new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 29

Sketch-Guided Scene Image Generation

Text-to-image models are showcasing the impressive ability to create high-quality and diverse generative images. Nevertheless, the transition from freehand sketches to complex scene images remains challenging using diffusion models. In this study, we propose a novel sketch-guided scene image generation framework, decomposing the task of scene image scene generation from sketch inputs into object-level cross-domain generation and scene-level image construction. We employ pre-trained diffusion models to convert each single object drawing into an image of the object, inferring additional details while maintaining the sparse sketch structure. In order to maintain the conceptual fidelity of the foreground during scene generation, we invert the visual features of object images into identity embeddings for scene generation. In scene-level image construction, we generate the latent representation of the scene image using the separated background prompts, and then blend the generated foreground objects according to the layout of the sketch input. To ensure the foreground objects' details remain unchanged while naturally composing the scene image, we infer the scene image on the blended latent representation using a global prompt that includes the trained identity tokens. Through qualitative and quantitative experiments, we demonstrate the ability of the proposed approach to generate scene images from hand-drawn sketches surpasses the state-of-the-art approaches.

  • 4 authors
·
Jul 8, 2024

NatureLM: Deciphering the Language of Nature for Scientific Discovery

Foundation models have revolutionized natural language processing and artificial intelligence, significantly enhancing how machines comprehend and generate human languages. Inspired by the success of these foundation models, researchers have developed foundation models for individual scientific domains, including small molecules, materials, proteins, DNA, and RNA. However, these models are typically trained in isolation, lacking the ability to integrate across different scientific domains. Recognizing that entities within these domains can all be represented as sequences, which together form the "language of nature", we introduce Nature Language Model (briefly, NatureLM), a sequence-based science foundation model designed for scientific discovery. Pre-trained with data from multiple scientific domains, NatureLM offers a unified, versatile model that enables various applications including: (i) generating and optimizing small molecules, proteins, RNA, and materials using text instructions; (ii) cross-domain generation/design, such as protein-to-molecule and protein-to-RNA generation; and (iii) achieving state-of-the-art performance in tasks like SMILES-to-IUPAC translation and retrosynthesis on USPTO-50k. NatureLM offers a promising generalist approach for various scientific tasks, including drug discovery (hit generation/optimization, ADMET optimization, synthesis), novel material design, and the development of therapeutic proteins or nucleotides. We have developed NatureLM models in different sizes (1 billion, 8 billion, and 46.7 billion parameters) and observed a clear improvement in performance as the model size increases.

XMAD-Bench: Cross-Domain Multilingual Audio Deepfake Benchmark

Recent advances in audio generation led to an increasing number of deepfakes, making the general public more vulnerable to financial scams, identity theft, and misinformation. Audio deepfake detectors promise to alleviate this issue, with many recent studies reporting accuracy rates close to 99%. However, these methods are typically tested in an in-domain setup, where the deepfake samples from the training and test sets are produced by the same generative models. To this end, we introduce XMAD-Bench, a large-scale cross-domain multilingual audio deepfake benchmark comprising 668.8 hours of real and deepfake speech. In our novel dataset, the speakers, the generative methods, and the real audio sources are distinct across training and test splits. This leads to a challenging cross-domain evaluation setup, where audio deepfake detectors can be tested ``in the wild''. Our in-domain and cross-domain experiments indicate a clear disparity between the in-domain performance of deepfake detectors, which is usually as high as 100%, and the cross-domain performance of the same models, which is sometimes similar to random chance. Our benchmark highlights the need for the development of robust audio deepfake detectors, which maintain their generalization capacity across different languages, speakers, generative methods, and data sources. Our benchmark is publicly released at https://github.com/ristea/xmad-bench/.

  • 6 authors
·
May 31

AGILE: A Diffusion-Based Attention-Guided Image and Label Translation for Efficient Cross-Domain Plant Trait Identification

Semantically consistent cross-domain image translation facilitates the generation of training data by transferring labels across different domains, making it particularly useful for plant trait identification in agriculture. However, existing generative models struggle to maintain object-level accuracy when translating images between domains, especially when domain gaps are significant. In this work, we introduce AGILE (Attention-Guided Image and Label Translation for Efficient Cross-Domain Plant Trait Identification), a diffusion-based framework that leverages optimized text embeddings and attention guidance to semantically constrain image translation. AGILE utilizes pretrained diffusion models and publicly available agricultural datasets to improve the fidelity of translated images while preserving critical object semantics. Our approach optimizes text embeddings to strengthen the correspondence between source and target images and guides attention maps during the denoising process to control object placement. We evaluate AGILE on cross-domain plant datasets and demonstrate its effectiveness in generating semantically accurate translated images. Quantitative experiments show that AGILE enhances object detection performance in the target domain while maintaining realism and consistency. Compared to prior image translation methods, AGILE achieves superior semantic alignment, particularly in challenging cases where objects vary significantly or domain gaps are substantial.

  • 5 authors
·
Mar 27

Cross-Domain Image Captioning with Discriminative Finetuning

Neural captioners are typically trained to mimic human-generated references without optimizing for any specific communication goal, leading to problems such as the generation of vague captions. In this paper, we show that fine-tuning an out-of-the-box neural captioner with a self-supervised discriminative communication objective helps to recover a plain, visually descriptive language that is more informative about image contents. Given a target image, the system must learn to produce a description that enables an out-of-the-box text-conditioned image retriever to identify such image among a set of candidates. We experiment with the popular ClipCap captioner, also replicating the main results with BLIP. In terms of similarity to ground-truth human descriptions, the captions emerging from discriminative finetuning lag slightly behind those generated by the non-finetuned model, when the latter is trained and tested on the same caption dataset. However, when the model is used without further tuning to generate captions for out-of-domain datasets, our discriminatively-finetuned captioner generates descriptions that resemble human references more than those produced by the same captioner without finetuning. We further show that, on the Conceptual Captions dataset, discriminatively finetuned captions are more helpful than either vanilla ClipCap captions or ground-truth captions for human annotators tasked with an image discrimination task.

  • 6 authors
·
Apr 4, 2023

ToonTalker: Cross-Domain Face Reenactment

We target cross-domain face reenactment in this paper, i.e., driving a cartoon image with the video of a real person and vice versa. Recently, many works have focused on one-shot talking face generation to drive a portrait with a real video, i.e., within-domain reenactment. Straightforwardly applying those methods to cross-domain animation will cause inaccurate expression transfer, blur effects, and even apparent artifacts due to the domain shift between cartoon and real faces. Only a few works attempt to settle cross-domain face reenactment. The most related work AnimeCeleb requires constructing a dataset with pose vector and cartoon image pairs by animating 3D characters, which makes it inapplicable anymore if no paired data is available. In this paper, we propose a novel method for cross-domain reenactment without paired data. Specifically, we propose a transformer-based framework to align the motions from different domains into a common latent space where motion transfer is conducted via latent code addition. Two domain-specific motion encoders and two learnable motion base memories are used to capture domain properties. A source query transformer and a driving one are exploited to project domain-specific motion to the canonical space. The edited motion is projected back to the domain of the source with a transformer. Moreover, since no paired data is provided, we propose a novel cross-domain training scheme using data from two domains with the designed analogy constraint. Besides, we contribute a cartoon dataset in Disney style. Extensive evaluations demonstrate the superiority of our method over competing methods.

  • 8 authors
·
Aug 24, 2023

Jurassic is (almost) All You Need: Few-Shot Meaning-to-Text Generation for Open-Domain Dialogue

One challenge with open-domain dialogue systems is the need to produce truthful, high-quality responses on any topic. We aim to improve the quality and coverage of Athena, an Alexa Prize dialogue system. We experiment with few-shot prompt-based learning, comparing GPT-Neo to Jurassic-1, for the movies, music, TV, sports, and video game domains, both within and cross-domain, with different prompt set sizes (2, 3, 10), formats, and meaning representations consisting of either sets of WikiData KG triples, or dialogue acts. Our evaluation uses BLEURT and human metrics, and shows that with 10-shot prompting, Athena-Jurassic's performance is significantly better for coherence and semantic accuracy. Experiments with 2-shot cross-domain prompts results in a huge performance drop for Athena-GPT-Neo, whose semantic accuracy falls to 0.41, and whose untrue hallucination rate increases to 12%. Experiments with dialogue acts for video games show that with 10-shot prompting, both models learn to control dialogue acts, but Athena-Jurassic has significantly higher coherence, and only 4% untrue hallucinations. Our results suggest that Athena-Jurassic produces high enough quality outputs to be useful in live systems with real users. To our knowledge, these are the first results demonstrating that few-shot semantic prompt-based learning can create NLGs that generalize to new domains, and produce high-quality, semantically-controlled, conversational responses directly from meaning representations.

  • 5 authors
·
Oct 15, 2021

Generative Multi-Target Cross-Domain Recommendation

Recently, there has been a surge of interest in Multi-Target Cross-Domain Recommendation (MTCDR), which aims to enhance recommendation performance across multiple domains simultaneously. Existing MTCDR methods primarily rely on domain-shared entities (\eg users or items) to fuse and transfer cross-domain knowledge, which may be unavailable in non-overlapped recommendation scenarios. Some studies model user preferences and item features as domain-sharable semantic representations, which can be utilized to tackle the MTCDR task. Nevertheless, they often require extensive auxiliary data for pre-training. Developing more effective solutions for MTCDR remains an important area for further exploration. Inspired by recent advancements in generative recommendation, this paper introduces GMC, a generative paradigm-based approach for multi-target cross-domain recommendation. The core idea of GMC is to leverage semantically quantized discrete item identifiers as a medium for integrating multi-domain knowledge within a unified generative model. GMC first employs an item tokenizer to generate domain-shared semantic identifiers for each item, and then formulates item recommendation as a next-token generation task by training a domain-unified sequence-to-sequence model. To further leverage the domain information to enhance performance, we incorporate a domain-aware contrastive loss into the semantic identifier learning, and perform domain-specific fine-tuning on the unified recommender. Extensive experiments on five public datasets demonstrate the effectiveness of GMC compared to a range of baseline methods.

  • 4 authors
·
Jul 17

Hard-aware Instance Adaptive Self-training for Unsupervised Cross-domain Semantic Segmentation

The divergence between labeled training data and unlabeled testing data is a significant challenge for recent deep learning models. Unsupervised domain adaptation (UDA) attempts to solve such problem. Recent works show that self-training is a powerful approach to UDA. However, existing methods have difficulty in balancing the scalability and performance. In this paper, we propose a hard-aware instance adaptive self-training framework for UDA on the task of semantic segmentation. To effectively improve the quality and diversity of pseudo-labels, we develop a novel pseudo-label generation strategy with an instance adaptive selector. We further enrich the hard class pseudo-labels with inter-image information through a skillfully designed hard-aware pseudo-label augmentation. Besides, we propose the region-adaptive regularization to smooth the pseudo-label region and sharpen the non-pseudo-label region. For the non-pseudo-label region, consistency constraint is also constructed to introduce stronger supervision signals during model optimization. Our method is so concise and efficient that it is easy to be generalized to other UDA methods. Experiments on GTA5 to Cityscapes, SYNTHIA to Cityscapes, and Cityscapes to Oxford RobotCar demonstrate the superior performance of our approach compared with the state-of-the-art methods. Our codes are available at https://github.com/bupt-ai-cz/HIAST.

  • 6 authors
·
Feb 14, 2023

Is Translation Helpful? An Empirical Analysis of Cross-Lingual Transfer in Low-Resource Dialog Generation

Cross-lingual transfer is important for developing high-quality chatbots in multiple languages due to the strongly imbalanced distribution of language resources. A typical approach is to leverage off-the-shelf machine translation (MT) systems to utilize either the training corpus or developed models from high-resource languages. In this work, we investigate whether it is helpful to utilize MT at all in this task. To do so, we simulate a low-resource scenario assuming access to limited Chinese dialog data in the movie domain and large amounts of English dialog data from multiple domains. Experiments show that leveraging English dialog corpora can indeed improve the naturalness, relevance and cross-domain transferability in Chinese. However, directly using English dialog corpora in its original form, surprisingly, is better than using its translated version. As the topics and wording habits in daily conversations are strongly culture-dependent, MT can reinforce the bias from high-resource languages, yielding unnatural generations in the target language. Considering the cost of translating large amounts of text and the strong effects of the translation quality, we suggest future research should rather focus on utilizing the original English data for cross-lingual transfer in dialog generation. We perform extensive human evaluations and ablation studies. The analysis results, together with the collected dataset, are presented to draw attention towards this area and benefit future research.

