Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeGRNFormer: A Biologically-Guided Framework for Integrating Gene Regulatory Networks into RNA Foundation Models
Foundation models for single-cell RNA sequencing (scRNA-seq) have shown promising capabilities in capturing gene expression patterns. However, current approaches face critical limitations: they ignore biological prior knowledge encoded in gene regulatory relationships and fail to leverage multi-omics signals that could provide complementary regulatory insights. In this paper, we propose GRNFormer, a new framework that systematically integrates multi-scale Gene Regulatory Networks (GRNs) inferred from multi-omics data into RNA foundation model training. Our framework introduces two key innovations. First, we introduce a pipeline for constructing hierarchical GRNs that capture regulatory relationships at both cell-type-specific and cell-specific resolutions. Second, we design a structure-aware integration framework that addresses the information asymmetry in GRNs through two technical advances: (1) A graph topological adapter using multi-head cross-attention to weight regulatory relationships dynamically, and (2) a novel edge perturbation strategy that perturb GRNs with biologically-informed co-expression links to augment graph neural network training. Comprehensive experiments have been conducted on three representative downstream tasks across multiple model architectures to demonstrate the effectiveness of GRNFormer. It achieves consistent improvements over state-of-the-art (SoTA) baselines: 3.6% increase in drug response prediction correlation, 9.6% improvement in single-cell drug classification AUC, and 1.1% average gain in gene perturbation prediction accuracy.
Cross-View Graph Consistency Learning for Invariant Graph Representations
Graph representation learning is fundamental for analyzing graph-structured data. Exploring invariant graph representations remains a challenge for most existing graph representation learning methods. In this paper, we propose a cross-view graph consistency learning (CGCL) method that learns invariant graph representations for link prediction. First, two complementary augmented views are derived from an incomplete graph structure through a bidirectional graph structure augmentation scheme. This augmentation scheme mitigates the potential information loss that is commonly associated with various data augmentation techniques involving raw graph data, such as edge perturbation, node removal, and attribute masking. Second, we propose a CGCL model that can learn invariant graph representations. A cross-view training scheme is proposed to train the proposed CGCL model. This scheme attempts to maximize the consistency information between one augmented view and the graph structure reconstructed from the other augmented view. Furthermore, we offer a comprehensive theoretical CGCL analysis. This paper empirically and experimentally demonstrates the effectiveness of the proposed CGCL method, achieving competitive results on graph datasets in comparisons with several state-of-the-art algorithms.
LightGCL: Simple Yet Effective Graph Contrastive Learning for Recommendation
Graph neural network (GNN) is a powerful learning approach for graph-based recommender systems. Recently, GNNs integrated with contrastive learning have shown superior performance in recommendation with their data augmentation schemes, aiming at dealing with highly sparse data. Despite their success, most existing graph contrastive learning methods either perform stochastic augmentation (e.g., node/edge perturbation) on the user-item interaction graph, or rely on the heuristic-based augmentation techniques (e.g., user clustering) for generating contrastive views. We argue that these methods cannot well preserve the intrinsic semantic structures and are easily biased by the noise perturbation. In this paper, we propose a simple yet effective graph contrastive learning paradigm LightGCL that mitigates these issues impairing the generality and robustness of CL-based recommenders. Our model exclusively utilizes singular value decomposition for contrastive augmentation, which enables the unconstrained structural refinement with global collaborative relation modeling. Experiments conducted on several benchmark datasets demonstrate the significant improvement in performance of our model over the state-of-the-arts. Further analyses demonstrate the superiority of LightGCL's robustness against data sparsity and popularity bias. The source code of our model is available at https://github.com/HKUDS/LightGCL.
EDoG: Adversarial Edge Detection For Graph Neural Networks
Graph Neural Networks (GNNs) have been widely applied to different tasks such as bioinformatics, drug design, and social networks. However, recent studies have shown that GNNs are vulnerable to adversarial attacks which aim to mislead the node or subgraph classification prediction by adding subtle perturbations. Detecting these attacks is challenging due to the small magnitude of perturbation and the discrete nature of graph data. In this paper, we propose a general adversarial edge detection pipeline EDoG without requiring knowledge of the attack strategies based on graph generation. Specifically, we propose a novel graph generation approach combined with link prediction to detect suspicious adversarial edges. To effectively train the graph generative model, we sample several sub-graphs from the given graph data. We show that since the number of adversarial edges is usually low in practice, with low probability the sampled sub-graphs will contain adversarial edges based on the union bound. In addition, considering the strong attacks which perturb a large number of edges, we propose a set of novel features to perform outlier detection as the preprocessing for our detection. Extensive experimental results on three real-world graph datasets including a private transaction rule dataset from a major company and two types of synthetic graphs with controlled properties show that EDoG can achieve above 0.8 AUC against four state-of-the-art unseen attack strategies without requiring any knowledge about the attack type; and around 0.85 with knowledge of the attack type. EDoG significantly outperforms traditional malicious edge detection baselines. We also show that an adaptive attack with full knowledge of our detection pipeline is difficult to bypass it.
Uncertainty-guided Perturbation for Image Super-Resolution Diffusion Model
Diffusion-based image super-resolution methods have demonstrated significant advantages over GAN-based approaches, particularly in terms of perceptual quality. Building upon a lengthy Markov chain, diffusion-based methods possess remarkable modeling capacity, enabling them to achieve outstanding performance in real-world scenarios. Unlike previous methods that focus on modifying the noise schedule or sampling process to enhance performance, our approach emphasizes the improved utilization of LR information. We find that different regions of the LR image can be viewed as corresponding to different timesteps in a diffusion process, where flat areas are closer to the target HR distribution but edge and texture regions are farther away. In these flat areas, applying a slight noise is more advantageous for the reconstruction. We associate this characteristic with uncertainty and propose to apply uncertainty estimate to guide region-specific noise level control, a technique we refer to as Uncertainty-guided Noise Weighting. Pixels with lower uncertainty (i.e., flat regions) receive reduced noise to preserve more LR information, therefore improving performance. Furthermore, we modify the network architecture of previous methods to develop our Uncertainty-guided Perturbation Super-Resolution (UPSR) model. Extensive experimental results demonstrate that, despite reduced model size and training overhead, the proposed UWSR method outperforms current state-of-the-art methods across various datasets, both quantitatively and qualitatively.
Humans or LLMs as the Judge? A Study on Judgement Biases
Adopting human and large language models (LLM) as judges (a.k.a human- and LLM-as-a-judge) for evaluating the performance of existing LLMs has recently gained attention. Nonetheless, this approach concurrently introduces potential biases from human and LLM judges, questioning the reliability of the evaluation results. In this paper, we propose a novel framework for investigating 5 types of biases for LLM and human judges. We curate a dataset with 142 samples referring to the revised Bloom's Taxonomy and conduct thousands of human and LLM evaluations. Results show that human and LLM judges are vulnerable to perturbations to various degrees, and that even the most cutting-edge judges possess considerable biases. We further exploit their weakness and conduct attacks on LLM judges. We hope that our work can notify the community of the vulnerability of human- and LLM-as-a-judge against perturbations, as well as the urgency of developing robust evaluation systems.
CSGCL: Community-Strength-Enhanced Graph Contrastive Learning
Graph Contrastive Learning (GCL) is an effective way to learn generalized graph representations in a self-supervised manner, and has grown rapidly in recent years. However, the underlying community semantics has not been well explored by most previous GCL methods. Research that attempts to leverage communities in GCL regards them as having the same influence on the graph, leading to extra representation errors. To tackle this issue, we define ''community strength'' to measure the difference of influence among communities. Under this premise, we propose a Community-Strength-enhanced Graph Contrastive Learning (CSGCL) framework to preserve community strength throughout the learning process. Firstly, we present two novel graph augmentation methods, Communal Attribute Voting (CAV) and Communal Edge Dropping (CED), where the perturbations of node attributes and edges are guided by community strength. Secondly, we propose a dynamic ''Team-up'' contrastive learning scheme, where community strength is used to progressively fine-tune the contrastive objective. We report extensive experiment results on three downstream tasks: node classification, node clustering, and link prediction. CSGCL achieves state-of-the-art performance compared with other GCL methods, validating that community strength brings effectiveness and generality to graph representations. Our code is available at https://github.com/HanChen-HUST/CSGCL.
Explanation Graph Generation via Pre-trained Language Models: An Empirical Study with Contrastive Learning
Pre-trained sequence-to-sequence language models have led to widespread success in many natural language generation tasks. However, there has been relatively less work on analyzing their ability to generate structured outputs such as graphs. Unlike natural language, graphs have distinct structural and semantic properties in the context of a downstream NLP task, e.g., generating a graph that is connected and acyclic can be attributed to its structural constraints, while the semantics of a graph can refer to how meaningfully an edge represents the relation between two node concepts. In this work, we study pre-trained language models that generate explanation graphs in an end-to-end manner and analyze their ability to learn the structural constraints and semantics of such graphs. We first show that with limited supervision, pre-trained language models often generate graphs that either violate these constraints or are semantically incoherent. Since curating large amount of human-annotated graphs is expensive and tedious, we propose simple yet effective ways of graph perturbations via node and edge edit operations that lead to structurally and semantically positive and negative graphs. Next, we leverage these graphs in different contrastive learning models with Max-Margin and InfoNCE losses. Our methods lead to significant improvements in both structural and semantic accuracy of explanation graphs and also generalize to other similar graph generation tasks. Lastly, we show that human errors are the best negatives for contrastive learning and also that automatically generating more such human-like negative graphs can lead to further improvements. Our code and models are publicly available at https://github.com/swarnaHub/ExplagraphGen
Understanding Deep Networks via Extremal Perturbations and Smooth Masks
The problem of attribution is concerned with identifying the parts of an input that are responsible for a model's output. An important family of attribution methods is based on measuring the effect of perturbations applied to the input. In this paper, we discuss some of the shortcomings of existing approaches to perturbation analysis and address them by introducing the concept of extremal perturbations, which are theoretically grounded and interpretable. We also introduce a number of technical innovations to compute extremal perturbations, including a new area constraint and a parametric family of smooth perturbations, which allow us to remove all tunable hyper-parameters from the optimization problem. We analyze the effect of perturbations as a function of their area, demonstrating excellent sensitivity to the spatial properties of the deep neural network under stimulation. We also extend perturbation analysis to the intermediate layers of a network. This application allows us to identify the salient channels necessary for classification, which, when visualized using feature inversion, can be used to elucidate model behavior. Lastly, we introduce TorchRay, an interpretability library built on PyTorch.
Perturbation Analysis of Neural Collapse
Training deep neural networks for classification often includes minimizing the training loss beyond the zero training error point. In this phase of training, a "neural collapse" behavior has been observed: the variability of features (outputs of the penultimate layer) of within-class samples decreases and the mean features of different classes approach a certain tight frame structure. Recent works analyze this behavior via idealized unconstrained features models where all the minimizers exhibit exact collapse. However, with practical networks and datasets, the features typically do not reach exact collapse, e.g., because deep layers cannot arbitrarily modify intermediate features that are far from being collapsed. In this paper, we propose a richer model that can capture this phenomenon by forcing the features to stay in the vicinity of a predefined features matrix (e.g., intermediate features). We explore the model in the small vicinity case via perturbation analysis and establish results that cannot be obtained by the previously studied models. For example, we prove reduction in the within-class variability of the optimized features compared to the predefined input features (via analyzing gradient flow on the "central-path" with minimal assumptions), analyze the minimizers in the near-collapse regime, and provide insights on the effect of regularization hyperparameters on the closeness to collapse. We support our theory with experiments in practical deep learning settings.
Second-order regression models exhibit progressive sharpening to the edge of stability
Recent studies of gradient descent with large step sizes have shown that there is often a regime with an initial increase in the largest eigenvalue of the loss Hessian (progressive sharpening), followed by a stabilization of the eigenvalue near the maximum value which allows convergence (edge of stability). These phenomena are intrinsically non-linear and do not happen for models in the constant Neural Tangent Kernel (NTK) regime, for which the predictive function is approximately linear in the parameters. As such, we consider the next simplest class of predictive models, namely those that are quadratic in the parameters, which we call second-order regression models. For quadratic objectives in two dimensions, we prove that this second-order regression model exhibits progressive sharpening of the NTK eigenvalue towards a value that differs slightly from the edge of stability, which we explicitly compute. In higher dimensions, the model generically shows similar behavior, even without the specific structure of a neural network, suggesting that progressive sharpening and edge-of-stability behavior aren't unique features of neural networks, and could be a more general property of discrete learning algorithms in high-dimensional non-linear models.
