensemble variant of the state-of-the-art SCR method ACE. Code is available at: https://github.com/cvg/glace.
VXP: Voxel-Cross-Pixel Large-scale Image-LiDAR Place Recognition
Cross-modal place recognition methods are flexible GPS-alternatives under varying environment conditions and sensor setups. However, this task is non-trivial since extracting consistent and robust global descriptors from different modalities is challenging. To tackle this issue, we propose Voxel-Cross-Pixel (VXP), a novel camera-to-LiDAR place recognition framework that enforces local similarities in a self-supervised manner and effectively brings global context from images and LiDAR scans into a shared feature space. Specifically, VXP is trained in three stages: first, we deploy a visual transformer to compactly represent input images. Secondly, we establish local correspondences between image-based and point cloud-based feature spaces using our novel geometric alignment module. We then aggregate local similarities into an expressive shared latent space. Extensive experiments on the three benchmarks (Oxford RobotCar, ViViD++ and KITTI) demonstrate that our method surpasses the state-of-the-art cross-modal retrieval by a large margin. Our evaluations show that the proposed method is accurate, efficient and light-weight. Our project page is available at: https://yunjinli.github.io/projects-vxp/
TIP-Editor: An Accurate 3D Editor Following Both Text-Prompts And Image-Prompts
Text-driven 3D scene editing has gained significant attention owing to its convenience and user-friendliness. However, existing methods still lack accurate control of the specified appearance and location of the editing result due to the inherent limitations of the text description. To this end, we propose a 3D scene editing framework, TIPEditor, that accepts both text and image prompts and a 3D bounding box to specify the editing region. With the image prompt, users can conveniently specify the detailed appearance/style of the target content in complement to the text description, enabling accurate control of the appearance. Specifically, TIP-Editor employs a stepwise 2D personalization strategy to better learn the representation of the existing scene and the reference image, in which a localization loss is proposed to encourage correct object placement as specified by the bounding box. Additionally, TIPEditor utilizes explicit and flexible 3D Gaussian splatting as the 3D representation to facilitate local editing while keeping the background unchanged. Extensive experiments have demonstrated that TIP-Editor conducts accurate editing following the text and image prompts in the specified bounding box region, consistently outperforming the baselines in editing quality, and the alignment to the prompts, qualitatively and quantitatively.
Marching-Primitives: Shape Abstraction from Signed Distance Function
Representing complex objects with basic geometric primitives has long been a topic in computer vision. Primitive-based representations have the merits of compactness and computational efficiency in higher-level tasks such as physics simulation, collision checking, and robotic manipulation. Unlike previous works which extract polygonal meshes from a signed distance function (SDF), in this paper, we present a novel method, named Marching-Primitives, to obtain a primitive-based abstraction directly from an SDF. Our method grows geometric primitives (such as superquadrics) iteratively by analyzing the connectivity of voxels while marching at different levels of signed distance. For each valid connected volume of interest, we march on the scope of voxels from which a primitive is able to be extracted in a probabilistic sense and simultaneously solve for the parameters of the primitive to capture the underlying local geometry. We evaluate the performance of our method on both synthetic and real-world datasets. The results show that the proposed method outperforms the state-of-the-art in terms of accuracy, and is directly generalizable among different categories and scales. The code is open-sourced at https://github.com/ChirikjianLab/Marching-Primitives.git.
MonoDGP: Monocular 3D Object Detection with Decoupled-Query and Geometry-Error Priors
Perspective projection has been extensively utilized in monocular 3D object detection methods. It introduces geometric priors from 2D bounding boxes and 3D object dimensions to reduce the uncertainty of depth estimation. However, due to depth errors originating from the object's visual surface, the height of the bounding box often fails to represent the actual projected central height, which undermines the effectiveness of geometric depth. Direct prediction for the projected height unavoidably results in a loss of 2D priors, while multi-depth prediction with complex branches does not fully leverage geometric depth. This paper presents a Transformer-based monocular 3D object detection method called MonoDGP, which adopts perspective-invariant geometry errors to modify the projection formula. We also try to systematically discuss and explain the mechanisms and efficacy behind geometry errors, which serve as a simple but effective alternative to multi-depth prediction. Additionally, MonoDGP decouples the depth-guided decoder and constructs a 2D decoder only dependent on visual features, providing 2D priors and initializing object queries without the disturbance of 3D detection. To further optimize and fine-tune input tokens of the transformer decoder, we also introduce a Region Segment Head (RSH) that generates enhanced features and segment embeddings. Our monocular method demonstrates state-of-the-art performance on the KITTI benchmark without extra data. Code is available at https://github.com/PuFanqi23/MonoDGP.
Manhattan Room Layout Reconstruction from a Single 360 image: A Comparative Study of State-of-the-art Methods
Recent approaches for predicting layouts from 360 panoramas produce excellent results. These approaches build on a common framework consisting of three steps: a pre-processing step based on edge-based alignment, prediction of layout elements, and a post-processing step by fitting a 3D layout to the layout elements. Until now, it has been difficult to compare the methods due to multiple different design decisions, such as the encoding network (e.g. SegNet or ResNet), type of elements predicted (e.g. corners, wall/floor boundaries, or semantic segmentation), or method of fitting the 3D layout. To address this challenge, we summarize and describe the common framework, the variants, and the impact of the design decisions. For a complete evaluation, we also propose extended annotations for the Matterport3D dataset [3], and introduce two depth-based evaluation metrics.
Evaluating and Calibrating Uncertainty Prediction in Regression Tasks
Predicting not only the target but also an accurate measure of uncertainty is important for many machine learning applications and in particular safety-critical ones. In this work we study the calibration of uncertainty prediction for regression tasks which often arise in real-world systems. We show that the existing definition for calibration of a regression uncertainty [Kuleshov et al. 2018] has severe limitations in distinguishing informative from non-informative uncertainty predictions. We propose a new definition that escapes this caveat and an evaluation method using a simple histogram-based approach. Our method clusters examples with similar uncertainty prediction and compares the prediction with the empirical uncertainty on these examples. We also propose a simple, scaling-based calibration method that preforms as well as much more complex ones. We show results on both a synthetic, controlled problem and on the object detection bounding-box regression task using the COCO and KITTI datasets.
A Robust and Efficient Boundary Point Detection Method by Measuring Local Direction Dispersion
Boundary point detection aims to outline the external contour structure of clusters and enhance the inter-cluster discrimination, thus bolstering the performance of the downstream classification and clustering tasks. However, existing boundary point detectors are sensitive to density heterogeneity or cannot identify boundary points in concave structures and high-dimensional manifolds. In this work, we propose a robust and efficient boundary point detection method based on Local Direction Dispersion (LoDD). The core of boundary point detection lies in measuring the difference between boundary points and internal points. It is a common observation that an internal point is surrounded by its neighbors in all directions, while the neighbors of a boundary point tend to be distributed only in a certain directional range. By considering this observation, we adopt density-independent K-Nearest Neighbors (KNN) method to determine neighboring points and design a centrality metric LoDD using the eigenvalues of the covariance matrix to depict the distribution uniformity of KNN. We also develop a grid-structure assumption of data distribution to determine the parameters adaptively. The effectiveness of LoDD is demonstrated on synthetic datasets, real-world benchmarks, and application of training set split for deep learning model and hole detection on point cloud data. The datasets and toolkit are available at: https://github.com/ZPGuiGroupWhu/lodd.
Centerpoints Are All You Need in Overhead Imagery
Labeling data to use for training object detectors is expensive and time consuming. Publicly available overhead datasets for object detection are labeled with image-aligned bounding boxes, object-aligned bounding boxes, or object masks, but it is not clear whether such detailed labeling is necessary. To test the idea, we developed novel single- and two-stage network architectures that use centerpoints for labeling. In this paper we show that these architectures achieve nearly equivalent performance to approaches using more detailed labeling on three overhead object detection datasets.
CPPE-5: Medical Personal Protective Equipment Dataset
We present a new challenging dataset, CPPE - 5 (Medical Personal Protective Equipment), with the goal to allow the study of subordinate categorization of medical personal protective equipments, which is not possible with other popular data sets that focus on broad-level categories (such as PASCAL VOC, ImageNet, Microsoft COCO, OpenImages, etc). To make it easy for models trained on this dataset to be used in practical scenarios in complex scenes, our dataset mainly contains images that show complex scenes with several objects in each scene in their natural context. The image collection for this dataset focuses on: obtaining as many non-iconic images as possible and making sure all the images are real-life images, unlike other existing datasets in this area. Our dataset includes 5 object categories (coveralls, face shields, gloves, masks, and goggles), and each image is annotated with a set of bounding boxes and positive labels. We present a detailed analysis of the dataset in comparison to other popular broad category datasets as well as datasets focusing on personal protective equipments, we also find that at present there exist no such publicly available datasets. Finally, we also analyze performance and compare model complexities on baseline and state-of-the-art models for bounding box results. Our code, data, and trained models are available at https://git.io/cppe5-dataset.
CLIPDrawX: Primitive-based Explanations for Text Guided Sketch Synthesis
With the goal of understanding the visual concepts that CLIP associates with text prompts, we show that the latent space of CLIP can be visualized solely in terms of linear transformations on simple geometric primitives like circles and straight lines. Although existing approaches achieve this by sketch-synthesis-through-optimization, they do so on the space of B\'ezier curves, which exhibit a wastefully large set of structures that they can evolve into, as most of them are non-essential for generating meaningful sketches. We present CLIPDrawX, an algorithm that provides significantly better visualizations for CLIP text embeddings, using only simple primitive shapes like straight lines and circles. This constrains the set of possible outputs to linear transformations on these primitives, thereby exhibiting an inherently simpler mathematical form. The synthesis process of CLIPDrawX can be tracked end-to-end, with each visual concept being explained exclusively in terms of primitives. Implementation will be released upon acceptance. Project Page: https://clipdrawx.github.io/{https://clipdrawx.github.io/}.
FullPart: Generating each 3D Part at Full Resolution
Part-based 3D generation holds great potential for various applications. Previous part generators that represent parts using implicit vector-set tokens often suffer from insufficient geometric details. Another line of work adopts an explicit voxel representation but shares a global voxel grid among all parts; this often causes small parts to occupy too few voxels, leading to degraded quality. In this paper, we propose FullPart, a novel framework that combines both implicit and explicit paradigms. It first derives the bounding box layout through an implicit box vector-set diffusion process, a task that implicit diffusion handles effectively since box tokens contain little geometric detail. Then, it generates detailed parts, each within its own fixed full-resolution voxel grid. Instead of sharing a global low-resolution space, each part in our method - even small ones - is generated at full resolution, enabling the synthesis of intricate details. We further introduce a center-point encoding strategy to address the misalignment issue when exchanging information between parts of different actual sizes, thereby maintaining global coherence. Moreover, to tackle the scarcity of reliable part data, we present PartVerse-XL, the largest human-annotated 3D part dataset to date with 40K objects and 320K parts. Extensive experiments demonstrate that FullPart achieves state-of-the-art results in 3D part generation. We will release all code, data, and model to benefit future research in 3D part generation.
TrajectoryFormer: 3D Object Tracking Transformer with Predictive Trajectory Hypotheses
3D multi-object tracking (MOT) is vital for many applications including autonomous driving vehicles and service robots. With the commonly used tracking-by-detection paradigm, 3D MOT has made important progress in recent years. However, these methods only use the detection boxes of the current frame to obtain trajectory-box association results, which makes it impossible for the tracker to recover objects missed by the detector. In this paper, we present TrajectoryFormer, a novel point-cloud-based 3D MOT framework. To recover the missed object by detector, we generates multiple trajectory hypotheses with hybrid candidate boxes, including temporally predicted boxes and current-frame detection boxes, for trajectory-box association. The predicted boxes can propagate object's history trajectory information to the current frame and thus the network can tolerate short-term miss detection of the tracked objects. We combine long-term object motion feature and short-term object appearance feature to create per-hypothesis feature embedding, which reduces the computational overhead for spatial-temporal encoding. Additionally, we introduce a Global-Local Interaction Module to conduct information interaction among all hypotheses and models their spatial relations, leading to accurate estimation of hypotheses. Our TrajectoryFormer achieves state-of-the-art performance on the Waymo 3D MOT benchmarks. Code is available at https://github.com/poodarchu/EFG .
RANGE: Retrieval Augmented Neural Fields for Multi-Resolution Geo-Embeddings
The choice of representation for geographic location significantly impacts the accuracy of models for a broad range of geospatial tasks, including fine-grained species classification, population density estimation, and biome classification. Recent works like SatCLIP and GeoCLIP learn such representations by contrastively aligning geolocation with co-located images. While these methods work exceptionally well, in this paper, we posit that the current training strategies fail to fully capture the important visual features. We provide an information-theoretic perspective on why the resulting embeddings from these methods discard crucial visual information that is important for many downstream tasks. To solve this problem, we propose a novel retrieval-augmented strategy called RANGE. We build our method on the intuition that the visual features of a location can be estimated by combining the visual features from multiple similar-looking locations. We evaluate our method across a wide variety of tasks. Our results show that RANGE outperforms the existing state-of-the-art models with significant margins in most tasks. We show gains of up to 13.1% on classification tasks and 0.145 R^2 on regression tasks. All our code and models will be made available at: https://github.com/mvrl/RANGE.
HOC-Search: Efficient CAD Model and Pose Retrieval from RGB-D Scans
We present an automated and efficient approach for retrieving high-quality CAD models of objects and their poses in a scene captured by a moving RGB-D camera. We first investigate various objective functions to measure similarity between a candidate CAD object model and the available data, and the best objective function appears to be a "render-and-compare" method comparing depth and mask rendering. We thus introduce a fast-search method that approximates an exhaustive search based on this objective function for simultaneously retrieving the object category, a CAD model, and the pose of an object given an approximate 3D bounding box. This method involves a search tree that organizes the CAD models and object properties including object category and pose for fast retrieval and an algorithm inspired by Monte Carlo Tree Search, that efficiently searches this tree. We show that this method retrieves CAD models that fit the real objects very well, with a speed-up factor of 10x to 120x compared to exhaustive search.
Monocular 3D Object Detection with Bounding Box Denoising in 3D by Perceiver
The main challenge of monocular 3D object detection is the accurate localization of 3D center. Motivated by a new and strong observation that this challenge can be remedied by a 3D-space local-grid search scheme in an ideal case, we propose a stage-wise approach, which combines the information flow from 2D-to-3D (3D bounding box proposal generation with a single 2D image) and 3D-to-2D (proposal verification by denoising with 3D-to-2D contexts) in a top-down manner. Specifically, we first obtain initial proposals from off-the-shelf backbone monocular 3D detectors. Then, we generate a 3D anchor space by local-grid sampling from the initial proposals. Finally, we perform 3D bounding box denoising at the 3D-to-2D proposal verification stage. To effectively learn discriminative features for denoising highly overlapped proposals, this paper presents a method of using the Perceiver I/O model to fuse the 3D-to-2D geometric information and the 2D appearance information. With the encoded latent representation of a proposal, the verification head is implemented with a self-attention module. Our method, named as MonoXiver, is generic and can be easily adapted to any backbone monocular 3D detectors. Experimental results on the well-established KITTI dataset and the challenging large-scale Waymo dataset show that MonoXiver consistently achieves improvement with limited computation overhead.
Towards Robust Out-of-Distribution Generalization Bounds via Sharpness
Generalizing to out-of-distribution (OOD) data or unseen domain, termed OOD generalization, still lacks appropriate theoretical guarantees. Canonical OOD bounds focus on different distance measurements between source and target domains but fail to consider the optimization property of the learned model. As empirically shown in recent work, the sharpness of learned minima influences OOD generalization. To bridge this gap between optimization and OOD generalization, we study the effect of sharpness on how a model tolerates data change in domain shift which is usually captured by "robustness" in generalization. In this paper, we give a rigorous connection between sharpness and robustness, which gives better OOD guarantees for robust algorithms. It also provides a theoretical backing for "flat minima leads to better OOD generalization". Overall, we propose a sharpness-based OOD generalization bound by taking robustness into consideration, resulting in a tighter bound than non-robust guarantees. Our findings are supported by the experiments on a ridge regression model, as well as the experiments on deep learning classification tasks.