  • 3 authors
·
May 21, 2023

HiTab: A Hierarchical Table Dataset for Question Answering and Natural Language Generation

Tables are often created with hierarchies, but existing works on table reasoning mainly focus on flat tables and neglect hierarchical tables. Hierarchical tables challenge existing methods by hierarchical indexing, as well as implicit relationships of calculation and semantics. This work presents HiTab, a free and open dataset to study question answering (QA) and natural language generation (NLG) over hierarchical tables. HiTab is a cross-domain dataset constructed from a wealth of statistical reports (analyses) and Wikipedia pages, and has unique characteristics: (1) nearly all tables are hierarchical, and (2) both target sentences for NLG and questions for QA are revised from original, meaningful, and diverse descriptive sentences authored by analysts and professions of reports. (3) to reveal complex numerical reasoning in statistical analyses, we provide fine-grained annotations of entity and quantity alignment. HiTab provides 10,686 QA pairs and descriptive sentences with well-annotated quantity and entity alignment on 3,597 tables with broad coverage of table hierarchies and numerical reasoning types. Targeting hierarchical structure, we devise a novel hierarchy-aware logical form for symbolic reasoning over tables, which shows high effectiveness. Targeting complex numerical reasoning, we propose partially supervised training given annotations of entity and quantity alignment, which helps models to largely reduce spurious predictions in the QA task. In the NLG task, we find that entity and quantity alignment also helps NLG models to generate better results in a conditional generation setting. Experiment results of state-of-the-art baselines suggest that this dataset presents a strong challenge and a valuable benchmark for future research.

  • 9 authors
·
Aug 15, 2021

Exploring the Viability of Synthetic Query Generation for Relevance Prediction

Query-document relevance prediction is a critical problem in Information Retrieval systems. This problem has increasingly been tackled using (pretrained) transformer-based models which are finetuned using large collections of labeled data. However, in specialized domains such as e-commerce and healthcare, the viability of this approach is limited by the dearth of large in-domain data. To address this paucity, recent methods leverage these powerful models to generate high-quality task and domain-specific synthetic data. Prior work has largely explored synthetic data generation or query generation (QGen) for Question-Answering (QA) and binary (yes/no) relevance prediction, where for instance, the QGen models are given a document, and trained to generate a query relevant to that document. However in many problems, we have a more fine-grained notion of relevance than a simple yes/no label. Thus, in this work, we conduct a detailed study into how QGen approaches can be leveraged for nuanced relevance prediction. We demonstrate that -- contrary to claims from prior works -- current QGen approaches fall short of the more conventional cross-domain transfer-learning approaches. Via empirical studies spanning 3 public e-commerce benchmarks, we identify new shortcomings of existing QGen approaches -- including their inability to distinguish between different grades of relevance. To address this, we introduce label-conditioned QGen models which incorporates knowledge about the different relevance. While our experiments demonstrate that these modifications help improve performance of QGen techniques, we also find that QGen approaches struggle to capture the full nuance of the relevance label space and as a result the generated queries are not faithful to the desired relevance label.

  • 6 authors
·
May 19, 2023

GoViG: Goal-Conditioned Visual Navigation Instruction Generation

We introduce Goal-Conditioned Visual Navigation Instruction Generation (GoViG), a new task that aims to autonomously generate precise and contextually coherent navigation instructions solely from egocentric visual observations of initial and goal states. Unlike conventional approaches that rely on structured inputs such as semantic annotations or environmental maps, GoViG exclusively leverages raw egocentric visual data, substantially improving its adaptability to unseen and unstructured environments. Our method addresses this task by decomposing it into two interconnected subtasks: (1) visual forecasting, which predicts intermediate visual states bridging the initial and goal views; and (2) instruction generation, which synthesizes linguistically coherent instructions grounded in both observed and anticipated visuals. These subtasks are integrated within an autoregressive multimodal large language model trained with tailored objectives to ensure spatial accuracy and linguistic clarity. Furthermore, we introduce two complementary multimodal reasoning strategies, one-pass and interleaved reasoning, to mimic incremental human cognitive processes during navigation. To evaluate our method, we propose the R2R-Goal dataset, combining diverse synthetic and real-world trajectories. Empirical results demonstrate significant improvements over state-of-the-art methods, achieving superior BLEU-4 and CIDEr scores along with robust cross-domain generalization.

  • 8 authors
·
Aug 13

Time Series Generation Under Data Scarcity: A Unified Generative Modeling Approach

Generative modeling of time series is a central challenge in time series analysis, particularly under data-scarce conditions. Despite recent advances in generative modeling, a comprehensive understanding of how state-of-the-art generative models perform under limited supervision remains lacking. In this work, we conduct the first large-scale study evaluating leading generative models in data-scarce settings, revealing a substantial performance gap between full-data and data-scarce regimes. To close this gap, we propose a unified diffusion-based generative framework that can synthesize high-fidelity time series across diverse domains using just a few examples. Our model is pre-trained on a large, heterogeneous collection of time series datasets, enabling it to learn generalizable temporal representations. It further incorporates architectural innovations such as dynamic convolutional layers for flexible channel adaptation and dataset token conditioning for domain-aware generation. Without requiring abundant supervision, our unified model achieves state-of-the-art performance in few-shot settings-outperforming domain-specific baselines across a wide range of subset sizes. Remarkably, it also surpasses all baselines even when tested on full datasets benchmarks, highlighting the strength of pre-training and cross-domain generalization. We hope this work encourages the community to revisit few-shot generative modeling as a key problem in time series research and pursue unified solutions that scale efficiently across domains. Code is available at https://github.com/azencot-group/ImagenFew.

  • 5 authors
·
May 26

TableQA: a Large-Scale Chinese Text-to-SQL Dataset for Table-Aware SQL Generation

Parsing natural language to corresponding SQL (NL2SQL) with data driven approaches like deep neural networks attracts much attention in recent years. Existing NL2SQL datasets assume that condition values should appear exactly in natural language questions and the queries are answerable given the table. However, these assumptions may fail in practical scenarios, because user may use different expressions for the same content in the table, and query information outside the table without the full picture of contents in table. Therefore we present TableQA, a large-scale cross-domain Natural Language to SQL dataset in Chinese language consisting 64,891 questions and 20,311 unique SQL queries on over 6,000 tables. Different from exisiting NL2SQL datasets, TableQA requires to generalize well not only to SQL skeletons of different questions and table schemas, but also to the various expressions for condition values. Experiment results show that the state-of-the-art model with 95.1% condition value accuracy on WikiSQL only gets 46.8% condition value accuracy and 43.0% logic form accuracy on TableQA, indicating the proposed dataset is challenging and necessary to handle. Two table-aware approaches are proposed to alleviate the problem, the end-to-end approaches obtains 51.3% and 47.4% accuracy on the condition value and logic form tasks, with improvement of 4.7% and 3.4% respectively.

  • 3 authors
·
Jun 9, 2020

UniMoE-Audio: Unified Speech and Music Generation with Dynamic-Capacity MoE

Recent advances in unified multimodal models indicate a clear trend towards comprehensive content generation. However, the auditory domain remains a significant challenge, with music and speech often developed in isolation, hindering progress towards universal audio synthesis. This separation stems from inherent task conflicts and severe data imbalances, which impede the development of a truly unified audio generation model. To address this challenge, we propose UniMoE-Audio, a unified speech and music generation model within a novel Dynamic-Capacity Mixture-of-Experts (MoE) framework. Architecturally, UniMoE-Audio introduces a Top-P routing strategy for dynamic expert number allocation, and a hybrid expert design comprising routed experts for domain-specific knowledge, shared experts for domain-agnostic features, and null experts for adaptive computation skipping. To tackle data imbalance, we introduce a three-stage training curriculum: 1) Independent Specialist Training leverages original datasets to instill domain-specific knowledge into each "proto-expert" without interference; 2) MoE Integration and Warmup incorporates these specialists into the UniMoE-Audio architecture, warming up the gate module and shared expert using a subset of balanced dataset; and 3) Synergistic Joint Training trains the entire model end-to-end on the fully balanced dataset, fostering enhanced cross-domain synergy. Extensive experiments show that UniMoE-Audio not only achieves state-of-the-art performance on major speech and music generation benchmarks, but also demonstrates superior synergistic learning, mitigating the performance degradation typically seen in naive joint training. Our findings highlight the substantial potential of specialized MoE architecture and curated training strategies in advancing the field of universal audio generation. Homepage: https://mukioxun.github.io/Uni-MoE-site/home.html

Evidence-Driven Retrieval Augmented Response Generation for Online Misinformation

The proliferation of online misinformation has posed significant threats to public interest. While numerous online users actively participate in the combat against misinformation, many of such responses can be characterized by the lack of politeness and supporting facts. As a solution, text generation approaches are proposed to automatically produce counter-misinformation responses. Nevertheless, existing methods are often trained end-to-end without leveraging external knowledge, resulting in subpar text quality and excessively repetitive responses. In this paper, we propose retrieval augmented response generation for online misinformation (RARG), which collects supporting evidence from scientific sources and generates counter-misinformation responses based on the evidences. In particular, our RARG consists of two stages: (1) evidence collection, where we design a retrieval pipeline to retrieve and rerank evidence documents using a database comprising over 1M academic articles; (2) response generation, in which we align large language models (LLMs) to generate evidence-based responses via reinforcement learning from human feedback (RLHF). We propose a reward function to maximize the utilization of the retrieved evidence while maintaining the quality of the generated text, which yields polite and factual responses that clearly refutes misinformation. To demonstrate the effectiveness of our method, we study the case of COVID-19 and perform extensive experiments with both in- and cross-domain datasets, where RARG consistently outperforms baselines by generating high-quality counter-misinformation responses.

  • 6 authors
·
Mar 22, 2024

PRODIGy: a PROfile-based DIalogue Generation dataset

Providing dialogue agents with a profile representation can improve their consistency and coherence, leading to better conversations. However, current profile-based dialogue datasets for training such agents contain either explicit profile representations that are simple and dialogue-specific, or implicit representations that are difficult to collect. In this work, we propose a unified framework in which we bring together both standard and more sophisticated profile representations by creating a new resource where each dialogue is aligned with all possible speaker representations such as communication style, biographies, and personality. This framework allows to test several baselines built using generative language models with several profile configurations. The automatic evaluation shows that profile-based models have better generalisation capabilities than models trained on dialogues only, both in-domain and cross-domain settings. These results are consistent for fine-tuned models and instruction-based LLMs. Additionally, human evaluation demonstrates a clear preference for generations consistent with both profile and context. Finally, to account for possible privacy concerns, all experiments are done under two configurations: inter-character and intra-character. In the former, the LM stores the information about the character in its internal representation, while in the latter, the LM does not retain any personal information but uses it only at inference time.

  • 3 authors
·
Nov 9, 2023

SalUn: Empowering Machine Unlearning via Gradient-based Weight Saliency in Both Image Classification and Generation

With evolving data regulations, machine unlearning (MU) has become an important tool for fostering trust and safety in today's AI models. However, existing MU methods focusing on data and/or weight perspectives often suffer limitations in unlearning accuracy, stability, and cross-domain applicability. To address these challenges, we introduce the concept of 'weight saliency' for MU, drawing parallels with input saliency in model explanation. This innovation directs MU's attention toward specific model weights rather than the entire model, improving effectiveness and efficiency. The resultant method that we call saliency unlearning (SalUn) narrows the performance gap with 'exact' unlearning (model retraining from scratch after removing the forgetting data points). To the best of our knowledge, SalUn is the first principled MU approach that can effectively erase the influence of forgetting data, classes, or concepts in both image classification and generation tasks. As highlighted below, For example, SalUn yields a stability advantage in high-variance random data forgetting, e.g., with a 0.2% gap compared to exact unlearning on the CIFAR-10 dataset. Moreover, in preventing conditional diffusion models from generating harmful images, SalUn achieves nearly 100% unlearning accuracy, outperforming current state-of-the-art baselines like Erased Stable Diffusion and Forget-Me-Not. Codes are available at https://github.com/OPTML-Group/Unlearn-Saliency. (WARNING: This paper contains model outputs that may be offensive in nature.)

  • 6 authors
·
Oct 19, 2023

DanceTogether! Identity-Preserving Multi-Person Interactive Video Generation

Controllable video generation (CVG) has advanced rapidly, yet current systems falter when more than one actor must move, interact, and exchange positions under noisy control signals. We address this gap with DanceTogether, the first end-to-end diffusion framework that turns a single reference image plus independent pose-mask streams into long, photorealistic videos while strictly preserving every identity. A novel MaskPoseAdapter binds "who" and "how" at every denoising step by fusing robust tracking masks with semantically rich-but noisy-pose heat-maps, eliminating the identity drift and appearance bleeding that plague frame-wise pipelines. To train and evaluate at scale, we introduce (i) PairFS-4K, 26 hours of dual-skater footage with 7,000+ distinct IDs, (ii) HumanRob-300, a one-hour humanoid-robot interaction set for rapid cross-domain transfer, and (iii) TogetherVideoBench, a three-track benchmark centered on the DanceTogEval-100 test suite covering dance, boxing, wrestling, yoga, and figure skating. On TogetherVideoBench, DanceTogether outperforms the prior arts by a significant margin. Moreover, we show that a one-hour fine-tune yields convincing human-robot videos, underscoring broad generalization to embodied-AI and HRI tasks. Extensive ablations confirm that persistent identity-action binding is critical to these gains. Together, our model, datasets, and benchmark lift CVG from single-subject choreography to compositionally controllable, multi-actor interaction, opening new avenues for digital production, simulation, and embodied intelligence. Our video demos and code are available at https://DanceTog.github.io/.

