Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOdysseus Navigates the Sirens' Song: Dynamic Focus Decoding for Factual and Diverse Open-Ended Text Generation
Large Language Models (LLMs) are increasingly required to generate text that is both factually accurate and diverse across various open-ended applications. However, current stochastic decoding methods struggle to balance such objectives. We introduce Dynamic Focus Decoding (DFD), a novel plug-and-play stochastic approach that resolves this trade-off without requiring additional data, knowledge, or models. DFD adaptively adjusts the decoding focus based on distributional differences across layers, leveraging the modular and hierarchical nature of factual knowledge within LLMs. This dynamic adjustment improves factuality in knowledge-intensive decoding steps and promotes diversity in less knowledge-reliant steps. DFD can be easily integrated with existing decoding methods, enhancing both factuality and diversity with minimal computational overhead. Extensive experiments across seven datasets demonstrate that DFD significantly improves performance, providing a scalable and efficient solution for open-ended text generation.
Integrative Decoding: Improve Factuality via Implicit Self-consistency
Self-consistency-based approaches, which involve repeatedly sampling multiple outputs and selecting the most consistent one as the final response, prove to be remarkably effective in improving the factual accuracy of large language models. Nonetheless, existing methods usually have strict constraints on the task format, largely limiting their applicability. In this paper, we present Integrative Decoding (ID), to unlock the potential of self-consistency in open-ended generation tasks. ID operates by constructing a set of inputs, each prepended with a previously sampled response, and then processes them concurrently, with the next token being selected by aggregating of all their corresponding predictions at each decoding step. In essence, this simple approach implicitly incorporates self-consistency in the decoding objective. Extensive evaluation shows that ID consistently enhances factuality over a wide range of language models, with substantial improvements on the TruthfulQA (+11.2%), Biographies (+15.4%) and LongFact (+8.5%) benchmarks. The performance gains amplify progressively as the number of sampled responses increases, indicating the potential of ID to scale up with repeated sampling.
CAAD: Context-Aware Adaptive Decoding for Truthful Text Generation
Ensuring truthfulness in large language models remains a critical challenge for reliable text generation. While supervised fine-tuning and reinforcement learning with human feedback have shown promise, they require substantial amount of annotated data and computational resources, limiting scalability. In contrast, decoding-time interventions offer lightweight alternatives without model retraining. However, existing decoding strategies often face issues like prompt sensitivity, limited generalization, or dependence on internal model states. We propose a context-aware adaptive decoding method that leverages a compact reference grounding space, built from as few as 10 annotated examples and comprising pairs of context embeddings and next token logits from truthful responses, to enable retrieval-based logit shaping during inference. At each decoding step, our method retrieves top-N semantically similar contexts and aggregates their associated next token logits to modify the LLM's logits. Across three open-ended question-answering benchmarks, our approach achieves a 2.8 percent average improvement on TruthfulQA and further outperforms existing baselines on both Biographies and WikiQA. Experimental results also demonstrate cross-task generalization, with TruthfulQA-derived grounding enhancing biography generation. Our model-agnostic, scalable, and efficient method requires only a single generation pass, highlighting the potential of context-aware decoding for factual reliability in LLMs.
Emergence of Linear Truth Encodings in Language Models
Recent probing studies reveal that large language models exhibit linear subspaces that separate true from false statements, yet the mechanism behind their emergence is unclear. We introduce a transparent, one-layer transformer toy model that reproduces such truth subspaces end-to-end and exposes one concrete route by which they can arise. We study one simple setting in which truth encoding can emerge: a data distribution where factual statements co-occur with other factual statements (and vice-versa), encouraging the model to learn this distinction in order to lower the LM loss on future tokens. We corroborate this pattern with experiments in pretrained language models. Finally, in the toy setting we observe a two-phase learning dynamic: networks first memorize individual factual associations in a few steps, then -- over a longer horizon -- learn to linearly separate true from false, which in turn lowers language-modeling loss. Together, these results provide both a mechanistic demonstration and an empirical motivation for how and why linear truth representations can emerge in language models.
DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models
Despite their impressive capabilities, large language models (LLMs) are prone to hallucinations, i.e., generating content that deviates from facts seen during pretraining. We propose a simple decoding strategy for reducing hallucinations with pretrained LLMs that does not require conditioning on retrieved external knowledge nor additional fine-tuning. Our approach obtains the next-token distribution by contrasting the differences in logits obtained from projecting the later layers versus earlier layers to the vocabulary space, exploiting the fact that factual knowledge in an LLMs has generally been shown to be localized to particular transformer layers. We find that this Decoding by Contrasting Layers (DoLa) approach is able to better surface factual knowledge and reduce the generation of incorrect facts. DoLa consistently improves the truthfulness across multiple choices tasks and open-ended generation tasks, for example improving the performance of LLaMA family models on TruthfulQA by 12-17% absolute points, demonstrating its potential in making LLMs reliably generate truthful facts.
Unveiling LLMs: The Evolution of Latent Representations in a Dynamic Knowledge Graph
Large Language Models (LLMs) demonstrate an impressive capacity to recall a vast range of factual knowledge. However, understanding their underlying reasoning and internal mechanisms in exploiting this knowledge remains a key research area. This work unveils the factual information an LLM represents internally for sentence-level claim verification. We propose an end-to-end framework to decode factual knowledge embedded in token representations from a vector space to a set of ground predicates, showing its layer-wise evolution using a dynamic knowledge graph. Our framework employs activation patching, a vector-level technique that alters a token representation during inference, to extract encoded knowledge. Accordingly, we neither rely on training nor external models. Using factual and common-sense claims from two claim verification datasets, we showcase interpretability analyses at local and global levels. The local analysis highlights entity centrality in LLM reasoning, from claim-related information and multi-hop reasoning to representation errors causing erroneous evaluation. On the other hand, the global reveals trends in the underlying evolution, such as word-based knowledge evolving into claim-related facts. By interpreting semantics from LLM latent representations and enabling graph-related analyses, this work enhances the understanding of the factual knowledge resolution process.
Fine-tuning Language Models for Factuality
The fluency and creativity of large pre-trained language models (LLMs) have led to their widespread use, sometimes even as a replacement for traditional search engines. Yet language models are prone to making convincing but factually inaccurate claims, often referred to as 'hallucinations.' These errors can inadvertently spread misinformation or harmfully perpetuate misconceptions. Further, manual fact-checking of model responses is a time-consuming process, making human factuality labels expensive to acquire. In this work, we fine-tune language models to be more factual, without human labeling and targeting more open-ended generation settings than past work. We leverage two key recent innovations in NLP to do so. First, several recent works have proposed methods for judging the factuality of open-ended text by measuring consistency with an external knowledge base or simply a large model's confidence scores. Second, the direct preference optimization algorithm enables straightforward fine-tuning of language models on objectives other than supervised imitation, using a preference ranking over possible model responses. We show that learning from automatically generated factuality preference rankings, generated either through existing retrieval systems or our novel retrieval-free approach, significantly improves the factuality (percent of generated claims that are correct) of Llama-2 on held-out topics compared with RLHF or decoding strategies targeted at factuality. At 7B scale, compared to Llama-2-chat, we observe 58% and 40% reduction in factual error rate when generating biographies and answering medical questions, respectively.
FactReasoner: A Probabilistic Approach to Long-Form Factuality Assessment for Large Language Models
Large language models (LLMs) have demonstrated vast capabilities on generative tasks in recent years, yet they struggle with guaranteeing the factual correctness of the generated content. This makes these models unreliable in realistic situations where factually accurate responses are expected. In this paper, we propose FactReasoner, a new factuality assessor that relies on probabilistic reasoning to assess the factuality of a long-form generated response. Specifically, FactReasoner decomposes the response into atomic units, retrieves relevant contexts for them from an external knowledge source, and constructs a joint probability distribution over the atoms and contexts using probabilistic encodings of the logical relationships (entailment, contradiction) between the textual utterances corresponding to the atoms and contexts. FactReasoner then computes the posterior probability of whether atomic units in the response are supported by the retrieved contexts. Our experiments on labeled and unlabeled benchmark datasets demonstrate clearly that FactReasoner improves considerably over state-of-the-art prompt-based approaches in terms of both factual precision and recall.
Do Large Language Models Know about Facts?