X-Part: high fidelity and structure coherent shape decomposition
Generating 3D shapes at part level is pivotal for downstream applications such as mesh retopology, UV mapping, and 3D printing. However, existing part-based generation methods often lack sufficient controllability and suffer from poor semantically meaningful decomposition. To this end, we introduce X-Part, a controllable generative model designed to decompose a holistic 3D object into semantically meaningful and structurally coherent parts with high geometric fidelity. X-Part exploits the bounding box as prompts for the part generation and injects point-wise semantic features for meaningful decomposition. Furthermore, we design an editable pipeline for interactive part generation. Extensive experimental results show that X-Part achieves state-of-the-art performance in part-level shape generation. This work establishes a new paradigm for creating production-ready, editable, and structurally sound 3D assets. Codes will be released for public research.
Monocular Quasi-Dense 3D Object Tracking
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving. We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform. The object association leverages quasi-dense similarity learning to identify objects in various poses and viewpoints with appearance cues only. After initial 2D association, we further utilize 3D bounding boxes depth-ordering heuristics for robust instance association and motion-based 3D trajectory prediction for re-identification of occluded vehicles. In the end, an LSTM-based object velocity learning module aggregates the long-term trajectory information for more accurate motion extrapolation. Experiments on our proposed simulation data and real-world benchmarks, including KITTI, nuScenes, and Waymo datasets, show that our tracking framework offers robust object association and tracking on urban-driving scenarios. On the Waymo Open benchmark, we establish the first camera-only baseline in the 3D tracking and 3D detection challenges. Our quasi-dense 3D tracking pipeline achieves impressive improvements on the nuScenes 3D tracking benchmark with near five times tracking accuracy of the best vision-only submission among all published methods. Our code, data and trained models are available at https://github.com/SysCV/qd-3dt.
GriSPy: A Python package for Fixed-Radius Nearest Neighbors Search
We present a new regular grid search algorithm for quick fixed-radius nearest-neighbor lookup developed in Python. This module indexes a set of k-dimensional points in a regular grid, with optional periodic conditions, providing a fast approach for nearest neighbors queries. In this first installment we provide three types of queries: bubble, shell and the nth-nearest; as well as three different metrics of interest in astronomy: the euclidean and two distance functions in spherical coordinates of varying precision, haversine and Vincenty; and the possibility of providing a custom distance function. This package results particularly useful for large datasets where a brute-force search turns impractical.
Object pop-up: Can we infer 3D objects and their poses from human interactions alone?
The intimate entanglement between objects affordances and human poses is of large interest, among others, for behavioural sciences, cognitive psychology, and Computer Vision communities. In recent years, the latter has developed several object-centric approaches: starting from items, learning pipelines synthesizing human poses and dynamics in a realistic way, satisfying both geometrical and functional expectations. However, the inverse perspective is significantly less explored: Can we infer 3D objects and their poses from human interactions alone? Our investigation follows this direction, showing that a generic 3D human point cloud is enough to pop up an unobserved object, even when the user is just imitating a functionality (e.g., looking through a binocular) without involving a tangible counterpart. We validate our method qualitatively and quantitatively, with synthetic data and sequences acquired for the task, showing applicability for XR/VR. The code is available at https://github.com/ptrvilya/object-popup.
Polygonal Building Segmentation by Frame Field Learning
While state of the art image segmentation models typically output segmentations in raster format, applications in geographic information systems often require vector polygons. To help bridge the gap between deep network output and the format used in downstream tasks, we add a frame field output to a deep segmentation model for extracting buildings from remote sensing images. We train a deep neural network that aligns a predicted frame field to ground truth contours. This additional objective improves segmentation quality by leveraging multi-task learning and provides structural information that later facilitates polygonization; we also introduce a polygonization algorithm that utilizes the frame field along with the raster segmentation. Our code is available at https://github.com/Lydorn/Polygonization-by-Frame-Field-Learning.
TOD3Cap: Towards 3D Dense Captioning in Outdoor Scenes
3D dense captioning stands as a cornerstone in achieving a comprehensive understanding of 3D scenes through natural language. It has recently witnessed remarkable achievements, particularly in indoor settings. However, the exploration of 3D dense captioning in outdoor scenes is hindered by two major challenges: 1) the domain gap between indoor and outdoor scenes, such as dynamics and sparse visual inputs, makes it difficult to directly adapt existing indoor methods; 2) the lack of data with comprehensive box-caption pair annotations specifically tailored for outdoor scenes. To this end, we introduce the new task of outdoor 3D dense captioning. As input, we assume a LiDAR point cloud and a set of RGB images captured by the panoramic camera rig. The expected output is a set of object boxes with captions. To tackle this task, we propose the TOD3Cap network, which leverages the BEV representation to generate object box proposals and integrates Relation Q-Former with LLaMA-Adapter to generate rich captions for these objects. We also introduce the TOD3Cap dataset, the largest one to our knowledge for 3D dense captioning in outdoor scenes, which contains 2.3M descriptions of 64.3K outdoor objects from 850 scenes. Notably, our TOD3Cap network can effectively localize and caption 3D objects in outdoor scenes, which outperforms baseline methods by a significant margin (+9.6 [email protected]). Code, data, and models are publicly available at https://github.com/jxbbb/TOD3Cap.
SketchINR: A First Look into Sketches as Implicit Neural Representations
We propose SketchINR, to advance the representation of vector sketches with implicit neural models. A variable length vector sketch is compressed into a latent space of fixed dimension that implicitly encodes the underlying shape as a function of time and strokes. The learned function predicts the xy point coordinates in a sketch at each time and stroke. Despite its simplicity, SketchINR outperforms existing representations at multiple tasks: (i) Encoding an entire sketch dataset into a fixed size latent vector, SketchINR gives 60times and 10times data compression over raster and vector sketches, respectively. (ii) SketchINR's auto-decoder provides a much higher-fidelity representation than other learned vector sketch representations, and is uniquely able to scale to complex vector sketches such as FS-COCO. (iii) SketchINR supports parallelisation that can decode/render sim100times faster than other learned vector representations such as SketchRNN. (iv) SketchINR, for the first time, emulates the human ability to reproduce a sketch with varying abstraction in terms of number and complexity of strokes. As a first look at implicit sketches, SketchINR's compact high-fidelity representation will support future work in modelling long and complex sketches.
H2RBox-v2: Incorporating Symmetry for Boosting Horizontal Box Supervised Oriented Object Detection
With the rapidly increasing demand for oriented object detection, e.g. in autonomous driving and remote sensing, the recently proposed paradigm involving weakly-supervised detector H2RBox for learning rotated box (RBox) from the more readily-available horizontal box (HBox) has shown promise. This paper presents H2RBox-v2, to further bridge the gap between HBox-supervised and RBox-supervised oriented object detection. Specifically, we propose to leverage the reflection symmetry via flip and rotate consistencies, using a weakly-supervised network branch similar to H2RBox, together with a novel self-supervised branch that learns orientations from the symmetry inherent in visual objects. The detector is further stabilized and enhanced by practical techniques to cope with peripheral issues e.g. angular periodicity. To our best knowledge, H2RBox-v2 is the first symmetry-aware self-supervised paradigm for oriented object detection. In particular, our method shows less susceptibility to low-quality annotation and insufficient training data compared to H2RBox. Specifically, H2RBox-v2 achieves very close performance to a rotation annotation trained counterpart -- Rotated FCOS: 1) DOTA-v1.0/1.5/2.0: 72.31%/64.76%/50.33% vs. 72.44%/64.53%/51.77%; 2) HRSC: 89.66% vs. 88.99%; 3) FAIR1M: 42.27% vs. 41.25%.
On the Importance of Gradient Norm in PAC-Bayesian Bounds
Generalization bounds which assess the difference between the true risk and the empirical risk, have been studied extensively. However, to obtain bounds, current techniques use strict assumptions such as a uniformly bounded or a Lipschitz loss function. To avoid these assumptions, in this paper, we follow an alternative approach: we relax uniform bounds assumptions by using on-average bounded loss and on-average bounded gradient norm assumptions. Following this relaxation, we propose a new generalization bound that exploits the contractivity of the log-Sobolev inequalities. These inequalities add an additional loss-gradient norm term to the generalization bound, which is intuitively a surrogate of the model complexity. We apply the proposed bound on Bayesian deep nets and empirically analyze the effect of this new loss-gradient norm term on different neural architectures.
Generating Visual Spatial Description via Holistic 3D Scene Understanding
Visual spatial description (VSD) aims to generate texts that describe the spatial relations of the given objects within images. Existing VSD work merely models the 2D geometrical vision features, thus inevitably falling prey to the problem of skewed spatial understanding of target objects. In this work, we investigate the incorporation of 3D scene features for VSD. With an external 3D scene extractor, we obtain the 3D objects and scene features for input images, based on which we construct a target object-centered 3D spatial scene graph (Go3D-S2G), such that we model the spatial semantics of target objects within the holistic 3D scenes. Besides, we propose a scene subgraph selecting mechanism, sampling topologically-diverse subgraphs from Go3D-S2G, where the diverse local structure features are navigated to yield spatially-diversified text generation. Experimental results on two VSD datasets demonstrate that our framework outperforms the baselines significantly, especially improving on the cases with complex visual spatial relations. Meanwhile, our method can produce more spatially-diversified generation. Code is available at https://github.com/zhaoyucs/VSD.
SVGCraft: Beyond Single Object Text-to-SVG Synthesis with Comprehensive Canvas Layout
Generating VectorArt from text prompts is a challenging vision task, requiring diverse yet realistic depictions of the seen as well as unseen entities. However, existing research has been mostly limited to the generation of single objects, rather than comprehensive scenes comprising multiple elements. In response, this work introduces SVGCraft, a novel end-to-end framework for the creation of vector graphics depicting entire scenes from textual descriptions. Utilizing a pre-trained LLM for layout generation from text prompts, this framework introduces a technique for producing masked latents in specified bounding boxes for accurate object placement. It introduces a fusion mechanism for integrating attention maps and employs a diffusion U-Net for coherent composition, speeding up the drawing process. The resulting SVG is optimized using a pre-trained encoder and LPIPS loss with opacity modulation to maximize similarity. Additionally, this work explores the potential of primitive shapes in facilitating canvas completion in constrained environments. Through both qualitative and quantitative assessments, SVGCraft is demonstrated to surpass prior works in abstraction, recognizability, and detail, as evidenced by its performance metrics (CLIP-T: 0.4563, Cosine Similarity: 0.6342, Confusion: 0.66, Aesthetic: 6.7832). The code will be available at https://github.com/ayanban011/SVGCraft.
HPR3D: Hierarchical Proxy Representation for High-Fidelity 3D Reconstruction and Controllable Editing
Current 3D representations like meshes, voxels, point clouds, and NeRF-based neural implicit fields exhibit significant limitations: they are often task-specific, lacking universal applicability across reconstruction, generation, editing, and driving. While meshes offer high precision, their dense vertex data complicates editing; NeRFs deliver excellent rendering but suffer from structural ambiguity, hindering animation and manipulation; all representations inherently struggle with the trade-off between data complexity and fidelity. To overcome these issues, we introduce a novel 3D Hierarchical Proxy Node representation. Its core innovation lies in representing an object's shape and texture via a sparse set of hierarchically organized (tree-structured) proxy nodes distributed on its surface and interior. Each node stores local shape and texture information (implicitly encoded by a small MLP) within its neighborhood. Querying any 3D coordinate's properties involves efficient neural interpolation and lightweight decoding from relevant nearby and parent nodes. This framework yields a highly compact representation where nodes align with local semantics, enabling direct drag-and-edit manipulation, and offers scalable quality-complexity control. Extensive experiments across 3D reconstruction and editing demonstrate our method's expressive efficiency, high-fidelity rendering quality, and superior editability.
Tighter Information-Theoretic Generalization Bounds from Supersamples
In this work, we present a variety of novel information-theoretic generalization bounds for learning algorithms, from the supersample setting of Steinke & Zakynthinou (2020)-the setting of the "conditional mutual information" framework. Our development exploits projecting the loss pair (obtained from a training instance and a testing instance) down to a single number and correlating loss values with a Rademacher sequence (and its shifted variants). The presented bounds include square-root bounds, fast-rate bounds, including those based on variance and sharpness, and bounds for interpolating algorithms etc. We show theoretically or empirically that these bounds are tighter than all information-theoretic bounds known to date on the same supersample setting.
Spatiality-guided Transformer for 3D Dense Captioning on Point Clouds
Dense captioning in 3D point clouds is an emerging vision-and-language task involving object-level 3D scene understanding. Apart from coarse semantic class prediction and bounding box regression as in traditional 3D object detection, 3D dense captioning aims at producing a further and finer instance-level label of natural language description on visual appearance and spatial relations for each scene object of interest. To detect and describe objects in a scene, following the spirit of neural machine translation, we propose a transformer-based encoder-decoder architecture, namely SpaCap3D, to transform objects into descriptions, where we especially investigate the relative spatiality of objects in 3D scenes and design a spatiality-guided encoder via a token-to-token spatial relation learning objective and an object-centric decoder for precise and spatiality-enhanced object caption generation. Evaluated on two benchmark datasets, ScanRefer and ReferIt3D, our proposed SpaCap3D outperforms the baseline method Scan2Cap by 4.94% and 9.61% in [email protected], respectively. Our project page with source code and supplementary files is available at https://SpaCap3D.github.io/ .
Point-DETR3D: Leveraging Imagery Data with Spatial Point Prior for Weakly Semi-supervised 3D Object Detection
Training high-accuracy 3D detectors necessitates massive labeled 3D annotations with 7 degree-of-freedom, which is laborious and time-consuming. Therefore, the form of point annotations is proposed to offer significant prospects for practical applications in 3D detection, which is not only more accessible and less expensive but also provides strong spatial information for object localization. In this paper, we empirically discover that it is non-trivial to merely adapt Point-DETR to its 3D form, encountering two main bottlenecks: 1) it fails to encode strong 3D prior into the model, and 2) it generates low-quality pseudo labels in distant regions due to the extreme sparsity of LiDAR points. To overcome these challenges, we introduce Point-DETR3D, a teacher-student framework for weakly semi-supervised 3D detection, designed to fully capitalize on point-wise supervision within a constrained instance-wise annotation budget.Different from Point-DETR which encodes 3D positional information solely through a point encoder, we propose an explicit positional query initialization strategy to enhance the positional prior. Considering the low quality of pseudo labels at distant regions produced by the teacher model, we enhance the detector's perception by incorporating dense imagery data through a novel Cross-Modal Deformable RoI Fusion (D-RoI).Moreover, an innovative point-guided self-supervised learning technique is proposed to allow for fully exploiting point priors, even in student models.Extensive experiments on representative nuScenes dataset demonstrate our Point-DETR3D obtains significant improvements compared to previous works. Notably, with only 5% of labeled data, Point-DETR3D achieves over 90% performance of its fully supervised counterpart.
SATR: Zero-Shot Semantic Segmentation of 3D Shapes
We explore the task of zero-shot semantic segmentation of 3D shapes by using large-scale off-the-shelf 2D image recognition models. Surprisingly, we find that modern zero-shot 2D object detectors are better suited for this task than contemporary text/image similarity predictors or even zero-shot 2D segmentation networks. Our key finding is that it is possible to extract accurate 3D segmentation maps from multi-view bounding box predictions by using the topological properties of the underlying surface. For this, we develop the Segmentation Assignment with Topological Reweighting (SATR) algorithm and evaluate it on ShapeNetPart and our proposed FAUST benchmarks. SATR achieves state-of-the-art performance and outperforms a baseline algorithm by 1.3% and 4% average mIoU on the FAUST coarse and fine-grained benchmarks, respectively, and by 5.2% average mIoU on the ShapeNetPart benchmark. Our source code and data will be publicly released. Project webpage: https://samir55.github.io/SATR/.