  • 12 authors
·
May 23 2

Reasoning in Computer Vision: Taxonomy, Models, Tasks, and Methodologies

Visual reasoning is critical for a wide range of computer vision tasks that go beyond surface-level object detection and classification. Despite notable advances in relational, symbolic, temporal, causal, and commonsense reasoning, existing surveys often address these directions in isolation, lacking a unified analysis and comparison across reasoning types, methodologies, and evaluation protocols. This survey aims to address this gap by categorizing visual reasoning into five major types (relational, symbolic, temporal, causal, and commonsense) and systematically examining their implementation through architectures such as graph-based models, memory networks, attention mechanisms, and neuro-symbolic systems. We review evaluation protocols designed to assess functional correctness, structural consistency, and causal validity, and critically analyze their limitations in terms of generalizability, reproducibility, and explanatory power. Beyond evaluation, we identify key open challenges in visual reasoning, including scalability to complex scenes, deeper integration of symbolic and neural paradigms, the lack of comprehensive benchmark datasets, and reasoning under weak supervision. Finally, we outline a forward-looking research agenda for next-generation vision systems, emphasizing that bridging perception and reasoning is essential for building transparent, trustworthy, and cross-domain adaptive AI systems, particularly in critical domains such as autonomous driving and medical diagnostics.

  • 3 authors
·
Aug 14

SPDF: Sparse Pre-training and Dense Fine-tuning for Large Language Models

The pre-training and fine-tuning paradigm has contributed to a number of breakthroughs in Natural Language Processing (NLP). Instead of directly training on a downstream task, language models are first pre-trained on large datasets with cross-domain knowledge (e.g., Pile, MassiveText, etc.) and then fine-tuned on task-specific data (e.g., natural language generation, text summarization, etc.). Scaling the model and dataset size has helped improve the performance of LLMs, but unfortunately, this also lead to highly prohibitive computational costs. Pre-training LLMs often require orders of magnitude more FLOPs than fine-tuning and the model capacity often remains the same between the two phases. To achieve training efficiency w.r.t training FLOPs, we propose to decouple the model capacity between the two phases and introduce Sparse Pre-training and Dense Fine-tuning (SPDF). In this work, we show the benefits of using unstructured weight sparsity to train only a subset of weights during pre-training (Sparse Pre-training) and then recover the representational capacity by allowing the zeroed weights to learn (Dense Fine-tuning). We demonstrate that we can induce up to 75% sparsity into a 1.3B parameter GPT-3 XL model resulting in a 2.5x reduction in pre-training FLOPs, without a significant loss in accuracy on the downstream tasks relative to the dense baseline. By rigorously evaluating multiple downstream tasks, we also establish a relationship between sparsity, task complexity and dataset size. Our work presents a promising direction to train large GPT models at a fraction of the training FLOPs using weight sparsity, while retaining the benefits of pre-trained textual representations for downstream tasks.

  • 8 authors
·
Mar 18, 2023

BehaveGPT: A Foundation Model for Large-scale User Behavior Modeling

In recent years, foundational models have revolutionized the fields of language and vision, demonstrating remarkable abilities in understanding and generating complex data; however, similar advances in user behavior modeling have been limited, largely due to the complexity of behavioral data and the challenges involved in capturing intricate temporal and contextual relationships in user activities. To address this, we propose BehaveGPT, a foundational model designed specifically for large-scale user behavior prediction. Leveraging transformer-based architecture and a novel pretraining paradigm, BehaveGPT is trained on vast user behavior datasets, allowing it to learn complex behavior patterns and support a range of downstream tasks, including next behavior prediction, long-term generation, and cross-domain adaptation. Our approach introduces the DRO-based pretraining paradigm tailored for user behavior data, which improves model generalization and transferability by equitably modeling both head and tail behaviors. Extensive experiments on real-world datasets demonstrate that BehaveGPT outperforms state-of-the-art baselines, achieving more than a 10% improvement in macro and weighted recall, showcasing its ability to effectively capture and predict user behavior. Furthermore, we measure the scaling law in the user behavior domain for the first time on the Honor dataset, providing insights into how model performance scales with increased data and parameter sizes.

  • 8 authors
·
May 23

Bridging Cross-Lingual Gaps During Leveraging the Multilingual Sequence-to-Sequence Pretraining for Text Generation and Understanding

For multilingual sequence-to-sequence pretrained language models (multilingual Seq2Seq PLMs), e.g. mBART, the self-supervised pretraining task is trained on a wide range of monolingual languages, e.g. 25 languages from CommonCrawl, while the downstream cross-lingual tasks generally progress on a bilingual language subset, e.g. English-German, making there exists the data discrepancy, namely domain discrepancy, and cross-lingual learning objective discrepancy, namely task discrepancy, between the pretraining and finetuning stages. To bridge the above cross-lingual domain and task gaps, we extend the vanilla pretrain-finetune pipeline with extra code-switching restore task. Specifically, the first stage employs the self-supervised code-switching restore task as a pretext task, allowing the multilingual Seq2Seq PLMs to acquire some in-domain alignment information. And for the second stage, we fine-tune the model on downstream data normally. Experiments on both NLG evaluation (12 bilingual translation tasks, 30 zero-shot translation tasks, and 2 cross-lingual summarization tasks) and NLU evaluation (7 cross-lingual natural language inference tasks) show our model outperforms the strong baseline mBART with standard finetuning strategy, consistently. Analyses indicate our approach could narrow the Euclidean distance of cross-lingual sentence representations, and improve the model generalization with trivial computational cost. We release the code at: https://github.com/zanchangtong/CSR4mBART.

  • 6 authors
·
Apr 16, 2022

Cross-Lingual Dialogue Dataset Creation via Outline-Based Generation

Multilingual task-oriented dialogue (ToD) facilitates access to services and information for many (communities of) speakers. Nevertheless, the potential of this technology is not fully realised, as current datasets for multilingual ToD - both for modular and end-to-end modelling - suffer from severe limitations. 1) When created from scratch, they are usually small in scale and fail to cover many possible dialogue flows. 2) Translation-based ToD datasets might lack naturalness and cultural specificity in the target language. In this work, to tackle these limitations we propose a novel outline-based annotation process for multilingual ToD datasets, where domain-specific abstract schemata of dialogue are mapped into natural language outlines. These in turn guide the target language annotators in writing a dialogue by providing instructions about each turn's intents and slots. Through this process we annotate a new large-scale dataset for training and evaluation of multilingual and cross-lingual ToD systems. Our Cross-lingual Outline-based Dialogue dataset (termed COD) enables natural language understanding, dialogue state tracking, and end-to-end dialogue modelling and evaluation in 4 diverse languages: Arabic, Indonesian, Russian, and Kiswahili. Qualitative and quantitative analyses of COD versus an equivalent translation-based dataset demonstrate improvements in data quality, unlocked by the outline-based approach. Finally, we benchmark a series of state-of-the-art systems for cross-lingual ToD, setting reference scores for future work and demonstrating that COD prevents over-inflated performance, typically met with prior translation-based ToD datasets.

  • 5 authors
·
Jan 31, 2022

AfriWOZ: Corpus for Exploiting Cross-Lingual Transferability for Generation of Dialogues in Low-Resource, African Languages

Dialogue generation is an important NLP task fraught with many challenges. The challenges become more daunting for low-resource African languages. To enable the creation of dialogue agents for African languages, we contribute the first high-quality dialogue datasets for 6 African languages: Swahili, Wolof, Hausa, Nigerian Pidgin English, Kinyarwanda & Yor\`ub\'a. These datasets consist of 1,500 turns each, which we translate from a portion of the English multi-domain MultiWOZ dataset. Subsequently, we investigate & analyze the effectiveness of modelling through transfer learning by utilziing state-of-the-art (SoTA) deep monolingual models: DialoGPT and BlenderBot. We compare the models with a simple seq2seq baseline using perplexity. Besides this, we conduct human evaluation of single-turn conversations by using majority votes and measure inter-annotator agreement (IAA). We find that the hypothesis that deep monolingual models learn some abstractions that generalize across languages holds. We observe human-like conversations, to different degrees, in 5 out of the 6 languages. The language with the most transferable properties is the Nigerian Pidgin English, with a human-likeness score of 78.1%, of which 34.4% are unanimous. We freely provide the datasets and host the model checkpoints/demos on the HuggingFace hub for public access.

  • 20 authors
·
Apr 17, 2022

xPQA: Cross-Lingual Product Question Answering across 12 Languages

Product Question Answering (PQA) systems are key in e-commerce applications to provide responses to customers' questions as they shop for products. While existing work on PQA focuses mainly on English, in practice there is need to support multiple customer languages while leveraging product information available in English. To study this practical industrial task, we present xPQA, a large-scale annotated cross-lingual PQA dataset in 12 languages across 9 branches, and report results in (1) candidate ranking, to select the best English candidate containing the information to answer a non-English question; and (2) answer generation, to generate a natural-sounding non-English answer based on the selected English candidate. We evaluate various approaches involving machine translation at runtime or offline, leveraging multilingual pre-trained LMs, and including or excluding xPQA training data. We find that (1) In-domain data is essential as cross-lingual rankers trained on other domains perform poorly on the PQA task; (2) Candidate ranking often prefers runtime-translation approaches while answer generation prefers multilingual approaches; (3) Translating offline to augment multilingual models helps candidate ranking mainly on languages with non-Latin scripts; and helps answer generation mainly on languages with Latin scripts. Still, there remains a significant performance gap between the English and the cross-lingual test sets.

  • 4 authors
·
May 16, 2023

OSLoPrompt: Bridging Low-Supervision Challenges and Open-Set Domain Generalization in CLIP

We introduce Low-Shot Open-Set Domain Generalization (LSOSDG), a novel paradigm unifying low-shot learning with open-set domain generalization (ODG). While prompt-based methods using models like CLIP have advanced DG, they falter in low-data regimes (e.g., 1-shot) and lack precision in detecting open-set samples with fine-grained semantics related to training classes. To address these challenges, we propose OSLOPROMPT, an advanced prompt-learning framework for CLIP with two core innovations. First, to manage limited supervision across source domains and improve DG, we introduce a domain-agnostic prompt-learning mechanism that integrates adaptable domain-specific cues and visually guided semantic attributes through a novel cross-attention module, besides being supported by learnable domain- and class-generic visual prompts to enhance cross-modal adaptability. Second, to improve outlier rejection during inference, we classify unfamiliar samples as "unknown" and train specialized prompts with systematically synthesized pseudo-open samples that maintain fine-grained relationships to known classes, generated through a targeted query strategy with off-the-shelf foundation models. This strategy enhances feature learning, enabling our model to detect open samples with varied granularity more effectively. Extensive evaluations across five benchmarks demonstrate that OSLOPROMPT establishes a new state-of-the-art in LSOSDG, significantly outperforming existing methods.

  • 7 authors
·
Mar 20

VideoFactory: Swap Attention in Spatiotemporal Diffusions for Text-to-Video Generation

We present VideoFactory, an innovative framework for generating high-quality open-domain videos. VideoFactory excels in producing high-definition (1376x768), widescreen (16:9) videos without watermarks, creating an engaging user experience. Generating videos guided by text instructions poses significant challenges, such as modeling the complex relationship between space and time, and the lack of large-scale text-video paired data. Previous approaches extend pretrained text-to-image generation models by adding temporal 1D convolution/attention modules for video generation. However, these approaches overlook the importance of jointly modeling space and time, inevitably leading to temporal distortions and misalignment between texts and videos. In this paper, we propose a novel approach that strengthens the interaction between spatial and temporal perceptions. In particular, we utilize a swapped cross-attention mechanism in 3D windows that alternates the "query" role between spatial and temporal blocks, enabling mutual reinforcement for each other. To fully unlock model capabilities for high-quality video generation, we curate a large-scale video dataset called HD-VG-130M. This dataset comprises 130 million text-video pairs from the open-domain, ensuring high-definition, widescreen and watermark-free characters. Objective metrics and user studies demonstrate the superiority of our approach in terms of per-frame quality, temporal correlation, and text-video alignment, with clear margins.

  • 7 authors
·
May 18, 2023

NitiBench: A Comprehensive Studies of LLM Frameworks Capabilities for Thai Legal Question Answering

The application of large language models (LLMs) in the legal domain holds significant potential for information retrieval and question answering, yet Thai legal QA systems face challenges due to a lack of standardized evaluation benchmarks and the complexity of Thai legal structures. This paper introduces NitiBench, a benchmark comprising two datasets: the NitiBench-CCL, covering general Thai financial law, and the NitiBench-Tax, which includes real-world tax law cases requiring advanced legal reasoning. We evaluate retrieval-augmented generation (RAG) and long-context LLM-based approaches to address three key research questions: the impact of domain-specific components like section-based chunking and cross-referencing, the comparative performance of different retrievers and LLMs, and the viability of long-context LLMs as an alternative to RAG. Our results show that section-based chunking significantly improves retrieval and end-to-end performance, current retrievers struggle with complex queries, and long-context LLMs still underperform RAG-based systems in Thai legal QA. To support fair evaluation, we propose tailored multi-label retrieval metrics and the use of an LLM-as-judge for coverage and contradiction detection method. These findings highlight the limitations of current Thai legal NLP solutions and provide a foundation for future research in the field. We also open-sourced our codes and dataset to available publicly.