Large language models (LLMs) have recently driven striking performance improvements across a range of natural language processing tasks. The factual knowledge acquired during pretraining and instruction tuning can be useful in various downstream tasks, such as question answering, and language generation. Unlike conventional Knowledge Bases (KBs) that explicitly store factual knowledge, LLMs implicitly store facts in their parameters. Content generated by the LLMs can often exhibit inaccuracies or deviations from the truth, due to facts that can be incorrectly induced or become obsolete over time. To this end, we aim to comprehensively evaluate the extent and scope of factual knowledge within LLMs by designing the benchmark Pinocchio. Pinocchio contains 20K diverse factual questions that span different sources, timelines, domains, regions, and languages. Furthermore, we investigate whether LLMs are able to compose multiple facts, update factual knowledge temporally, reason over multiple pieces of facts, identify subtle factual differences, and resist adversarial examples. Extensive experiments on different sizes and types of LLMs show that existing LLMs still lack factual knowledge and suffer from various spurious correlations. We believe this is a critical bottleneck for realizing trustworthy artificial intelligence. The dataset Pinocchio and our codes will be publicly available.
Lower Layer Matters: Alleviating Hallucination via Multi-Layer Fusion Contrastive Decoding with Truthfulness Refocused
Large Language Models (LLMs) have demonstrated exceptional performance across various natural language processing tasks, yet they occasionally tend to yield content that factually inaccurate or discordant with the expected output, a phenomenon empirically referred to as "hallucination". To tackle this issue, recent works have investigated contrastive decoding between the original model and an amateur model with induced hallucination, which has shown promising results. Nonetheless, this method may undermine the output distribution of the original LLM caused by its coarse contrast and simplistic subtraction operation, potentially leading to errors in certain cases. In this paper, we introduce a novel contrastive decoding framework termed LOL (LOwer Layer Matters). Our approach involves concatenating the contrastive decoding of both the final and lower layers between the original model and the amateur model, thereby achieving multi-layer fusion to aid in the mitigation of hallucination. Additionally, we incorporate a truthfulness refocused module that leverages contextual guidance to enhance factual encoding, further capturing truthfulness during contrastive decoding. Extensive experiments conducted on two publicly available datasets illustrate that our proposed LOL framework can substantially alleviate hallucination while surpassing existing baselines in most cases. Compared with the best baseline, we improve by average 4.5 points on all metrics of TruthfulQA. The source code is coming soon.
An Annotation Scheme for Factuality and its Application to Parliamentary Proceedings
Factuality assesses the extent to which a language utterance relates to real-world information; it determines whether utterances correspond to facts, possibilities, or imaginary situations, and as such, it is instrumental for fact checking. Factuality is a complex notion that relies on multiple linguistic signals, and has been studied in various disciplines. We present a complex, multi-faceted annotation scheme of factuality that combines concepts from a variety of previous works. We developed the scheme for Hebrew, but we trust that it can be adapted to other languages. We also present a set of almost 5,000 sentences in the domain of parliamentary discourse that we manually annotated according to this scheme. We report on inter-annotator agreement, and experiment with various approaches to automatically predict (some features of) the scheme, in order to extend the annotation to a large corpus.
FELM: Benchmarking Factuality Evaluation of Large Language Models
Assessing factuality of text generated by large language models (LLMs) is an emerging yet crucial research area, aimed at alerting users to potential errors and guiding the development of more reliable LLMs. Nonetheless, the evaluators assessing factuality necessitate suitable evaluation themselves to gauge progress and foster advancements. This direction remains under-explored, resulting in substantial impediments to the progress of factuality evaluators. To mitigate this issue, we introduce a benchmark for Factuality Evaluation of large Language Models, referred to as felm. In this benchmark, we collect responses generated from LLMs and annotate factuality labels in a fine-grained manner. Contrary to previous studies that primarily concentrate on the factuality of world knowledge (e.g.~information from Wikipedia), felm focuses on factuality across diverse domains, spanning from world knowledge to math and reasoning. Our annotation is based on text segments, which can help pinpoint specific factual errors. The factuality annotations are further supplemented by predefined error types and reference links that either support or contradict the statement. In our experiments, we investigate the performance of several LLM-based factuality evaluators on felm, including both vanilla LLMs and those augmented with retrieval mechanisms and chain-of-thought processes. Our findings reveal that while retrieval aids factuality evaluation, current LLMs are far from satisfactory to faithfully detect factual errors.