Functional Bayesian Tucker Decomposition for Continuous-indexed Tensor Data
Tucker decomposition is a powerful tensor model to handle multi-aspect data. It demonstrates the low-rank property by decomposing the grid-structured data as interactions between a core tensor and a set of object representations (factors). A fundamental assumption of such decomposition is that there are finite objects in each aspect or mode, corresponding to discrete indexes of data entries. However, real-world data is often not naturally posed in this setting. For example, geographic data is represented as continuous indexes of latitude and longitude coordinates, and cannot fit tensor models directly. To generalize Tucker decomposition to such scenarios, we propose Functional Bayesian Tucker Decomposition (FunBaT). We treat the continuous-indexed data as the interaction between the Tucker core and a group of latent functions. We use Gaussian processes (GP) as functional priors to model the latent functions. Then, we convert each GP into a state-space prior by constructing an equivalent stochastic differential equation (SDE) to reduce computational cost. An efficient inference algorithm is developed for scalable posterior approximation based on advanced message-passing techniques. The advantage of our method is shown in both synthetic data and several real-world applications. We release the code of FunBaT at https://github.com/xuangu-fang/Functional-Bayesian-Tucker-Decomposition.
Point-Bind & Point-LLM: Aligning Point Cloud with Multi-modality for 3D Understanding, Generation, and Instruction Following
We introduce Point-Bind, a 3D multi-modality model aligning point clouds with 2D image, language, audio, and video. Guided by ImageBind, we construct a joint embedding space between 3D and multi-modalities, enabling many promising applications, e.g., any-to-3D generation, 3D embedding arithmetic, and 3D open-world understanding. On top of this, we further present Point-LLM, the first 3D large language model (LLM) following 3D multi-modal instructions. By parameter-efficient fine-tuning techniques, Point-LLM injects the semantics of Point-Bind into pre-trained LLMs, e.g., LLaMA, which requires no 3D instruction data, but exhibits superior 3D and multi-modal question-answering capacity. We hope our work may cast a light on the community for extending 3D point clouds to multi-modality applications. Code is available at https://github.com/ZiyuGuo99/Point-Bind_Point-LLM.
ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network
Scene text detection and recognition has received increasing research attention. Existing methods can be roughly categorized into two groups: character-based and segmentation-based. These methods either are costly for character annotation or need to maintain a complex pipeline, which is often not suitable for real-time applications. Here we address the problem by proposing the Adaptive Bezier-Curve Network (ABCNet). Our contributions are three-fold: 1) For the first time, we adaptively fit arbitrarily-shaped text by a parameterized Bezier curve. 2) We design a novel BezierAlign layer for extracting accurate convolution features of a text instance with arbitrary shapes, significantly improving the precision compared with previous methods. 3) Compared with standard bounding box detection, our Bezier curve detection introduces negligible computation overhead, resulting in superiority of our method in both efficiency and accuracy. Experiments on arbitrarily-shaped benchmark datasets, namely Total-Text and CTW1500, demonstrate that ABCNet achieves state-of-the-art accuracy, meanwhile significantly improving the speed. In particular, on Total-Text, our realtime version is over 10 times faster than recent state-of-the-art methods with a competitive recognition accuracy. Code is available at https://tinyurl.com/AdelaiDet
Enhancing Worldwide Image Geolocation by Ensembling Satellite-Based Ground-Level Attribute Predictors
Geolocating images of a ground-level scene entails estimating the location on Earth where the picture was taken, in absence of GPS or other location metadata. Typically, methods are evaluated by measuring the Great Circle Distance (GCD) between a predicted location and ground truth. However, this measurement is limited because it only evaluates a single point, not estimates of regions or score heatmaps. This is especially important in applications to rural, wilderness and under-sampled areas, where finding the exact location may not be possible, and when used in aggregate systems that progressively narrow down locations. In this paper, we introduce a novel metric, Recall vs Area (RvA), which measures the accuracy of estimated distributions of locations. RvA treats image geolocation results similarly to document retrieval, measuring recall as a function of area: For a ranked list of (possibly non-contiguous) predicted regions, we measure the accumulated area required for the region to contain the ground truth coordinate. This produces a curve similar to a precision-recall curve, where "precision" is replaced by square kilometers area, allowing evaluation of performance for different downstream search area budgets. Following directly from this view of the problem, we then examine a simple ensembling approach to global-scale image geolocation, which incorporates information from multiple sources to help address domain shift, and can readily incorporate multiple models, attribute predictors, and data sources. We study its effectiveness by combining the geolocation models GeoEstimation and the current SOTA GeoCLIP, with attribute predictors based on ORNL LandScan and ESA-CCI Land Cover. We find significant improvements in image geolocation for areas that are under-represented in the training set, particularly non-urban areas, on both Im2GPS3k and Street View images.
Effects of Data Geometry in Early Deep Learning
Deep neural networks can approximate functions on different types of data, from images to graphs, with varied underlying structure. This underlying structure can be viewed as the geometry of the data manifold. By extending recent advances in the theoretical understanding of neural networks, we study how a randomly initialized neural network with piece-wise linear activation splits the data manifold into regions where the neural network behaves as a linear function. We derive bounds on the density of boundary of linear regions and the distance to these boundaries on the data manifold. This leads to insights into the expressivity of randomly initialized deep neural networks on non-Euclidean data sets. We empirically corroborate our theoretical results using a toy supervised learning problem. Our experiments demonstrate that number of linear regions varies across manifolds and the results hold with changing neural network architectures. We further demonstrate how the complexity of linear regions is different on the low dimensional manifold of images as compared to the Euclidean space, using the MetFaces dataset.
Large-Scale Person Detection and Localization using Overhead Fisheye Cameras
Location determination finds wide applications in daily life. Instead of existing efforts devoted to localizing tourist photos captured by perspective cameras, in this article, we focus on devising person positioning solutions using overhead fisheye cameras. Such solutions are advantageous in large field of view (FOV), low cost, anti-occlusion, and unaggressive work mode (without the necessity of cameras carried by persons). However, related studies are quite scarce, due to the paucity of data. To stimulate research in this exciting area, we present LOAF, the first large-scale overhead fisheye dataset for person detection and localization. LOAF is built with many essential features, e.g., i) the data cover abundant diversities in scenes, human pose, density, and location; ii) it contains currently the largest number of annotated pedestrian, i.e., 457K bounding boxes with groundtruth location information; iii) the body-boxes are labeled as radius-aligned so as to fully address the positioning challenge. To approach localization, we build a fisheye person detection network, which exploits the fisheye distortions by a rotation-equivariant training strategy and predict radius-aligned human boxes end-to-end. Then, the actual locations of the detected persons are calculated by a numerical solution on the fisheye model and camera altitude data. Extensive experiments on LOAF validate the superiority of our fisheye detector w.r.t. previous methods, and show that our whole fisheye positioning solution is able to locate all persons in FOV with an accuracy of 0.5 m, within 0.1 s.
A Coarse-to-Fine Approach to Multi-Modality 3D Occupancy Grounding
Visual grounding aims to identify objects or regions in a scene based on natural language descriptions, essential for spatially aware perception in autonomous driving. However, existing visual grounding tasks typically depend on bounding boxes that often fail to capture fine-grained details. Not all voxels within a bounding box are occupied, resulting in inaccurate object representations. To address this, we introduce a benchmark for 3D occupancy grounding in challenging outdoor scenes. Built on the nuScenes dataset, it integrates natural language with voxel-level occupancy annotations, offering more precise object perception compared to the traditional grounding task. Moreover, we propose GroundingOcc, an end-to-end model designed for 3D occupancy grounding through multi-modal learning. It combines visual, textual, and point cloud features to predict object location and occupancy information from coarse to fine. Specifically, GroundingOcc comprises a multimodal encoder for feature extraction, an occupancy head for voxel-wise predictions, and a grounding head to refine localization. Additionally, a 2D grounding module and a depth estimation module enhance geometric understanding, thereby boosting model performance. Extensive experiments on the benchmark demonstrate that our method outperforms existing baselines on 3D occupancy grounding. The dataset is available at https://github.com/RONINGOD/GroundingOcc.
Estimating Shape Distances on Neural Representations with Limited Samples
Measuring geometric similarity between high-dimensional network representations is a topic of longstanding interest to neuroscience and deep learning. Although many methods have been proposed, only a few works have rigorously analyzed their statistical efficiency or quantified estimator uncertainty in data-limited regimes. Here, we derive upper and lower bounds on the worst-case convergence of standard estimators of shape distancex2014a measure of representational dissimilarity proposed by Williams et al. (2021).These bounds reveal the challenging nature of the problem in high-dimensional feature spaces. To overcome these challenges, we introduce a new method-of-moments estimator with a tunable bias-variance tradeoff. We show that this estimator achieves substantially lower bias than standard estimators in simulation and on neural data, particularly in high-dimensional settings. Thus, we lay the foundation for a rigorous statistical theory for high-dimensional shape analysis, and we contribute a new estimation method that is well-suited to practical scientific settings.
GaPro: Box-Supervised 3D Point Cloud Instance Segmentation Using Gaussian Processes as Pseudo Labelers
Instance segmentation on 3D point clouds (3DIS) is a longstanding challenge in computer vision, where state-of-the-art methods are mainly based on full supervision. As annotating ground truth dense instance masks is tedious and expensive, solving 3DIS with weak supervision has become more practical. In this paper, we propose GaPro, a new instance segmentation for 3D point clouds using axis-aligned 3D bounding box supervision. Our two-step approach involves generating pseudo labels from box annotations and training a 3DIS network with the resulting labels. Additionally, we employ the self-training strategy to improve the performance of our method further. We devise an effective Gaussian Process to generate pseudo instance masks from the bounding boxes and resolve ambiguities when they overlap, resulting in pseudo instance masks with their uncertainty values. Our experiments show that GaPro outperforms previous weakly supervised 3D instance segmentation methods and has competitive performance compared to state-of-the-art fully supervised ones. Furthermore, we demonstrate the robustness of our approach, where we can adapt various state-of-the-art fully supervised methods to the weak supervision task by using our pseudo labels for training. The source code and trained models are available at https://github.com/VinAIResearch/GaPro.
GeoDistill: Geometry-Guided Self-Distillation for Weakly Supervised Cross-View Localization
Cross-view localization, the task of estimating a camera's 3-degrees-of-freedom (3-DoF) pose by aligning ground-level images with satellite images, is crucial for large-scale outdoor applications like autonomous navigation and augmented reality. Existing methods often rely on fully supervised learning, which requires costly ground-truth pose annotations. In this work, we propose GeoDistill, a Geometry guided weakly supervised self distillation framework that uses teacher-student learning with Field-of-View (FoV)-based masking to enhance local feature learning for robust cross-view localization. In GeoDistill, the teacher model localizes a panoramic image, while the student model predicts locations from a limited FoV counterpart created by FoV-based masking. By aligning the student's predictions with those of the teacher, the student focuses on key features like lane lines and ignores textureless regions, such as roads. This results in more accurate predictions and reduced uncertainty, regardless of whether the query images are panoramas or limited FoV images. Our experiments show that GeoDistill significantly improves localization performance across different frameworks. Additionally, we introduce a novel orientation estimation network that predicts relative orientation without requiring precise planar position ground truth. GeoDistill provides a scalable and efficient solution for real-world cross-view localization challenges. Code and model can be found at https://github.com/tongshw/GeoDistill.
Real-valued continued fraction of straight lines
In an unbounded plane, straight lines are used extensively for mathematical analysis. They are tools of convenience. However, those with high slope values become unbounded at a faster rate than the independent variable. So, straight lines, in this work, are made to be bounded by introducing a parametric nonlinear term that is positive. The straight lines are transformed into bounded nonlinear curves that become unbounded at a much slower rate than the independent variable. This transforming equation can be expressed as a continued fraction of straight lines. The continued fraction is real-valued and converges to the solutions of the transforming equation. Following Euler's method, the continued fraction has been reduced into an infinite series. The usefulness of the bounding nature of continued fraction is demonstrated by solving the problem of image classification. Parameters estimated on the Fashion-MNIST dataset of greyscale images using continued fraction of regression lines have less variance, converge quickly and are more accurate than the linear counterpart. Moreover, this multi-dimensional parametric estimation problem can be expressed on xy- plane using the parameters of the continued fraction and patterns emerge on planar plots.
CoDA: Coordinated Diffusion Noise Optimization for Whole-Body Manipulation of Articulated Objects
Synthesizing whole-body manipulation of articulated objects, including body motion, hand motion, and object motion, is a critical yet challenging task with broad applications in virtual humans and robotics. The core challenges are twofold. First, achieving realistic whole-body motion requires tight coordination between the hands and the rest of the body, as their movements are interdependent during manipulation. Second, articulated object manipulation typically involves high degrees of freedom and demands higher precision, often requiring the fingers to be placed at specific regions to actuate movable parts. To address these challenges, we propose a novel coordinated diffusion noise optimization framework. Specifically, we perform noise-space optimization over three specialized diffusion models for the body, left hand, and right hand, each trained on its own motion dataset to improve generalization. Coordination naturally emerges through gradient flow along the human kinematic chain, allowing the global body posture to adapt in response to hand motion objectives with high fidelity. To further enhance precision in hand-object interaction, we adopt a unified representation based on basis point sets (BPS), where end-effector positions are encoded as distances to the same BPS used for object geometry. This unified representation captures fine-grained spatial relationships between the hand and articulated object parts, and the resulting trajectories serve as targets to guide the optimization of diffusion noise, producing highly accurate interaction motion. We conduct extensive experiments demonstrating that our method outperforms existing approaches in motion quality and physical plausibility, and enables various capabilities such as object pose control, simultaneous walking and manipulation, and whole-body generation from hand-only data.
OrionBench: A Benchmark for Chart and Human-Recognizable Object Detection in Infographics
Given the central role of charts in scientific, business, and communication contexts, enhancing the chart understanding capabilities of vision-language models (VLMs) has become increasingly critical. A key limitation of existing VLMs lies in their inaccurate visual grounding of infographic elements, including charts and human-recognizable objects (HROs) such as icons and images. However, chart understanding often requires identifying relevant elements and reasoning over them. To address this limitation, we introduce OrionBench, a benchmark designed to support the development of accurate object detection models for charts and HROs in infographics. It contains 26,250 real and 78,750 synthetic infographics, with over 6.9 million bounding box annotations. These annotations are created by combining the model-in-the-loop and programmatic methods. We demonstrate the usefulness of OrionBench through three applications: 1) constructing a Thinking-with-Boxes scheme to boost the chart understanding performance of VLMs, 2) comparing existing object detection models, and 3) applying the developed detection model to document layout and UI element detection.
CAD-GPT: Synthesising CAD Construction Sequence with Spatial Reasoning-Enhanced Multimodal LLMs
Computer-aided design (CAD) significantly enhances the efficiency, accuracy, and innovation of design processes by enabling precise 2D and 3D modeling, extensive analysis, and optimization. Existing methods for creating CAD models rely on latent vectors or point clouds, which are difficult to obtain and costly to store. Recent advances in Multimodal Large Language Models (MLLMs) have inspired researchers to use natural language instructions and images for CAD model construction. However, these models still struggle with inferring accurate 3D spatial location and orientation, leading to inaccuracies in determining the spatial 3D starting points and extrusion directions for constructing geometries. This work introduces CAD-GPT, a CAD synthesis method with spatial reasoning-enhanced MLLM that takes either a single image or a textual description as input. To achieve precise spatial inference, our approach introduces a 3D Modeling Spatial Mechanism. This method maps 3D spatial positions and 3D sketch plane rotation angles into a 1D linguistic feature space using a specialized spatial unfolding mechanism, while discretizing 2D sketch coordinates into an appropriate planar space to enable precise determination of spatial starting position, sketch orientation, and 2D sketch coordinate translations. Extensive experiments demonstrate that CAD-GPT consistently outperforms existing state-of-the-art methods in CAD model synthesis, both quantitatively and qualitatively.