Theoretical Understanding of Learning from Adversarial Perturbations
It is not fully understood why adversarial examples can deceive neural networks and transfer between different networks. To elucidate this, several studies have hypothesized that adversarial perturbations, while appearing as noises, contain class features. This is supported by empirical evidence showing that networks trained on mislabeled adversarial examples can still generalize well to correctly labeled test samples. However, a theoretical understanding of how perturbations include class features and contribute to generalization is limited. In this study, we provide a theoretical framework for understanding learning from perturbations using a one-hidden-layer network trained on mutually orthogonal samples. Our results highlight that various adversarial perturbations, even perturbations of a few pixels, contain sufficient class features for generalization. Moreover, we reveal that the decision boundary when learning from perturbations matches that from standard samples except for specific regions under mild conditions. The code is available at https://github.com/s-kumano/learning-from-adversarial-perturbations.
Contrasting Adversarial Perturbations: The Space of Harmless Perturbations
Existing works have extensively studied adversarial examples, which are minimal perturbations that can mislead the output of deep neural networks (DNNs) while remaining imperceptible to humans. However, in this work, we reveal the existence of a harmless perturbation space, in which perturbations drawn from this space, regardless of their magnitudes, leave the network output unchanged when applied to inputs. Essentially, the harmless perturbation space emerges from the usage of non-injective functions (linear or non-linear layers) within DNNs, enabling multiple distinct inputs to be mapped to the same output. For linear layers with input dimensions exceeding output dimensions, any linear combination of the orthogonal bases of the nullspace of the parameter consistently yields no change in their output. For non-linear layers, the harmless perturbation space may expand, depending on the properties of the layers and input samples. Inspired by this property of DNNs, we solve for a family of general perturbation spaces that are redundant for the DNN's decision, and can be used to hide sensitive data and serve as a means of model identification. Our work highlights the distinctive robustness of DNNs (i.e., consistency under large magnitude perturbations) in contrast to adversarial examples (vulnerability for small imperceptible noises).
Robust Weight Perturbation for Adversarial Training
Overfitting widely exists in adversarial robust training of deep networks. An effective remedy is adversarial weight perturbation, which injects the worst-case weight perturbation during network training by maximizing the classification loss on adversarial examples. Adversarial weight perturbation helps reduce the robust generalization gap; however, it also undermines the robustness improvement. A criterion that regulates the weight perturbation is therefore crucial for adversarial training. In this paper, we propose such a criterion, namely Loss Stationary Condition (LSC) for constrained perturbation. With LSC, we find that it is essential to conduct weight perturbation on adversarial data with small classification loss to eliminate robust overfitting. Weight perturbation on adversarial data with large classification loss is not necessary and may even lead to poor robustness. Based on these observations, we propose a robust perturbation strategy to constrain the extent of weight perturbation. The perturbation strategy prevents deep networks from overfitting while avoiding the side effect of excessive weight perturbation, significantly improving the robustness of adversarial training. Extensive experiments demonstrate the superiority of the proposed method over the state-of-the-art adversarial training methods.
Layer-Aware Analysis of Catastrophic Overfitting: Revealing the Pseudo-Robust Shortcut Dependency
Catastrophic overfitting (CO) presents a significant challenge in single-step adversarial training (AT), manifesting as highly distorted deep neural networks (DNNs) that are vulnerable to multi-step adversarial attacks. However, the underlying factors that lead to the distortion of decision boundaries remain unclear. In this work, we delve into the specific changes within different DNN layers and discover that during CO, the former layers are more susceptible, experiencing earlier and greater distortion, while the latter layers show relative insensitivity. Our analysis further reveals that this increased sensitivity in former layers stems from the formation of pseudo-robust shortcuts, which alone can impeccably defend against single-step adversarial attacks but bypass genuine-robust learning, resulting in distorted decision boundaries. Eliminating these shortcuts can partially restore robustness in DNNs from the CO state, thereby verifying that dependence on them triggers the occurrence of CO. This understanding motivates us to implement adaptive weight perturbations across different layers to hinder the generation of pseudo-robust shortcuts, consequently mitigating CO. Extensive experiments demonstrate that our proposed method, Layer-Aware Adversarial Weight Perturbation (LAP), can effectively prevent CO and further enhance robustness.
A Theory of Topological Derivatives for Inverse Rendering of Geometry
We introduce a theoretical framework for differentiable surface evolution that allows discrete topology changes through the use of topological derivatives for variational optimization of image functionals. While prior methods for inverse rendering of geometry rely on silhouette gradients for topology changes, such signals are sparse. In contrast, our theory derives topological derivatives that relate the introduction of vanishing holes and phases to changes in image intensity. As a result, we enable differentiable shape perturbations in the form of hole or phase nucleation. We validate the proposed theory with optimization of closed curves in 2D and surfaces in 3D to lend insights into limitations of current methods and enable improved applications such as image vectorization, vector-graphics generation from text prompts, single-image reconstruction of shape ambigrams and multi-view 3D reconstruction.
Explaining image classifiers by removing input features using generative models
Perturbation-based explanation methods often measure the contribution of an input feature to an image classifier's outputs by heuristically removing it via e.g. blurring, adding noise, or graying out, which often produce unrealistic, out-of-samples. Instead, we propose to integrate a generative inpainter into three representative attribution methods to remove an input feature. Our proposed change improved all three methods in (1) generating more plausible counterfactual samples under the true data distribution; (2) being more accurate according to three metrics: object localization, deletion, and saliency metrics; and (3) being more robust to hyperparameter changes. Our findings were consistent across both ImageNet and Places365 datasets and two different pairs of classifiers and inpainters.
Regularizing Neural Networks via Adversarial Model Perturbation
Effective regularization techniques are highly desired in deep learning for alleviating overfitting and improving generalization. This work proposes a new regularization scheme, based on the understanding that the flat local minima of the empirical risk cause the model to generalize better. This scheme is referred to as adversarial model perturbation (AMP), where instead of directly minimizing the empirical risk, an alternative "AMP loss" is minimized via SGD. Specifically, the AMP loss is obtained from the empirical risk by applying the "worst" norm-bounded perturbation on each point in the parameter space. Comparing with most existing regularization schemes, AMP has strong theoretical justifications, in that minimizing the AMP loss can be shown theoretically to favour flat local minima of the empirical risk. Extensive experiments on various modern deep architectures establish AMP as a new state of the art among regularization schemes. Our code is available at https://github.com/hiyouga/AMP-Regularizer.
Raising the Cost of Malicious AI-Powered Image Editing
We present an approach to mitigating the risks of malicious image editing posed by large diffusion models. The key idea is to immunize images so as to make them resistant to manipulation by these models. This immunization relies on injection of imperceptible adversarial perturbations designed to disrupt the operation of the targeted diffusion models, forcing them to generate unrealistic images. We provide two methods for crafting such perturbations, and then demonstrate their efficacy. Finally, we discuss a policy component necessary to make our approach fully effective and practical -- one that involves the organizations developing diffusion models, rather than individual users, to implement (and support) the immunization process.
Nearly Zero-Cost Protection Against Mimicry by Personalized Diffusion Models
Recent advancements in diffusion models revolutionize image generation but pose risks of misuse, such as replicating artworks or generating deepfakes. Existing image protection methods, though effective, struggle to balance protection efficacy, invisibility, and latency, thus limiting practical use. We introduce perturbation pre-training to reduce latency and propose a mixture-of-perturbations approach that dynamically adapts to input images to minimize performance degradation. Our novel training strategy computes protection loss across multiple VAE feature spaces, while adaptive targeted protection at inference enhances robustness and invisibility. Experiments show comparable protection performance with improved invisibility and drastically reduced inference time. The code and demo are available at https://webtoon.github.io/impasto
How many perturbations break this model? Evaluating robustness beyond adversarial accuracy
Robustness to adversarial attack is typically evaluated with adversarial accuracy. This metric quantifies the number of points for which, given a threat model, successful adversarial perturbations cannot be found. While essential, this metric does not capture all aspects of robustness and in particular leaves out the question of how many perturbations can be found for each point. In this work we introduce an alternative approach, adversarial sparsity, which quantifies how difficult it is to find a successful perturbation given both an input point and a constraint on the direction of the perturbation. This constraint may be angular (L2 perturbations), or based on the number of pixels (Linf perturbations). We show that sparsity provides valuable insight on neural networks in multiple ways. analyzing the sparsity of existing robust models illustrates important differences between them that accuracy analysis does not, and suggests approaches for improving their robustness. When applying broken defenses effective against weak attacks but not strong ones, sparsity can discriminate between the totally ineffective and the partially effective defenses. Finally, with sparsity we can measure increases in robustness that do not affect accuracy: we show for example that data augmentation can by itself increase adversarial robustness, without using adversarial training.
Outliers with Opposing Signals Have an Outsized Effect on Neural Network Optimization
We identify a new phenomenon in neural network optimization which arises from the interaction of depth and a particular heavy-tailed structure in natural data. Our result offers intuitive explanations for several previously reported observations about network training dynamics. In particular, it implies a conceptually new cause for progressive sharpening and the edge of stability; we also highlight connections to other concepts in optimization and generalization including grokking, simplicity bias, and Sharpness-Aware Minimization. Experimentally, we demonstrate the significant influence of paired groups of outliers in the training data with strong opposing signals: consistent, large magnitude features which dominate the network output throughout training and provide gradients which point in opposite directions. Due to these outliers, early optimization enters a narrow valley which carefully balances the opposing groups; subsequent sharpening causes their loss to rise rapidly, oscillating between high on one group and then the other, until the overall loss spikes. We describe how to identify these groups, explore what sets them apart, and carefully study their effect on the network's optimization and behavior. We complement these experiments with a mechanistic explanation on a toy example of opposing signals and a theoretical analysis of a two-layer linear network on a simple model. Our finding enables new qualitative predictions of training behavior which we confirm experimentally. It also provides a new lens through which to study and improve modern training practices for stochastic optimization, which we highlight via a case study of Adam versus SGD.
Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling
Diffusion-based generative graph models have been proven effective in generating high-quality small graphs. However, they need to be more scalable for generating large graphs containing thousands of nodes desiring graph statistics. In this work, we propose EDGE, a new diffusion-based generative graph model that addresses generative tasks with large graphs. To improve computation efficiency, we encourage graph sparsity by using a discrete diffusion process that randomly removes edges at each time step and finally obtains an empty graph. EDGE only focuses on a portion of nodes in the graph at each denoising step. It makes much fewer edge predictions than previous diffusion-based models. Moreover, EDGE admits explicitly modeling the node degrees of the graphs, further improving the model performance. The empirical study shows that EDGE is much more efficient than competing methods and can generate large graphs with thousands of nodes. It also outperforms baseline models in generation quality: graphs generated by our approach have more similar graph statistics to those of the training graphs.
Understanding Gradient Descent through the Training Jacobian
We examine the geometry of neural network training using the Jacobian of trained network parameters with respect to their initial values. Our analysis reveals low-dimensional structure in the training process which is dependent on the input data but largely independent of the labels. We find that the singular value spectrum of the Jacobian matrix consists of three distinctive regions: a "chaotic" region of values orders of magnitude greater than one, a large "bulk" region of values extremely close to one, and a "stable" region of values less than one. Along each bulk direction, the left and right singular vectors are nearly identical, indicating that perturbations to the initialization are carried through training almost unchanged. These perturbations have virtually no effect on the network's output in-distribution, yet do have an effect far out-of-distribution. While the Jacobian applies only locally around a single initialization, we find substantial overlap in bulk subspaces for different random seeds. Our code is available at https://github.com/EleutherAI/training-jacobian
Generative Modeling of Graphs via Joint Diffusion of Node and Edge Attributes
Graph generation is integral to various engineering and scientific disciplines. Nevertheless, existing methodologies tend to overlook the generation of edge attributes. However, we identify critical applications where edge attributes are essential, making prior methods potentially unsuitable in such contexts. Moreover, while trivial adaptations are available, empirical investigations reveal their limited efficacy as they do not properly model the interplay among graph components. To address this, we propose a joint score-based model of nodes and edges for graph generation that considers all graph components. Our approach offers two key novelties: (i) node and edge attributes are combined in an attention module that generates samples based on the two ingredients; and (ii) node, edge and adjacency information are mutually dependent during the graph diffusion process. We evaluate our method on challenging benchmarks involving real-world and synthetic datasets in which edge features are crucial. Additionally, we introduce a new synthetic dataset that incorporates edge values. Furthermore, we propose a novel application that greatly benefits from the method due to its nature: the generation of traffic scenes represented as graphs. Our method outperforms other graph generation methods, demonstrating a significant advantage in edge-related measures.
Finite size corrections for neural network Gaussian processes
There has been a recent surge of interest in modeling neural networks (NNs) as Gaussian processes. In the limit of a NN of infinite width the NN becomes equivalent to a Gaussian process. Here we demonstrate that for an ensemble of large, finite, fully connected networks with a single hidden layer the distribution of outputs at initialization is well described by a Gaussian perturbed by the fourth Hermite polynomial for weights drawn from a symmetric distribution. We show that the scale of the perturbation is inversely proportional to the number of units in the NN and that higher order terms decay more rapidly, thereby recovering the Edgeworth expansion. We conclude by observing that understanding how this perturbation changes under training would reveal the regimes in which the Gaussian process framework is valid to model NN behavior.