  • 6 authors
·
Feb 15

Psyche-R1: Towards Reliable Psychological LLMs through Unified Empathy, Expertise, and Reasoning

Amidst a shortage of qualified mental health professionals, the integration of large language models (LLMs) into psychological applications offers a promising way to alleviate the growing burden of mental health disorders. Recent reasoning-augmented LLMs have achieved remarkable performance in mathematics and programming, while research in the psychological domain has predominantly emphasized emotional support and empathetic dialogue, with limited attention to reasoning mechanisms that are beneficial to generating reliable responses. Therefore, in this paper, we propose Psyche-R1, the first Chinese psychological LLM that jointly integrates empathy, psychological expertise, and reasoning, built upon a novel data curation pipeline. Specifically, we design a comprehensive data synthesis pipeline that produces over 75k high-quality psychological questions paired with detailed rationales, generated through chain-of-thought (CoT) reasoning and iterative prompt-rationale optimization, along with 73k empathetic dialogues. Subsequently, we employ a hybrid training strategy wherein challenging samples are identified through a multi-LLM cross-selection strategy for group relative policy optimization (GRPO) to improve reasoning ability, while the remaining data is used for supervised fine-tuning (SFT) to enhance empathetic response generation and psychological domain knowledge. Extensive experiment results demonstrate the effectiveness of the Psyche-R1 across several psychological benchmarks, where our 7B Psyche-R1 achieves comparable results to 671B DeepSeek-R1.

  • 6 authors
·
Aug 14

Leveraging Large Language Models for Generating Research Topic Ontologies: A Multi-Disciplinary Study

Ontologies and taxonomies of research fields are critical for managing and organising scientific knowledge, as they facilitate efficient classification, dissemination and retrieval of information. However, the creation and maintenance of such ontologies are expensive and time-consuming tasks, usually requiring the coordinated effort of multiple domain experts. Consequently, ontologies in this space often exhibit uneven coverage across different disciplines, limited inter-domain connectivity, and infrequent updating cycles. In this study, we investigate the capability of several large language models to identify semantic relationships among research topics within three academic domains: biomedicine, physics, and engineering. The models were evaluated under three distinct conditions: zero-shot prompting, chain-of-thought prompting, and fine-tuning on existing ontologies. Additionally, we assessed the cross-domain transferability of fine-tuned models by measuring their performance when trained in one domain and subsequently applied to a different one. To support this analysis, we introduce PEM-Rel-8K, a novel dataset consisting of over 8,000 relationships extracted from the most widely adopted taxonomies in the three disciplines considered in this study: MeSH, PhySH, and IEEE. Our experiments demonstrate that fine-tuning LLMs on PEM-Rel-8K yields excellent performance across all disciplines.

  • 4 authors
·
Aug 28

Revisiting Domain-Adaptive 3D Object Detection by Reliable, Diverse and Class-balanced Pseudo-Labeling

Unsupervised domain adaptation (DA) with the aid of pseudo labeling techniques has emerged as a crucial approach for domain-adaptive 3D object detection. While effective, existing DA methods suffer from a substantial drop in performance when applied to a multi-class training setting, due to the co-existence of low-quality pseudo labels and class imbalance issues. In this paper, we address this challenge by proposing a novel ReDB framework tailored for learning to detect all classes at once. Our approach produces Reliable, Diverse, and class-Balanced pseudo 3D boxes to iteratively guide the self-training on a distributionally different target domain. To alleviate disruptions caused by the environmental discrepancy (e.g., beam numbers), the proposed cross-domain examination (CDE) assesses the correctness of pseudo labels by copy-pasting target instances into a source environment and measuring the prediction consistency. To reduce computational overhead and mitigate the object shift (e.g., scales and point densities), we design an overlapped boxes counting (OBC) metric that allows to uniformly downsample pseudo-labeled objects across different geometric characteristics. To confront the issue of inter-class imbalance, we progressively augment the target point clouds with a class-balanced set of pseudo-labeled target instances and source objects, which boosts recognition accuracies on both frequently appearing and rare classes. Experimental results on three benchmark datasets using both voxel-based (i.e., SECOND) and point-based 3D detectors (i.e., PointRCNN) demonstrate that our proposed ReDB approach outperforms existing 3D domain adaptation methods by a large margin, improving 23.15% mAP on the nuScenes rightarrow KITTI task. The code is available at https://github.com/zhuoxiao-chen/ReDB-DA-3Ddet.

  • 5 authors
·
Jul 16, 2023

Evolutionary Optimization of Model Merging Recipes

We present a novel application of evolutionary algorithms to automate the creation of powerful foundation models. While model merging has emerged as a promising approach for LLM development due to its cost-effectiveness, it currently relies on human intuition and domain knowledge, limiting its potential. Here, we propose an evolutionary approach that overcomes this limitation by automatically discovering effective combinations of diverse open-source models, harnessing their collective intelligence without requiring extensive additional training data or compute. Our approach operates in both parameter space and data flow space, allowing for optimization beyond just the weights of the individual models. This approach even facilitates cross-domain merging, generating models like a Japanese LLM with Math reasoning capabilities. Surprisingly, our Japanese Math LLM achieved state-of-the-art performance on a variety of established Japanese LLM benchmarks, even surpassing models with significantly more parameters, despite not being explicitly trained for such tasks. Furthermore, a culturally-aware Japanese VLM generated through our approach demonstrates its effectiveness in describing Japanese culture-specific content, outperforming previous Japanese VLMs. This work not only contributes new state-of-the-art models back to the open-source community, but also introduces a new paradigm for automated model composition, paving the way for exploring alternative, efficient approaches to foundation model development.

  • 5 authors
·
Mar 19, 2024 4

Kling-Avatar: Grounding Multimodal Instructions for Cascaded Long-Duration Avatar Animation Synthesis

Recent advances in audio-driven avatar video generation have significantly enhanced audio-visual realism. However, existing methods treat instruction conditioning merely as low-level tracking driven by acoustic or visual cues, without modeling the communicative purpose conveyed by the instructions. This limitation compromises their narrative coherence and character expressiveness. To bridge this gap, we introduce Kling-Avatar, a novel cascaded framework that unifies multimodal instruction understanding with photorealistic portrait generation. Our approach adopts a two-stage pipeline. In the first stage, we design a multimodal large language model (MLLM) director that produces a blueprint video conditioned on diverse instruction signals, thereby governing high-level semantics such as character motion and emotions. In the second stage, guided by blueprint keyframes, we generate multiple sub-clips in parallel using a first-last frame strategy. This global-to-local framework preserves fine-grained details while faithfully encoding the high-level intent behind multimodal instructions. Our parallel architecture also enables fast and stable generation of long-duration videos, making it suitable for real-world applications such as digital human livestreaming and vlogging. To comprehensively evaluate our method, we construct a benchmark of 375 curated samples covering diverse instructions and challenging scenarios. Extensive experiments demonstrate that Kling-Avatar is capable of generating vivid, fluent, long-duration videos at up to 1080p and 48 fps, achieving superior performance in lip synchronization accuracy, emotion and dynamic expressiveness, instruction controllability, identity preservation, and cross-domain generalization. These results establish Kling-Avatar as a new benchmark for semantically grounded, high-fidelity audio-driven avatar synthesis.

Let Androids Dream of Electric Sheep: A Human-like Image Implication Understanding and Reasoning Framework

Metaphorical comprehension in images remains a critical challenge for AI systems, as existing models struggle to grasp the nuanced cultural, emotional, and contextual implications embedded in visual content. While multimodal large language models (MLLMs) excel in basic Visual Question Answer (VQA) tasks, they struggle with a fundamental limitation on image implication tasks: contextual gaps that obscure the relationships between different visual elements and their abstract meanings. Inspired by the human cognitive process, we propose Let Androids Dream (LAD), a novel framework for image implication understanding and reasoning. LAD addresses contextual missing through the three-stage framework: (1) Perception: converting visual information into rich and multi-level textual representations, (2) Search: iteratively searching and integrating cross-domain knowledge to resolve ambiguity, and (3) Reasoning: generating context-alignment image implication via explicit reasoning. Our framework with the lightweight GPT-4o-mini model achieves SOTA performance compared to 15+ MLLMs on English image implication benchmark and a huge improvement on Chinese benchmark, performing comparable with the GPT-4o model on Multiple-Choice Question (MCQ) and outperforms 36.7% on Open-Style Question (OSQ). Additionally, our work provides new insights into how AI can more effectively interpret image implications, advancing the field of vision-language reasoning and human-AI interaction. Our project is publicly available at https://github.com/MING-ZCH/Let-Androids-Dream-of-Electric-Sheep.

  • 2 authors
·
May 22 3

CrossNER: Evaluating Cross-Domain Named Entity Recognition

Cross-domain named entity recognition (NER) models are able to cope with the scarcity issue of NER samples in target domains. However, most of the existing NER benchmarks lack domain-specialized entity types or do not focus on a certain domain, leading to a less effective cross-domain evaluation. To address these obstacles, we introduce a cross-domain NER dataset (CrossNER), a fully-labeled collection of NER data spanning over five diverse domains with specialized entity categories for different domains. Additionally, we also provide a domain-related corpus since using it to continue pre-training language models (domain-adaptive pre-training) is effective for the domain adaptation. We then conduct comprehensive experiments to explore the effectiveness of leveraging different levels of the domain corpus and pre-training strategies to do domain-adaptive pre-training for the cross-domain task. Results show that focusing on the fractional corpus containing domain-specialized entities and utilizing a more challenging pre-training strategy in domain-adaptive pre-training are beneficial for the NER domain adaptation, and our proposed method can consistently outperform existing cross-domain NER baselines. Nevertheless, experiments also illustrate the challenge of this cross-domain NER task. We hope that our dataset and baselines will catalyze research in the NER domain adaptation area. The code and data are available at https://github.com/zliucr/CrossNER.

  • 8 authors
·
Dec 8, 2020

SAMGPT: Text-free Graph Foundation Model for Multi-domain Pre-training and Cross-domain Adaptation

Graphs are able to model interconnected entities in many online services, supporting a wide range of applications on the Web. This raises an important question: How can we train a graph foundational model on multiple source domains and adapt to an unseen target domain? A major obstacle is that graphs from different domains often exhibit divergent characteristics. Some studies leverage large language models to align multiple domains based on textual descriptions associated with the graphs, limiting their applicability to text-attributed graphs. For text-free graphs, a few recent works attempt to align different feature distributions across domains, while generally neglecting structural differences. In this work, we propose a novel Structure Alignment framework for text-free Multi-domain Graph Pre-Training and cross-domain adaptation (SAMGPT). It is designed to learn multi-domain knowledge from graphs originating in multiple source domains, which can then be adapted to address applications in an unseen target domain. Specifically, we introduce a set of structure tokens to harmonize structure-based aggregation across source domains during the pre-training phase. Next, for cross-domain adaptation, we design dual prompts, namely, holistic prompts and specific prompts, which adapt unified multi-domain structural knowledge and fine-grained, domain-specific information, respectively, to a target domain. Finally, we conduct comprehensive experiments on seven public datasets to evaluate and analyze the effectiveness of SAMGPT.

  • 5 authors
·
Feb 7

X-Cross: Dynamic Integration of Language Models for Cross-Domain Sequential Recommendation

As new products are emerging daily, recommendation systems are required to quickly adapt to possible new domains without needing extensive retraining. This work presents ``X-Cross'' -- a novel cross-domain sequential-recommendation model that recommends products in new domains by integrating several domain-specific language models; each model is fine-tuned with low-rank adapters (LoRA). Given a recommendation prompt, operating layer by layer, X-Cross dynamically refines the representation of each source language model by integrating knowledge from all other models. These refined representations are propagated from one layer to the next, leveraging the activations from each domain adapter to ensure domain-specific nuances are preserved while enabling adaptability across domains. Using Amazon datasets for sequential recommendation, X-Cross achieves performance comparable to a model that is fine-tuned with LoRA, while using only 25% of the additional parameters. In cross-domain tasks, such as adapting from Toys domain to Tools, Electronics or Sports, X-Cross demonstrates robust performance, while requiring about 50%-75% less fine-tuning data than LoRA to make fine-tuning effective. Furthermore, X-Cross achieves significant improvement in accuracy over alternative cross-domain baselines. Overall, X-Cross enables scalable and adaptive cross-domain recommendations, reducing computational overhead and providing an efficient solution for data-constrained environments.

  • 5 authors
·
Apr 29 3

Unifying Molecular and Textual Representations via Multi-task Language Modelling

The recent advances in neural language models have also been successfully applied to the field of chemistry, offering generative solutions for classical problems in molecular design and synthesis planning. These new methods have the potential to optimize laboratory operations and fuel a new era of data-driven automation in scientific discovery. However, specialized models are still typically required for each task, leading to the need for problem-specific fine-tuning and neglecting task interrelations. The main obstacle in this field is the lack of a unified representation between natural language and chemical representations, complicating and limiting human-machine interaction. Here, we propose a multi-domain, multi-task language model to solve a wide range of tasks in both the chemical and natural language domains. By leveraging multi-task learning, our model can handle chemical and natural language concurrently, without requiring expensive pre-training on single domains or task-specific models. Interestingly, sharing weights across domains remarkably improves our model when benchmarked against state-of-the-art baselines on single-domain and cross-domain tasks. In particular, sharing information across domains and tasks gives rise to large improvements in cross-domain tasks, the magnitude of which increase with scale, as measured by more than a dozen of relevant metrics. Our work suggests that such models can robustly and efficiently accelerate discovery in physical sciences by superseding problem-specific fine-tuning and enhancing human-model interactions.