Locate 3D: Real-World Object Localization via Self-Supervised Learning in 3D
We present LOCATE 3D, a model for localizing objects in 3D scenes from referring expressions like "the small coffee table between the sofa and the lamp." LOCATE 3D sets a new state-of-the-art on standard referential grounding benchmarks and showcases robust generalization capabilities. Notably, LOCATE 3D operates directly on sensor observation streams (posed RGB-D frames), enabling real-world deployment on robots and AR devices. Key to our approach is 3D-JEPA, a novel self-supervised learning (SSL) algorithm applicable to sensor point clouds. It takes as input a 3D pointcloud featurized using 2D foundation models (CLIP, DINO). Subsequently, masked prediction in latent space is employed as a pretext task to aid the self-supervised learning of contextualized pointcloud features. Once trained, the 3D-JEPA encoder is finetuned alongside a language-conditioned decoder to jointly predict 3D masks and bounding boxes. Additionally, we introduce LOCATE 3D DATASET, a new dataset for 3D referential grounding, spanning multiple capture setups with over 130K annotations. This enables a systematic study of generalization capabilities as well as a stronger model.
PoNQ: a Neural QEM-based Mesh Representation
Although polygon meshes have been a standard representation in geometry processing, their irregular and combinatorial nature hinders their suitability for learning-based applications. In this work, we introduce a novel learnable mesh representation through a set of local 3D sample Points and their associated Normals and Quadric error metrics (QEM) w.r.t. the underlying shape, which we denote PoNQ. A global mesh is directly derived from PoNQ by efficiently leveraging the knowledge of the local quadric errors. Besides marking the first use of QEM within a neural shape representation, our contribution guarantees both topological and geometrical properties by ensuring that a PoNQ mesh does not self-intersect and is always the boundary of a volume. Notably, our representation does not rely on a regular grid, is supervised directly by the target surface alone, and also handles open surfaces with boundaries and/or sharp features. We demonstrate the efficacy of PoNQ through a learning-based mesh prediction from SDF grids and show that our method surpasses recent state-of-the-art techniques in terms of both surface and edge-based metrics.
Style-Consistent 3D Indoor Scene Synthesis with Decoupled Objects
Controllable 3D indoor scene synthesis stands at the forefront of technological progress, offering various applications like gaming, film, and augmented/virtual reality. The capability to stylize and de-couple objects within these scenarios is a crucial factor, providing an advanced level of control throughout the editing process. This control extends not just to manipulating geometric attributes like translation and scaling but also includes managing appearances, such as stylization. Current methods for scene stylization are limited to applying styles to the entire scene, without the ability to separate and customize individual objects. Addressing the intricacies of this challenge, we introduce a unique pipeline designed for synthesis 3D indoor scenes. Our approach involves strategically placing objects within the scene, utilizing information from professionally designed bounding boxes. Significantly, our pipeline prioritizes maintaining style consistency across multiple objects within the scene, ensuring a cohesive and visually appealing result aligned with the desired aesthetic. The core strength of our pipeline lies in its ability to generate 3D scenes that are not only visually impressive but also exhibit features like photorealism, multi-view consistency, and diversity. These scenes are crafted in response to various natural language prompts, demonstrating the versatility and adaptability of our model.
Approximating the Convex Hull via Metric Space Magnitude
Magnitude of a finite metric space and the related notion of magnitude functions on metric spaces is an active area of research in algebraic topology. Magnitude originally arose in the context of biology, where it represents the number of effective species in an environment; when applied to a one-parameter family of metric spaces tX with scale parameter t, the magnitude captures much of the underlying geometry of the space. Prior work has mostly focussed on properties of magnitude in a global sense; in this paper we restrict the sets to finite subsets of Euclidean space and investigate its individual components. We give an explicit formula for the corrected inclusion-exclusion principle, and define a quantity associated with each point, called the moment which gives an intrinsic ordering to the points. We exploit this in order to form an algorithm which approximates the convex hull.
Weighted least-squares approximation with determinantal point processes and generalized volume sampling
We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.
NeuMap: Neural Coordinate Mapping by Auto-Transdecoder for Camera Localization
This paper presents an end-to-end neural mapping method for camera localization, dubbed NeuMap, encoding a whole scene into a grid of latent codes, with which a Transformer-based auto-decoder regresses 3D coordinates of query pixels. State-of-the-art feature matching methods require each scene to be stored as a 3D point cloud with per-point features, consuming several gigabytes of storage per scene. While compression is possible, performance drops significantly at high compression rates. Conversely, coordinate regression methods achieve high compression by storing scene information in a neural network but suffer from reduced robustness. NeuMap combines the advantages of both approaches by utilizing 1) learnable latent codes for efficient scene representation and 2) a scene-agnostic Transformer-based auto-decoder to infer coordinates for query pixels. This scene-agnostic network design learns robust matching priors from large-scale data and enables rapid optimization of codes for new scenes while keeping the network weights fixed. Extensive evaluations on five benchmarks show that NeuMap significantly outperforms other coordinate regression methods and achieves comparable performance to feature matching methods while requiring a much smaller scene representation size. For example, NeuMap achieves 39.1% accuracy in the Aachen night benchmark with only 6MB of data, whereas alternative methods require 100MB or several gigabytes and fail completely under high compression settings. The codes are available at https://github.com/Tangshitao/NeuMap
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
Accurate detection of objects in 3D point clouds is a central problem in many applications, such as autonomous navigation, housekeeping robots, and augmented/virtual reality. To interface a highly sparse LiDAR point cloud with a region proposal network (RPN), most existing efforts have focused on hand-crafted feature representations, for example, a bird's eye view projection. In this work, we remove the need of manual feature engineering for 3D point clouds and propose VoxelNet, a generic 3D detection network that unifies feature extraction and bounding box prediction into a single stage, end-to-end trainable deep network. Specifically, VoxelNet divides a point cloud into equally spaced 3D voxels and transforms a group of points within each voxel into a unified feature representation through the newly introduced voxel feature encoding (VFE) layer. In this way, the point cloud is encoded as a descriptive volumetric representation, which is then connected to a RPN to generate detections. Experiments on the KITTI car detection benchmark show that VoxelNet outperforms the state-of-the-art LiDAR based 3D detection methods by a large margin. Furthermore, our network learns an effective discriminative representation of objects with various geometries, leading to encouraging results in 3D detection of pedestrians and cyclists, based on only LiDAR.
HUGS: Holistic Urban 3D Scene Understanding via Gaussian Splatting
Holistic understanding of urban scenes based on RGB images is a challenging yet important problem. It encompasses understanding both the geometry and appearance to enable novel view synthesis, parsing semantic labels, and tracking moving objects. Despite considerable progress, existing approaches often focus on specific aspects of this task and require additional inputs such as LiDAR scans or manually annotated 3D bounding boxes. In this paper, we introduce a novel pipeline that utilizes 3D Gaussian Splatting for holistic urban scene understanding. Our main idea involves the joint optimization of geometry, appearance, semantics, and motion using a combination of static and dynamic 3D Gaussians, where moving object poses are regularized via physical constraints. Our approach offers the ability to render new viewpoints in real-time, yielding 2D and 3D semantic information with high accuracy, and reconstruct dynamic scenes, even in scenarios where 3D bounding box detection are highly noisy. Experimental results on KITTI, KITTI-360, and Virtual KITTI 2 demonstrate the effectiveness of our approach.
Bi-directional Contextual Attention for 3D Dense Captioning
3D dense captioning is a task involving the localization of objects and the generation of descriptions for each object in a 3D scene. Recent approaches have attempted to incorporate contextual information by modeling relationships with object pairs or aggregating the nearest neighbor features of an object. However, the contextual information constructed in these scenarios is limited in two aspects: first, objects have multiple positional relationships that exist across the entire global scene, not only near the object itself. Second, it faces with contradicting objectives--where localization and attribute descriptions are generated better with tight localization, while descriptions involving global positional relations are generated better with contextualized features of the global scene. To overcome this challenge, we introduce BiCA, a transformer encoder-decoder pipeline that engages in 3D dense captioning for each object with Bi-directional Contextual Attention. Leveraging parallelly decoded instance queries for objects and context queries for non-object contexts, BiCA generates object-aware contexts, where the contexts relevant to each object is summarized, and context-aware objects, where the objects relevant to the summarized object-aware contexts are aggregated. This extension relieves previous methods from the contradicting objectives, enhancing both localization performance and enabling the aggregation of contextual features throughout the global scene; thus improving caption generation performance simultaneously. Extensive experiments on two of the most widely-used 3D dense captioning datasets demonstrate that our proposed method achieves a significant improvement over prior methods.
Object Goal Navigation with Recursive Implicit Maps
Object goal navigation aims to navigate an agent to locations of a given object category in unseen environments. Classical methods explicitly build maps of environments and require extensive engineering while lacking semantic information for object-oriented exploration. On the other hand, end-to-end learning methods alleviate manual map design and predict actions using implicit representations. Such methods, however, lack an explicit notion of geometry and may have limited ability to encode navigation history. In this work, we propose an implicit spatial map for object goal navigation. Our implicit map is recursively updated with new observations at each step using a transformer. To encourage spatial reasoning, we introduce auxiliary tasks and train our model to reconstruct explicit maps as well as to predict visual features, semantic labels and actions. Our method significantly outperforms the state of the art on the challenging MP3D dataset and generalizes well to the HM3D dataset. We successfully deploy our model on a real robot and achieve encouraging object goal navigation results in real scenes using only a few real-world demonstrations. Code, trained models and videos are available at https://www.di.ens.fr/willow/research/onav_rim/.
360VOTS: Visual Object Tracking and Segmentation in Omnidirectional Videos
Visual object tracking and segmentation in omnidirectional videos are challenging due to the wide field-of-view and large spherical distortion brought by 360{\deg} images. To alleviate these problems, we introduce a novel representation, extended bounding field-of-view (eBFoV), for target localization and use it as the foundation of a general 360 tracking framework which is applicable for both omnidirectional visual object tracking and segmentation tasks. Building upon our previous work on omnidirectional visual object tracking (360VOT), we propose a comprehensive dataset and benchmark that incorporates a new component called omnidirectional video object segmentation (360VOS). The 360VOS dataset includes 290 sequences accompanied by dense pixel-wise masks and covers a broader range of target categories. To support both the development and evaluation of algorithms in this domain, we divide the dataset into a training subset with 170 sequences and a testing subset with 120 sequences. Furthermore, we tailor evaluation metrics for both omnidirectional tracking and segmentation to ensure rigorous assessment. Through extensive experiments, we benchmark state-of-the-art approaches and demonstrate the effectiveness of our proposed 360 tracking framework and training dataset. Homepage: https://360vots.hkustvgd.com/
Capacity Analysis of Vector Symbolic Architectures
Hyperdimensional computing (HDC) is a biologically-inspired framework which represents symbols with high-dimensional vectors, and uses vector operations to manipulate them. The ensemble of a particular vector space and a prescribed set of vector operations (including one addition-like for "bundling" and one outer-product-like for "binding") form a *vector symbolic architecture* (VSA). While VSAs have been employed in numerous applications and have been studied empirically, many theoretical questions about VSAs remain open. We analyze the *representation capacities* of four common VSAs: MAP-I, MAP-B, and two VSAs based on sparse binary vectors. "Representation capacity' here refers to bounds on the dimensions of the VSA vectors required to perform certain symbolic tasks, such as testing for set membership i in S and estimating set intersection sizes |X cap Y| for two sets of symbols X and Y, to a given degree of accuracy. We also analyze the ability of a novel variant of a Hopfield network (a simple model of associative memory) to perform some of the same tasks that are typically asked of VSAs. In addition to providing new bounds on VSA capacities, our analyses establish and leverage connections between VSAs, "sketching" (dimensionality reduction) algorithms, and Bloom filters.
SOCS: Semantically-aware Object Coordinate Space for Category-Level 6D Object Pose Estimation under Large Shape Variations
Most learning-based approaches to category-level 6D pose estimation are design around normalized object coordinate space (NOCS). While being successful, NOCS-based methods become inaccurate and less robust when handling objects of a category containing significant intra-category shape variations. This is because the object coordinates induced by global and rigid alignment of objects are semantically incoherent, making the coordinate regression hard to learn and generalize. We propose Semantically-aware Object Coordinate Space (SOCS) built by warping-and-aligning the objects guided by a sparse set of keypoints with semantically meaningful correspondence. SOCS is semantically coherent: Any point on the surface of a object can be mapped to a semantically meaningful location in SOCS, allowing for accurate pose and size estimation under large shape variations. To learn effective coordinate regression to SOCS, we propose a novel multi-scale coordinate-based attention network. Evaluations demonstrate that our method is easy to train, well-generalizing for large intra-category shape variations and robust to inter-object occlusions.
Constrained Graphic Layout Generation via Latent Optimization
It is common in graphic design humans visually arrange various elements according to their design intent and semantics. For example, a title text almost always appears on top of other elements in a document. In this work, we generate graphic layouts that can flexibly incorporate such design semantics, either specified implicitly or explicitly by a user. We optimize using the latent space of an off-the-shelf layout generation model, allowing our approach to be complementary to and used with existing layout generation models. Our approach builds on a generative layout model based on a Transformer architecture, and formulates the layout generation as a constrained optimization problem where design constraints are used for element alignment, overlap avoidance, or any other user-specified relationship. We show in the experiments that our approach is capable of generating realistic layouts in both constrained and unconstrained generation tasks with a single model. The code is available at https://github.com/ktrk115/const_layout .
GridFormer: Point-Grid Transformer for Surface Reconstruction
Implicit neural networks have emerged as a crucial technology in 3D surface reconstruction. To reconstruct continuous surfaces from discrete point clouds, encoding the input points into regular grid features (plane or volume) has been commonly employed in existing approaches. However, these methods typically use the grid as an index for uniformly scattering point features. Compared with the irregular point features, the regular grid features may sacrifice some reconstruction details but improve efficiency. To take full advantage of these two types of features, we introduce a novel and high-efficiency attention mechanism between the grid and point features named Point-Grid Transformer (GridFormer). This mechanism treats the grid as a transfer point connecting the space and point cloud. Our method maximizes the spatial expressiveness of grid features and maintains computational efficiency. Furthermore, optimizing predictions over the entire space could potentially result in blurred boundaries. To address this issue, we further propose a boundary optimization strategy incorporating margin binary cross-entropy loss and boundary sampling. This approach enables us to achieve a more precise representation of the object structure. Our experiments validate that our method is effective and outperforms the state-of-the-art approaches under widely used benchmarks by producing more precise geometry reconstructions. The code is available at https://github.com/list17/GridFormer.
CoInfra: A Large-Scale Cooperative Infrastructure Perception System and Dataset in Adverse Weather
We present CoInfra, a large-scale cooperative infrastructure perception system and dataset designed to advance robust multi-agent perception under real-world and adverse weather conditions. The CoInfra system includes 14 fully synchronized sensor nodes, each equipped with dual RGB cameras and a LiDAR, deployed across a shared region and operating continuously to capture all traffic participants in real-time. A robust, delay-aware synchronization protocol and a scalable system architecture that supports real-time data fusion, OTA management, and remote monitoring are provided in this paper. On the other hand, the dataset was collected in different weather scenarios, including sunny, rainy, freezing rain, and heavy snow and includes 195k LiDAR frames and 390k camera images from 8 infrastructure nodes that are globally time-aligned and spatially calibrated. Furthermore, comprehensive 3D bounding box annotations for five object classes (i.e., car, bus, truck, person, and bicycle) are provided in both global and individual node frames, along with high-definition maps for contextual understanding. Baseline experiments demonstrate the trade-offs between early and late fusion strategies, the significant benefits of HD map integration are discussed. By openly releasing our dataset, codebase, and system documentation at https://github.com/NingMingHao/CoInfra, we aim to enable reproducible research and drive progress in infrastructure-supported autonomous driving, particularly in challenging, real-world settings.