ZONE: Zero-Shot Instruction-Guided Local Editing
Recent advances in vision-language models like Stable Diffusion have shown remarkable power in creative image synthesis and editing.However, most existing text-to-image editing methods encounter two obstacles: First, the text prompt needs to be carefully crafted to achieve good results, which is not intuitive or user-friendly. Second, they are insensitive to local edits and can irreversibly affect non-edited regions, leaving obvious editing traces. To tackle these problems, we propose a Zero-shot instructiON-guided local image Editing approach, termed ZONE. We first convert the editing intent from the user-provided instruction (e.g., "make his tie blue") into specific image editing regions through InstructPix2Pix. We then propose a Region-IoU scheme for precise image layer extraction from an off-the-shelf segment model. We further develop an edge smoother based on FFT for seamless blending between the layer and the image.Our method allows for arbitrary manipulation of a specific region with a single instruction while preserving the rest. Extensive experiments demonstrate that our ZONE achieves remarkable local editing results and user-friendliness, outperforming state-of-the-art methods. Code is available at https://github.com/lsl001006/ZONE.
Anti-DreamBooth: Protecting users from personalized text-to-image synthesis
Text-to-image diffusion models are nothing but a revolution, allowing anyone, even without design skills, to create realistic images from simple text inputs. With powerful personalization tools like DreamBooth, they can generate images of a specific person just by learning from his/her few reference images. However, when misused, such a powerful and convenient tool can produce fake news or disturbing content targeting any individual victim, posing a severe negative social impact. In this paper, we explore a defense system called Anti-DreamBooth against such malicious use of DreamBooth. The system aims to add subtle noise perturbation to each user's image before publishing in order to disrupt the generation quality of any DreamBooth model trained on these perturbed images. We investigate a wide range of algorithms for perturbation optimization and extensively evaluate them on two facial datasets over various text-to-image model versions. Despite the complicated formulation of DreamBooth and Diffusion-based text-to-image models, our methods effectively defend users from the malicious use of those models. Their effectiveness withstands even adverse conditions, such as model or prompt/term mismatching between training and testing. Our code will be available at https://github.com/VinAIResearch/Anti-DreamBooth.git{https://github.com/VinAIResearch/Anti-DreamBooth.git}.
PNT-Edge: Towards Robust Edge Detection with Noisy Labels by Learning Pixel-level Noise Transitions
Relying on large-scale training data with pixel-level labels, previous edge detection methods have achieved high performance. However, it is hard to manually label edges accurately, especially for large datasets, and thus the datasets inevitably contain noisy labels. This label-noise issue has been studied extensively for classification, while still remaining under-explored for edge detection. To address the label-noise issue for edge detection, this paper proposes to learn Pixel-level NoiseTransitions to model the label-corruption process. To achieve it, we develop a novel Pixel-wise Shift Learning (PSL) module to estimate the transition from clean to noisy labels as a displacement field. Exploiting the estimated noise transitions, our model, named PNT-Edge, is able to fit the prediction to clean labels. In addition, a local edge density regularization term is devised to exploit local structure information for better transition learning. This term encourages learning large shifts for the edges with complex local structures. Experiments on SBD and Cityscapes demonstrate the effectiveness of our method in relieving the impact of label noise. Codes will be available at github.
Direct Parameterization of Lipschitz-Bounded Deep Networks
This paper introduces a new parameterization of deep neural networks (both fully-connected and convolutional) with guaranteed ell^2 Lipschitz bounds, i.e. limited sensitivity to input perturbations. The Lipschitz guarantees are equivalent to the tightest-known bounds based on certification via a semidefinite program (SDP). We provide a ``direct'' parameterization, i.e., a smooth mapping from mathbb R^N onto the set of weights satisfying the SDP-based bound. Moreover, our parameterization is complete, i.e. a neural network satisfies the SDP bound if and only if it can be represented via our parameterization. This enables training using standard gradient methods, without any inner approximation or computationally intensive tasks (e.g. projections or barrier terms) for the SDP constraint. The new parameterization can equivalently be thought of as either a new layer type (the sandwich layer), or a novel parameterization of standard feedforward networks with parameter sharing between neighbouring layers. A comprehensive set of experiments on image classification shows that sandwich layers outperform previous approaches on both empirical and certified robust accuracy. Code is available at https://github.com/acfr/LBDN.
Jumping through Local Minima: Quantization in the Loss Landscape of Vision Transformers
Quantization scale and bit-width are the most important parameters when considering how to quantize a neural network. Prior work focuses on optimizing quantization scales in a global manner through gradient methods (gradient descent \& Hessian analysis). Yet, when applying perturbations to quantization scales, we observe a very jagged, highly non-smooth test loss landscape. In fact, small perturbations in quantization scale can greatly affect accuracy, yielding a 0.5-0.8% accuracy boost in 4-bit quantized vision transformers (ViTs). In this regime, gradient methods break down, since they cannot reliably reach local minima. In our work, dubbed Evol-Q, we use evolutionary search to effectively traverse the non-smooth landscape. Additionally, we propose using an infoNCE loss, which not only helps combat overfitting on the small calibration dataset (1,000 images) but also makes traversing such a highly non-smooth surface easier. Evol-Q improves the top-1 accuracy of a fully quantized ViT-Base by 10.30%, 0.78%, and 0.15% for 3-bit, 4-bit, and 8-bit weight quantization levels. Extensive experiments on a variety of CNN and ViT architectures further demonstrate its robustness in extreme quantization scenarios. Our code is available at https://github.com/enyac-group/evol-q
Generalizable Data-free Objective for Crafting Universal Adversarial Perturbations
Machine learning models are susceptible to adversarial perturbations: small changes to input that can cause large changes in output. It is also demonstrated that there exist input-agnostic perturbations, called universal adversarial perturbations, which can change the inference of target model on most of the data samples. However, existing methods to craft universal perturbations are (i) task specific, (ii) require samples from the training data distribution, and (iii) perform complex optimizations. Additionally, because of the data dependence, fooling ability of the crafted perturbations is proportional to the available training data. In this paper, we present a novel, generalizable and data-free approaches for crafting universal adversarial perturbations. Independent of the underlying task, our objective achieves fooling via corrupting the extracted features at multiple layers. Therefore, the proposed objective is generalizable to craft image-agnostic perturbations across multiple vision tasks such as object recognition, semantic segmentation, and depth estimation. In the practical setting of black-box attack scenario (when the attacker does not have access to the target model and it's training data), we show that our objective outperforms the data dependent objectives to fool the learned models. Further, via exploiting simple priors related to the data distribution, our objective remarkably boosts the fooling ability of the crafted perturbations. Significant fooling rates achieved by our objective emphasize that the current deep learning models are now at an increased risk, since our objective generalizes across multiple tasks without the requirement of training data for crafting the perturbations. To encourage reproducible research, we have released the codes for our proposed algorithm.
Self-Ensembling Gaussian Splatting for Few-Shot Novel View Synthesis
3D Gaussian Splatting (3DGS) has demonstrated remarkable effectiveness in novel view synthesis (NVS). However, 3DGS tends to overfit when trained with sparse views, limiting its generalization to novel viewpoints. In this paper, we address this overfitting issue by introducing Self-Ensembling Gaussian Splatting (SE-GS). We achieve self-ensembling by incorporating an uncertainty-aware perturbation strategy during training. A Delta-model and a Sigma-model are jointly trained on the available images. The Delta-model is dynamically perturbed based on rendering uncertainty across training steps, generating diverse perturbed models with negligible computational overhead. Discrepancies between the Sigma-model and these perturbed models are minimized throughout training, forming a robust ensemble of 3DGS models. This ensemble, represented by the Sigma-model, is then used to generate novel-view images during inference. Experimental results on the LLFF, Mip-NeRF360, DTU, and MVImgNet datasets demonstrate that our approach enhances NVS quality under few-shot training conditions, outperforming existing state-of-the-art methods. The code is released at: https://sailor-z.github.io/projects/SEGS.html.
Automatic Perturbation Analysis for Scalable Certified Robustness and Beyond
Linear relaxation based perturbation analysis (LiRPA) for neural networks, which computes provable linear bounds of output neurons given a certain amount of input perturbation, has become a core component in robustness verification and certified defense. The majority of LiRPA-based methods focus on simple feed-forward networks and need particular manual derivations and implementations when extended to other architectures. In this paper, we develop an automatic framework to enable perturbation analysis on any neural network structures, by generalizing existing LiRPA algorithms such as CROWN to operate on general computational graphs. The flexibility, differentiability and ease of use of our framework allow us to obtain state-of-the-art results on LiRPA based certified defense on fairly complicated networks like DenseNet, ResNeXt and Transformer that are not supported by prior works. Our framework also enables loss fusion, a technique that significantly reduces the computational complexity of LiRPA for certified defense. For the first time, we demonstrate LiRPA based certified defense on Tiny ImageNet and Downscaled ImageNet where previous approaches cannot scale to due to the relatively large number of classes. Our work also yields an open-source library for the community to apply LiRPA to areas beyond certified defense without much LiRPA expertise, e.g., we create a neural network with a probably flat optimization landscape by applying LiRPA to network parameters. Our opensource library is available at https://github.com/KaidiXu/auto_LiRPA.
Perturb-and-Revise: Flexible 3D Editing with Generative Trajectories
The fields of 3D reconstruction and text-based 3D editing have advanced significantly with the evolution of text-based diffusion models. While existing 3D editing methods excel at modifying color, texture, and style, they struggle with extensive geometric or appearance changes, thus limiting their applications. We propose Perturb-and-Revise, which makes possible a variety of NeRF editing. First, we perturb the NeRF parameters with random initializations to create a versatile initialization. We automatically determine the perturbation magnitude through analysis of the local loss landscape. Then, we revise the edited NeRF via generative trajectories. Combined with the generative process, we impose identity-preserving gradients to refine the edited NeRF. Extensive experiments demonstrate that Perturb-and-Revise facilitates flexible, effective, and consistent editing of color, appearance, and geometry in 3D. For 360{\deg} results, please visit our project page: https://susunghong.github.io/Perturb-and-Revise.
Fine-Grained Perturbation Guidance via Attention Head Selection
Recent guidance methods in diffusion models steer reverse sampling by perturbing the model to construct an implicit weak model and guide generation away from it. Among these approaches, attention perturbation has demonstrated strong empirical performance in unconditional scenarios where classifier-free guidance is not applicable. However, existing attention perturbation methods lack principled approaches for determining where perturbations should be applied, particularly in Diffusion Transformer (DiT) architectures where quality-relevant computations are distributed across layers. In this paper, we investigate the granularity of attention perturbations, ranging from the layer level down to individual attention heads, and discover that specific heads govern distinct visual concepts such as structure, style, and texture quality. Building on this insight, we propose "HeadHunter", a systematic framework for iteratively selecting attention heads that align with user-centric objectives, enabling fine-grained control over generation quality and visual attributes. In addition, we introduce SoftPAG, which linearly interpolates each selected head's attention map toward an identity matrix, providing a continuous knob to tune perturbation strength and suppress artifacts. Our approach not only mitigates the oversmoothing issues of existing layer-level perturbation but also enables targeted manipulation of specific visual styles through compositional head selection. We validate our method on modern large-scale DiT-based text-to-image models including Stable Diffusion 3 and FLUX.1, demonstrating superior performance in both general quality enhancement and style-specific guidance. Our work provides the first head-level analysis of attention perturbation in diffusion models, uncovering interpretable specialization within attention layers and enabling practical design of effective perturbation strategies.
Image Shortcut Squeezing: Countering Perturbative Availability Poisons with Compression
Perturbative availability poisons (PAPs) add small changes to images to prevent their use for model training. Current research adopts the belief that practical and effective approaches to countering PAPs do not exist. In this paper, we argue that it is time to abandon this belief. We present extensive experiments showing that 12 state-of-the-art PAP methods are vulnerable to Image Shortcut Squeezing (ISS), which is based on simple compression. For example, on average, ISS restores the CIFAR-10 model accuracy to 81.73%, surpassing the previous best preprocessing-based countermeasures by 37.97% absolute. ISS also (slightly) outperforms adversarial training and has higher generalizability to unseen perturbation norms and also higher efficiency. Our investigation reveals that the property of PAP perturbations depends on the type of surrogate model used for poison generation, and it explains why a specific ISS compression yields the best performance for a specific type of PAP perturbation. We further test stronger, adaptive poisoning, and show it falls short of being an ideal defense against ISS. Overall, our results demonstrate the importance of considering various (simple) countermeasures to ensure the meaningfulness of analysis carried out during the development of PAP methods.