  • 6 authors
·
Jan 29, 2023

A Unified Data Augmentation Framework for Low-Resource Multi-Domain Dialogue Generation

Current state-of-the-art dialogue systems heavily rely on extensive training datasets. However, challenges arise in domains where domain-specific training datasets are insufficient or entirely absent. To tackle this challenge, we propose a novel data Augmentation framework for Multi-Domain Dialogue Generation, referred to as AMD^2G. The AMD^2G framework consists of a data augmentation process and a two-stage training approach: domain-agnostic training and domain adaptation training. We posit that domain corpora are a blend of domain-agnostic and domain-specific features, with certain representation patterns shared among diverse domains. Domain-agnostic training aims to enable models to learn these common expressive patterns. To construct domain-agnostic dialogue corpora, we employ a \textbf{de-domaining} data processing technique used to remove domain-specific features. By mitigating the effects of domain-specific features, the model trained on the de-domained corpora can effectively learn common expression patterns in different domains. Subsequently, we adapt the learned domain-agnostic features to the target domain through domain adaptation training. We conduct experiments on Chinese dialogue datasets from five different domains and show that AMD^2G achieves superior performance compared to both direct training on the target domain corpus and collective training on all five domain corpora. Our work underscores AMD^2G as a viable alternative solution for low-resource multi-domain dialogue generation. Code and data associated with our work are available on GitHub repository^{text 1}.

  • 8 authors
·
Jun 14, 2024

Improving Few-Shot Cross-Domain Named Entity Recognition by Instruction Tuning a Word-Embedding based Retrieval Augmented Large Language Model

Few-Shot Cross-Domain NER is the process of leveraging knowledge from data-rich source domains to perform entity recognition on data scarce target domains. Most previous state-of-the-art (SOTA) approaches use pre-trained language models (PLMs) for cross-domain NER. However, these models are often domain specific. To successfully use these models for new target domains, we need to modify either the model architecture or perform model finetuning using data from the new domains. Both of these result in the creation of entirely new NER models for each target domain which is infeasible for practical scenarios. Recently,several works have attempted to use LLMs to solve Few-Shot Cross-Domain NER. However, most of these are either too expensive for practical purposes or struggle to follow LLM prompt instructions. In this paper, we propose IF-WRANER (Instruction Finetuned Word-embedding based Retrieval Augmented large language model for Named Entity Recognition), a retrieval augmented LLM, finetuned for the NER task. By virtue of the regularization techniques used during LLM finetuning and the adoption of word-level embedding over sentence-level embedding during the retrieval of in-prompt examples, IF-WRANER is able to outperform previous SOTA Few-Shot Cross-Domain NER approaches. We have demonstrated the effectiveness of our model by benchmarking its performance on the open source CrossNER dataset, on which it shows more than 2% F1 score improvement over the previous SOTA model. We have deployed the model for multiple customer care domains of an enterprise. Accurate entity prediction through IF-WRANER helps direct customers to automated workflows for the domains, thereby reducing escalations to human agents by almost 15% and leading to millions of dollars in yearly savings for the company.

  • 2 authors
·
Nov 1, 2024

Meta-DMoE: Adapting to Domain Shift by Meta-Distillation from Mixture-of-Experts

In this paper, we tackle the problem of domain shift. Most existing methods perform training on multiple source domains using a single model, and the same trained model is used on all unseen target domains. Such solutions are sub-optimal as each target domain exhibits its own specialty, which is not adapted. Furthermore, expecting single-model training to learn extensive knowledge from multiple source domains is counterintuitive. The model is more biased toward learning only domain-invariant features and may result in negative knowledge transfer. In this work, we propose a novel framework for unsupervised test-time adaptation, which is formulated as a knowledge distillation process to address domain shift. Specifically, we incorporate Mixture-of-Experts (MoE) as teachers, where each expert is separately trained on different source domains to maximize their specialty. Given a test-time target domain, a small set of unlabeled data is sampled to query the knowledge from MoE. As the source domains are correlated to the target domains, a transformer-based aggregator then combines the domain knowledge by examining the interconnection among them. The output is treated as a supervision signal to adapt a student prediction network toward the target domain. We further employ meta-learning to enforce the aggregator to distill positive knowledge and the student network to achieve fast adaptation. Extensive experiments demonstrate that the proposed method outperforms the state-of-the-art and validates the effectiveness of each proposed component. Our code is available at https://github.com/n3il666/Meta-DMoE.

  • 6 authors
·
Oct 7, 2022

Zero Shot Domain Adaptive Semantic Segmentation by Synthetic Data Generation and Progressive Adaptation

Deep learning-based semantic segmentation models achieve impressive results yet remain limited in handling distribution shifts between training and test data. In this paper, we present SDGPA (Synthetic Data Generation and Progressive Adaptation), a novel method that tackles zero-shot domain adaptive semantic segmentation, in which no target images are available, but only a text description of the target domain's style is provided. To compensate for the lack of target domain training data, we utilize a pretrained off-the-shelf text-to-image diffusion model, which generates training images by transferring source domain images to target style. Directly editing source domain images introduces noise that harms segmentation because the layout of source images cannot be precisely maintained. To address inaccurate layouts in synthetic data, we propose a method that crops the source image, edits small patches individually, and then merges them back together, which helps improve spatial precision. Recognizing the large domain gap, SDGPA constructs an augmented intermediate domain, leveraging easier adaptation subtasks to enable more stable model adaptation to the target domain. Additionally, to mitigate the impact of noise in synthetic data, we design a progressive adaptation strategy, ensuring robust learning throughout the training process. Extensive experiments demonstrate that our method achieves state-of-the-art performance in zero-shot semantic segmentation. The code is available at https://github.com/ROUJINN/SDGPA

  • 3 authors
·
Aug 5

ChartMimic: Evaluating LMM's Cross-Modal Reasoning Capability via Chart-to-Code Generation

We introduce a new benchmark, ChartMimic, aimed at assessing the visually-grounded code generation capabilities of large multimodal models (LMMs). ChartMimic utilizes information-intensive visual charts and textual instructions as inputs, requiring LMMs to generate the corresponding code for chart rendering. ChartMimic includes 1,000 human-curated (figure, instruction, code) triplets, which represent the authentic chart use cases found in scientific papers across various domains(e.g., Physics, Computer Science, Economics, etc). These charts span 18 regular types and 4 advanced types, diversifying into 191 subcategories. Furthermore, we propose multi-level evaluation metrics to provide an automatic and thorough assessment of the output code and the rendered charts. Unlike existing code generation benchmarks, ChartMimic places emphasis on evaluating LMMs' capacity to harmonize a blend of cognitive capabilities, encompassing visual understanding, code generation, and cross-modal reasoning. The evaluation of 3 proprietary models and 11 open-weight models highlights the substantial challenges posed by ChartMimic. Even the advanced GPT-4V, Claude-3-opus only achieve an average score of 73.2 and 53.7, respectively, indicating significant room for improvement. We anticipate that ChartMimic will inspire the development of LMMs, advancing the pursuit of artificial general intelligence.

  • 14 authors
·
Jun 14, 2024 2

Informative Data Mining for One-Shot Cross-Domain Semantic Segmentation

Contemporary domain adaptation offers a practical solution for achieving cross-domain transfer of semantic segmentation between labeled source data and unlabeled target data. These solutions have gained significant popularity; however, they require the model to be retrained when the test environment changes. This can result in unbearable costs in certain applications due to the time-consuming training process and concerns regarding data privacy. One-shot domain adaptation methods attempt to overcome these challenges by transferring the pre-trained source model to the target domain using only one target data. Despite this, the referring style transfer module still faces issues with computation cost and over-fitting problems. To address this problem, we propose a novel framework called Informative Data Mining (IDM) that enables efficient one-shot domain adaptation for semantic segmentation. Specifically, IDM provides an uncertainty-based selection criterion to identify the most informative samples, which facilitates quick adaptation and reduces redundant training. We then perform a model adaptation method using these selected samples, which includes patch-wise mixing and prototype-based information maximization to update the model. This approach effectively enhances adaptation and mitigates the overfitting problem. In general, we provide empirical evidence of the effectiveness and efficiency of IDM. Our approach outperforms existing methods and achieves a new state-of-the-art one-shot performance of 56.7\%/55.4\% on the GTA5/SYNTHIA to Cityscapes adaptation tasks, respectively. The code will be released at https://github.com/yxiwang/IDM.

  • 6 authors
·
Sep 25, 2023

Beyond Finite Data: Towards Data-free Out-of-distribution Generalization via Extrapolation

Out-of-distribution (OOD) generalization is a favorable yet challenging property for deep neural networks. The core challenges lie in the limited availability of source domains that help models learn an invariant representation from the spurious features. Various domain augmentation have been proposed but largely rely on interpolating existing domains and frequently face difficulties in creating truly "novel" domains. Humans, on the other hand, can easily extrapolate novel domains, thus, an intriguing question arises: How can neural networks extrapolate like humans and achieve OOD generalization? We introduce a novel approach to domain extrapolation that leverages reasoning ability and the extensive knowledge encapsulated within large language models (LLMs) to synthesize entirely new domains. Starting with the class of interest, we query the LLMs to extract relevant knowledge for these novel domains. We then bridge the gap between the text-centric knowledge derived from LLMs and the pixel input space of the model using text-to-image generation techniques. By augmenting the training set of domain generalization datasets with high-fidelity, photo-realistic images of these new domains, we achieve significant improvements over all existing methods, as demonstrated in both single and multi-domain generalization across various benchmarks. With the ability to extrapolate any domains for any class, our method has the potential to learn a generalized model for any task without any data. To illustrate, we put forth a much more difficult setting termed, data-free domain generalization, that aims to learn a generalized model in the absence of any collected data. Our empirical findings support the above argument and our methods exhibit commendable performance in this setting, even surpassing the supervised setting by approximately 1-2\% on datasets such as VLCS.

  • 7 authors
·
Mar 8, 2024

Does your data spark joy? Performance gains from domain upsampling at the end of training

Pretraining datasets for large language models (LLMs) have grown to trillions of tokens composed of large amounts of CommonCrawl (CC) web scrape along with smaller, domain-specific datasets. It is expensive to understand the impact of these domain-specific datasets on model capabilities as training at large FLOP scales is required to reveal significant changes to difficult and emergent benchmarks. Given the increasing cost of experimenting with pretraining data, how does one determine the optimal balance between the diversity in general web scrapes and the information density of domain specific data? In this work, we show how to leverage the smaller domain specific datasets by upsampling them relative to CC at the end of training to drive performance improvements on difficult benchmarks. This simple technique allows us to improve up to 6.90 pp on MMLU, 8.26 pp on GSM8K, and 6.17 pp on HumanEval relative to the base data mix for a 7B model trained for 1 trillion (T) tokens, thus rivaling Llama-2 (7B)x2014a model trained for twice as long. We experiment with ablating the duration of domain upsampling from 5% to 30% of training and find that 10% to 20% percent is optimal for navigating the tradeoff between general language modeling capabilities and targeted benchmarks. We also use domain upsampling to characterize at scale the utility of individual datasets for improving various benchmarks by removing them during this final phase of training. This tool opens up the ability to experiment with the impact of different pretraining datasets at scale, but at an order of magnitude lower cost compared to full pretraining runs.

  • 5 authors
·
Jun 5, 2024

Improving Fake News Detection of Influential Domain via Domain- and Instance-Level Transfer

Both real and fake news in various domains, such as politics, health, and entertainment are spread via online social media every day, necessitating fake news detection for multiple domains. Among them, fake news in specific domains like politics and health has more serious potential negative impacts on the real world (e.g., the infodemic led by COVID-19 misinformation). Previous studies focus on multi-domain fake news detection, by equally mining and modeling the correlation between domains. However, these multi-domain methods suffer from a seesaw problem: the performance of some domains is often improved at the cost of hurting the performance of other domains, which could lead to an unsatisfying performance in specific domains. To address this issue, we propose a Domain- and Instance-level Transfer Framework for Fake News Detection (DITFEND), which could improve the performance of specific target domains. To transfer coarse-grained domain-level knowledge, we train a general model with data of all domains from the meta-learning perspective. To transfer fine-grained instance-level knowledge and adapt the general model to a target domain, we train a language model on the target domain to evaluate the transferability of each data instance in source domains and re-weigh each instance's contribution. Offline experiments on two datasets demonstrate the effectiveness of DITFEND. Online experiments show that DITFEND brings additional improvements over the base models in a real-world scenario.

  • 7 authors
·
Sep 19, 2022

Grounding Stylistic Domain Generalization with Quantitative Domain Shift Measures and Synthetic Scene Images

Domain Generalization (DG) is a challenging task in machine learning that requires a coherent ability to comprehend shifts across various domains through extraction of domain-invariant features. DG performance is typically evaluated by performing image classification in domains of various image styles. However, current methodology lacks quantitative understanding about shifts in stylistic domain, and relies on a vast amount of pre-training data, such as ImageNet1K, which are predominantly in photo-realistic style with weakly supervised class labels. Such a data-driven practice could potentially result in spurious correlation and inflated performance on DG benchmarks. In this paper, we introduce a new DG paradigm to address these risks. We first introduce two new quantitative measures ICV and IDD to describe domain shifts in terms of consistency of classes within one domain and similarity between two stylistic domains. We then present SuperMarioDomains (SMD), a novel synthetic multi-domain dataset sampled from video game scenes with more consistent classes and sufficient dissimilarity compared to ImageNet1K. We demonstrate our DG method SMOS. SMOS first uses SMD to train a precursor model, which is then used to ground the training on a DG benchmark. We observe that SMOS contributes to state-of-the-art performance across five DG benchmarks, gaining large improvements to performances on abstract domains along with on-par or slight improvements to those on photo-realistic domains. Our qualitative analysis suggests that these improvements can be attributed to reduced distributional divergence between originally distant domains. Our data are available at https://github.com/fpsluozi/SMD-SMOS .