Collaborative Novel Object Discovery and Box-Guided Cross-Modal Alignment for Open-Vocabulary 3D Object Detection
Open-vocabulary 3D Object Detection (OV-3DDet) addresses the detection of objects from an arbitrary list of novel categories in 3D scenes, which remains a very challenging problem. In this work, we propose CoDAv2, a unified framework designed to innovatively tackle both the localization and classification of novel 3D objects, under the condition of limited base categories. For localization, the proposed 3D Novel Object Discovery (3D-NOD) strategy utilizes 3D geometries and 2D open-vocabulary semantic priors to discover pseudo labels for novel objects during training. 3D-NOD is further extended with an Enrichment strategy that significantly enriches the novel object distribution in the training scenes, and then enhances the model's ability to localize more novel objects. The 3D-NOD with Enrichment is termed 3D-NODE. For classification, the Discovery-driven Cross-modal Alignment (DCMA) module aligns features from 3D point clouds and 2D/textual modalities, employing both class-agnostic and class-specific alignments that are iteratively refined to handle the expanding vocabulary of objects. Besides, 2D box guidance boosts the classification accuracy against complex background noises, which is coined as Box-DCMA. Extensive evaluation demonstrates the superiority of CoDAv2. CoDAv2 outperforms the best-performing method by a large margin (AP_Novel of 9.17 vs. 3.61 on SUN-RGBD and 9.12 vs. 3.74 on ScanNetv2). Source code and pre-trained models are available at the GitHub project page.
TrackSSM: A General Motion Predictor by State-Space Model
Temporal motion modeling has always been a key component in multiple object tracking (MOT) which can ensure smooth trajectory movement and provide accurate positional information to enhance association precision. However, current motion models struggle to be both efficient and effective across different application scenarios. To this end, we propose TrackSSM inspired by the recently popular state space models (SSM), a unified encoder-decoder motion framework that uses data-dependent state space model to perform temporal motion of trajectories. Specifically, we propose Flow-SSM, a module that utilizes the position and motion information from historical trajectories to guide the temporal state transition of object bounding boxes. Based on Flow-SSM, we design a flow decoder. It is composed of a cascaded motion decoding module employing Flow-SSM, which can use the encoded flow information to complete the temporal position prediction of trajectories. Additionally, we propose a Step-by-Step Linear (S^2L) training strategy. By performing linear interpolation between the positions of the object in the previous frame and the current frame, we construct the pseudo labels of step-by-step linear training, ensuring that the trajectory flow information can better guide the object bounding box in completing temporal transitions. TrackSSM utilizes a simple Mamba-Block to build a motion encoder for historical trajectories, forming a temporal motion model with an encoder-decoder structure in conjunction with the flow decoder. TrackSSM is applicable to various tracking scenarios and achieves excellent tracking performance across multiple benchmarks, further extending the potential of SSM-like temporal motion models in multi-object tracking tasks. Code and models are publicly available at https://github.com/Xavier-Lin/TrackSSM.
GeoSynth: Contextually-Aware High-Resolution Satellite Image Synthesis
We present GeoSynth, a model for synthesizing satellite images with global style and image-driven layout control. The global style control is via textual prompts or geographic location. These enable the specification of scene semantics or regional appearance respectively, and can be used together. We train our model on a large dataset of paired satellite imagery, with automatically generated captions, and OpenStreetMap data. We evaluate various combinations of control inputs, including different types of layout controls. Results demonstrate that our model can generate diverse, high-quality images and exhibits excellent zero-shot generalization. The code and model checkpoints are available at https://github.com/mvrl/GeoSynth.
DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation
Computer graphics, 3D computer vision and robotics communities have produced multiple approaches to representing 3D geometry for rendering and reconstruction. These provide trade-offs across fidelity, efficiency and compression capabilities. In this work, we introduce DeepSDF, a learned continuous Signed Distance Function (SDF) representation of a class of shapes that enables high quality shape representation, interpolation and completion from partial and noisy 3D input data. DeepSDF, like its classical counterpart, represents a shape's surface by a continuous volumetric field: the magnitude of a point in the field represents the distance to the surface boundary and the sign indicates whether the region is inside (-) or outside (+) of the shape, hence our representation implicitly encodes a shape's boundary as the zero-level-set of the learned function while explicitly representing the classification of space as being part of the shapes interior or not. While classical SDF's both in analytical or discretized voxel form typically represent the surface of a single shape, DeepSDF can represent an entire class of shapes. Furthermore, we show state-of-the-art performance for learned 3D shape representation and completion while reducing the model size by an order of magnitude compared with previous work.
MagicGeo: Training-Free Text-Guided Geometric Diagram Generation
Geometric diagrams are critical in conveying mathematical and scientific concepts, yet traditional diagram generation methods are often manual and resource-intensive. While text-to-image generation has made strides in photorealistic imagery, creating accurate geometric diagrams remains a challenge due to the need for precise spatial relationships and the scarcity of geometry-specific datasets. This paper presents MagicGeo, a training-free framework for generating geometric diagrams from textual descriptions. MagicGeo formulates the diagram generation process as a coordinate optimization problem, ensuring geometric correctness through a formal language solver, and then employs coordinate-aware generation. The framework leverages the strong language translation capability of large language models, while formal mathematical solving ensures geometric correctness. We further introduce MagicGeoBench, a benchmark dataset of 220 geometric diagram descriptions, and demonstrate that MagicGeo outperforms current methods in both qualitative and quantitative evaluations. This work provides a scalable, accurate solution for automated diagram generation, with significant implications for educational and academic applications.
3D Highlighter: Localizing Regions on 3D Shapes via Text Descriptions
We present 3D Highlighter, a technique for localizing semantic regions on a mesh using text as input. A key feature of our system is the ability to interpret "out-of-domain" localizations. Our system demonstrates the ability to reason about where to place non-obviously related concepts on an input 3D shape, such as adding clothing to a bare 3D animal model. Our method contextualizes the text description using a neural field and colors the corresponding region of the shape using a probability-weighted blend. Our neural optimization is guided by a pre-trained CLIP encoder, which bypasses the need for any 3D datasets or 3D annotations. Thus, 3D Highlighter is highly flexible, general, and capable of producing localizations on a myriad of input shapes. Our code is publicly available at https://github.com/threedle/3DHighlighter.
Efficient Encoding of Graphics Primitives with Simplex-based Structures
Grid-based structures are commonly used to encode explicit features for graphics primitives such as images, signed distance functions (SDF), and neural radiance fields (NeRF) due to their simple implementation. However, in n-dimensional space, calculating the value of a sampled point requires interpolating the values of its 2^n neighboring vertices. The exponential scaling with dimension leads to significant computational overheads. To address this issue, we propose a simplex-based approach for encoding graphics primitives. The number of vertices in a simplex-based structure increases linearly with dimension, making it a more efficient and generalizable alternative to grid-based representations. Using the non-axis-aligned simplicial structure property, we derive and prove a coordinate transformation, simplicial subdivision, and barycentric interpolation scheme for efficient sampling, which resembles transformation procedures in the simplex noise algorithm. Finally, we use hash tables to store multiresolution features of all interest points in the simplicial grid, which are passed into a tiny fully connected neural network to parameterize graphics primitives. We implemented a detailed simplex-based structure encoding algorithm in C++ and CUDA using the methods outlined in our approach. In the 2D image fitting task, the proposed method is capable of fitting a giga-pixel image with 9.4% less time compared to the baseline method proposed by instant-ngp, while maintaining the same quality and compression rate. In the volumetric rendering setup, we observe a maximum 41.2% speedup when the samples are dense enough.
ExposureEngine: Oriented Logo Detection and Sponsor Visibility Analytics in Sports Broadcasts
Quantifying sponsor visibility in sports broadcasts is a critical marketing task traditionally hindered by manual, subjective, and unscalable analysis methods. While automated systems offer an alternative, their reliance on axis-aligned Horizontal Bounding Box (HBB) leads to inaccurate exposuremetrics when logos appear rotated or skewed due to dynamic camera angles and perspective distortions. This paper introduces ExposureEngine, an end-to-end system designed for accurate, rotation-aware sponsor visibility analytics in sports broadcasts, demonstrated in a soccer case study. Our approach predicts Oriented Bounding Box (OBB) to provide a geometrically precise fit to each logo regardless of the orientation on-screen. To train and evaluate our detector, we developed a new dataset comprising 1,103 frames from Swedish elite soccer, featuring 670 unique sponsor logos annotated with OBBs. Our model achieves a mean Average Precision ([email protected]) of 0.859, with a precision of 0.96 and recall of 0.87, demonstrating robust performance in localizing logos under diverse broadcast conditions. The system integrates these detections into an analytical pipeline that calculates precise visibility metrics, such as exposure duration and on-screen coverage. Furthermore, we incorporate a language-driven agentic layer, enabling users to generate reports, summaries, and media content through natural language queries. The complete system, including the dataset and the analytics dashboard, provides a comprehensive solution for auditable and interpretable sponsor measurement in sports media. An overview of the ExposureEngine is available online: https://youtu.be/tRw6OBISuW4 .
GUI-G^2: Gaussian Reward Modeling for GUI Grounding
Graphical User Interface (GUI) grounding maps natural language instructions to precise interface locations for autonomous interaction. Current reinforcement learning approaches use binary rewards that treat elements as hit-or-miss targets, creating sparse signals that ignore the continuous nature of spatial interactions. Motivated by human clicking behavior that naturally forms Gaussian distributions centered on target elements, we introduce GUI Gaussian Grounding Rewards (GUI-G^2), a principled reward framework that models GUI elements as continuous Gaussian distributions across the interface plane. GUI-G^2 incorporates two synergistic mechanisms: Gaussian point rewards model precise localization through exponentially decaying distributions centered on element centroids, while coverage rewards assess spatial alignment by measuring the overlap between predicted Gaussian distributions and target regions. To handle diverse element scales, we develop an adaptive variance mechanism that calibrates reward distributions based on element dimensions. This framework transforms GUI grounding from sparse binary classification to dense continuous optimization, where Gaussian distributions generate rich gradient signals that guide models toward optimal interaction positions. Extensive experiments across ScreenSpot, ScreenSpot-v2, and ScreenSpot-Pro benchmarks demonstrate that GUI-G^2, substantially outperforms state-of-the-art method UI-TARS-72B, with the most significant improvement of 24.7% on ScreenSpot-Pro. Our analysis reveals that continuous modeling provides superior robustness to interface variations and enhanced generalization to unseen layouts, establishing a new paradigm for spatial reasoning in GUI interaction tasks.
UniGeo: Taming Video Diffusion for Unified Consistent Geometry Estimation
Recently, methods leveraging diffusion model priors to assist monocular geometric estimation (e.g., depth and normal) have gained significant attention due to their strong generalization ability. However, most existing works focus on estimating geometric properties within the camera coordinate system of individual video frames, neglecting the inherent ability of diffusion models to determine inter-frame correspondence. In this work, we demonstrate that, through appropriate design and fine-tuning, the intrinsic consistency of video generation models can be effectively harnessed for consistent geometric estimation. Specifically, we 1) select geometric attributes in the global coordinate system that share the same correspondence with video frames as the prediction targets, 2) introduce a novel and efficient conditioning method by reusing positional encodings, and 3) enhance performance through joint training on multiple geometric attributes that share the same correspondence. Our results achieve superior performance in predicting global geometric attributes in videos and can be directly applied to reconstruction tasks. Even when trained solely on static video data, our approach exhibits the potential to generalize to dynamic video scenes.
Benchmark It Yourself (BIY): Preparing a Dataset and Benchmarking AI Models for Scatterplot-Related Tasks
AI models are increasingly used for data analysis and visualization, yet benchmarks rarely address scatterplot-specific tasks, limiting insight into performance. To address this gap for one of the most common chart types, we introduce a synthetic, annotated dataset of over 18,000 scatterplots from six data generators and 17 chart designs, and a benchmark based on it. We evaluate proprietary models from OpenAI and Google using N-shot prompting on five distinct tasks derived from annotations of cluster bounding boxes, their center coordinates, and outlier coordinates. OpenAI models and Gemini 2.5 Flash, especially when prompted with examples, are viable options for counting clusters and, in Flash's case, outliers (90%+ Accuracy). However, the results for localization-related tasks are unsatisfactory: Precision and Recall are near or below 50%, except for Flash in outlier identification (65.01%). Furthermore, the impact of chart design on performance appears to be a secondary factor, but it is advisable to avoid scatterplots with wide aspect ratios (16:9 and 21:9) or those colored randomly. Supplementary materials are available at https://github.com/feedzai/biy-paper.
Scene as Occupancy
Human driver can easily describe the complex traffic scene by visual system. Such an ability of precise perception is essential for driver's planning. To achieve this, a geometry-aware representation that quantizes the physical 3D scene into structured grid map with semantic labels per cell, termed as 3D Occupancy, would be desirable. Compared to the form of bounding box, a key insight behind occupancy is that it could capture the fine-grained details of critical obstacles in the scene, and thereby facilitate subsequent tasks. Prior or concurrent literature mainly concentrate on a single scene completion task, where we might argue that the potential of this occupancy representation might obsess broader impact. In this paper, we propose OccNet, a multi-view vision-centric pipeline with a cascade and temporal voxel decoder to reconstruct 3D occupancy. At the core of OccNet is a general occupancy embedding to represent 3D physical world. Such a descriptor could be applied towards a wide span of driving tasks, including detection, segmentation and planning. To validate the effectiveness of this new representation and our proposed algorithm, we propose OpenOcc, the first dense high-quality 3D occupancy benchmark built on top of nuScenes. Empirical experiments show that there are evident performance gain across multiple tasks, e.g., motion planning could witness a collision rate reduction by 15%-58%, demonstrating the superiority of our method.
SC3K: Self-supervised and Coherent 3D Keypoints Estimation from Rotated, Noisy, and Decimated Point Cloud Data
This paper proposes a new method to infer keypoints from arbitrary object categories in practical scenarios where point cloud data (PCD) are noisy, down-sampled and arbitrarily rotated. Our proposed model adheres to the following principles: i) keypoints inference is fully unsupervised (no annotation given), ii) keypoints position error should be low and resilient to PCD perturbations (robustness), iii) keypoints should not change their indexes for the intra-class objects (semantic coherence), iv) keypoints should be close to or proximal to PCD surface (compactness). We achieve these desiderata by proposing a new self-supervised training strategy for keypoints estimation that does not assume any a priori knowledge of the object class, and a model architecture with coupled auxiliary losses that promotes the desired keypoints properties. We compare the keypoints estimated by the proposed approach with those of the state-of-the-art unsupervised approaches. The experiments show that our approach outperforms by estimating keypoints with improved coverage (+9.41%) while being semantically consistent (+4.66%) that best characterizes the object's 3D shape for downstream tasks. Code and data are available at: https://github.com/IITPAVIS/SC3K
Leveraging Neural Radiance Fields for Uncertainty-Aware Visual Localization
As a promising fashion for visual localization, scene coordinate regression (SCR) has seen tremendous progress in the past decade. Most recent methods usually adopt neural networks to learn the mapping from image pixels to 3D scene coordinates, which requires a vast amount of annotated training data. We propose to leverage Neural Radiance Fields (NeRF) to generate training samples for SCR. Despite NeRF's efficiency in rendering, many of the rendered data are polluted by artifacts or only contain minimal information gain, which can hinder the regression accuracy or bring unnecessary computational costs with redundant data. These challenges are addressed in three folds in this paper: (1) A NeRF is designed to separately predict uncertainties for the rendered color and depth images, which reveal data reliability at the pixel level. (2) SCR is formulated as deep evidential learning with epistemic uncertainty, which is used to evaluate information gain and scene coordinate quality. (3) Based on the three arts of uncertainties, a novel view selection policy is formed that significantly improves data efficiency. Experiments on public datasets demonstrate that our method could select the samples that bring the most information gain and promote the performance with the highest efficiency.