The Edge-of-Reach Problem in Offline Model-Based Reinforcement Learning
Offline reinforcement learning aims to train agents from pre-collected datasets. However, this comes with the added challenge of estimating the value of behaviors not covered in the dataset. Model-based methods offer a potential solution by training an approximate dynamics model, which then allows collection of additional synthetic data via rollouts in this model. The prevailing theory treats this approach as online RL in an approximate dynamics model, and any remaining performance gap is therefore understood as being due to dynamics model errors. In this paper, we analyze this assumption and investigate how popular algorithms perform as the learned dynamics model is improved. In contrast to both intuition and theory, if the learned dynamics model is replaced by the true error-free dynamics, existing model-based methods completely fail. This reveals a key oversight: The theoretical foundations assume sampling of full horizon rollouts in the learned dynamics model; however, in practice, the number of model-rollout steps is aggressively reduced to prevent accumulating errors. We show that this truncation of rollouts results in a set of edge-of-reach states at which we are effectively ``bootstrapping from the void.'' This triggers pathological value overestimation and complete performance collapse. We term this the edge-of-reach problem. Based on this new insight, we fill important gaps in existing theory, and reveal how prior model-based methods are primarily addressing the edge-of-reach problem, rather than model-inaccuracy as claimed. Finally, we propose Reach-Aware Value Learning (RAVL), a simple and robust method that directly addresses the edge-of-reach problem and hence - unlike existing methods - does not fail as the dynamics model is improved. Code open-sourced at: github.com/anyasims/edge-of-reach.
Grokking at the Edge of Numerical Stability
Grokking, the sudden generalization that occurs after prolonged overfitting, is a surprising phenomenon challenging our understanding of deep learning. Although significant progress has been made in understanding grokking, the reasons behind the delayed generalization and its dependence on regularization remain unclear. In this work, we argue that without regularization, grokking tasks push models to the edge of numerical stability, introducing floating point errors in the Softmax function, which we refer to as Softmax Collapse (SC). We demonstrate that SC prevents grokking and that mitigating SC enables grokking without regularization. Investigating the root cause of SC, we find that beyond the point of overfitting, the gradients strongly align with what we call the na\"ive loss minimization (NLM) direction. This component of the gradient does not alter the model's predictions but decreases the loss by scaling the logits, typically by scaling the weights along their current direction. We show that this scaling of the logits explains the delay in generalization characteristic of grokking and eventually leads to SC, halting further learning. To validate our hypotheses, we introduce two key contributions that address the challenges in grokking tasks: StableMax, a new activation function that prevents SC and enables grokking without regularization, and perpGrad, a training algorithm that promotes quick generalization in grokking tasks by preventing NLM altogether. These contributions provide new insights into grokking, elucidating its delayed generalization, reliance on regularization, and the effectiveness of existing grokking-inducing methods. Code for this paper is available at https://github.com/LucasPrietoAl/grokking-at-the-edge-of-numerical-stability.
Token Perturbation Guidance for Diffusion Models
Classifier-free guidance (CFG) has become an essential component of modern diffusion models to enhance both generation quality and alignment with input conditions. However, CFG requires specific training procedures and is limited to conditional generation. To address these limitations, we propose Token Perturbation Guidance (TPG), a novel method that applies perturbation matrices directly to intermediate token representations within the diffusion network. TPG employs a norm-preserving shuffling operation to provide effective and stable guidance signals that improve generation quality without architectural changes. As a result, TPG is training-free and agnostic to input conditions, making it readily applicable to both conditional and unconditional generation. We further analyze the guidance term provided by TPG and show that its effect on sampling more closely resembles CFG compared to existing training-free guidance techniques. Extensive experiments on SDXL and Stable Diffusion 2.1 show that TPG achieves nearly a 2times improvement in FID for unconditional generation over the SDXL baseline, while closely matching CFG in prompt alignment. These results establish TPG as a general, condition-agnostic guidance method that brings CFG-like benefits to a broader class of diffusion models. The code is available at https://github.com/TaatiTeam/Token-Perturbation-Guidance
Robust Learning with Jacobian Regularization
Design of reliable systems must guarantee stability against input perturbations. In machine learning, such guarantee entails preventing overfitting and ensuring robustness of models against corruption of input data. In order to maximize stability, we analyze and develop a computationally efficient implementation of Jacobian regularization that increases classification margins of neural networks. The stabilizing effect of the Jacobian regularizer leads to significant improvements in robustness, as measured against both random and adversarial input perturbations, without severely degrading generalization properties on clean data.
Sharper Utility Bounds for Differentially Private Models
In this paper, by introducing Generalized Bernstein condition, we propose the first Obig(sqrt{p}{nepsilon}big) high probability excess population risk bound for differentially private algorithms under the assumptions G-Lipschitz, L-smooth, and Polyak-{\L}ojasiewicz condition, based on gradient perturbation method. If we replace the properties G-Lipschitz and L-smooth by alpha-H{\"o}lder smoothness (which can be used in non-smooth setting), the high probability bound comes to Obig(n^{-alpha{1+2alpha}}big) w.r.t n, which cannot achieve Oleft(1/nright) when alphain(0,1]. To solve this problem, we propose a variant of gradient perturbation method, max{1,g-Normalized Gradient Perturbation} (m-NGP). We further show that by normalization, the high probability excess population risk bound under assumptions alpha-H{\"o}lder smooth and Polyak-{\L}ojasiewicz condition can achieve Obig(sqrt{p}{nepsilon}big), which is the first Oleft(1/nright) high probability excess population risk bound w.r.t n for differentially private algorithms under non-smooth conditions. Moreover, we evaluate the performance of the new proposed algorithm m-NGP, the experimental results show that m-NGP improves the performance of the differentially private model over real datasets. It demonstrates that m-NGP improves the utility bound and the accuracy of the DP model on real datasets simultaneously.
Unrestricted Adversarial Examples via Semantic Manipulation
Machine learning models, especially deep neural networks (DNNs), have been shown to be vulnerable against adversarial examples which are carefully crafted samples with a small magnitude of the perturbation. Such adversarial perturbations are usually restricted by bounding their L_p norm such that they are imperceptible, and thus many current defenses can exploit this property to reduce their adversarial impact. In this paper, we instead introduce "unrestricted" perturbations that manipulate semantically meaningful image-based visual descriptors - color and texture - in order to generate effective and photorealistic adversarial examples. We show that these semantically aware perturbations are effective against JPEG compression, feature squeezing and adversarially trained model. We also show that the proposed methods can effectively be applied to both image classification and image captioning tasks on complex datasets such as ImageNet and MSCOCO. In addition, we conduct comprehensive user studies to show that our generated semantic adversarial examples are photorealistic to humans despite large magnitude perturbations when compared to other attacks.
DiffusionEdge: Diffusion Probabilistic Model for Crisp Edge Detection
Limited by the encoder-decoder architecture, learning-based edge detectors usually have difficulty predicting edge maps that satisfy both correctness and crispness. With the recent success of the diffusion probabilistic model (DPM), we found it is especially suitable for accurate and crisp edge detection since the denoising process is directly applied to the original image size. Therefore, we propose the first diffusion model for the task of general edge detection, which we call DiffusionEdge. To avoid expensive computational resources while retaining the final performance, we apply DPM in the latent space and enable the classic cross-entropy loss which is uncertainty-aware in pixel level to directly optimize the parameters in latent space in a distillation manner. We also adopt a decoupled architecture to speed up the denoising process and propose a corresponding adaptive Fourier filter to adjust the latent features of specific frequencies. With all the technical designs, DiffusionEdge can be stably trained with limited resources, predicting crisp and accurate edge maps with much fewer augmentation strategies. Extensive experiments on four edge detection benchmarks demonstrate the superiority of DiffusionEdge both in correctness and crispness. On the NYUDv2 dataset, compared to the second best, we increase the ODS, OIS (without post-processing) and AC by 30.2%, 28.1% and 65.1%, respectively. Code: https://github.com/GuHuangAI/DiffusionEdge.
Adversarial Style Augmentation for Domain Generalization
It is well-known that the performance of well-trained deep neural networks may degrade significantly when they are applied to data with even slightly shifted distributions. Recent studies have shown that introducing certain perturbation on feature statistics (\eg, mean and standard deviation) during training can enhance the cross-domain generalization ability. Existing methods typically conduct such perturbation by utilizing the feature statistics within a mini-batch, limiting their representation capability. Inspired by the domain generalization objective, we introduce a novel Adversarial Style Augmentation (ASA) method, which explores broader style spaces by generating more effective statistics perturbation via adversarial training. Specifically, we first search for the most sensitive direction and intensity for statistics perturbation by maximizing the task loss. By updating the model against the adversarial statistics perturbation during training, we allow the model to explore the worst-case domain and hence improve its generalization performance. To facilitate the application of ASA, we design a simple yet effective module, namely AdvStyle, which instantiates the ASA method in a plug-and-play manner. We justify the efficacy of AdvStyle on tasks of cross-domain classification and instance retrieval. It achieves higher mean accuracy and lower performance fluctuation. Especially, our method significantly outperforms its competitors on the PACS dataset under the single source generalization setting, \eg, boosting the classification accuracy from 61.2\% to 67.1\% with a ResNet50 backbone. Our code will be available at https://github.com/YBZh/AdvStyle.
SAM operates far from home: eigenvalue regularization as a dynamical phenomenon
The Sharpness Aware Minimization (SAM) optimization algorithm has been shown to control large eigenvalues of the loss Hessian and provide generalization benefits in a variety of settings. The original motivation for SAM was a modified loss function which penalized sharp minima; subsequent analyses have also focused on the behavior near minima. However, our work reveals that SAM provides a strong regularization of the eigenvalues throughout the learning trajectory. We show that in a simplified setting, SAM dynamically induces a stabilization related to the edge of stability (EOS) phenomenon observed in large learning rate gradient descent. Our theory predicts the largest eigenvalue as a function of the learning rate and SAM radius parameters. Finally, we show that practical models can also exhibit this EOS stabilization, and that understanding SAM must account for these dynamics far away from any minima.
Two-parameter superposable S-curves
Straight line equation y=mx with slope m, when singularly perturbed as ay^3+y=mx with a positive parameter a, results in S-shaped curves or S-curves on a real plane. As arightarrow 0, we get back y=mx which is a cumulative distribution function of a continuous uniform distribution that describes the occurrence of every event in an interval to be equally probable. As arightarrowinfty, the derivative of y has finite support only at y=0 resembling a degenerate distribution. Based on these arguments, in this work, we propose that these S-curves can represent maximum entropy uniform distribution to a zero entropy single value. We also argue that these S-curves are superposable as they are only parametrically nonlinear but fundamentally linear. So far, the superposed forms have been used to capture the patterns of natural systems such as nonlinear dynamics of biological growth and kinetics of enzyme reactions. Here, we attempt to use the S-curve and its superposed form as statistical models. We fit the models on a classical dataset containing flower measurements of iris plants and analyze their usefulness in pattern recognition. Based on these models, we claim that any non-uniform pattern can be represented as a singular perturbation to uniform distribution. However, our parametric estimation procedure have some limitations such as sensitivity to initial conditions depending on the data at hand.
Don't Lie to Me! Robust and Efficient Explainability with Verified Perturbation Analysis
A variety of methods have been proposed to try to explain how deep neural networks make their decisions. Key to those approaches is the need to sample the pixel space efficiently in order to derive importance maps. However, it has been shown that the sampling methods used to date introduce biases and other artifacts, leading to inaccurate estimates of the importance of individual pixels and severely limit the reliability of current explainability methods. Unfortunately, the alternative -- to exhaustively sample the image space is computationally prohibitive. In this paper, we introduce EVA (Explaining using Verified perturbation Analysis) -- the first explainability method guarantee to have an exhaustive exploration of a perturbation space. Specifically, we leverage the beneficial properties of verified perturbation analysis -- time efficiency, tractability and guaranteed complete coverage of a manifold -- to efficiently characterize the input variables that are most likely to drive the model decision. We evaluate the approach systematically and demonstrate state-of-the-art results on multiple benchmarks.
Growth of cancer stem cell driven tumors: staged invasion, linear determinacy, and the tumor invasion paradox
We study growth of solid tumors in a partial differential equation model introduced by Hillen et al for the interaction between tumor cells (TCs) and cancer stem cells (CSCs). We find that invasion into the cancer-free state may be separated into two regimes, depending on the death rate of tumor cells. In the first, staged invasion regime, invasion into the cancer-free state is lead by tumor cells, which are then subsequently invaded at a slower speed by cancer stem cells. In the second, TC extinction regime, cancer stem cells directly invade the cancer-free state. Relying on recent results establishing front selection propagation under marginal stability assumptions, we use geometric singular perturbation theory to establish existence and selection properties of front solutions which describe both the primary and secondary invasion processes. With rigorous predictions for the invasion speeds, we are then able to heuristically predict how the total cancer mass as a function of time depends on the TC death rate, finding in some situations a tumor invasion paradox, in which increasing the TC death rate leads to an increase in the total cancer mass. Our methods give a general approach for verifying linear determinacy of spreading speeds of invasion fronts in systems with fast-slow structure.