  • 6 authors
·
May 24, 2024

AdaptDHM: Adaptive Distribution Hierarchical Model for Multi-Domain CTR Prediction

Large-scale commercial platforms usually involve numerous business domains for diverse business strategies and expect their recommendation systems to provide click-through rate (CTR) predictions for multiple domains simultaneously. Existing promising and widely-used multi-domain models discover domain relationships by explicitly constructing domain-specific networks, but the computation and memory boost significantly with the increase of domains. To reduce computational complexity, manually grouping domains with particular business strategies is common in industrial applications. However, this pre-defined data partitioning way heavily relies on prior knowledge, and it may neglect the underlying data distribution of each domain, hence limiting the model's representation capability. Regarding the above issues, we propose an elegant and flexible multi-distribution modeling paradigm, named Adaptive Distribution Hierarchical Model (AdaptDHM), which is an end-to-end optimization hierarchical structure consisting of a clustering process and classification process. Specifically, we design a distribution adaptation module with a customized dynamic routing mechanism. Instead of introducing prior knowledge for pre-defined data allocation, this routing algorithm adaptively provides a distribution coefficient for each sample to determine which cluster it belongs to. Each cluster corresponds to a particular distribution so that the model can sufficiently capture the commonalities and distinctions between these distinct clusters. Extensive experiments on both public and large-scale Alibaba industrial datasets verify the effectiveness and efficiency of AdaptDHM: Our model achieves impressive prediction accuracy and its time cost during the training stage is more than 50% less than that of other models.

  • 6 authors
·
Nov 22, 2022

GEO: Generative Engine Optimization

The advent of large language models (LLMs) has ushered in a new paradigm of search engines that use generative models to gather and summarize information to answer user queries. This emerging technology, which we formalize under the unified framework of generative engines (GEs), can generate accurate and personalized responses, rapidly replacing traditional search engines like Google and Bing. Generative Engines typically satisfy queries by synthesizing information from multiple sources and summarizing them using LLMs. While this shift significantly improves user utility and generative search engine traffic, it poses a huge challenge for the third stakeholder - website and content creators. Given the black-box and fast-moving nature of generative engines, content creators have little to no control over when and how their content is displayed. With generative engines here to stay, we must ensure the creator economy is not disadvantaged. To address this, we introduce Generative Engine Optimization (GEO), the first novel paradigm to aid content creators in improving their content visibility in GE responses through a flexible black-box optimization framework for optimizing and defining visibility metrics. We facilitate systematic evaluation by introducing GEO-bench, a large-scale benchmark of diverse user queries across multiple domains, along with relevant web sources to answer these queries. Through rigorous evaluation, we demonstrate that GEO can boost visibility by up to 40\% in GE responses. Moreover, we show the efficacy of these strategies varies across domains, underscoring the need for domain-specific optimization methods. Our work opens a new frontier in information discovery systems, with profound implications for both developers of GEs and content creators.

  • 6 authors
·
Nov 16, 2023

Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence

Domain Adaptation (DA) facilitates knowledge transfer from a source domain to a related target domain. This paper investigates a practical DA paradigm, namely Source data-Free Active Domain Adaptation (SFADA), where source data becomes inaccessible during adaptation, and a minimum amount of annotation budget is available in the target domain. Without referencing the source data, new challenges emerge in identifying the most informative target samples for labeling, establishing cross-domain alignment during adaptation, and ensuring continuous performance improvements through the iterative query-and-adaptation process. In response, we present learn from the learnt (LFTL), a novel paradigm for SFADA to leverage the learnt knowledge from the source pretrained model and actively iterated models without extra overhead. We propose Contrastive Active Sampling to learn from the hypotheses of the preceding model, thereby querying target samples that are both informative to the current model and persistently challenging throughout active learning. During adaptation, we learn from features of actively selected anchors obtained from previous intermediate models, so that the Visual Persistence-guided Adaptation can facilitate feature distribution alignment and active sample exploitation. Extensive experiments on three widely-used benchmarks show that our LFTL achieves state-of-the-art performance, superior computational efficiency and continuous improvements as the annotation budget increases. Our code is available at https://github.com/lyumengyao/lftl.

  • 7 authors
·
Jul 26, 2024

ConDA: Contrastive Domain Adaptation for AI-generated Text Detection

Large language models (LLMs) are increasingly being used for generating text in a variety of use cases, including journalistic news articles. Given the potential malicious nature in which these LLMs can be used to generate disinformation at scale, it is important to build effective detectors for such AI-generated text. Given the surge in development of new LLMs, acquiring labeled training data for supervised detectors is a bottleneck. However, there might be plenty of unlabeled text data available, without information on which generator it came from. In this work we tackle this data problem, in detecting AI-generated news text, and frame the problem as an unsupervised domain adaptation task. Here the domains are the different text generators, i.e. LLMs, and we assume we have access to only the labeled source data and unlabeled target data. We develop a Contrastive Domain Adaptation framework, called ConDA, that blends standard domain adaptation techniques with the representation power of contrastive learning to learn domain invariant representations that are effective for the final unsupervised detection task. Our experiments demonstrate the effectiveness of our framework, resulting in average performance gains of 31.7% from the best performing baselines, and within 0.8% margin of a fully supervised detector. All our code and data is available at https://github.com/AmritaBh/ConDA-gen-text-detection.

  • 4 authors
·
Sep 7, 2023

Only-IF:Revealing the Decisive Effect of Instruction Diversity on Generalization

Understanding and accurately following instructions is critical for large language models (LLMs) to be effective across diverse tasks. In this work, we rigorously examine the key factors that enable models to generalize to unseen instructions, providing insights to guide the collection of data for instruction-tuning. Through controlled experiments, inspired by the Turing-complete Markov algorithm, we demonstrate that such generalization only emerges when training data is diversified enough across semantic domains. Our findings also reveal that merely diversifying within limited domains fails to ensure robust generalization. In contrast, cross-domain data diversification, even under constrained data budgets, significantly enhances a model's adaptability. We further extend our analysis to real-world scenarios, including fine-tuning of $textbf{specialist} and textbf{generalist}$ models. In both cases, we demonstrate that 1) better performance can be achieved by increasing the diversity of an established dataset while keeping the data size constant, and 2) when scaling up the data, diversifying the semantics of instructions is more effective than simply increasing the quantity of similar data. Our research provides important insights for dataset collation, particularly when optimizing model performance by expanding training data for both specialist and generalist scenarios. We show that careful consideration of data diversification is key: training specialist models with data extending beyond their core domain leads to significant performance improvements, while generalist models benefit from diverse data mixtures that enhance their overall instruction-following capabilities across a wide range of applications. Our results highlight the critical role of strategic diversification and offer clear guidelines for improving data quality.

  • 3 authors
·
Oct 6, 2024 2

Few-shot Hybrid Domain Adaptation of Image Generators

Can a pre-trained generator be adapted to the hybrid of multiple target domains and generate images with integrated attributes of them? In this work, we introduce a new task -- Few-shot Hybrid Domain Adaptation (HDA). Given a source generator and several target domains, HDA aims to acquire an adapted generator that preserves the integrated attributes of all target domains, without overriding the source domain's characteristics. Compared with Domain Adaptation (DA), HDA offers greater flexibility and versatility to adapt generators to more composite and expansive domains. Simultaneously, HDA also presents more challenges than DA as we have access only to images from individual target domains and lack authentic images from the hybrid domain. To address this issue, we introduce a discriminator-free framework that directly encodes different domains' images into well-separable subspaces. To achieve HDA, we propose a novel directional subspace loss comprised of a distance loss and a direction loss. Concretely, the distance loss blends the attributes of all target domains by reducing the distances from generated images to all target subspaces. The direction loss preserves the characteristics from the source domain by guiding the adaptation along the perpendicular to subspaces. Experiments show that our method can obtain numerous domain-specific attributes in a single adapted generator, which surpasses the baseline methods in semantic similarity, image fidelity, and cross-domain consistency.

  • 10 authors
·
Oct 30, 2023

D-CPT Law: Domain-specific Continual Pre-Training Scaling Law for Large Language Models

Continual Pre-Training (CPT) on Large Language Models (LLMs) has been widely used to expand the model's fundamental understanding of specific downstream domains (e.g., math and code). For the CPT on domain-specific LLMs, one important question is how to choose the optimal mixture ratio between the general-corpus (e.g., Dolma, Slim-pajama) and the downstream domain-corpus. Existing methods usually adopt laborious human efforts by grid-searching on a set of mixture ratios, which require high GPU training consumption costs. Besides, we cannot guarantee the selected ratio is optimal for the specific domain. To address the limitations of existing methods, inspired by the Scaling Law for performance prediction, we propose to investigate the Scaling Law of the Domain-specific Continual Pre-Training (D-CPT Law) to decide the optimal mixture ratio with acceptable training costs for LLMs of different sizes. Specifically, by fitting the D-CPT Law, we can easily predict the general and downstream performance of arbitrary mixture ratios, model sizes, and dataset sizes using small-scale training costs on limited experiments. Moreover, we also extend our standard D-CPT Law on cross-domain settings and propose the Cross-Domain D-CPT Law to predict the D-CPT law of target domains, where very small training costs (about 1% of the normal training costs) are needed for the target domains. Comprehensive experimental results on six downstream domains demonstrate the effectiveness and generalizability of our proposed D-CPT Law and Cross-Domain D-CPT Law.

  • 16 authors
·
Jun 3, 2024

Crafting Distribution Shifts for Validation and Training in Single Source Domain Generalization

Single-source domain generalization attempts to learn a model on a source domain and deploy it to unseen target domains. Limiting access only to source domain data imposes two key challenges - how to train a model that can generalize and how to verify that it does. The standard practice of validation on the training distribution does not accurately reflect the model's generalization ability, while validation on the test distribution is a malpractice to avoid. In this work, we construct an independent validation set by transforming source domain images with a comprehensive list of augmentations, covering a broad spectrum of potential distribution shifts in target domains. We demonstrate a high correlation between validation and test performance for multiple methods and across various datasets. The proposed validation achieves a relative accuracy improvement over the standard validation equal to 15.4% or 1.6% when used for method selection or learning rate tuning, respectively. Furthermore, we introduce a novel family of methods that increase the shape bias through enhanced edge maps. To benefit from the augmentations during training and preserve the independence of the validation set, a k-fold validation process is designed to separate the augmentation types used in training and validation. The method that achieves the best performance on the augmented validation is selected from the proposed family. It achieves state-of-the-art performance on various standard benchmarks. Code at: https://github.com/NikosEfth/crafting-shifts

  • 3 authors
·
Sep 29, 2024

Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). Domain specification techniques are key to make large language models disruptive in many applications. Specifically, to solve these hurdles, there has been a notable increase in research and practices conducted in recent years on the domain specialization of LLMs. This emerging field of study, with its substantial potential for impact, necessitates a comprehensive and systematic review to better summarize and guide ongoing work in this area. In this article, we present a comprehensive survey on domain specification techniques for large language models, an emerging direction critical for large language model applications. First, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. Second, we present an extensive taxonomy of critical application domains that can benefit dramatically from specialized LLMs, discussing their practical significance and open challenges. Last, we offer our insights into the current research status and future trends in this area.

  • 24 authors
·
May 29, 2023

Jurassic World Remake: Bringing Ancient Fossils Back to Life via Zero-Shot Long Image-to-Image Translation

With a strong understanding of the target domain from natural language, we produce promising results in translating across large domain gaps and bringing skeletons back to life. In this work, we use text-guided latent diffusion models for zero-shot image-to-image translation (I2I) across large domain gaps (longI2I), where large amounts of new visual features and new geometry need to be generated to enter the target domain. Being able to perform translations across large domain gaps has a wide variety of real-world applications in criminology, astrology, environmental conservation, and paleontology. In this work, we introduce a new task Skull2Animal for translating between skulls and living animals. On this task, we find that unguided Generative Adversarial Networks (GANs) are not capable of translating across large domain gaps. Instead of these traditional I2I methods, we explore the use of guided diffusion and image editing models and provide a new benchmark model, Revive-2I, capable of performing zero-shot I2I via text-prompting latent diffusion models. We find that guidance is necessary for longI2I because, to bridge the large domain gap, prior knowledge about the target domain is needed. In addition, we find that prompting provides the best and most scalable information about the target domain as classifier-guided diffusion models require retraining for specific use cases and lack stronger constraints on the target domain because of the wide variety of images they are trained on.