Statistical Learning under Heterogenous Distribution Shift
This paper studies the prediction of a target z from a pair of random variables (x,y), where the ground-truth predictor is additive E[z mid x,y] = f_star(x) +g_{star}(y). We study the performance of empirical risk minimization (ERM) over functions f+g, f in F and g in G, fit on a given training distribution, but evaluated on a test distribution which exhibits covariate shift. We show that, when the class F is "simpler" than G (measured, e.g., in terms of its metric entropy), our predictor is more resilient to heterogenous covariate shifts in which the shift in x is much greater than that in y. These results rely on a novel H\"older style inequality for the Dudley integral which may be of independent interest. Moreover, we corroborate our theoretical findings with experiments demonstrating improved resilience to shifts in "simpler" features across numerous domains.
GeoCode: Interpretable Shape Programs
Mapping high-fidelity 3D geometry to a representation that allows for intuitive edits remains an elusive goal in computer vision and graphics. The key challenge is the need to model both continuous and discrete shape variations. Current approaches, such as implicit shape representation, lack straightforward interpretable encoding, while others that employ procedural methods output coarse geometry. We present GeoCode, a technique for 3D shape synthesis using an intuitively editable parameter space. We build a novel program that enforces a complex set of rules and enables users to perform intuitive and controlled high-level edits that procedurally propagate at a low level to the entire shape. Our program produces high-quality mesh outputs by construction. We use a neural network to map a given point cloud or sketch to our interpretable parameter space. Once produced by our procedural program, shapes can be easily modified. Empirically, we show that GeoCode can infer and recover 3D shapes more accurately compared to existing techniques and we demonstrate its ability to perform controlled local and global shape manipulations.
Intuitive Shape Editing in Latent Space
The use of autoencoders for shape editing or generation through latent space manipulation suffers from unpredictable changes in the output shape. Our autoencoder-based method enables intuitive shape editing in latent space by disentangling latent sub-spaces into style variables and control points on the surface that can be manipulated independently. The key idea is adding a Lipschitz-type constraint to the loss function, i.e. bounding the change of the output shape proportionally to the change in latent space, leading to interpretable latent space representations. The control points on the surface that are part of the latent code of an object can then be freely moved, allowing for intuitive shape editing directly in latent space. We evaluate our method by comparing to state-of-the-art data-driven shape editing methods. We further demonstrate the expressiveness of our learned latent space by leveraging it for unsupervised part segmentation.
SIGMA: Scale-Invariant Global Sparse Shape Matching
We propose a novel mixed-integer programming (MIP) formulation for generating precise sparse correspondences for highly non-rigid shapes. To this end, we introduce a projected Laplace-Beltrami operator (PLBO) which combines intrinsic and extrinsic geometric information to measure the deformation quality induced by predicted correspondences. We integrate the PLBO, together with an orientation-aware regulariser, into a novel MIP formulation that can be solved to global optimality for many practical problems. In contrast to previous methods, our approach is provably invariant to rigid transformations and global scaling, initialisation-free, has optimality guarantees, and scales to high resolution meshes with (empirically observed) linear time. We show state-of-the-art results for sparse non-rigid matching on several challenging 3D datasets, including data with inconsistent meshing, as well as applications in mesh-to-point-cloud matching.
Find n' Propagate: Open-Vocabulary 3D Object Detection in Urban Environments
In this work, we tackle the limitations of current LiDAR-based 3D object detection systems, which are hindered by a restricted class vocabulary and the high costs associated with annotating new object classes. Our exploration of open-vocabulary (OV) learning in urban environments aims to capture novel instances using pre-trained vision-language models (VLMs) with multi-sensor data. We design and benchmark a set of four potential solutions as baselines, categorizing them into either top-down or bottom-up approaches based on their input data strategies. While effective, these methods exhibit certain limitations, such as missing novel objects in 3D box estimation or applying rigorous priors, leading to biases towards objects near the camera or of rectangular geometries. To overcome these limitations, we introduce a universal Find n' Propagate approach for 3D OV tasks, aimed at maximizing the recall of novel objects and propagating this detection capability to more distant areas thereby progressively capturing more. In particular, we utilize a greedy box seeker to search against 3D novel boxes of varying orientations and depth in each generated frustum and ensure the reliability of newly identified boxes by cross alignment and density ranker. Additionally, the inherent bias towards camera-proximal objects is alleviated by the proposed remote simulator, which randomly diversifies pseudo-labeled novel instances in the self-training process, combined with the fusion of base samples in the memory bank. Extensive experiments demonstrate a 53% improvement in novel recall across diverse OV settings, VLMs, and 3D detectors. Notably, we achieve up to a 3.97-fold increase in Average Precision (AP) for novel object classes. The source code is made available at https://github.com/djamahl99/findnpropagate.
MERF: Memory-Efficient Radiance Fields for Real-time View Synthesis in Unbounded Scenes
Neural radiance fields enable state-of-the-art photorealistic view synthesis. However, existing radiance field representations are either too compute-intensive for real-time rendering or require too much memory to scale to large scenes. We present a Memory-Efficient Radiance Field (MERF) representation that achieves real-time rendering of large-scale scenes in a browser. MERF reduces the memory consumption of prior sparse volumetric radiance fields using a combination of a sparse feature grid and high-resolution 2D feature planes. To support large-scale unbounded scenes, we introduce a novel contraction function that maps scene coordinates into a bounded volume while still allowing for efficient ray-box intersection. We design a lossless procedure for baking the parameterization used during training into a model that achieves real-time rendering while still preserving the photorealistic view synthesis quality of a volumetric radiance field.
OReX: Object Reconstruction from Planar Cross-sections Using Neural Fields
Reconstructing 3D shapes from planar cross-sections is a challenge inspired by downstream applications like medical imaging and geographic informatics. The input is an in/out indicator function fully defined on a sparse collection of planes in space, and the output is an interpolation of the indicator function to the entire volume. Previous works addressing this sparse and ill-posed problem either produce low quality results, or rely on additional priors such as target topology, appearance information, or input normal directions. In this paper, we present OReX, a method for 3D shape reconstruction from slices alone, featuring a Neural Field as the interpolation prior. A modest neural network is trained on the input planes to return an inside/outside estimate for a given 3D coordinate, yielding a powerful prior that induces smoothness and self-similarities. The main challenge for this approach is high-frequency details, as the neural prior is overly smoothing. To alleviate this, we offer an iterative estimation architecture and a hierarchical input sampling scheme that encourage coarse-to-fine training, allowing the training process to focus on high frequencies at later stages. In addition, we identify and analyze a ripple-like effect stemming from the mesh extraction step. We mitigate it by regularizing the spatial gradients of the indicator function around input in/out boundaries during network training, tackling the problem at the root. Through extensive qualitative and quantitative experimentation, we demonstrate our method is robust, accurate, and scales well with the size of the input. We report state-of-the-art results compared to previous approaches and recent potential solutions, and demonstrate the benefit of our individual contributions through analysis and ablation studies.
VoxelKP: A Voxel-based Network Architecture for Human Keypoint Estimation in LiDAR Data
We present VoxelKP, a novel fully sparse network architecture tailored for human keypoint estimation in LiDAR data. The key challenge is that objects are distributed sparsely in 3D space, while human keypoint detection requires detailed local information wherever humans are present. We propose four novel ideas in this paper. First, we propose sparse selective kernels to capture multi-scale context. Second, we introduce sparse box-attention to focus on learning spatial correlations between keypoints within each human instance. Third, we incorporate a spatial encoding to leverage absolute 3D coordinates when projecting 3D voxels to a 2D grid encoding a bird's eye view. Finally, we propose hybrid feature learning to combine the processing of per-voxel features with sparse convolution. We evaluate our method on the Waymo dataset and achieve an improvement of 27% on the MPJPE metric compared to the state-of-the-art, HUM3DIL, trained on the same data, and 12% against the state-of-the-art, GC-KPL, pretrained on a 25times larger dataset. To the best of our knowledge, VoxelKP is the first single-staged, fully sparse network that is specifically designed for addressing the challenging task of 3D keypoint estimation from LiDAR data, achieving state-of-the-art performances. Our code is available at https://github.com/shijianjian/VoxelKP.
Mono4DEditor: Text-Driven 4D Scene Editing from Monocular Video via Point-Level Localization of Language-Embedded Gaussians
Editing 4D scenes reconstructed from monocular videos based on text prompts is a valuable yet challenging task with broad applications in content creation and virtual environments. The key difficulty lies in achieving semantically precise edits in localized regions of complex, dynamic scenes, while preserving the integrity of unedited content. To address this, we introduce Mono4DEditor, a novel framework for flexible and accurate text-driven 4D scene editing. Our method augments 3D Gaussians with quantized CLIP features to form a language-embedded dynamic representation, enabling efficient semantic querying of arbitrary spatial regions. We further propose a two-stage point-level localization strategy that first selects candidate Gaussians via CLIP similarity and then refines their spatial extent to improve accuracy. Finally, targeted edits are performed on localized regions using a diffusion-based video editing model, with flow and scribble guidance ensuring spatial fidelity and temporal coherence. Extensive experiments demonstrate that Mono4DEditor enables high-quality, text-driven edits across diverse scenes and object types, while preserving the appearance and geometry of unedited areas and surpassing prior approaches in both flexibility and visual fidelity.
PAC Prediction Sets Under Label Shift
Prediction sets capture uncertainty by predicting sets of labels rather than individual labels, enabling downstream decisions to conservatively account for all plausible outcomes. Conformal inference algorithms construct prediction sets guaranteed to contain the true label with high probability. These guarantees fail to hold in the face of distribution shift, which is precisely when reliable uncertainty quantification can be most useful. We propose a novel algorithm for constructing prediction sets with PAC guarantees in the label shift setting. This method estimates the predicted probabilities of the classes in a target domain, as well as the confusion matrix, then propagates uncertainty in these estimates through a Gaussian elimination algorithm to compute confidence intervals for importance weights. Finally, it uses these intervals to construct prediction sets. We evaluate our approach on five datasets: the CIFAR-10, ChestX-Ray and Entity-13 image datasets, the tabular CDC Heart dataset, and the AGNews text dataset. Our algorithm satisfies the PAC guarantee while producing smaller, more informative, prediction sets compared to several baselines.
Geolocation with Real Human Gameplay Data: A Large-Scale Dataset and Human-Like Reasoning Framework
Geolocation, the task of identifying an image's location, requires complex reasoning and is crucial for navigation, monitoring, and cultural preservation. However, current methods often produce coarse, imprecise, and non-interpretable localization. A major challenge lies in the quality and scale of existing geolocation datasets. These datasets are typically small-scale and automatically constructed, leading to noisy data and inconsistent task difficulty, with images that either reveal answers too easily or lack sufficient clues for reliable inference. To address these challenges, we introduce a comprehensive geolocation framework with three key components: GeoComp, a large-scale dataset; GeoCoT, a novel reasoning method; and GeoEval, an evaluation metric, collectively designed to address critical challenges and drive advancements in geolocation research. At the core of this framework is GeoComp (Geolocation Competition Dataset), a large-scale dataset collected from a geolocation game platform involving 740K users over two years. It comprises 25 million entries of metadata and 3 million geo-tagged locations spanning much of the globe, with each location annotated thousands to tens of thousands of times by human users. The dataset offers diverse difficulty levels for detailed analysis and highlights key gaps in current models. Building on this dataset, we propose Geographical Chain-of-Thought (GeoCoT), a novel multi-step reasoning framework designed to enhance the reasoning capabilities of Large Vision Models (LVMs) in geolocation tasks. GeoCoT improves performance by integrating contextual and spatial cues through a multi-step process that mimics human geolocation reasoning. Finally, using the GeoEval metric, we demonstrate that GeoCoT significantly boosts geolocation accuracy by up to 25% while enhancing interpretability.
TikZero: Zero-Shot Text-Guided Graphics Program Synthesis
With the rise of generative AI, synthesizing figures from text captions becomes a compelling application. However, achieving high geometric precision and editability requires representing figures as graphics programs in languages like TikZ, and aligned training data (i.e., graphics programs with captions) remains scarce. Meanwhile, large amounts of unaligned graphics programs and captioned raster images are more readily available. We reconcile these disparate data sources by presenting TikZero, which decouples graphics program generation from text understanding by using image representations as an intermediary bridge. It enables independent training on graphics programs and captioned images and allows for zero-shot text-guided graphics program synthesis during inference. We show that our method substantially outperforms baselines that can only operate with caption-aligned graphics programs. Furthermore, when leveraging caption-aligned graphics programs as a complementary training signal, TikZero matches or exceeds the performance of much larger models, including commercial systems like GPT-4o. Our code, datasets, and select models are publicly available.
CNN based Cuneiform Sign Detection Learned from Annotated 3D Renderings and Mapped Photographs with Illumination Augmentation
Motivated by the challenges of the Digital Ancient Near Eastern Studies (DANES) community, we develop digital tools for processing cuneiform script being a 3D script imprinted into clay tablets used for more than three millennia and at least eight major languages. It consists of thousands of characters that have changed over time and space. Photographs are the most common representations usable for machine learning, while ink drawings are prone to interpretation. Best suited 3D datasets that are becoming available. We created and used the HeiCuBeDa and MaiCuBeDa datasets, which consist of around 500 annotated tablets. For our novel OCR-like approach to mixed image data, we provide an additional mapping tool for transferring annotations between 3D renderings and photographs. Our sign localization uses a RepPoints detector to predict the locations of characters as bounding boxes. We use image data from GigaMesh's MSII (curvature, see https://gigamesh.eu) based rendering, Phong-shaded 3D models, and photographs as well as illumination augmentation. The results show that using rendered 3D images for sign detection performs better than other work on photographs. In addition, our approach gives reasonably good results for photographs only, while it is best used for mixed datasets. More importantly, the Phong renderings, and especially the MSII renderings, improve the results on photographs, which is the largest dataset on a global scale.
Large Point-to-Gaussian Model for Image-to-3D Generation
Recently, image-to-3D approaches have significantly advanced the generation quality and speed of 3D assets based on large reconstruction models, particularly 3D Gaussian reconstruction models. Existing large 3D Gaussian models directly map 2D image to 3D Gaussian parameters, while regressing 2D image to 3D Gaussian representations is challenging without 3D priors. In this paper, we propose a large Point-to-Gaussian model, that inputs the initial point cloud produced from large 3D diffusion model conditional on 2D image to generate the Gaussian parameters, for image-to-3D generation. The point cloud provides initial 3D geometry prior for Gaussian generation, thus significantly facilitating image-to-3D Generation. Moreover, we present the Attention mechanism, Projection mechanism, and Point feature extractor, dubbed as APP block, for fusing the image features with point cloud features. The qualitative and quantitative experiments extensively demonstrate the effectiveness of the proposed approach on GSO and Objaverse datasets, and show the proposed method achieves state-of-the-art performance.
NLOS-NeuS: Non-line-of-sight Neural Implicit Surface
Non-line-of-sight (NLOS) imaging is conducted to infer invisible scenes from indirect light on visible objects. The neural transient field (NeTF) was proposed for representing scenes as neural radiance fields in NLOS scenes. We propose NLOS neural implicit surface (NLOS-NeuS), which extends the NeTF to neural implicit surfaces with a signed distance function (SDF) for reconstructing three-dimensional surfaces in NLOS scenes. We introduce two constraints as loss functions for correctly learning an SDF to avoid non-zero level-set surfaces. We also introduce a lower bound constraint of an SDF based on the geometry of the first-returning photons. The experimental results indicate that these constraints are essential for learning a correct SDF in NLOS scenes. Compared with previous methods with discretized representation, NLOS-NeuS with the neural continuous representation enables us to reconstruct smooth surfaces while preserving fine details in NLOS scenes. To the best of our knowledge, this is the first study on neural implicit surfaces with volume rendering in NLOS scenes.