Adversarial Parameter Attack on Deep Neural Networks
In this paper, a new parameter perturbation attack on DNNs, called adversarial parameter attack, is proposed, in which small perturbations to the parameters of the DNN are made such that the accuracy of the attacked DNN does not decrease much, but its robustness becomes much lower. The adversarial parameter attack is stronger than previous parameter perturbation attacks in that the attack is more difficult to be recognized by users and the attacked DNN gives a wrong label for any modified sample input with high probability. The existence of adversarial parameters is proved. For a DNN F_{Theta} with the parameter set Theta satisfying certain conditions, it is shown that if the depth of the DNN is sufficiently large, then there exists an adversarial parameter set Theta_a for Theta such that the accuracy of F_{Theta_a} is equal to that of F_{Theta}, but the robustness measure of F_{Theta_a} is smaller than any given bound. An effective training algorithm is given to compute adversarial parameters and numerical experiments are used to demonstrate that the algorithms are effective to produce high quality adversarial parameters.
3DHacker: Spectrum-based Decision Boundary Generation for Hard-label 3D Point Cloud Attack
With the maturity of depth sensors, the vulnerability of 3D point cloud models has received increasing attention in various applications such as autonomous driving and robot navigation. Previous 3D adversarial attackers either follow the white-box setting to iteratively update the coordinate perturbations based on gradients, or utilize the output model logits to estimate noisy gradients in the black-box setting. However, these attack methods are hard to be deployed in real-world scenarios since realistic 3D applications will not share any model details to users. Therefore, we explore a more challenging yet practical 3D attack setting, i.e., attacking point clouds with black-box hard labels, in which the attacker can only have access to the prediction label of the input. To tackle this setting, we propose a novel 3D attack method, termed 3D Hard-label attacker (3DHacker), based on the developed decision boundary algorithm to generate adversarial samples solely with the knowledge of class labels. Specifically, to construct the class-aware model decision boundary, 3DHacker first randomly fuses two point clouds of different classes in the spectral domain to craft their intermediate sample with high imperceptibility, then projects it onto the decision boundary via binary search. To restrict the final perturbation size, 3DHacker further introduces an iterative optimization strategy to move the intermediate sample along the decision boundary for generating adversarial point clouds with smallest trivial perturbations. Extensive evaluations show that, even in the challenging hard-label setting, 3DHacker still competitively outperforms existing 3D attacks regarding the attack performance as well as adversary quality.
Real-valued continued fraction of straight lines
In an unbounded plane, straight lines are used extensively for mathematical analysis. They are tools of convenience. However, those with high slope values become unbounded at a faster rate than the independent variable. So, straight lines, in this work, are made to be bounded by introducing a parametric nonlinear term that is positive. The straight lines are transformed into bounded nonlinear curves that become unbounded at a much slower rate than the independent variable. This transforming equation can be expressed as a continued fraction of straight lines. The continued fraction is real-valued and converges to the solutions of the transforming equation. Following Euler's method, the continued fraction has been reduced into an infinite series. The usefulness of the bounding nature of continued fraction is demonstrated by solving the problem of image classification. Parameters estimated on the Fashion-MNIST dataset of greyscale images using continued fraction of regression lines have less variance, converge quickly and are more accurate than the linear counterpart. Moreover, this multi-dimensional parametric estimation problem can be expressed on xy- plane using the parameters of the continued fraction and patterns emerge on planar plots.
Eigenvalues of the Hessian in Deep Learning: Singularity and Beyond
We look at the eigenvalues of the Hessian of a loss function before and after training. The eigenvalue distribution is seen to be composed of two parts, the bulk which is concentrated around zero, and the edges which are scattered away from zero. We present empirical evidence for the bulk indicating how over-parametrized the system is, and for the edges that depend on the input data.
Certified ell_2 Attribution Robustness via Uniformly Smoothed Attributions
Model attribution is a popular tool to explain the rationales behind model predictions. However, recent work suggests that the attributions are vulnerable to minute perturbations, which can be added to input samples to fool the attributions while maintaining the prediction outputs. Although empirical studies have shown positive performance via adversarial training, an effective certified defense method is eminently needed to understand the robustness of attributions. In this work, we propose to use uniform smoothing technique that augments the vanilla attributions by noises uniformly sampled from a certain space. It is proved that, for all perturbations within the attack region, the cosine similarity between uniformly smoothed attribution of perturbed sample and the unperturbed sample is guaranteed to be lower bounded. We also derive alternative formulations of the certification that is equivalent to the original one and provides the maximum size of perturbation or the minimum smoothing radius such that the attribution can not be perturbed. We evaluate the proposed method on three datasets and show that the proposed method can effectively protect the attributions from attacks, regardless of the architecture of networks, training schemes and the size of the datasets.
Explaining and Harnessing Adversarial Examples
Several machine learning models, including neural networks, consistently misclassify adversarial examples---inputs formed by applying small but intentionally worst-case perturbations to examples from the dataset, such that the perturbed input results in the model outputting an incorrect answer with high confidence. Early attempts at explaining this phenomenon focused on nonlinearity and overfitting. We argue instead that the primary cause of neural networks' vulnerability to adversarial perturbation is their linear nature. This explanation is supported by new quantitative results while giving the first explanation of the most intriguing fact about them: their generalization across architectures and training sets. Moreover, this view yields a simple and fast method of generating adversarial examples. Using this approach to provide examples for adversarial training, we reduce the test set error of a maxout network on the MNIST dataset.
Efficient local linearity regularization to overcome catastrophic overfitting
Catastrophic overfitting (CO) in single-step adversarial training (AT) results in abrupt drops in the adversarial test accuracy (even down to 0%). For models trained with multi-step AT, it has been observed that the loss function behaves locally linearly with respect to the input, this is however lost in single-step AT. To address CO in single-step AT, several methods have been proposed to enforce local linearity of the loss via regularization. However, these regularization terms considerably slow down training due to Double Backpropagation. Instead, in this work, we introduce a regularization term, called ELLE, to mitigate CO effectively and efficiently in classical AT evaluations, as well as some more difficult regimes, e.g., large adversarial perturbations and long training schedules. Our regularization term can be theoretically linked to curvature of the loss function and is computationally cheaper than previous methods by avoiding Double Backpropagation. Our thorough experimental validation demonstrates that our work does not suffer from CO, even in challenging settings where previous works suffer from it. We also notice that adapting our regularization parameter during training (ELLE-A) greatly improves the performance, specially in large epsilon setups. Our implementation is available in https://github.com/LIONS-EPFL/ELLE .
SAGA: Spectral Adversarial Geometric Attack on 3D Meshes
A triangular mesh is one of the most popular 3D data representations. As such, the deployment of deep neural networks for mesh processing is widely spread and is increasingly attracting more attention. However, neural networks are prone to adversarial attacks, where carefully crafted inputs impair the model's functionality. The need to explore these vulnerabilities is a fundamental factor in the future development of 3D-based applications. Recently, mesh attacks were studied on the semantic level, where classifiers are misled to produce wrong predictions. Nevertheless, mesh surfaces possess complex geometric attributes beyond their semantic meaning, and their analysis often includes the need to encode and reconstruct the geometry of the shape. We propose a novel framework for a geometric adversarial attack on a 3D mesh autoencoder. In this setting, an adversarial input mesh deceives the autoencoder by forcing it to reconstruct a different geometric shape at its output. The malicious input is produced by perturbing a clean shape in the spectral domain. Our method leverages the spectral decomposition of the mesh along with additional mesh-related properties to obtain visually credible results that consider the delicacy of surface distortions. Our code is publicly available at https://github.com/StolikTomer/SAGA.
Gradient Descent Monotonically Decreases the Sharpness of Gradient Flow Solutions in Scalar Networks and Beyond
Recent research shows that when Gradient Descent (GD) is applied to neural networks, the loss almost never decreases monotonically. Instead, the loss oscillates as gradient descent converges to its ''Edge of Stability'' (EoS). Here, we find a quantity that does decrease monotonically throughout GD training: the sharpness attained by the gradient flow solution (GFS)-the solution that would be obtained if, from now until convergence, we train with an infinitesimal step size. Theoretically, we analyze scalar neural networks with the squared loss, perhaps the simplest setting where the EoS phenomena still occur. In this model, we prove that the GFS sharpness decreases monotonically. Using this result, we characterize settings where GD provably converges to the EoS in scalar networks. Empirically, we show that GD monotonically decreases the GFS sharpness in a squared regression model as well as practical neural network architectures.
Differentiable Transportation Pruning
Deep learning algorithms are increasingly employed at the edge. However, edge devices are resource constrained and thus require efficient deployment of deep neural networks. Pruning methods are a key tool for edge deployment as they can improve storage, compute, memory bandwidth, and energy usage. In this paper we propose a novel accurate pruning technique that allows precise control over the output network size. Our method uses an efficient optimal transportation scheme which we make end-to-end differentiable and which automatically tunes the exploration-exploitation behavior of the algorithm to find accurate sparse sub-networks. We show that our method achieves state-of-the-art performance compared to previous pruning methods on 3 different datasets, using 5 different models, across a wide range of pruning ratios, and with two types of sparsity budgets and pruning granularities.
Occlusion Sensitivity Analysis with Augmentation Subspace Perturbation in Deep Feature Space
Deep Learning of neural networks has gained prominence in multiple life-critical applications like medical diagnoses and autonomous vehicle accident investigations. However, concerns about model transparency and biases persist. Explainable methods are viewed as the solution to address these challenges. In this study, we introduce the Occlusion Sensitivity Analysis with Deep Feature Augmentation Subspace (OSA-DAS), a novel perturbation-based interpretability approach for computer vision. While traditional perturbation methods make only use of occlusions to explain the model predictions, OSA-DAS extends standard occlusion sensitivity analysis by enabling the integration with diverse image augmentations. Distinctly, our method utilizes the output vector of a DNN to build low-dimensional subspaces within the deep feature vector space, offering a more precise explanation of the model prediction. The structural similarity between these subspaces encompasses the influence of diverse augmentations and occlusions. We test extensively on the ImageNet-1k, and our class- and model-agnostic approach outperforms commonly used interpreters, setting it apart in the realm of explainable AI.
Fluctuations of the connectivity threshold and largest nearest-neighbour link
Consider a random uniform sample of n points in a compact region A of Euclidean d-space, d geq 2, with a smooth or (when d=2) polygonal boundary. Fix k bf N. Let T_{n,k} be the threshold r at which the geometric graph on these n vertices with distance parameter r becomes k-connected. We show that if d=2 then n (pi/|A|) T_{n,1}^2 - log n is asymptotically standard Gumbel. For (d,k) neq (2,1), it is n (theta_d/|A|) T_{n,k}^d - (2-2/d) log n - (4-2k-2/d) log log n that converges in distribution to a nondegenerate limit, where theta_d is the volume of the unit ball. The limit is Gumbel with scale parameter 2 except when (d,k)=(2,2) where the limit is two component extreme value distributed. The different cases reflect the fact that boundary effects are more more important in some cases than others. We also give similar results for the largest k-nearest neighbour link U_{n,k} in the sample, and show T_{n,k}=U_{n,k} with high probability. We provide estimates on rates of convergence and give similar results for Poisson samples in A. Finally, we give similar results even for non-uniform samples, with a less explicit sequence of centring constants.
Robust Latent Matters: Boosting Image Generation with Sampling Error
Recent image generation schemes typically capture image distribution in a pre-constructed latent space relying on a frozen image tokenizer. Though the performance of tokenizer plays an essential role to the successful generation, its current evaluation metrics (e.g. rFID) fail to precisely assess the tokenizer and correlate its performance to the generation quality (e.g. gFID). In this paper, we comprehensively analyze the reason for the discrepancy of reconstruction and generation qualities in a discrete latent space, and, from which, we propose a novel plug-and-play tokenizer training scheme to facilitate latent space construction. Specifically, a latent perturbation approach is proposed to simulate sampling noises, i.e., the unexpected tokens sampled, from the generative process. With the latent perturbation, we further propose (1) a novel tokenizer evaluation metric, i.e., pFID, which successfully correlates the tokenizer performance to generation quality and (2) a plug-and-play tokenizer training scheme, which significantly enhances the robustness of tokenizer thus boosting the generation quality and convergence speed. Extensive benchmarking are conducted with 11 advanced discrete image tokenizers with 2 autoregressive generation models to validate our approach. The tokenizer trained with our proposed latent perturbation achieve a notable 1.60 gFID with classifier-free guidance (CFG) and 3.45 gFID without CFG with a sim400M generator. Code: https://github.com/lxa9867/ImageFolder.