  • 4 authors
·
Aug 14, 2023 1

Domain-Adversarial Training of Neural Networks

We introduce a new representation learning approach for domain adaptation, in which data at training and test time come from similar but different distributions. Our approach is directly inspired by the theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on features that cannot discriminate between the training (source) and test (target) domains. The approach implements this idea in the context of neural network architectures that are trained on labeled data from the source domain and unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of features that are (i) discriminative for the main learning task on the source domain and (ii) indiscriminate with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation and stochastic gradient descent, and can thus be implemented with little effort using any of the deep learning packages. We demonstrate the success of our approach for two distinct classification problems (document sentiment analysis and image classification), where state-of-the-art domain adaptation performance on standard benchmarks is achieved. We also validate the approach for descriptor learning task in the context of person re-identification application.

  • 8 authors
·
May 28, 2015

Towards Identifiable Unsupervised Domain Translation: A Diversified Distribution Matching Approach

Unsupervised domain translation (UDT) aims to find functions that convert samples from one domain (e.g., sketches) to another domain (e.g., photos) without changing the high-level semantic meaning (also referred to as ``content''). The translation functions are often sought by probability distribution matching of the transformed source domain and target domain. CycleGAN stands as arguably the most representative approach among this line of work. However, it was noticed in the literature that CycleGAN and variants could fail to identify the desired translation functions and produce content-misaligned translations. This limitation arises due to the presence of multiple translation functions -- referred to as ``measure-preserving automorphism" (MPA) -- in the solution space of the learning criteria. Despite awareness of such identifiability issues, solutions have remained elusive. This study delves into the core identifiability inquiry and introduces an MPA elimination theory. Our analysis shows that MPA is unlikely to exist, if multiple pairs of diverse cross-domain conditional distributions are matched by the learning function. Our theory leads to a UDT learner using distribution matching over auxiliary variable-induced subsets of the domains -- other than over the entire data domains as in the classical approaches. The proposed framework is the first to rigorously establish translation identifiability under reasonable UDT settings, to our best knowledge. Experiments corroborate with our theoretical claims.

  • 2 authors
·
Jan 17, 2024

DATID-3D: Diversity-Preserved Domain Adaptation Using Text-to-Image Diffusion for 3D Generative Model

Recent 3D generative models have achieved remarkable performance in synthesizing high resolution photorealistic images with view consistency and detailed 3D shapes, but training them for diverse domains is challenging since it requires massive training images and their camera distribution information. Text-guided domain adaptation methods have shown impressive performance on converting the 2D generative model on one domain into the models on other domains with different styles by leveraging the CLIP (Contrastive Language-Image Pre-training), rather than collecting massive datasets for those domains. However, one drawback of them is that the sample diversity in the original generative model is not well-preserved in the domain-adapted generative models due to the deterministic nature of the CLIP text encoder. Text-guided domain adaptation will be even more challenging for 3D generative models not only because of catastrophic diversity loss, but also because of inferior text-image correspondence and poor image quality. Here we propose DATID-3D, a domain adaptation method tailored for 3D generative models using text-to-image diffusion models that can synthesize diverse images per text prompt without collecting additional images and camera information for the target domain. Unlike 3D extensions of prior text-guided domain adaptation methods, our novel pipeline was able to fine-tune the state-of-the-art 3D generator of the source domain to synthesize high resolution, multi-view consistent images in text-guided targeted domains without additional data, outperforming the existing text-guided domain adaptation methods in diversity and text-image correspondence. Furthermore, we propose and demonstrate diverse 3D image manipulations such as one-shot instance-selected adaptation and single-view manipulated 3D reconstruction to fully enjoy diversity in text.

  • 2 authors
·
Nov 29, 2022

Fragile Mastery: Are Domain-Specific Trade-Offs Undermining On-Device Language Models?

The application of on-device language models (ODLMs) on resource-constrained edge devices is a multi-dimensional problem that strikes a fine balance between computational effectiveness, memory, power usage, and linguistic capacity across heterogeneous tasks. This holistic study conducts a thorough investigation of the trade-offs between domain-specific optimization and cross-domain robustness, culminating in the proposal of the Generalized Edge Model (GEM), a new architecture that aims to balance specialization and generalization in a harmonious manner. With a rigorous experimental approach testing 47 well-chosen benchmarks in eight domains--healthcare, law, finance, STEM, commonsense, conversational AI, multilingual, and domain-adaptive tasks--we show that conventional optimization techniques decrease target task perplexity by 18-25% but result in a precipitous decline in general-task performance with F1 scores decreasing by 12-29%, as reported by Liu et al. GEM employs a Sparse Cross-Attention Router (SCAR) to dynamically allocate computation to a variable number of computing resources with a cross-domain F1 accuracy of 0.89 on less than 100ms latency across Raspberry Pi 4, Pixel 6, iPhone 13, and bespoke custom neural processing units (NPUs). Compared to GPT-4 Lite, GEM enhances the general-task level by 7% with respect and parity in domain-specific performance. We propose three new measurement tools--Domain Specialization Index (DSI), Generalization Gap (GG), and Cross-Domain Transfer Ratio (CDTR)--which show strong correlation between model compression intensity and brittleness.

  • 2 authors
·
Mar 16

Upcycling Models under Domain and Category Shift

Deep neural networks (DNNs) often perform poorly in the presence of domain shift and category shift. How to upcycle DNNs and adapt them to the target task remains an important open problem. Unsupervised Domain Adaptation (UDA), especially recently proposed Source-free Domain Adaptation (SFDA), has become a promising technology to address this issue. Nevertheless, existing SFDA methods require that the source domain and target domain share the same label space, consequently being only applicable to the vanilla closed-set setting. In this paper, we take one step further and explore the Source-free Universal Domain Adaptation (SF-UniDA). The goal is to identify "known" data samples under both domain and category shift, and reject those "unknown" data samples (not present in source classes), with only the knowledge from standard pre-trained source model. To this end, we introduce an innovative global and local clustering learning technique (GLC). Specifically, we design a novel, adaptive one-vs-all global clustering algorithm to achieve the distinction across different target classes and introduce a local k-NN clustering strategy to alleviate negative transfer. We examine the superiority of our GLC on multiple benchmarks with different category shift scenarios, including partial-set, open-set, and open-partial-set DA. Remarkably, in the most challenging open-partial-set DA scenario, GLC outperforms UMAD by 14.8\% on the VisDA benchmark. The code is available at https://github.com/ispc-lab/GLC.

  • 7 authors
·
Mar 13, 2023

So-Fake: Benchmarking and Explaining Social Media Image Forgery Detection

Recent advances in AI-powered generative models have enabled the creation of increasingly realistic synthetic images, posing significant risks to information integrity and public trust on social media platforms. While robust detection frameworks and diverse, large-scale datasets are essential to mitigate these risks, existing academic efforts remain limited in scope: current datasets lack the diversity, scale, and realism required for social media contexts, while detection methods struggle with generalization to unseen generative technologies. To bridge this gap, we introduce So-Fake-Set, a comprehensive social media-oriented dataset with over 2 million high-quality images, diverse generative sources, and photorealistic imagery synthesized using 35 state-of-the-art generative models. To rigorously evaluate cross-domain robustness, we establish a novel and large-scale (100K) out-of-domain benchmark (So-Fake-OOD) featuring synthetic imagery from commercial models explicitly excluded from the training distribution, creating a realistic testbed for evaluating real-world performance. Leveraging these resources, we present So-Fake-R1, an advanced vision-language framework that employs reinforcement learning for highly accurate forgery detection, precise localization, and explainable inference through interpretable visual rationales. Extensive experiments show that So-Fake-R1 outperforms the second-best method, with a 1.3% gain in detection accuracy and a 4.5% increase in localization IoU. By integrating a scalable dataset, a challenging OOD benchmark, and an advanced detection framework, this work establishes a new foundation for social media-centric forgery detection research. The code, models, and datasets will be released publicly.

  • 11 authors
·
May 24

Unknown Domain Inconsistency Minimization for Domain Generalization

The objective of domain generalization (DG) is to enhance the transferability of the model learned from a source domain to unobserved domains. To prevent overfitting to a specific domain, Sharpness-Aware Minimization (SAM) reduces source domain's loss sharpness. Although SAM variants have delivered significant improvements in DG, we highlight that there's still potential for improvement in generalizing to unknown domains through the exploration on data space. This paper introduces an objective rooted in both parameter and data perturbed regions for domain generalization, coined Unknown Domain Inconsistency Minimization (UDIM). UDIM reduces the loss landscape inconsistency between source domain and unknown domains. As unknown domains are inaccessible, these domains are empirically crafted by perturbing instances from the source domain dataset. In particular, by aligning the loss landscape acquired in the source domain to the loss landscape of perturbed domains, we expect to achieve generalization grounded on these flat minima for the unknown domains. Theoretically, we validate that merging SAM optimization with the UDIM objective establishes an upper bound for the true objective of the DG task. In an empirical aspect, UDIM consistently outperforms SAM variants across multiple DG benchmark datasets. Notably, UDIM shows statistically significant improvements in scenarios with more restrictive domain information, underscoring UDIM's generalization capability in unseen domains. Our code is available at https://github.com/SJShin-AI/UDIM.

  • 5 authors
·
Mar 12, 2024

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN

Adverse weather image translation belongs to the unsupervised image-to-image (I2I) translation task which aims to transfer adverse condition domain (eg, rainy night) to standard domain (eg, day). It is a challenging task because images from adverse domains have some artifacts and insufficient information. Recently, many studies employing Generative Adversarial Networks (GANs) have achieved notable success in I2I translation but there are still limitations in applying them to adverse weather enhancement. Symmetric architecture based on bidirectional cycle-consistency loss is adopted as a standard framework for unsupervised domain transfer methods. However, it can lead to inferior translation result if the two domains have imbalanced information. To address this issue, we propose a novel GAN model, i.e., AU-GAN, which has an asymmetric architecture for adverse domain translation. We insert a proposed feature transfer network ({T}-net) in only a normal domain generator (i.e., rainy night-> day) to enhance encoded features of the adverse domain image. In addition, we introduce asymmetric feature matching for disentanglement of encoded features. Finally, we propose uncertainty-aware cycle-consistency loss to address the regional uncertainty of a cyclic reconstructed image. We demonstrate the effectiveness of our method by qualitative and quantitative comparisons with state-of-the-art models. Codes are available at https://github.com/jgkwak95/AU-GAN.

  • 6 authors
·
Dec 8, 2021

Parameter Competition Balancing for Model Merging

While fine-tuning pretrained models has become common practice, these models often underperform outside their specific domains. Recently developed model merging techniques enable the direct integration of multiple models, each fine-tuned for distinct tasks, into a single model. This strategy promotes multitasking capabilities without requiring retraining on the original datasets. However, existing methods fall short in addressing potential conflicts and complex correlations between tasks, especially in parameter-level adjustments, posing a challenge in effectively balancing parameter competition across various tasks. This paper introduces an innovative technique named PCB-Merging (Parameter Competition Balancing), a lightweight and training-free technique that adjusts the coefficients of each parameter for effective model merging. PCB-Merging employs intra-balancing to gauge parameter significance within individual tasks and inter-balancing to assess parameter similarities across different tasks. Parameters with low importance scores are dropped, and the remaining ones are rescaled to form the final merged model. We assessed our approach in diverse merging scenarios, including cross-task, cross-domain, and cross-training configurations, as well as out-of-domain generalization. The experimental results reveal that our approach achieves substantial performance enhancements across multiple modalities, domains, model sizes, number of tasks, fine-tuning forms, and large language models, outperforming existing model merging methods. The code is publicly available at: https://github.com/duguodong7/pcb-merging.

  • 11 authors
·
Oct 3, 2024

Generalized Face Anti-spoofing via Finer Domain Partition and Disentangling Liveness-irrelevant Factors

Face anti-spoofing techniques based on domain generalization have recently been studied widely. Adversarial learning and meta-learning techniques have been adopted to learn domain-invariant representations. However, prior approaches often consider the dataset gap as the primary factor behind domain shifts. This perspective is not fine-grained enough to reflect the intrinsic gap among the data accurately. In our work, we redefine domains based on identities rather than datasets, aiming to disentangle liveness and identity attributes. We emphasize ignoring the adverse effect of identity shift, focusing on learning identity-invariant liveness representations through orthogonalizing liveness and identity features. To cope with style shifts, we propose Style Cross module to expand the stylistic diversity and Channel-wise Style Attention module to weaken the sensitivity to style shifts, aiming to learn robust liveness representations. Furthermore, acknowledging the asymmetry between live and spoof samples, we introduce a novel contrastive loss, Asymmetric Augmented Instance Contrast. Extensive experiments on four public datasets demonstrate that our method achieves state-of-the-art performance under cross-dataset and limited source dataset scenarios. Additionally, our method has good scalability when expanding diversity of identities. The codes will be released soon.

  • 5 authors
·
Jul 11, 2024

Instance-Aware Domain Generalization for Face Anti-Spoofing

Face anti-spoofing (FAS) based on domain generalization (DG) has been recently studied to improve the generalization on unseen scenarios. Previous methods typically rely on domain labels to align the distribution of each domain for learning domain-invariant representations. However, artificial domain labels are coarse-grained and subjective, which cannot reflect real domain distributions accurately. Besides, such domain-aware methods focus on domain-level alignment, which is not fine-grained enough to ensure that learned representations are insensitive to domain styles. To address these issues, we propose a novel perspective for DG FAS that aligns features on the instance level without the need for domain labels. Specifically, Instance-Aware Domain Generalization framework is proposed to learn the generalizable feature by weakening the features' sensitivity to instance-specific styles. Concretely, we propose Asymmetric Instance Adaptive Whitening to adaptively eliminate the style-sensitive feature correlation, boosting the generalization. Moreover, Dynamic Kernel Generator and Categorical Style Assembly are proposed to first extract the instance-specific features and then generate the style-diversified features with large style shifts, respectively, further facilitating the learning of style-insensitive features. Extensive experiments and analysis demonstrate the superiority of our method over state-of-the-art competitors. Code will be publicly available at https://github.com/qianyuzqy/IADG.