Direct Parameterization of Lipschitz-Bounded Deep Networks
This paper introduces a new parameterization of deep neural networks (both fully-connected and convolutional) with guaranteed ell^2 Lipschitz bounds, i.e. limited sensitivity to input perturbations. The Lipschitz guarantees are equivalent to the tightest-known bounds based on certification via a semidefinite program (SDP). We provide a ``direct'' parameterization, i.e., a smooth mapping from mathbb R^N onto the set of weights satisfying the SDP-based bound. Moreover, our parameterization is complete, i.e. a neural network satisfies the SDP bound if and only if it can be represented via our parameterization. This enables training using standard gradient methods, without any inner approximation or computationally intensive tasks (e.g. projections or barrier terms) for the SDP constraint. The new parameterization can equivalently be thought of as either a new layer type (the sandwich layer), or a novel parameterization of standard feedforward networks with parameter sharing between neighbouring layers. A comprehensive set of experiments on image classification shows that sandwich layers outperform previous approaches on both empirical and certified robust accuracy. Code is available at https://github.com/acfr/LBDN.
A Lightweight UDF Learning Framework for 3D Reconstruction Based on Local Shape Functions
Unsigned distance fields (UDFs) provide a versatile framework for representing a diverse array of 3D shapes, encompassing both watertight and non-watertight geometries. Traditional UDF learning methods typically require extensive training on large 3D shape datasets, which is costly and necessitates re-training for new datasets. This paper presents a novel neural framework, LoSF-UDF, for reconstructing surfaces from 3D point clouds by leveraging local shape functions to learn UDFs. We observe that 3D shapes manifest simple patterns in localized regions, prompting us to develop a training dataset of point cloud patches characterized by mathematical functions that represent a continuum from smooth surfaces to sharp edges and corners. Our approach learns features within a specific radius around each query point and utilizes an attention mechanism to focus on the crucial features for UDF estimation. Despite being highly lightweight, with only 653 KB of trainable parameters and a modest-sized training dataset with 0.5 GB storage, our method enables efficient and robust surface reconstruction from point clouds without requiring for shape-specific training. Furthermore, our method exhibits enhanced resilience to noise and outliers in point clouds compared to existing methods. We conduct comprehensive experiments and comparisons across various datasets, including synthetic and real-scanned point clouds, to validate our method's efficacy. Notably, our lightweight framework offers rapid and reliable initialization for other unsupervised iterative approaches, improving both the efficiency and accuracy of their reconstructions. Our project and code are available at https://jbhu67.github.io/LoSF-UDF.github.io.
On convex decision regions in deep network representations
Current work on human-machine alignment aims at understanding machine-learned latent spaces and their correspondence to human representations. G{\"a}rdenfors' conceptual spaces is a prominent framework for understanding human representations. Convexity of object regions in conceptual spaces is argued to promote generalizability, few-shot learning, and interpersonal alignment. Based on these insights, we investigate the notion of convexity of concept regions in machine-learned latent spaces. We develop a set of tools for measuring convexity in sampled data and evaluate emergent convexity in layered representations of state-of-the-art deep networks. We show that convexity is robust to basic re-parametrization and, hence, meaningful as a quality of machine-learned latent spaces. We find that approximate convexity is pervasive in neural representations in multiple application domains, including models of images, audio, human activity, text, and medical images. Generally, we observe that fine-tuning increases the convexity of label regions. We find evidence that pretraining convexity of class label regions predicts subsequent fine-tuning performance.
Efficient Implementation of Gaussian Process Regression Accelerated Saddle Point Searches with Application to Molecular Reactions
The task of locating first order saddle points on high-dimensional surfaces describing the variation of energy as a function of atomic coordinates is an essential step for identifying the mechanism and estimating the rate of thermally activated events within the harmonic approximation of transition state theory. When combined directly with electronic structure calculations, the number of energy and atomic force evaluations needed for convergence is a primary issue. Here, we describe an efficient implementation of Gaussian process regression (GPR) acceleration of the minimum mode following method where a dimer is used to estimate the lowest eigenmode of the Hessian. A surrogate energy surface is constructed and updated after each electronic structure calculation. The method is applied to a test set of 500 molecular reactions previously generated by Hermez and coworkers [J. Chem. Theory Comput. 18, 6974 (2022)]. An order of magnitude reduction in the number of electronic structure calculations needed to reach the saddle point configurations is obtained by using the GPR compared to the dimer method. Despite the wide range in stiffness of the molecular degrees of freedom, the calculations are carried out using Cartesian coordinates and are found to require similar number of electronic structure calculations as an elaborate internal coordinate method implemented in the Sella software package. The present implementation of the GPR surrogate model in C++ is efficient enough for the wall time of the saddle point searches to be reduced in 3 out of 4 cases even though the calculations are carried out at a low Hartree-Fock level.
FigureQA: An Annotated Figure Dataset for Visual Reasoning
We introduce FigureQA, a visual reasoning corpus of over one million question-answer pairs grounded in over 100,000 images. The images are synthetic, scientific-style figures from five classes: line plots, dot-line plots, vertical and horizontal bar graphs, and pie charts. We formulate our reasoning task by generating questions from 15 templates; questions concern various relationships between plot elements and examine characteristics like the maximum, the minimum, area-under-the-curve, smoothness, and intersection. To resolve, such questions often require reference to multiple plot elements and synthesis of information distributed spatially throughout a figure. To facilitate the training of machine learning systems, the corpus also includes side data that can be used to formulate auxiliary objectives. In particular, we provide the numerical data used to generate each figure as well as bounding-box annotations for all plot elements. We study the proposed visual reasoning task by training several models, including the recently proposed Relation Network as a strong baseline. Preliminary results indicate that the task poses a significant machine learning challenge. We envision FigureQA as a first step towards developing models that can intuitively recognize patterns from visual representations of data.
SymPoint Revolutionized: Boosting Panoptic Symbol Spotting with Layer Feature Enhancement
SymPoint is an initial attempt that utilizes point set representation to solve the panoptic symbol spotting task on CAD drawing. Despite its considerable success, it overlooks graphical layer information and suffers from prohibitively slow training convergence. To tackle this issue, we introduce SymPoint-V2, a robust and efficient solution featuring novel, streamlined designs that overcome these limitations. In particular, we first propose a Layer Feature-Enhanced module (LFE) to encode the graphical layer information into the primitive feature, which significantly boosts the performance. We also design a Position-Guided Training (PGT) method to make it easier to learn, which accelerates the convergence of the model in the early stages and further promotes performance. Extensive experiments show that our model achieves better performance and faster convergence than its predecessor SymPoint on the public benchmark. Our code and trained models are available at https://github.com/nicehuster/SymPointV2.
Polyhedral Complex Derivation from Piecewise Trilinear Networks
Recent advancements in visualizing deep neural networks provide insights into their structures and mesh extraction from Continuous Piecewise Affine (CPWA) functions. Meanwhile, developments in neural surface representation learning incorporate non-linear positional encoding, addressing issues like spectral bias; however, this poses challenges in applying mesh extraction techniques based on CPWA functions. Focusing on trilinear interpolating methods as positional encoding, we present theoretical insights and an analytical mesh extraction, showing the transformation of hypersurfaces to flat planes within the trilinear region under the eikonal constraint. Moreover, we introduce a method for approximating intersecting points among three hypersurfaces contributing to broader applications. We empirically validate correctness and parsimony through chamfer distance and efficiency, and angular distance, while examining the correlation between the eikonal loss and the planarity of the hypersurfaces.
Object Pose Estimation with Statistical Guarantees: Conformal Keypoint Detection and Geometric Uncertainty Propagation
The two-stage object pose estimation paradigm first detects semantic keypoints on the image and then estimates the 6D pose by minimizing reprojection errors. Despite performing well on standard benchmarks, existing techniques offer no provable guarantees on the quality and uncertainty of the estimation. In this paper, we inject two fundamental changes, namely conformal keypoint detection and geometric uncertainty propagation, into the two-stage paradigm and propose the first pose estimator that endows an estimation with provable and computable worst-case error bounds. On one hand, conformal keypoint detection applies the statistical machinery of inductive conformal prediction to convert heuristic keypoint detections into circular or elliptical prediction sets that cover the groundtruth keypoints with a user-specified marginal probability (e.g., 90%). Geometric uncertainty propagation, on the other, propagates the geometric constraints on the keypoints to the 6D object pose, leading to a Pose UnceRtainty SEt (PURSE) that guarantees coverage of the groundtruth pose with the same probability. The PURSE, however, is a nonconvex set that does not directly lead to estimated poses and uncertainties. Therefore, we develop RANdom SAmple averaGing (RANSAG) to compute an average pose and apply semidefinite relaxation to upper bound the worst-case errors between the average pose and the groundtruth. On the LineMOD Occlusion dataset we demonstrate: (i) the PURSE covers the groundtruth with valid probabilities; (ii) the worst-case error bounds provide correct uncertainty quantification; and (iii) the average pose achieves better or similar accuracy as representative methods based on sparse keypoints.
Learning Affine Correspondences by Integrating Geometric Constraints
Affine correspondences have received significant attention due to their benefits in tasks like image matching and pose estimation. Existing methods for extracting affine correspondences still have many limitations in terms of performance; thus, exploring a new paradigm is crucial. In this paper, we present a new pipeline designed for extracting accurate affine correspondences by integrating dense matching and geometric constraints. Specifically, a novel extraction framework is introduced, with the aid of dense matching and a novel keypoint scale and orientation estimator. For this purpose, we propose loss functions based on geometric constraints, which can effectively improve accuracy by supervising neural networks to learn feature geometry. The experimental show that the accuracy and robustness of our method outperform the existing ones in image matching tasks. To further demonstrate the effectiveness of the proposed method, we applied it to relative pose estimation. Affine correspondences extracted by our method lead to more accurate poses than the baselines on a range of real-world datasets. The code is available at https://github.com/stilcrad/DenseAffine.
An Empirical Analysis on Spatial Reasoning Capabilities of Large Multimodal Models
Large Multimodal Models (LMMs) have achieved strong performance across a range of vision and language tasks. However, their spatial reasoning capabilities are under-investigated. In this paper, we construct a novel VQA dataset, Spatial-MM, to comprehensively study LMMs' spatial understanding and reasoning capabilities. Our analyses on object-relationship and multi-hop reasoning reveal several important findings. Firstly, bounding boxes and scene graphs, even synthetic ones, can significantly enhance LMMs' spatial reasoning. Secondly, LMMs struggle more with questions posed from the human perspective than the camera perspective about the image. Thirdly, chain of thought (CoT) prompting does not improve model performance on complex multi-hop questions involving spatial relations. % Moreover, spatial reasoning steps are much less accurate than non-spatial ones across MLLMs. Lastly, our perturbation analysis on GQA-spatial reveals that LMMs are much stronger at basic object detection than complex spatial reasoning. We believe our benchmark dataset and in-depth analyses can spark further research on LMMs spatial reasoning. Spatial-MM benchmark is available at: https://github.com/FatemehShiri/Spatial-MM
SAMP: Spatial Anchor-based Motion Policy for Collision-Aware Robotic Manipulators
Neural-based motion planning methods have achieved remarkable progress for robotic manipulators, yet a fundamental challenge lies in simultaneously accounting for both the robot's physical shape and the surrounding environment when generating safe and feasible motions. Moreover, existing approaches often rely on simplified robot models or focus primarily on obstacle representation, which can lead to incomplete collision detection and degraded performance in cluttered scenes. To address these limitations, we propose spatial anchor-based motion policy (SAMP), a unified framework that simultaneously encodes the environment and the manipulator using signed distance field (SDF) anchored on a shared spatial grid. SAMP incorporates a dedicated robot SDF network that captures the manipulator's precise geometry, enabling collision-aware reasoning beyond coarse link approximations. These representations are fused on spatial anchors and used to train a neural motion policy that generates smooth, collision-free trajectories in the proposed efficient feature alignment strategy. Experiments conducted in both simulated and real-world environments consistently show that SAMP outperforms existing methods, delivering an 11% increase in success rate and a 7% reduction in collision rate. These results highlight the benefits of jointly modelling robot and environment geometry, demonstrating its practical value in challenging real-world environments.
Shelving, Stacking, Hanging: Relational Pose Diffusion for Multi-modal Rearrangement
We propose a system for rearranging objects in a scene to achieve a desired object-scene placing relationship, such as a book inserted in an open slot of a bookshelf. The pipeline generalizes to novel geometries, poses, and layouts of both scenes and objects, and is trained from demonstrations to operate directly on 3D point clouds. Our system overcomes challenges associated with the existence of many geometrically-similar rearrangement solutions for a given scene. By leveraging an iterative pose de-noising training procedure, we can fit multi-modal demonstration data and produce multi-modal outputs while remaining precise and accurate. We also show the advantages of conditioning on relevant local geometric features while ignoring irrelevant global structure that harms both generalization and precision. We demonstrate our approach on three distinct rearrangement tasks that require handling multi-modality and generalization over object shape and pose in both simulation and the real world. Project website, code, and videos: https://anthonysimeonov.github.io/rpdiff-multi-modal/
CheXWorld: Exploring Image World Modeling for Radiograph Representation Learning
Humans can develop internal world models that encode common sense knowledge, telling them how the world works and predicting the consequences of their actions. This concept has emerged as a promising direction for establishing general-purpose machine-learning models in recent preliminary works, e.g., for visual representation learning. In this paper, we present CheXWorld, the first effort towards a self-supervised world model for radiographic images. Specifically, our work develops a unified framework that simultaneously models three aspects of medical knowledge essential for qualified radiologists, including 1) local anatomical structures describing the fine-grained characteristics of local tissues (e.g., architectures, shapes, and textures); 2) global anatomical layouts describing the global organization of the human body (e.g., layouts of organs and skeletons); and 3) domain variations that encourage CheXWorld to model the transitions across different appearance domains of radiographs (e.g., varying clarity, contrast, and exposure caused by collecting radiographs from different hospitals, devices, or patients). Empirically, we design tailored qualitative and quantitative analyses, revealing that CheXWorld successfully captures these three dimensions of medical knowledge. Furthermore, transfer learning experiments across eight medical image classification and segmentation benchmarks showcase that CheXWorld significantly outperforms existing SSL methods and large-scale medical foundation models. Code & pre-trained models are available at https://github.com/LeapLabTHU/CheXWorld.
VisorGPT: Learning Visual Prior via Generative Pre-Training
Various stuff and things in visual data possess specific traits, which can be learned by deep neural networks and are implicitly represented as the visual prior, e.g., object location and shape, in the model. Such prior potentially impacts many vision tasks. For example, in conditional image synthesis, spatial conditions failing to adhere to the prior can result in visually inaccurate synthetic results. This work aims to explicitly learn the visual prior and enable the customization of sampling. Inspired by advances in language modeling, we propose to learn Visual prior via Generative Pre-Training, dubbed VisorGPT. By discretizing visual locations of objects, e.g., bounding boxes, human pose, and instance masks, into sequences, \our~can model visual prior through likelihood maximization. Besides, prompt engineering is investigated to unify various visual locations and enable customized sampling of sequential outputs from the learned prior. Experimental results demonstrate that \our~can effectively model the visual prior, which can be employed for many vision tasks, such as customizing accurate human pose for conditional image synthesis models like ControlNet. Code will be released at https://github.com/Sierkinhane/VisorGPT.