Integrating Biological Knowledge for Robust Microscopy Image Profiling on De Novo Cell Lines
High-throughput screening techniques, such as microscopy imaging of cellular responses to genetic and chemical perturbations, play a crucial role in drug discovery and biomedical research. However, robust perturbation screening for de novo cell lines remains challenging due to the significant morphological and biological heterogeneity across cell lines. To address this, we propose a novel framework that integrates external biological knowledge into existing pretraining strategies to enhance microscopy image profiling models. Our approach explicitly disentangles perturbation-specific and cell line-specific representations using external biological information. Specifically, we construct a knowledge graph leveraging protein interaction data from STRING and Hetionet databases to guide models toward perturbation-specific features during pretraining. Additionally, we incorporate transcriptomic features from single-cell foundation models to capture cell line-specific representations. By learning these disentangled features, our method improves the generalization of imaging models to de novo cell lines. We evaluate our framework on the RxRx database through one-shot fine-tuning on an RxRx1 cell line and few-shot fine-tuning on cell lines from the RxRx19a dataset. Experimental results demonstrate that our method enhances microscopy image profiling for de novo cell lines, highlighting its effectiveness in real-world phenotype-based drug discovery applications.
Robust Representation Consistency Model via Contrastive Denoising
Robustness is essential for deep neural networks, especially in security-sensitive applications. To this end, randomized smoothing provides theoretical guarantees for certifying robustness against adversarial perturbations. Recently, diffusion models have been successfully employed for randomized smoothing to purify noise-perturbed samples before making predictions with a standard classifier. While these methods excel at small perturbation radii, they struggle with larger perturbations and incur a significant computational overhead during inference compared to classical methods. To address this, we reformulate the generative modeling task along the diffusion trajectories in pixel space as a discriminative task in the latent space. Specifically, we use instance discrimination to achieve consistent representations along the trajectories by aligning temporally adjacent points. After fine-tuning based on the learned representations, our model enables implicit denoising-then-classification via a single prediction, substantially reducing inference costs. We conduct extensive experiments on various datasets and achieve state-of-the-art performance with minimal computation budget during inference. For example, our method outperforms the certified accuracy of diffusion-based methods on ImageNet across all perturbation radii by 5.3% on average, with up to 11.6% at larger radii, while reducing inference costs by 85times on average. Codes are available at: https://github.com/jiachenlei/rRCM.
RePBubLik: Reducing the Polarized Bubble Radius with Link Insertions
The topology of the hyperlink graph among pages expressing different opinions may influence the exposure of readers to diverse content. Structural bias may trap a reader in a polarized bubble with no access to other opinions. We model readers' behavior as random walks. A node is in a polarized bubble if the expected length of a random walk from it to a page of different opinion is large. The structural bias of a graph is the sum of the radii of highly-polarized bubbles. We study the problem of decreasing the structural bias through edge insertions. Healing all nodes with high polarized bubble radius is hard to approximate within a logarithmic factor, so we focus on finding the best k edges to insert to maximally reduce the structural bias. We present RePBubLik, an algorithm that leverages a variant of the random walk closeness centrality to select the edges to insert. RePBubLik obtains, under mild conditions, a constant-factor approximation. It reduces the structural bias faster than existing edge-recommendation methods, including some designed to reduce the polarization of a graph.
A data-dependent regularization method based on the graph Laplacian
We investigate a variational method for ill-posed problems, named graphLa+Psi, which embeds a graph Laplacian operator in the regularization term. The novelty of this method lies in constructing the graph Laplacian based on a preliminary approximation of the solution, which is obtained using any existing reconstruction method Psi from the literature. As a result, the regularization term is both dependent on and adaptive to the observed data and noise. We demonstrate that graphLa+Psi is a regularization method and rigorously establish both its convergence and stability properties. We present selected numerical experiments in 2D computerized tomography, wherein we integrate the graphLa+Psi method with various reconstruction techniques Psi, including Filter Back Projection (graphLa+FBP), standard Tikhonov (graphLa+Tik), Total Variation (graphLa+TV), and a trained deep neural network (graphLa+Net). The graphLa+Psi approach significantly enhances the quality of the approximated solutions for each method Psi. Notably, graphLa+Net is outperforming, offering a robust and stable application of deep neural networks in solving inverse problems.
Diffusion Models for Imperceptible and Transferable Adversarial Attack
Many existing adversarial attacks generate L_p-norm perturbations on image RGB space. Despite some achievements in transferability and attack success rate, the crafted adversarial examples are easily perceived by human eyes. Towards visual imperceptibility, some recent works explore unrestricted attacks without L_p-norm constraints, yet lacking transferability of attacking black-box models. In this work, we propose a novel imperceptible and transferable attack by leveraging both the generative and discriminative power of diffusion models. Specifically, instead of direct manipulation in pixel space, we craft perturbations in latent space of diffusion models. Combined with well-designed content-preserving structures, we can generate human-insensitive perturbations embedded with semantic clues. For better transferability, we further "deceive" the diffusion model which can be viewed as an additional recognition surrogate, by distracting its attention away from the target regions. To our knowledge, our proposed method, DiffAttack, is the first that introduces diffusion models into adversarial attack field. Extensive experiments on various model structures (including CNNs, Transformers, MLPs) and defense methods have demonstrated our superiority over other attack methods.
EdgeGaussians -- 3D Edge Mapping via Gaussian Splatting
With their meaningful geometry and their omnipresence in the 3D world, edges are extremely useful primitives in computer vision. 3D edges comprise of lines and curves, and methods to reconstruct them use either multi-view images or point clouds as input. State-of-the-art image-based methods first learn a 3D edge point cloud then fit 3D edges to it. The edge point cloud is obtained by learning a 3D neural implicit edge field from which the 3D edge points are sampled on a specific level set (0 or 1). However, such methods present two important drawbacks: i) it is not realistic to sample points on exact level sets due to float imprecision and training inaccuracies. Instead, they are sampled within a range of levels so the points do not lie accurately on the 3D edges and require further processing. ii) Such implicit representations are computationally expensive and require long training times. In this paper, we address these two limitations and propose a 3D edge mapping that is simpler, more efficient, and preserves accuracy. Our method learns explicitly the 3D edge points and their edge direction hence bypassing the need for point sampling. It casts a 3D edge point as the center of a 3D Gaussian and the edge direction as the principal axis of the Gaussian. Such a representation has the advantage of being not only geometrically meaningful but also compatible with the efficient training optimization defined in Gaussian Splatting. Results show that the proposed method produces edges as accurate and complete as the state-of-the-art while being an order of magnitude faster. Code is released at https://github.com/kunalchelani/EdgeGaussians.
EdgeConnect: Generative Image Inpainting with Adversarial Edge Learning
Over the last few years, deep learning techniques have yielded significant improvements in image inpainting. However, many of these techniques fail to reconstruct reasonable structures as they are commonly over-smoothed and/or blurry. This paper develops a new approach for image inpainting that does a better job of reproducing filled regions exhibiting fine details. We propose a two-stage adversarial model EdgeConnect that comprises of an edge generator followed by an image completion network. The edge generator hallucinates edges of the missing region (both regular and irregular) of the image, and the image completion network fills in the missing regions using hallucinated edges as a priori. We evaluate our model end-to-end over the publicly available datasets CelebA, Places2, and Paris StreetView, and show that it outperforms current state-of-the-art techniques quantitatively and qualitatively. Code and models available at: https://github.com/knazeri/edge-connect
Beyond the Universal Law of Robustness: Sharper Laws for Random Features and Neural Tangent Kernels
Machine learning models are vulnerable to adversarial perturbations, and a thought-provoking paper by Bubeck and Sellke has analyzed this phenomenon through the lens of over-parameterization: interpolating smoothly the data requires significantly more parameters than simply memorizing it. However, this "universal" law provides only a necessary condition for robustness, and it is unable to discriminate between models. In this paper, we address these gaps by focusing on empirical risk minimization in two prototypical settings, namely, random features and the neural tangent kernel (NTK). We prove that, for random features, the model is not robust for any degree of over-parameterization, even when the necessary condition coming from the universal law of robustness is satisfied. In contrast, for even activations, the NTK model meets the universal lower bound, and it is robust as soon as the necessary condition on over-parameterization is fulfilled. This also addresses a conjecture in prior work by Bubeck, Li and Nagaraj. Our analysis decouples the effect of the kernel of the model from an "interaction matrix", which describes the interaction with the test data and captures the effect of the activation. Our theoretical results are corroborated by numerical evidence on both synthetic and standard datasets (MNIST, CIFAR-10).
Normalization Layers Are All That Sharpness-Aware Minimization Needs
Sharpness-aware minimization (SAM) was proposed to reduce sharpness of minima and has been shown to enhance generalization performance in various settings. In this work we show that perturbing only the affine normalization parameters (typically comprising 0.1% of the total parameters) in the adversarial step of SAM can outperform perturbing all of the parameters.This finding generalizes to different SAM variants and both ResNet (Batch Normalization) and Vision Transformer (Layer Normalization) architectures. We consider alternative sparse perturbation approaches and find that these do not achieve similar performance enhancement at such extreme sparsity levels, showing that this behaviour is unique to the normalization layers. Although our findings reaffirm the effectiveness of SAM in improving generalization performance, they cast doubt on whether this is solely caused by reduced sharpness.
On the Interplay of Convolutional Padding and Adversarial Robustness
It is common practice to apply padding prior to convolution operations to preserve the resolution of feature-maps in Convolutional Neural Networks (CNN). While many alternatives exist, this is often achieved by adding a border of zeros around the inputs. In this work, we show that adversarial attacks often result in perturbation anomalies at the image boundaries, which are the areas where padding is used. Consequently, we aim to provide an analysis of the interplay between padding and adversarial attacks and seek an answer to the question of how different padding modes (or their absence) affect adversarial robustness in various scenarios.
Escaping saddle points in zeroth-order optimization: the power of two-point estimators
Two-point zeroth order methods are important in many applications of zeroth-order optimization, such as robotics, wind farms, power systems, online optimization, and adversarial robustness to black-box attacks in deep neural networks, where the problem may be high-dimensional and/or time-varying. Most problems in these applications are nonconvex and contain saddle points. While existing works have shown that zeroth-order methods utilizing Omega(d) function valuations per iteration (with d denoting the problem dimension) can escape saddle points efficiently, it remains an open question if zeroth-order methods based on two-point estimators can escape saddle points. In this paper, we show that by adding an appropriate isotropic perturbation at each iteration, a zeroth-order algorithm based on 2m (for any 1 leq m leq d) function evaluations per iteration can not only find epsilon-second order stationary points polynomially fast, but do so using only Oleft(d{mepsilon^{2}psi}right) function evaluations, where psi geq Omegaleft(epsilonright) is a parameter capturing the extent to which the function of interest exhibits the strict saddle property.
On the Impact of the Activation Function on Deep Neural Networks Training
The weight initialization and the activation function of deep neural networks have a crucial impact on the performance of the training procedure. An inappropriate selection can lead to the loss of information of the input during forward propagation and the exponential vanishing/exploding of gradients during back-propagation. Understanding the theoretical properties of untrained random networks is key to identifying which deep networks may be trained successfully as recently demonstrated by Samuel et al (2017) who showed that for deep feedforward neural networks only a specific choice of hyperparameters known as the `Edge of Chaos' can lead to good performance. While the work by Samuel et al (2017) discuss trainability issues, we focus here on training acceleration and overall performance. We give a comprehensive theoretical analysis of the Edge of Chaos and show that we can indeed tune the initialization parameters and the activation function in order to accelerate the training and improve the performance.
Adversarial Weight Perturbation Helps Robust Generalization
The study on improving the robustness of deep neural networks against adversarial examples grows rapidly in recent years. Among them, adversarial training is the most promising one, which flattens the input loss landscape (loss change with respect to input) via training on adversarially perturbed examples. However, how the widely used weight loss landscape (loss change with respect to weight) performs in adversarial training is rarely explored. In this paper, we investigate the weight loss landscape from a new perspective, and identify a clear correlation between the flatness of weight loss landscape and robust generalization gap. Several well-recognized adversarial training improvements, such as early stopping, designing new objective functions, or leveraging unlabeled data, all implicitly flatten the weight loss landscape. Based on these observations, we propose a simple yet effective Adversarial Weight Perturbation (AWP) to explicitly regularize the flatness of weight loss landscape, forming a double-perturbation mechanism in the adversarial training framework that adversarially perturbs both inputs and weights. Extensive experiments demonstrate that AWP indeed brings flatter weight loss landscape and can be easily incorporated into various existing adversarial training methods to further boost their adversarial robustness.
Empirical Analysis of the Hessian of Over-Parametrized Neural Networks
We study the properties of common loss surfaces through their Hessian matrix. In particular, in the context of deep learning, we empirically show that the spectrum of the Hessian is composed of two parts: (1) the bulk centered near zero, (2) and outliers away from the bulk. We present numerical evidence and mathematical justifications to the following conjectures laid out by Sagun et al. (2016): Fixing data, increasing the number of parameters merely scales the bulk of the spectrum; fixing the dimension and changing the data (for instance adding more clusters or making the data less separable) only affects the outliers. We believe that our observations have striking implications for non-convex optimization in high dimensions. First, the flatness of such landscapes (which can be measured by the singularity of the Hessian) implies that classical notions of basins of attraction may be quite misleading. And that the discussion of wide/narrow basins may be in need of a new perspective around over-parametrization and redundancy that are able to create large connected components at the bottom of the landscape. Second, the dependence of small number of large eigenvalues to the data distribution can be linked to the spectrum of the covariance matrix of gradients of model outputs. With this in mind, we may reevaluate the connections within the data-architecture-algorithm framework of a model, hoping that it would shed light into the geometry of high-dimensional and non-convex spaces in modern applications. In particular, we present a case that links the two observations: small and large batch gradient descent appear to converge to different basins of attraction but we show that they are in fact connected through their flat region and so belong to the same basin.
