new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 20

DPM-OT: A New Diffusion Probabilistic Model Based on Optimal Transport

Sampling from diffusion probabilistic models (DPMs) can be viewed as a piecewise distribution transformation, which generally requires hundreds or thousands of steps of the inverse diffusion trajectory to get a high-quality image. Recent progress in designing fast samplers for DPMs achieves a trade-off between sampling speed and sample quality by knowledge distillation or adjusting the variance schedule or the denoising equation. However, it can't be optimal in both aspects and often suffer from mode mixture in short steps. To tackle this problem, we innovatively regard inverse diffusion as an optimal transport (OT) problem between latents at different stages and propose the DPM-OT, a unified learning framework for fast DPMs with a direct expressway represented by OT map, which can generate high-quality samples within around 10 function evaluations. By calculating the semi-discrete optimal transport map between the data latents and the white noise, we obtain an expressway from the prior distribution to the data distribution, while significantly alleviating the problem of mode mixture. In addition, we give the error bound of the proposed method, which theoretically guarantees the stability of the algorithm. Extensive experiments validate the effectiveness and advantages of DPM-OT in terms of speed and quality (FID and mode mixture), thus representing an efficient solution for generative modeling. Source codes are available at https://github.com/cognaclee/DPM-OT

  • 6 authors
·
Jul 20, 2023

Urban Spatio-Temporal Foundation Models for Climate-Resilient Housing: Scaling Diffusion Transformers for Disaster Risk Prediction

Climate hazards increasingly disrupt urban transportation and emergency-response operations by damaging housing stock, degrading infrastructure, and reducing network accessibility. This paper presents Skjold-DiT, a diffusion-transformer framework that integrates heterogeneous spatio-temporal urban data to forecast building-level climate-risk indicators while explicitly incorporating transportation-network structure and accessibility signals relevant to intelligent vehicles (e.g., emergency reachability and evacuation-route constraints). Concretely, Skjold-DiT enables hazard-conditioned routing constraints by producing calibrated, uncertainty-aware accessibility layers (reachability, travel-time inflation, and route redundancy) that can be consumed by intelligent-vehicle routing and emergency dispatch systems. Skjold-DiT combines: (1) Fjell-Prompt, a prompt-based conditioning interface designed to support cross-city transfer; (2) Norrland-Fusion, a cross-modal attention mechanism unifying hazard maps/imagery, building attributes, demographics, and transportation infrastructure into a shared latent representation; and (3) Valkyrie-Forecast, a counterfactual simulator for generating probabilistic risk trajectories under intervention prompts. We introduce the Baltic-Caspian Urban Resilience (BCUR) dataset with 847,392 building-level observations across six cities, including multi-hazard annotations (e.g., flood and heat indicators) and transportation accessibility features. Experiments evaluate prediction quality, cross-city generalization, calibration, and downstream transportation-relevant outcomes, including reachability and hazard-conditioned travel times under counterfactual interventions.

  • 3 authors
·
Feb 5 2

IntTravel: A Real-World Dataset and Generative Framework for Integrated Multi-Task Travel Recommendation

Next Point of Interest (POI) recommendation is essential for modern mobility and location-based services. To provide a smooth user experience, models must understand several components of a journey holistically: "when to depart", "how to travel", "where to go", and "what needs arise via the route". However, current research is limited by fragmented datasets that focus merely on next POI recommendation ("where to go"), neglecting the departure time, travel mode, and situational requirements along the journey. Furthermore, the limited scale of these datasets impedes accurate evaluation of performance. To bridge this gap, we introduce IntTravel, the first large-scale public dataset for integrated travel recommendation, including 4.1 billion interactions from 163 million users with 7.3 million POIs. Built upon this dataset, we introduce an end-to-end, decoder-only generative framework for multi-task recommendation. It incorporates information preservation, selection, and factorization to balance task collaboration with specialized differentiation, yielding substantial performance gains. The framework's generalizability is highlighted by its state-of-the-art performance across both IntTravel dataset and an additional non-travel benchmark. IntTravel has been successfully deployed on Amap serving hundreds of millions of users, leading to a 1.09% increase in CTR. IntTravel is available at https://github.com/AMAP-ML/IntTravel.

  • 7 authors
·
Feb 12

DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data

We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets (represented by Neural Radiance Fields) from text prompts. Unlike recent 3D generative models that rely on clean and well-aligned 3D data, limiting them to single or few-class generation, our model is directly trained on extensive noisy and unaligned `in-the-wild' 3D assets, mitigating the key challenge (i.e., data scarcity) in large-scale 3D generation. In particular, DIRECT-3D is a tri-plane diffusion model that integrates two innovations: 1) A novel learning framework where noisy data are filtered and aligned automatically during the training process. Specifically, after an initial warm-up phase using a small set of clean data, an iterative optimization is introduced in the diffusion process to explicitly estimate the 3D pose of objects and select beneficial data based on conditional density. 2) An efficient 3D representation that is achieved by disentangling object geometry and color features with two separate conditional diffusion models that are optimized hierarchically. Given a prompt input, our model generates high-quality, high-resolution, realistic, and complex 3D objects with accurate geometric details in seconds. We achieve state-of-the-art performance in both single-class generation and text-to-3D generation. We also demonstrate that DIRECT-3D can serve as a useful 3D geometric prior of objects, for example to alleviate the well-known Janus problem in 2D-lifting methods such as DreamFusion. The code and models are available for research purposes at: https://github.com/qihao067/direct3d.

  • 5 authors
·
Jun 6, 2024

The OPNV Data Collection: A Dataset for Infrastructure-Supported Perception Research with Focus on Public Transportation

This paper we present our vision and ongoing work for a novel dataset designed to advance research into the interoperability of intelligent vehicles and infrastructure, specifically aimed at enhancing cooperative perception and interaction in the realm of public transportation. Unlike conventional datasets centered on ego-vehicle data, this approach encompasses both a stationary sensor tower and a moving vehicle, each equipped with cameras, LiDARs, and GNSS, while the vehicle additionally includes an inertial navigation system. Our setup features comprehensive calibration and time synchronization, ensuring seamless and accurate sensor data fusion crucial for studying complex, dynamic scenes. Emphasizing public transportation, the dataset targets to include scenes like bus station maneuvers and driving on dedicated bus lanes, reflecting the specifics of small public buses. We introduce the open-source ".4mse" file format for the new dataset, accompanied by a research kit. This kit provides tools such as ego-motion compensation or LiDAR-to-camera projection enabling advanced research on intelligent vehicle-infrastructure integration. Our approach does not include annotations; however, we plan to implement automatically generated labels sourced from state-of-the-art public repositories. Several aspects are still up for discussion, and timely feedback from the community would be greatly appreciated. A sneak preview on one data frame will be available at a Google Colab Notebook. Moreover, we will use the related GitHub Repository to collect remarks and suggestions.

  • 8 authors
·
Jul 11, 2024