MBPTrack: Improving 3D Point Cloud Tracking with Memory Networks and Box Priors
3D single object tracking has been a crucial problem for decades with numerous applications such as autonomous driving. Despite its wide-ranging use, this task remains challenging due to the significant appearance variation caused by occlusion and size differences among tracked targets. To address these issues, we present MBPTrack, which adopts a Memory mechanism to utilize past information and formulates localization in a coarse-to-fine scheme using Box Priors given in the first frame. Specifically, past frames with targetness masks serve as an external memory, and a transformer-based module propagates tracked target cues from the memory to the current frame. To precisely localize objects of all sizes, MBPTrack first predicts the target center via Hough voting. By leveraging box priors given in the first frame, we adaptively sample reference points around the target center that roughly cover the target of different sizes. Then, we obtain dense feature maps by aggregating point features into the reference points, where localization can be performed more effectively. Extensive experiments demonstrate that MBPTrack achieves state-of-the-art performance on KITTI, nuScenes and Waymo Open Dataset, while running at 50 FPS on a single RTX3090 GPU.
3D Human Mesh Estimation from Virtual Markers
Inspired by the success of volumetric 3D pose estimation, some recent human mesh estimators propose to estimate 3D skeletons as intermediate representations, from which, the dense 3D meshes are regressed by exploiting the mesh topology. However, body shape information is lost in extracting skeletons, leading to mediocre performance. The advanced motion capture systems solve the problem by placing dense physical markers on the body surface, which allows to extract realistic meshes from their non-rigid motions. However, they cannot be applied to wild images without markers. In this work, we present an intermediate representation, named virtual markers, which learns 64 landmark keypoints on the body surface based on the large-scale mocap data in a generative style, mimicking the effects of physical markers. The virtual markers can be accurately detected from wild images and can reconstruct the intact meshes with realistic shapes by simple interpolation. Our approach outperforms the state-of-the-art methods on three datasets. In particular, it surpasses the existing methods by a notable margin on the SURREAL dataset, which has diverse body shapes. Code is available at https://github.com/ShirleyMaxx/VirtualMarker.
RelationNet++: Bridging Visual Representations for Object Detection via Transformer Decoder
Existing object detection frameworks are usually built on a single format of object/part representation, i.e., anchor/proposal rectangle boxes in RetinaNet and Faster R-CNN, center points in FCOS and RepPoints, and corner points in CornerNet. While these different representations usually drive the frameworks to perform well in different aspects, e.g., better classification or finer localization, it is in general difficult to combine these representations in a single framework to make good use of each strength, due to the heterogeneous or non-grid feature extraction by different representations. This paper presents an attention-based decoder module similar as that in Transformer~vaswani2017attention to bridge other representations into a typical object detector built on a single representation format, in an end-to-end fashion. The other representations act as a set of key instances to strengthen the main query representation features in the vanilla detectors. Novel techniques are proposed towards efficient computation of the decoder module, including a key sampling approach and a shared location embedding approach. The proposed module is named bridging visual representations (BVR). It can perform in-place and we demonstrate its broad effectiveness in bridging other representations into prevalent object detection frameworks, including RetinaNet, Faster R-CNN, FCOS and ATSS, where about 1.5sim3.0 AP improvements are achieved. In particular, we improve a state-of-the-art framework with a strong backbone by about 2.0 AP, reaching 52.7 AP on COCO test-dev. The resulting network is named RelationNet++. The code will be available at https://github.com/microsoft/RelationNet2.
PlanarTrack: A Large-scale Challenging Benchmark for Planar Object Tracking
Planar object tracking is a critical computer vision problem and has drawn increasing interest owing to its key roles in robotics, augmented reality, etc. Despite rapid progress, its further development, especially in the deep learning era, is largely hindered due to the lack of large-scale challenging benchmarks. Addressing this, we introduce PlanarTrack, a large-scale challenging planar tracking benchmark. Specifically, PlanarTrack consists of 1,000 videos with more than 490K images. All these videos are collected in complex unconstrained scenarios from the wild, which makes PlanarTrack, compared with existing benchmarks, more challenging but realistic for real-world applications. To ensure the high-quality annotation, each frame in PlanarTrack is manually labeled using four corners with multiple-round careful inspection and refinement. To our best knowledge, PlanarTrack, to date, is the largest and most challenging dataset dedicated to planar object tracking. In order to analyze the proposed PlanarTrack, we evaluate 10 planar trackers and conduct comprehensive comparisons and in-depth analysis. Our results, not surprisingly, demonstrate that current top-performing planar trackers degenerate significantly on the challenging PlanarTrack and more efforts are needed to improve planar tracking in the future. In addition, we further derive a variant named PlanarTrack_{BB} for generic object tracking from PlanarTrack. Our evaluation of 10 excellent generic trackers on PlanarTrack_{BB} manifests that, surprisingly, PlanarTrack_{BB} is even more challenging than several popular generic tracking benchmarks and more attention should be paid to handle such planar objects, though they are rigid. All benchmarks and evaluations will be released at the project webpage.
P2B: Point-to-Box Network for 3D Object Tracking in Point Clouds
Towards 3D object tracking in point clouds, a novel point-to-box network termed P2B is proposed in an end-to-end learning manner. Our main idea is to first localize potential target centers in 3D search area embedded with target information. Then point-driven 3D target proposal and verification are executed jointly. In this way, the time-consuming 3D exhaustive search can be avoided. Specifically, we first sample seeds from the point clouds in template and search area respectively. Then, we execute permutation-invariant feature augmentation to embed target clues from template into search area seeds and represent them with target-specific features. Consequently, the augmented search area seeds regress the potential target centers via Hough voting. The centers are further strengthened with seed-wise targetness scores. Finally, each center clusters its neighbors to leverage the ensemble power for joint 3D target proposal and verification. We apply PointNet++ as our backbone and experiments on KITTI tracking dataset demonstrate P2B's superiority (~10%'s improvement over state-of-the-art). Note that P2B can run with 40FPS on a single NVIDIA 1080Ti GPU. Our code and model are available at https://github.com/HaozheQi/P2B.
Roto-translated Local Coordinate Frames For Interacting Dynamical Systems
Modelling interactions is critical in learning complex dynamical systems, namely systems of interacting objects with highly non-linear and time-dependent behaviour. A large class of such systems can be formalized as geometric graphs, i.e., graphs with nodes positioned in the Euclidean space given an arbitrarily chosen global coordinate system, for instance vehicles in a traffic scene. Notwithstanding the arbitrary global coordinate system, the governing dynamics of the respective dynamical systems are invariant to rotations and translations, also known as Galilean invariance. As ignoring these invariances leads to worse generalization, in this work we propose local coordinate frames per node-object to induce roto-translation invariance to the geometric graph of the interacting dynamical system. Further, the local coordinate frames allow for a natural definition of anisotropic filtering in graph neural networks. Experiments in traffic scenes, 3D motion capture, and colliding particles demonstrate that the proposed approach comfortably outperforms the recent state-of-the-art.
ALICE-LRI: A General Method for Lossless Range Image Generation for Spinning LiDAR Sensors without Calibration Metadata
3D LiDAR sensors are essential for autonomous navigation, environmental monitoring, and precision mapping in remote sensing applications. To efficiently process the massive point clouds generated by these sensors, LiDAR data is often projected into 2D range images that organize points by their angular positions and distances. While these range image representations enable efficient processing, conventional projection methods suffer from fundamental geometric inconsistencies that cause irreversible information loss, compromising high-fidelity applications. We present ALICE-LRI (Automatic LiDAR Intrinsic Calibration Estimation for Lossless Range Images), the first general, sensor-agnostic method that achieves lossless range image generation from spinning LiDAR point clouds without requiring manufacturer metadata or calibration files. Our algorithm automatically reverse-engineers the intrinsic geometry of any spinning LiDAR sensor by inferring critical parameters including laser beam configuration, angular distributions, and per-beam calibration corrections, enabling lossless projection and complete point cloud reconstruction with zero point loss. Comprehensive evaluation across the complete KITTI and DurLAR datasets demonstrates that ALICE-LRI achieves perfect point preservation, with zero points lost across all point clouds. Geometric accuracy is maintained well within sensor precision limits, establishing geometric losslessness with real-time performance. We also present a compression case study that validates substantial downstream benefits, demonstrating significant quality improvements in practical applications. This paradigm shift from approximate to lossless LiDAR projections opens new possibilities for high-precision remote sensing applications requiring complete geometric preservation.
A Lung Nodule Dataset with Histopathology-based Cancer Type Annotation
Recently, Computer-Aided Diagnosis (CAD) systems have emerged as indispensable tools in clinical diagnostic workflows, significantly alleviating the burden on radiologists. Nevertheless, despite their integration into clinical settings, CAD systems encounter limitations. Specifically, while CAD systems can achieve high performance in the detection of lung nodules, they face challenges in accurately predicting multiple cancer types. This limitation can be attributed to the scarcity of publicly available datasets annotated with expert-level cancer type information. This research aims to bridge this gap by providing publicly accessible datasets and reliable tools for medical diagnosis, facilitating a finer categorization of different types of lung diseases so as to offer precise treatment recommendations. To achieve this objective, we curated a diverse dataset of lung Computed Tomography (CT) images, comprising 330 annotated nodules (nodules are labeled as bounding boxes) from 95 distinct patients. The quality of the dataset was evaluated using a variety of classical classification and detection models, and these promising results demonstrate that the dataset has a feasible application and further facilitate intelligent auxiliary diagnosis.
On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models
Recent work has shown that it is possible to train deep neural networks that are provably robust to norm-bounded adversarial perturbations. Most of these methods are based on minimizing an upper bound on the worst-case loss over all possible adversarial perturbations. While these techniques show promise, they often result in difficult optimization procedures that remain hard to scale to larger networks. Through a comprehensive analysis, we show how a simple bounding technique, interval bound propagation (IBP), can be exploited to train large provably robust neural networks that beat the state-of-the-art in verified accuracy. While the upper bound computed by IBP can be quite weak for general networks, we demonstrate that an appropriate loss and clever hyper-parameter schedule allow the network to adapt such that the IBP bound is tight. This results in a fast and stable learning algorithm that outperforms more sophisticated methods and achieves state-of-the-art results on MNIST, CIFAR-10 and SVHN. It also allows us to train the largest model to be verified beyond vacuous bounds on a downscaled version of ImageNet.
Star-convex Polyhedra for 3D Object Detection and Segmentation in Microscopy
Accurate detection and segmentation of cell nuclei in volumetric (3D) fluorescence microscopy datasets is an important step in many biomedical research projects. Although many automated methods for these tasks exist, they often struggle for images with low signal-to-noise ratios and/or dense packing of nuclei. It was recently shown for 2D microscopy images that these issues can be alleviated by training a neural network to directly predict a suitable shape representation (star-convex polygon) for cell nuclei. In this paper, we adopt and extend this approach to 3D volumes by using star-convex polyhedra to represent cell nuclei and similar shapes. To that end, we overcome the challenges of 1) finding parameter-efficient star-convex polyhedra representations that can faithfully describe cell nuclei shapes, 2) adapting to anisotropic voxel sizes often found in fluorescence microscopy datasets, and 3) efficiently computing intersections between pairs of star-convex polyhedra (required for non-maximum suppression). Although our approach is quite general, since star-convex polyhedra include common shapes like bounding boxes and spheres as special cases, our focus is on accurate detection and segmentation of cell nuclei. Finally, we demonstrate on two challenging datasets that our approach (StarDist-3D) leads to superior results when compared to classical and deep learning based methods.
Cross-modal feature fusion for robust point cloud registration with ambiguous geometry
Point cloud registration has seen significant advancements with the application of deep learning techniques. However, existing approaches often overlook the potential of integrating radiometric information from RGB images. This limitation reduces their effectiveness in aligning point clouds pairs, especially in regions where geometric data alone is insufficient. When used effectively, radiometric information can enhance the registration process by providing context that is missing from purely geometric data. In this paper, we propose CoFF, a novel Cross-modal Feature Fusion method that utilizes both point cloud geometry and RGB images for pairwise point cloud registration. Assuming that the co-registration between point clouds and RGB images is available, CoFF explicitly addresses the challenges where geometric information alone is unclear, such as in regions with symmetric similarity or planar structures, through a two-stage fusion of 3D point cloud features and 2D image features. It incorporates a cross-modal feature fusion module that assigns pixel-wise image features to 3D input point clouds to enhance learned 3D point features, and integrates patch-wise image features with superpoint features to improve the quality of coarse matching. This is followed by a coarse-to-fine matching module that accurately establishes correspondences using the fused features. We extensively evaluate CoFF on four common datasets: 3DMatch, 3DLoMatch, IndoorLRS, and the recently released ScanNet++ datasets. In addition, we assess CoFF on specific subset datasets containing geometrically ambiguous cases. Our experimental results demonstrate that CoFF achieves state-of-the-art registration performance across all benchmarks, including remarkable registration recalls of 95.9% and 81.6% on the widely-used 3DMatch and 3DLoMatch datasets, respectively...(Truncated to fit arXiv abstract length)
Human Pose-Constrained UV Map Estimation
UV map estimation is used in computer vision for detailed analysis of human posture or activity. Previous methods assign pixels to body model vertices by comparing pixel descriptors independently, without enforcing global coherence or plausibility in the UV map. We propose Pose-Constrained Continuous Surface Embeddings (PC-CSE), which integrates estimated 2D human pose into the pixel-to-vertex assignment process. The pose provides global anatomical constraints, ensuring that UV maps remain coherent while preserving local precision. Evaluation on DensePose COCO demonstrates consistent improvement, regardless of the chosen 2D human pose model. Whole-body poses offer better constraints by incorporating additional details about the hands and feet. Conditioning UV maps with human pose reduces invalid mappings and enhances anatomical plausibility. In addition, we highlight inconsistencies in the ground-truth annotations.
EdgeGaussians -- 3D Edge Mapping via Gaussian Splatting
With their meaningful geometry and their omnipresence in the 3D world, edges are extremely useful primitives in computer vision. 3D edges comprise of lines and curves, and methods to reconstruct them use either multi-view images or point clouds as input. State-of-the-art image-based methods first learn a 3D edge point cloud then fit 3D edges to it. The edge point cloud is obtained by learning a 3D neural implicit edge field from which the 3D edge points are sampled on a specific level set (0 or 1). However, such methods present two important drawbacks: i) it is not realistic to sample points on exact level sets due to float imprecision and training inaccuracies. Instead, they are sampled within a range of levels so the points do not lie accurately on the 3D edges and require further processing. ii) Such implicit representations are computationally expensive and require long training times. In this paper, we address these two limitations and propose a 3D edge mapping that is simpler, more efficient, and preserves accuracy. Our method learns explicitly the 3D edge points and their edge direction hence bypassing the need for point sampling. It casts a 3D edge point as the center of a 3D Gaussian and the edge direction as the principal axis of the Gaussian. Such a representation has the advantage of being not only geometrically meaningful but also compatible with the efficient training optimization defined in Gaussian Splatting. Results show that the proposed method produces edges as accurate and complete as the state-of-the-art while being an order of magnitude faster. Code is released at https://github.com/kunalchelani/EdgeGaussians.
SatCLIP: Global, General-Purpose Location Embeddings with Satellite Imagery
Geographic location is essential for modeling tasks in fields ranging from ecology to epidemiology to the Earth system sciences. However, extracting relevant and meaningful characteristics of a location can be challenging, often entailing expensive data fusion or data distillation from global imagery datasets. To address this challenge, we introduce Satellite Contrastive Location-Image Pretraining (SatCLIP), a global, general-purpose geographic location encoder that learns an implicit representation of locations from openly available satellite imagery. Trained location encoders provide vector embeddings summarizing the characteristics of any given location for convenient usage in diverse downstream tasks. We show that SatCLIP embeddings, pretrained on globally sampled multi-spectral Sentinel-2 satellite data, can be used in various predictive tasks that depend on location information but not necessarily satellite imagery, including temperature prediction, animal recognition in imagery, and population density estimation. Across tasks, SatCLIP embeddings consistently outperform embeddings from existing pretrained location encoders, ranging from models trained on natural images to models trained on semantic context. SatCLIP embeddings also help to improve geographic generalization. This demonstrates the potential of general-purpose location encoders and opens the door to learning meaningful representations of our planet from the vast, varied, and largely untapped modalities of geospatial data.

 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
	 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			