  • 7 authors
·
Apr 12, 2023

DONOD: Robust and Generalizable Instruction Fine-Tuning for LLMs via Model-Intrinsic Dataset Pruning

Ad-hoc instruction fine-tuning of large language models (LLMs) is widely adopted for domain-specific adaptation. While domain-specific supervised fine-tuning (SFT) is effective and efficient, it often weakens cross-domain generalization and struggles with noisy training data. To address these challenges, we propose DONOD, a lightweight model-intrinsic data pruning method. Our approach evaluates data using two model-parameter-based metrics: Delta of Norm (DON), which captures the cumulative influence on model weights, and Norm of Delta (NOD), which quantifies weight instability. Moreover, by employing the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) algorithm, we effectively filter noisy, unlearnable, and generalization-harming samples without relying on auxiliary models during the SFT process. Experiments on mathematical tasks demonstrate that data selected by DONOD achieve superior fine-tuning efficiency and improved robustness against noisy data. By filtering out 70% of the full dataset, we improve target-domain accuracy by 14.90% and cross-domain accuracy by 5.67%. Meanwhile, our selected data present superior cross-architecture generalization. Data pruned by smaller models (e.g., Llama 3.1-8B) generalize effectively on larger models (e.g., Llama 2-13B). Compared to existing related methodologies, DONOD demonstrates comparable or superior performance while remaining dataset-agnostic, enabling broader applicability.

  • 4 authors
·
Apr 20

CorIL: Towards Enriching Indian Language to Indian Language Parallel Corpora and Machine Translation Systems

India's linguistic landscape is one of the most diverse in the world, comprising over 120 major languages and approximately 1,600 additional languages, with 22 officially recognized as scheduled languages in the Indian Constitution. Despite recent progress in multilingual neural machine translation (NMT), high-quality parallel corpora for Indian languages remain scarce, especially across varied domains. In this paper, we introduce a large-scale, high-quality annotated parallel corpus covering 11 of these languages : English, Telugu, Hindi, Punjabi, Odia, Kashmiri, Sindhi, Dogri, Kannada, Urdu, and Gujarati comprising a total of 772,000 bi-text sentence pairs. The dataset is carefully curated and systematically categorized into three key domains: Government, Health, and General, to enable domain-aware machine translation research and facilitate effective domain adaptation. To demonstrate the utility of CorIL and establish strong benchmarks for future research, we fine-tune and evaluate several state-of-the-art NMT models, including IndicTrans2, NLLB, and BhashaVerse. Our analysis reveals important performance trends and highlights the corpus's value in probing model capabilities. For instance, the results show distinct performance patterns based on language script, with massively multilingual models showing an advantage on Perso-Arabic scripts (Urdu, Sindhi) while other models excel on Indic scripts. This paper provides a detailed domain-wise performance analysis, offering insights into domain sensitivity and cross-script transfer learning. By publicly releasing CorIL, we aim to significantly improve the availability of high-quality training data for Indian languages and provide a valuable resource for the machine translation research community.

  • 22 authors
·
Sep 24

Bohdi: Heterogeneous LLM Fusion with Automatic Data Exploration

Heterogeneous Large Language Model (LLM) fusion integrates the strengths of multiple source LLMs with different architectures into a target LLM with low computational overhead. While promising, existing methods suffer from two major limitations: 1) reliance on real data from limited domain for knowledge fusion, preventing the target LLM from fully acquiring knowledge across diverse domains, and 2) fixed data allocation proportions across domains, failing to dynamically adjust according to the target LLM's varying capabilities across domains, leading to a capability imbalance. To overcome these limitations, we propose Bohdi, a synthetic-data-only heterogeneous LLM fusion framework. Through the organization of knowledge domains into a hierarchical tree structure, Bohdi enables automatic domain exploration and multi-domain data generation through multi-model collaboration, thereby comprehensively extracting knowledge from source LLMs. By formalizing domain expansion and data sampling proportion allocation on the knowledge tree as a Hierarchical Multi-Armed Bandit problem, Bohdi leverages the designed DynaBranches mechanism to adaptively adjust sampling proportions based on the target LLM's performance feedback across domains. Integrated with our proposed Introspection-Rebirth (IR) mechanism, DynaBranches dynamically tracks capability shifts during target LLM's updates via Sliding Window Binomial Likelihood Ratio Testing (SWBLRT), further enhancing its online adaptation capability. Comparative experimental results on a comprehensive suite of benchmarks demonstrate that Bohdi significantly outperforms existing baselines on multiple target LLMs, exhibits higher data efficiency, and virtually eliminates the imbalance in the target LLM's capabilities. Our code is available at https://github.com/gjq100/Bohdi.git.

  • 8 authors
·
Jun 4

Few-shot Image Generation via Adaptation-Aware Kernel Modulation

Few-shot image generation (FSIG) aims to learn to generate new and diverse samples given an extremely limited number of samples from a domain, e.g., 10 training samples. Recent work has addressed the problem using transfer learning approach, leveraging a GAN pretrained on a large-scale source domain dataset and adapting that model to the target domain based on very limited target domain samples. Central to recent FSIG methods are knowledge preserving criteria, which aim to select a subset of source model's knowledge to be preserved into the adapted model. However, a major limitation of existing methods is that their knowledge preserving criteria consider only source domain/source task, and they fail to consider target domain/adaptation task in selecting source model's knowledge, casting doubt on their suitability for setups of different proximity between source and target domain. Our work makes two contributions. As our first contribution, we re-visit recent FSIG works and their experiments. Our important finding is that, under setups which assumption of close proximity between source and target domains is relaxed, existing state-of-the-art (SOTA) methods which consider only source domain/source task in knowledge preserving perform no better than a baseline fine-tuning method. To address the limitation of existing methods, as our second contribution, we propose Adaptation-Aware kernel Modulation (AdAM) to address general FSIG of different source-target domain proximity. Extensive experimental results show that the proposed method consistently achieves SOTA performance across source/target domains of different proximity, including challenging setups when source and target domains are more apart. Project Page: https://yunqing-me.github.io/AdAM/

  • 4 authors
·
Oct 29, 2022

Generalized Domain Conditioned Adaptation Network

Domain Adaptation (DA) attempts to transfer knowledge learned in the labeled source domain to the unlabeled but related target domain without requiring large amounts of target supervision. Recent advances in DA mainly proceed by aligning the source and target distributions. Despite the significant success, the adaptation performance still degrades accordingly when the source and target domains encounter a large distribution discrepancy. We consider this limitation may attribute to the insufficient exploration of domain-specialized features because most studies merely concentrate on domain-general feature learning in task-specific layers and integrate totally-shared convolutional networks (convnets) to generate common features for both domains. In this paper, we relax the completely-shared convnets assumption adopted by previous DA methods and propose Domain Conditioned Adaptation Network (DCAN), which introduces domain conditioned channel attention module with a multi-path structure to separately excite channel activation for each domain. Such a partially-shared convnets module allows domain-specialized features in low-level to be explored appropriately. Further, given the knowledge transferability varying along with convolutional layers, we develop Generalized Domain Conditioned Adaptation Network (GDCAN) to automatically determine whether domain channel activations should be separately modeled in each attention module. Afterward, the critical domain-specialized knowledge could be adaptively extracted according to the domain statistic gaps. As far as we know, this is the first work to explore the domain-wise convolutional channel activations separately for deep DA networks. Additionally, to effectively match high-level feature distributions across domains, we consider deploying feature adaptation blocks after task-specific layers, which can explicitly mitigate the domain discrepancy.

  • 6 authors
·
Mar 23, 2021

TechniqueRAG: Retrieval Augmented Generation for Adversarial Technique Annotation in Cyber Threat Intelligence Text

Accurately identifying adversarial techniques in security texts is critical for effective cyber defense. However, existing methods face a fundamental trade-off: they either rely on generic models with limited domain precision or require resource-intensive pipelines that depend on large labeled datasets and task-specific optimizations, such as custom hard-negative mining and denoising, resources rarely available in specialized domains. We propose TechniqueRAG, a domain-specific retrieval-augmented generation (RAG) framework that bridges this gap by integrating off-the-shelf retrievers, instruction-tuned LLMs, and minimal text-technique pairs. Our approach addresses data scarcity by fine-tuning only the generation component on limited in-domain examples, circumventing the need for resource-intensive retrieval training. While conventional RAG mitigates hallucination by coupling retrieval and generation, its reliance on generic retrievers often introduces noisy candidates, limiting domain-specific precision. To address this, we enhance retrieval quality and domain specificity through zero-shot LLM re-ranking, which explicitly aligns retrieved candidates with adversarial techniques. Experiments on multiple security benchmarks demonstrate that TechniqueRAG achieves state-of-the-art performance without extensive task-specific optimizations or labeled data, while comprehensive analysis provides further insights.

Zipper: A Multi-Tower Decoder Architecture for Fusing Modalities

Integrating multiple generative foundation models, especially those trained on different modalities, into something greater than the sum of its parts poses significant challenges. Two key hurdles are the availability of aligned data (concepts that contain similar meaning but is expressed differently in different modalities), and effectively leveraging unimodal representations in cross-domain generative tasks, without compromising their original unimodal capabilities. We propose Zipper, a multi-tower decoder architecture that addresses these concerns by using cross-attention to flexibly compose multimodal generative models from independently pre-trained unimodal decoders. In our experiments fusing speech and text modalities, we show the proposed architecture performs very competitively in scenarios with limited aligned text-speech data. We also showcase the flexibility of our model to selectively maintain unimodal (e.g., text-to-text generation) generation performance by freezing the corresponding modal tower (e.g. text). In cross-modal tasks such as automatic speech recognition (ASR) where the output modality is text, we show that freezing the text backbone results in negligible performance degradation. In cross-modal tasks such as text-to-speech generation (TTS) where the output modality is speech, we show that using a pre-trained speech backbone results in superior performance to the baseline.

  • 4 authors
·
May 28, 2024

Pareto Domain Adaptation

Domain adaptation (DA) attempts to transfer the knowledge from a labeled source domain to an unlabeled target domain that follows different distribution from the source. To achieve this, DA methods include a source classification objective to extract the source knowledge and a domain alignment objective to diminish the domain shift, ensuring knowledge transfer. Typically, former DA methods adopt some weight hyper-parameters to linearly combine the training objectives to form an overall objective. However, the gradient directions of these objectives may conflict with each other due to domain shift. Under such circumstances, the linear optimization scheme might decrease the overall objective value at the expense of damaging one of the training objectives, leading to restricted solutions. In this paper, we rethink the optimization scheme for DA from a gradient-based perspective. We propose a Pareto Domain Adaptation (ParetoDA) approach to control the overall optimization direction, aiming to cooperatively optimize all training objectives. Specifically, to reach a desirable solution on the target domain, we design a surrogate loss mimicking target classification. To improve target-prediction accuracy to support the mimicking, we propose a target-prediction refining mechanism which exploits domain labels via Bayes' theorem. On the other hand, since prior knowledge of weighting schemes for objectives is often unavailable to guide optimization to approach the optimal solution on the target domain, we propose a dynamic preference mechanism to dynamically guide our cooperative optimization by the gradient of the surrogate loss on a held-out unlabeled target dataset. Extensive experiments on image classification and semantic segmentation benchmarks demonstrate the effectiveness of ParetoDA

  • 8 authors
·
Dec 8, 2021

A New Benchmark: On the Utility of Synthetic Data with Blender for Bare Supervised Learning and Downstream Domain Adaptation

Deep learning in computer vision has achieved great success with the price of large-scale labeled training data. However, exhaustive data annotation is impracticable for each task of all domains of interest, due to high labor costs and unguaranteed labeling accuracy. Besides, the uncontrollable data collection process produces non-IID training and test data, where undesired duplication may exist. All these nuisances may hinder the verification of typical theories and exposure to new findings. To circumvent them, an alternative is to generate synthetic data via 3D rendering with domain randomization. We in this work push forward along this line by doing profound and extensive research on bare supervised learning and downstream domain adaptation. Specifically, under the well-controlled, IID data setting enabled by 3D rendering, we systematically verify the typical, important learning insights, e.g., shortcut learning, and discover the new laws of various data regimes and network architectures in generalization. We further investigate the effect of image formation factors on generalization, e.g., object scale, material texture, illumination, camera viewpoint, and background in a 3D scene. Moreover, we use the simulation-to-reality adaptation as a downstream task for comparing the transferability between synthetic and real data when used for pre-training, which demonstrates that synthetic data pre-training is also promising to improve real test results. Lastly, to promote future research, we develop a new large-scale synthetic-to-real benchmark for image classification, termed S2RDA, which provides more significant challenges for transfer from simulation to reality. The code and datasets are available at https://github.com/huitangtang/On_the_Utility_of_Synthetic_Data.

  • 2 authors
·
Mar 16, 2023