Understanding Optimization in Deep Learning with Central Flows
Traditional theories of optimization cannot describe the dynamics of optimization in deep learning, even in the simple setting of deterministic training. The challenge is that optimizers typically operate in a complex, oscillatory regime called the "edge of stability." In this paper, we develop theory that can describe the dynamics of optimization in this regime. Our key insight is that while the *exact* trajectory of an oscillatory optimizer may be challenging to analyze, the *time-averaged* (i.e. smoothed) trajectory is often much more tractable. To analyze an optimizer, we derive a differential equation called a "central flow" that characterizes this time-averaged trajectory. We empirically show that these central flows can predict long-term optimization trajectories for generic neural networks with a high degree of numerical accuracy. By interpreting these central flows, we are able to understand how gradient descent makes progress even as the loss sometimes goes up; how adaptive optimizers "adapt" to the local loss landscape; and how adaptive optimizers implicitly navigate towards regions where they can take larger steps. Our results suggest that central flows can be a valuable theoretical tool for reasoning about optimization in deep learning.
Adversarial Robustness through the Lens of Convolutional Filters
Deep learning models are intrinsically sensitive to distribution shifts in the input data. In particular, small, barely perceivable perturbations to the input data can force models to make wrong predictions with high confidence. An common defense mechanism is regularization through adversarial training which injects worst-case perturbations back into training to strengthen the decision boundaries, and to reduce overfitting. In this context, we perform an investigation of 3x3 convolution filters that form in adversarially-trained models. Filters are extracted from 71 public models of the linf-RobustBench CIFAR-10/100 and ImageNet1k leaderboard and compared to filters extracted from models built on the same architectures but trained without robust regularization. We observe that adversarially-robust models appear to form more diverse, less sparse, and more orthogonal convolution filters than their normal counterparts. The largest differences between robust and normal models are found in the deepest layers, and the very first convolution layer, which consistently and predominantly forms filters that can partially eliminate perturbations, irrespective of the architecture. Data & Project website: https://github.com/paulgavrikov/cvpr22w_RobustnessThroughTheLens
Contextual Fusion For Adversarial Robustness
Mammalian brains handle complex reasoning tasks in a gestalt manner by integrating information from regions of the brain that are specialised to individual sensory modalities. This allows for improved robustness and better generalisation ability. In contrast, deep neural networks are usually designed to process one particular information stream and susceptible to various types of adversarial perturbations. While many methods exist for detecting and defending against adversarial attacks, they do not generalise across a range of attacks and negatively affect performance on clean, unperturbed data. We developed a fusion model using a combination of background and foreground features extracted in parallel from Places-CNN and Imagenet-CNN. We tested the benefits of the fusion approach on preserving adversarial robustness for human perceivable (e.g., Gaussian blur) and network perceivable (e.g., gradient-based) attacks for CIFAR-10 and MS COCO data sets. For gradient based attacks, our results show that fusion allows for significant improvements in classification without decreasing performance on unperturbed data and without need to perform adversarial retraining. Our fused model revealed improvements for Gaussian blur type perturbations as well. The increase in performance from fusion approach depended on the variability of the image contexts; larger increases were seen for classes of images with larger differences in their contexts. We also demonstrate the effect of regularization to bias the classifier decision in the presence of a known adversary. We propose that this biologically inspired approach to integrate information across multiple modalities provides a new way to improve adversarial robustness that can be complementary to current state of the art approaches.
Unleashing the Potential of Fractional Calculus in Graph Neural Networks with FROND
We introduce the FRactional-Order graph Neural Dynamical network (FROND), a new continuous graph neural network (GNN) framework. Unlike traditional continuous GNNs that rely on integer-order differential equations, FROND employs the Caputo fractional derivative to leverage the non-local properties of fractional calculus. This approach enables the capture of long-term dependencies in feature updates, moving beyond the Markovian update mechanisms in conventional integer-order models and offering enhanced capabilities in graph representation learning. We offer an interpretation of the node feature updating process in FROND from a non-Markovian random walk perspective when the feature updating is particularly governed by a diffusion process. We demonstrate analytically that oversmoothing can be mitigated in this setting. Experimentally, we validate the FROND framework by comparing the fractional adaptations of various established integer-order continuous GNNs, demonstrating their consistently improved performance and underscoring the framework's potential as an effective extension to enhance traditional continuous GNNs. The code is available at https://github.com/zknus/ICLR2024-FROND.
Editing 3D Scenes via Text Prompts without Retraining
Numerous diffusion models have recently been applied to image synthesis and editing. However, editing 3D scenes is still in its early stages. It poses various challenges, such as the requirement to design specific methods for different editing types, retraining new models for various 3D scenes, and the absence of convenient human interaction during editing. To tackle these issues, we introduce a text-driven editing method, termed DN2N, which allows for the direct acquisition of a NeRF model with universal editing capabilities, eliminating the requirement for retraining. Our method employs off-the-shelf text-based editing models of 2D images to modify the 3D scene images, followed by a filtering process to discard poorly edited images that disrupt 3D consistency. We then consider the remaining inconsistency as a problem of removing noise perturbation, which can be solved by generating training data with similar perturbation characteristics for training. We further propose cross-view regularization terms to help the generalized NeRF model mitigate these perturbations. Our text-driven method allows users to edit a 3D scene with their desired description, which is more friendly, intuitive, and practical than prior works. Empirical results show that our method achieves multiple editing types, including but not limited to appearance editing, weather transition, material changing, and style transfer. Most importantly, our method generalizes well with editing abilities shared among a set of model parameters without requiring a customized editing model for some specific scenes, thus inferring novel views with editing effects directly from user input. The project website is available at https://sk-fun.fun/DN2N
SPEGNet: Synergistic Perception-Guided Network for Camouflaged Object Detection
Camouflaged object detection segments objects with intrinsic similarity and edge disruption. Current detection methods rely on accumulated complex components. Each approach adds components such as boundary modules, attention mechanisms, and multi-scale processors independently. This accumulation creates a computational burden without proportional gains. To manage this complexity, they process at reduced resolutions, eliminating fine details essential for camouflage. We present SPEGNet, addressing fragmentation through a unified design. The architecture integrates multi-scale features via channel calibration and spatial enhancement. Boundaries emerge directly from context-rich representations, maintaining semantic-spatial alignment. Progressive refinement implements scale-adaptive edge modulation with peak influence at intermediate resolutions. This design strikes a balance between boundary precision and regional consistency. SPEGNet achieves 0.887 S_alpha on CAMO, 0.890 on COD10K, and 0.895 on NC4K, with real-time inference speed. Our approach excels across scales, from tiny, intricate objects to large, pattern-similar ones, while handling occlusion and ambiguous boundaries. Code, model weights, and results are available on https://github.com/Baber-Jan/SPEGNet{https://github.com/Baber-Jan/SPEGNet}.
Adaptive Estimation of Graphical Models under Total Positivity
We consider the problem of estimating (diagonally dominant) M-matrices as precision matrices in Gaussian graphical models. These models exhibit intriguing properties, such as the existence of the maximum likelihood estimator with merely two observations for M-matrices lauritzen2019maximum,slawski2015estimation and even one observation for diagonally dominant M-matrices truell2021maximum. We propose an adaptive multiple-stage estimation method that refines the estimate by solving a weighted ell_1-regularized problem at each stage. Furthermore, we develop a unified framework based on the gradient projection method to solve the regularized problem, incorporating distinct projections to handle the constraints of M-matrices and diagonally dominant M-matrices. A theoretical analysis of the estimation error is provided. Our method outperforms state-of-the-art methods in precision matrix estimation and graph edge identification, as evidenced by synthetic and financial time-series data sets.
DeepFool: a simple and accurate method to fool deep neural networks
State-of-the-art deep neural networks have achieved impressive results on many image classification tasks. However, these same architectures have been shown to be unstable to small, well sought, perturbations of the images. Despite the importance of this phenomenon, no effective methods have been proposed to accurately compute the robustness of state-of-the-art deep classifiers to such perturbations on large-scale datasets. In this paper, we fill this gap and propose the DeepFool algorithm to efficiently compute perturbations that fool deep networks, and thus reliably quantify the robustness of these classifiers. Extensive experimental results show that our approach outperforms recent methods in the task of computing adversarial perturbations and making classifiers more robust.
Painting Outside as Inside: Edge Guided Image Outpainting via Bidirectional Rearrangement with Progressive Step Learning
Image outpainting is a very intriguing problem as the outside of a given image can be continuously filled by considering as the context of the image. This task has two main challenges. The first is to maintain the spatial consistency in contents of generated regions and the original input. The second is to generate a high-quality large image with a small amount of adjacent information. Conventional image outpainting methods generate inconsistent, blurry, and repeated pixels. To alleviate the difficulty of an outpainting problem, we propose a novel image outpainting method using bidirectional boundary region rearrangement. We rearrange the image to benefit from the image inpainting task by reflecting more directional information. The bidirectional boundary region rearrangement enables the generation of the missing region using bidirectional information similar to that of the image inpainting task, thereby generating the higher quality than the conventional methods using unidirectional information. Moreover, we use the edge map generator that considers images as original input with structural information and hallucinates the edges of unknown regions to generate the image. Our proposed method is compared with other state-of-the-art outpainting and inpainting methods both qualitatively and quantitatively. We further compared and evaluated them using BRISQUE, one of the No-Reference image quality assessment (IQA) metrics, to evaluate the naturalness of the output. The experimental results demonstrate that our method outperforms other methods and generates new images with 360{\deg}panoramic characteristics.
Smoothed Energy Guidance: Guiding Diffusion Models with Reduced Energy Curvature of Attention
Conditional diffusion models have shown remarkable success in visual content generation, producing high-quality samples across various domains, largely due to classifier-free guidance (CFG). Recent attempts to extend guidance to unconditional models have relied on heuristic techniques, resulting in suboptimal generation quality and unintended effects. In this work, we propose Smoothed Energy Guidance (SEG), a novel training- and condition-free approach that leverages the energy-based perspective of the self-attention mechanism to enhance image generation. By defining the energy of self-attention, we introduce a method to reduce the curvature of the energy landscape of attention and use the output as the unconditional prediction. Practically, we control the curvature of the energy landscape by adjusting the Gaussian kernel parameter while keeping the guidance scale parameter fixed. Additionally, we present a query blurring method that is equivalent to blurring the entire attention weights without incurring quadratic complexity in the number of tokens. In our experiments, SEG achieves a Pareto improvement in both quality and the reduction of side effects. The code is available at https://github.com/SusungHong/SEG-SDXL.
Towards Robust Graph Contrastive Learning
We study the problem of adversarially robust self-supervised learning on graphs. In the contrastive learning framework, we introduce a new method that increases the adversarial robustness of the learned representations through i) adversarial transformations and ii) transformations that not only remove but also insert edges. We evaluate the learned representations in a preliminary set of experiments, obtaining promising results. We believe this work takes an important step towards incorporating robustness as a viable auxiliary task in graph contrastive learning.
LOss-Based SensiTivity rEgulaRization: towards deep sparse neural networks
LOBSTER (LOss-Based SensiTivity rEgulaRization) is a method for training neural networks having a sparse topology. Let the sensitivity of a network parameter be the variation of the loss function with respect to the variation of the parameter. Parameters with low sensitivity, i.e. having little impact on the loss when perturbed, are shrunk and then pruned to sparsify the network. Our method allows to train a network from scratch, i.e. without preliminary learning or rewinding. Experiments on multiple architectures and datasets show competitive compression ratios with minimal computational overhead.
Automated Coastline Extraction Using Edge Detection Algorithms
We analyse the effectiveness of edge detection algorithms for the purpose of automatically extracting coastlines from satellite images. Four algorithms - Canny, Sobel, Scharr and Prewitt are compared visually and using metrics. With an average SSIM of 0.8, Canny detected edges that were closest to the reference edges. However, the algorithm had difficulty distinguishing noisy edges, e.g. due to development, from coastline edges. In addition, histogram equalization and Gaussian blur were shown to improve the effectiveness of the edge detection algorithms by up to 1.5 and 1.6 times respectively.
