new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 4

FlowOpt: Fast Optimization Through Whole Flow Processes for Training-Free Editing

The remarkable success of diffusion and flow-matching models has ignited a surge of works on adapting them at test time for controlled generation tasks. Examples range from image editing to restoration, compression and personalization. However, due to the iterative nature of the sampling process in those models, it is computationally impractical to use gradient-based optimization to directly control the image generated at the end of the process. As a result, existing methods typically resort to manipulating each timestep separately. Here we introduce FlowOpt - a zero-order (gradient-free) optimization framework that treats the entire flow process as a black box, enabling optimization through the whole sampling path without backpropagation through the model. Our method is both highly efficient and allows users to monitor the intermediate optimization results and perform early stopping if desired. We prove a sufficient condition on FlowOpt's step-size, under which convergence to the global optimum is guaranteed. We further show how to empirically estimate this upper bound so as to choose an appropriate step-size. We demonstrate how FlowOpt can be used for image editing, showcasing two options: (i) inversion (determining the initial noise that generates a given image), and (ii) directly steering the edited image to be similar to the source image while conforming to a target text prompt. In both cases, FlowOpt achieves state-of-the-art results while using roughly the same number of neural function evaluations (NFEs) as existing methods. Code and examples are available on the project's webpage.

  • 3 authors
·
Oct 24 1

WildVidFit: Video Virtual Try-On in the Wild via Image-Based Controlled Diffusion Models

Video virtual try-on aims to generate realistic sequences that maintain garment identity and adapt to a person's pose and body shape in source videos. Traditional image-based methods, relying on warping and blending, struggle with complex human movements and occlusions, limiting their effectiveness in video try-on applications. Moreover, video-based models require extensive, high-quality data and substantial computational resources. To tackle these issues, we reconceptualize video try-on as a process of generating videos conditioned on garment descriptions and human motion. Our solution, WildVidFit, employs image-based controlled diffusion models for a streamlined, one-stage approach. This model, conditioned on specific garments and individuals, is trained on still images rather than videos. It leverages diffusion guidance from pre-trained models including a video masked autoencoder for segment smoothness improvement and a self-supervised model for feature alignment of adjacent frame in the latent space. This integration markedly boosts the model's ability to maintain temporal coherence, enabling more effective video try-on within an image-based framework. Our experiments on the VITON-HD and DressCode datasets, along with tests on the VVT and TikTok datasets, demonstrate WildVidFit's capability to generate fluid and coherent videos. The project page website is at wildvidfit-project.github.io.

  • 6 authors
·
Jul 15, 2024

Advancing Diffusion Models: Alias-Free Resampling and Enhanced Rotational Equivariance

Recent advances in image generation, particularly via diffusion models, have led to impressive improvements in image synthesis quality. Despite this, diffusion models are still challenged by model-induced artifacts and limited stability in image fidelity. In this work, we hypothesize that the primary cause of this issue is the improper resampling operation that introduces aliasing in the diffusion model and a careful alias-free resampling dictated by image processing theory can improve the model's performance in image synthesis. We propose the integration of alias-free resampling layers into the UNet architecture of diffusion models without adding extra trainable parameters, thereby maintaining computational efficiency. We then assess whether these theory-driven modifications enhance image quality and rotational equivariance. Our experimental results on benchmark datasets, including CIFAR-10, MNIST, and MNIST-M, reveal consistent gains in image quality, particularly in terms of FID and KID scores. Furthermore, we propose a modified diffusion process that enables user-controlled rotation of generated images without requiring additional training. Our findings highlight the potential of theory-driven enhancements such as alias-free resampling in generative models to improve image quality while maintaining model efficiency and pioneer future research directions to incorporate them into video-generating diffusion models, enabling deeper exploration of the applications of alias-free resampling in generative modeling.