Robust Graph Structure Learning via Multiple Statistical Tests
Graph structure learning aims to learn connectivity in a graph from data. It is particularly important for many computer vision related tasks since no explicit graph structure is available for images for most cases. A natural way to construct a graph among images is to treat each image as a node and assign pairwise image similarities as weights to corresponding edges. It is well known that pairwise similarities between images are sensitive to the noise in feature representations, leading to unreliable graph structures. We address this problem from the viewpoint of statistical tests. By viewing the feature vector of each node as an independent sample, the decision of whether creating an edge between two nodes based on their similarity in feature representation can be thought as a {it single} statistical test. To improve the robustness in the decision of creating an edge, multiple samples are drawn and integrated by {it multiple} statistical tests to generate a more reliable similarity measure, consequentially more reliable graph structure. The corresponding elegant matrix form named B-Attention is designed for efficiency. The effectiveness of multiple tests for graph structure learning is verified both theoretically and empirically on multiple clustering and ReID benchmark datasets. Source codes are available at https://github.com/Thomas-wyh/B-Attention.
Nonintrusive approximation of parametrized limits of matrix power algorithms -- application to matrix inverses and log-determinants
We consider in this work quantities that can be obtained as limits of powers of parametrized matrices, for instance the inverse matrix or the logarithm of the determinant. Under the assumption of affine dependence in the parameters, we use the Empirical Interpolation Method (EIM) to derive an approximation for powers of these matrices, from which we derive a nonintrusive approximation for the aforementioned limits. We derive upper bounds of the error made by the obtained formula. Finally, numerical comparisons with classical intrusive and nonintrusive approximation techniques are provided: in the considered test-cases, our algorithm performs well compared to the nonintrusive ones.
Regional Adversarial Training for Better Robust Generalization
Adversarial training (AT) has been demonstrated as one of the most promising defense methods against various adversarial attacks. To our knowledge, existing AT-based methods usually train with the locally most adversarial perturbed points and treat all the perturbed points equally, which may lead to considerably weaker adversarial robust generalization on test data. In this work, we introduce a new adversarial training framework that considers the diversity as well as characteristics of the perturbed points in the vicinity of benign samples. To realize the framework, we propose a Regional Adversarial Training (RAT) defense method that first utilizes the attack path generated by the typical iterative attack method of projected gradient descent (PGD), and constructs an adversarial region based on the attack path. Then, RAT samples diverse perturbed training points efficiently inside this region, and utilizes a distance-aware label smoothing mechanism to capture our intuition that perturbed points at different locations should have different impact on the model performance. Extensive experiments on several benchmark datasets show that RAT consistently makes significant improvement on standard adversarial training (SAT), and exhibits better robust generalization.
Landscaping Linear Mode Connectivity
The presence of linear paths in parameter space between two different network solutions in certain cases, i.e., linear mode connectivity (LMC), has garnered interest from both theoretical and practical fronts. There has been significant research that either practically designs algorithms catered for connecting networks by adjusting for the permutation symmetries as well as some others that more theoretically construct paths through which networks can be connected. Yet, the core reasons for the occurrence of LMC, when in fact it does occur, in the highly non-convex loss landscapes of neural networks are far from clear. In this work, we take a step towards understanding it by providing a model of how the loss landscape needs to behave topographically for LMC (or the lack thereof) to manifest. Concretely, we present a `mountainside and ridge' perspective that helps to neatly tie together different geometric features that can be spotted in the loss landscape along the training runs. We also complement this perspective by providing a theoretical analysis of the barrier height, for which we provide empirical support, and which additionally extends as a faithful predictor of layer-wise LMC. We close with a toy example that provides further intuition on how barriers arise in the first place, all in all, showcasing the larger aim of the work -- to provide a working model of the landscape and its topography for the occurrence of LMC.
As-Plausible-As-Possible: Plausibility-Aware Mesh Deformation Using 2D Diffusion Priors
We present As-Plausible-as-Possible (APAP) mesh deformation technique that leverages 2D diffusion priors to preserve the plausibility of a mesh under user-controlled deformation. Our framework uses per-face Jacobians to represent mesh deformations, where mesh vertex coordinates are computed via a differentiable Poisson Solve. The deformed mesh is rendered, and the resulting 2D image is used in the Score Distillation Sampling (SDS) process, which enables extracting meaningful plausibility priors from a pretrained 2D diffusion model. To better preserve the identity of the edited mesh, we fine-tune our 2D diffusion model with LoRA. Gradients extracted by SDS and a user-prescribed handle displacement are then backpropagated to the per-face Jacobians, and we use iterative gradient descent to compute the final deformation that balances between the user edit and the output plausibility. We evaluate our method with 2D and 3D meshes and demonstrate qualitative and quantitative improvements when using plausibility priors over geometry-preservation or distortion-minimization priors used by previous techniques. Our project page is at: https://as-plausible-aspossible.github.io/
Self-Rectifying Diffusion Sampling with Perturbed-Attention Guidance
Recent studies have demonstrated that diffusion models are capable of generating high-quality samples, but their quality heavily depends on sampling guidance techniques, such as classifier guidance (CG) and classifier-free guidance (CFG). These techniques are often not applicable in unconditional generation or in various downstream tasks such as image restoration. In this paper, we propose a novel sampling guidance, called Perturbed-Attention Guidance (PAG), which improves diffusion sample quality across both unconditional and conditional settings, achieving this without requiring additional training or the integration of external modules. PAG is designed to progressively enhance the structure of samples throughout the denoising process. It involves generating intermediate samples with degraded structure by substituting selected self-attention maps in diffusion U-Net with an identity matrix, by considering the self-attention mechanisms' ability to capture structural information, and guiding the denoising process away from these degraded samples. In both ADM and Stable Diffusion, PAG surprisingly improves sample quality in conditional and even unconditional scenarios. Moreover, PAG significantly improves the baseline performance in various downstream tasks where existing guidances such as CG or CFG cannot be fully utilized, including ControlNet with empty prompts and image restoration such as inpainting and deblurring.
A Boundary Tilting Persepective on the Phenomenon of Adversarial Examples
Deep neural networks have been shown to suffer from a surprising weakness: their classification outputs can be changed by small, non-random perturbations of their inputs. This adversarial example phenomenon has been explained as originating from deep networks being "too linear" (Goodfellow et al., 2014). We show here that the linear explanation of adversarial examples presents a number of limitations: the formal argument is not convincing, linear classifiers do not always suffer from the phenomenon, and when they do their adversarial examples are different from the ones affecting deep networks. We propose a new perspective on the phenomenon. We argue that adversarial examples exist when the classification boundary lies close to the submanifold of sampled data, and present a mathematical analysis of this new perspective in the linear case. We define the notion of adversarial strength and show that it can be reduced to the deviation angle between the classifier considered and the nearest centroid classifier. Then, we show that the adversarial strength can be made arbitrarily high independently of the classification performance due to a mechanism that we call boundary tilting. This result leads us to defining a new taxonomy of adversarial examples. Finally, we show that the adversarial strength observed in practice is directly dependent on the level of regularisation used and the strongest adversarial examples, symptomatic of overfitting, can be avoided by using a proper level of regularisation.
Trace formulae for Schrodinger operators on metric graphs with applications to recovering matching conditions
The paper is a continuation of the study started in Yorzh1. Schrodinger operators on finite compact metric graphs are considered under the assumption that the matching conditions at the graph vertices are of delta type. Either an infinite series of trace formulae (provided that edge potentials are infinitely smooth) or a finite number of such formulae (in the cases of L_1 and C^M edge potentials) are obtained which link together two different quantum graphs under the assumption that their spectra coincide. Applications are given to the problem of recovering matching conditions for a quantum graph based on its spectrum.
OReX: Object Reconstruction from Planar Cross-sections Using Neural Fields
Reconstructing 3D shapes from planar cross-sections is a challenge inspired by downstream applications like medical imaging and geographic informatics. The input is an in/out indicator function fully defined on a sparse collection of planes in space, and the output is an interpolation of the indicator function to the entire volume. Previous works addressing this sparse and ill-posed problem either produce low quality results, or rely on additional priors such as target topology, appearance information, or input normal directions. In this paper, we present OReX, a method for 3D shape reconstruction from slices alone, featuring a Neural Field as the interpolation prior. A modest neural network is trained on the input planes to return an inside/outside estimate for a given 3D coordinate, yielding a powerful prior that induces smoothness and self-similarities. The main challenge for this approach is high-frequency details, as the neural prior is overly smoothing. To alleviate this, we offer an iterative estimation architecture and a hierarchical input sampling scheme that encourage coarse-to-fine training, allowing the training process to focus on high frequencies at later stages. In addition, we identify and analyze a ripple-like effect stemming from the mesh extraction step. We mitigate it by regularizing the spatial gradients of the indicator function around input in/out boundaries during network training, tackling the problem at the root. Through extensive qualitative and quantitative experimentation, we demonstrate our method is robust, accurate, and scales well with the size of the input. We report state-of-the-art results compared to previous approaches and recent potential solutions, and demonstrate the benefit of our individual contributions through analysis and ablation studies.
dyGRASS: Dynamic Spectral Graph Sparsification via Localized Random Walks on GPUs
This work presents dyGRASS, an efficient dynamic algorithm for spectral sparsification of large undirected graphs that undergo streaming edge insertions and deletions. At its core, dyGRASS employs a random-walk-based method to efficiently estimate node-to-node distances in both the original graph (for decremental update) and its sparsifier (for incremental update). For incremental updates, dyGRASS enables the identification of spectrally critical edges among the updates to capture the latest structural changes. For decremental updates, dyGRASS facilitates the recovery of important edges from the original graph back into the sparsifier. To further enhance computational efficiency, dyGRASS employs a GPU-based non-backtracking random walk scheme that allows multiple walkers to operate simultaneously across various target updates. This parallelization significantly improves both the performance and scalability of the proposed dyGRASS framework. Our comprehensive experimental evaluations reveal that dyGRASS achieves approximately a 10x speedup compared to the state-of-the-art incremental sparsification (inGRASS) algorithm while eliminating the setup overhead and improving solution quality in incremental spectral sparsification tasks. Moreover, dyGRASS delivers high efficiency and superior solution quality for fully dynamic graph sparsification, accommodating both edge insertions and deletions across a diverse range of graph instances originating from integrated circuit simulations, finite element analysis, and social networks.
One pixel attack for fooling deep neural networks
Recent research has revealed that the output of Deep Neural Networks (DNN) can be easily altered by adding relatively small perturbations to the input vector. In this paper, we analyze an attack in an extremely limited scenario where only one pixel can be modified. For that we propose a novel method for generating one-pixel adversarial perturbations based on differential evolution (DE). It requires less adversarial information (a black-box attack) and can fool more types of networks due to the inherent features of DE. The results show that 67.97% of the natural images in Kaggle CIFAR-10 test dataset and 16.04% of the ImageNet (ILSVRC 2012) test images can be perturbed to at least one target class by modifying just one pixel with 74.03% and 22.91% confidence on average. We also show the same vulnerability on the original CIFAR-10 dataset. Thus, the proposed attack explores a different take on adversarial machine learning in an extreme limited scenario, showing that current DNNs are also vulnerable to such low dimension attacks. Besides, we also illustrate an important application of DE (or broadly speaking, evolutionary computation) in the domain of adversarial machine learning: creating tools that can effectively generate low-cost adversarial attacks against neural networks for evaluating robustness.
DiGress: Discrete Denoising diffusion for graph generation
This work introduces DiGress, a discrete denoising diffusion model for generating graphs with categorical node and edge attributes. Our model utilizes a discrete diffusion process that progressively edits graphs with noise, through the process of adding or removing edges and changing the categories. A graph transformer network is trained to revert this process, simplifying the problem of distribution learning over graphs into a sequence of node and edge classification tasks. We further improve sample quality by introducing a Markovian noise model that preserves the marginal distribution of node and edge types during diffusion, and by incorporating auxiliary graph-theoretic features. A procedure for conditioning the generation on graph-level features is also proposed. DiGress achieves state-of-the-art performance on molecular and non-molecular datasets, with up to 3x validity improvement on a planar graph dataset. It is also the first model to scale to the large GuacaMol dataset containing 1.3M drug-like molecules without the use of molecule-specific representations.
Attacking Perceptual Similarity Metrics
Perceptual similarity metrics have progressively become more correlated with human judgments on perceptual similarity; however, despite recent advances, the addition of an imperceptible distortion can still compromise these metrics. In our study, we systematically examine the robustness of these metrics to imperceptible adversarial perturbations. Following the two-alternative forced-choice experimental design with two distorted images and one reference image, we perturb the distorted image closer to the reference via an adversarial attack until the metric flips its judgment. We first show that all metrics in our study are susceptible to perturbations generated via common adversarial attacks such as FGSM, PGD, and the One-pixel attack. Next, we attack the widely adopted LPIPS metric using spatial-transformation-based adversarial perturbations (stAdv) in a white-box setting to craft adversarial examples that can effectively transfer to other similarity metrics in a black-box setting. We also combine the spatial attack stAdv with PGD (ell_infty-bounded) attack to increase transferability and use these adversarial examples to benchmark the robustness of both traditional and recently developed metrics. Our benchmark provides a good starting point for discussion and further research on the robustness of metrics to imperceptible adversarial perturbations.