  • 1 authors
·
Nov 13, 2024

Grounding Text-to-Image Diffusion Models for Controlled High-Quality Image Generation

Text-to-image (T2I) generative diffusion models have demonstrated outstanding performance in synthesizing diverse, high-quality visuals from text captions. Several layout-to-image models have been developed to control the generation process by utilizing a wide range of layouts, such as segmentation maps, edges, and human keypoints. In this work, we propose ObjectDiffusion, a model that conditions T2I diffusion models on semantic and spatial grounding information, enabling the precise rendering and placement of desired objects in specific locations defined by bounding boxes. To achieve this, we make substantial modifications to the network architecture introduced in ControlNet to integrate it with the grounding method proposed in GLIGEN. We fine-tune ObjectDiffusion on the COCO2017 training dataset and evaluate it on the COCO2017 validation dataset. Our model improves the precision and quality of controllable image generation, achieving an AP_{50} of 46.6, an AR of 44.5, and an FID of 19.8, outperforming the current SOTA model trained on open-source datasets across all three metrics. ObjectDiffusion demonstrates a distinctive capability in synthesizing diverse, high-quality, high-fidelity images that seamlessly conform to the semantic and spatial control layout. Evaluated in qualitative and quantitative tests, ObjectDiffusion exhibits remarkable grounding capabilities in closed-set and open-set vocabulary settings across a wide variety of contexts. The qualitative assessment verifies the ability of ObjectDiffusion to generate multiple detailed objects in varying sizes, forms, and locations.

  • 2 authors
·
Jan 15 1

PSyDUCK: Training-Free Steganography for Latent Diffusion

Recent advances in generative AI have opened promising avenues for steganography, which can securely protect sensitive information for individuals operating in hostile environments, such as journalists, activists, and whistleblowers. However, existing methods for generative steganography have significant limitations, particularly in scalability and their dependence on retraining diffusion models. We introduce PSyDUCK, a training-free, model-agnostic steganography framework specifically designed for latent diffusion models. PSyDUCK leverages controlled divergence and local mixing within the latent denoising process, enabling high-capacity, secure message embedding without compromising visual fidelity. Our method dynamically adapts embedding strength to balance accuracy and detectability, significantly improving upon existing pixel-space approaches. Crucially, PSyDUCK extends generative steganography to latent-space video diffusion models, surpassing previous methods in both encoding capacity and robustness. Extensive experiments demonstrate PSyDUCK's superiority over state-of-the-art techniques, achieving higher transmission accuracy and lower detectability rates across diverse image and video datasets. By overcoming the key challenges associated with latent diffusion model architectures, PSyDUCK sets a new standard for generative steganography, paving the way for scalable, real-world steganographic applications.

  • 6 authors
·
Jan 31

C-Drag: Chain-of-Thought Driven Motion Controller for Video Generation

Trajectory-based motion control has emerged as an intuitive and efficient approach for controllable video generation. However, the existing trajectory-based approaches are usually limited to only generating the motion trajectory of the controlled object and ignoring the dynamic interactions between the controlled object and its surroundings. To address this limitation, we propose a Chain-of-Thought-based motion controller for controllable video generation, named C-Drag. Instead of directly generating the motion of some objects, our C-Drag first performs object perception and then reasons the dynamic interactions between different objects according to the given motion control of the objects. Specifically, our method includes an object perception module and a Chain-of-Thought-based motion reasoning module. The object perception module employs visual language models to capture the position and category information of various objects within the image. The Chain-of-Thought-based motion reasoning module takes this information as input and conducts a stage-wise reasoning process to generate motion trajectories for each of the affected objects, which are subsequently fed to the diffusion model for video synthesis. Furthermore, we introduce a new video object interaction (VOI) dataset to evaluate the generation quality of motion controlled video generation methods. Our VOI dataset contains three typical types of interactions and provides the motion trajectories of objects that can be used for accurate performance evaluation. Experimental results show that C-Drag achieves promising performance across multiple metrics, excelling in object motion control. Our benchmark, codes, and models will be available at https://github.com/WesLee88524/C-Drag-Official-Repo.

  • 7 authors
·
Feb 27