Survey on Factuality in Large Language Models: Knowledge, Retrieval and Domain-Specificity
This survey addresses the crucial issue of factuality in Large Language Models (LLMs). As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital. We define the Factuality Issue as the probability of LLMs to produce content inconsistent with established facts. We first delve into the implications of these inaccuracies, highlighting the potential consequences and challenges posed by factual errors in LLM outputs. Subsequently, we analyze the mechanisms through which LLMs store and process facts, seeking the primary causes of factual errors. Our discussion then transitions to methodologies for evaluating LLM factuality, emphasizing key metrics, benchmarks, and studies. We further explore strategies for enhancing LLM factuality, including approaches tailored for specific domains. We focus two primary LLM configurations standalone LLMs and Retrieval-Augmented LLMs that utilizes external data, we detail their unique challenges and potential enhancements. Our survey offers a structured guide for researchers aiming to fortify the factual reliability of LLMs.
FLAME: Factuality-Aware Alignment for Large Language Models
Alignment is a standard procedure to fine-tune pre-trained large language models (LLMs) to follow natural language instructions and serve as helpful AI assistants. We have observed, however, that the conventional alignment process fails to enhance the factual accuracy of LLMs, and often leads to the generation of more false facts (i.e. hallucination). In this paper, we study how to make the LLM alignment process more factual, by first identifying factors that lead to hallucination in both alignment steps:\ supervised fine-tuning (SFT) and reinforcement learning (RL). In particular, we find that training the LLM on new knowledge or unfamiliar texts can encourage hallucination. This makes SFT less factual as it trains on human labeled data that may be novel to the LLM. Furthermore, reward functions used in standard RL can also encourage hallucination, because it guides the LLM to provide more helpful responses on a diverse set of instructions, often preferring longer and more detailed responses. Based on these observations, we propose factuality-aware alignment, comprised of factuality-aware SFT and factuality-aware RL through direct preference optimization. Experiments show that our proposed factuality-aware alignment guides LLMs to output more factual responses while maintaining instruction-following capability.
Active Layer-Contrastive Decoding Reduces Hallucination in Large Language Model Generation
Recent decoding methods improve the factuality of large language models (LLMs) by refining how the next token is selected during generation. These methods typically operate at the token level, leveraging internal representations to suppress superficial patterns. Nevertheless, LLMs remain prone to hallucinations, especially over longer contexts. In this paper, we propose Active Layer-Contrastive Decoding (ActLCD), a novel decoding strategy that actively decides when to apply contrasting layers during generation. By casting decoding as a sequential decision-making problem, ActLCD employs a reinforcement learning policy guided by a reward-aware classifier to optimize factuality beyond the token level. Our experiments demonstrate that ActLCD surpasses state-of-the-art methods across five benchmarks, showcasing its effectiveness in mitigating hallucinations in diverse generation scenarios.
Controllable Factuality in Document-Grounded Dialog Systems Using a Noisy Channel Model
In this work, we present a model for document-grounded response generation in dialog that is decomposed into two components according to Bayes theorem. One component is a traditional ungrounded response generation model and the other component models the reconstruction of the grounding document based on the dialog context and generated response. We propose different approximate decoding schemes and evaluate our approach on multiple open-domain and task-oriented document-grounded dialog datasets. Our experiments show that the model is more factual in terms of automatic factuality metrics than the baseline model. Furthermore, we outline how introducing scaling factors between the components allows for controlling the tradeoff between factuality and fluency in the model output. Finally, we compare our approach to a recently proposed method to control factuality in grounded dialog, CTRL (arXiv:2107.06963), and show that both approaches can be combined to achieve additional improvements.
Attention Satisfies: A Constraint-Satisfaction Lens on Factual Errors of Language Models
We investigate the internal behavior of Transformer-based Large Language Models (LLMs) when they generate factually incorrect text. We propose modeling factual queries as Constraint Satisfaction Problems and use this framework to investigate how the model interacts internally with factual constraints. Specifically, we discover a strong positive relation between the model's attention to constraint tokens and the factual accuracy of its responses. In our curated suite of 11 datasets with over 40,000 prompts, we study the task of predicting factual errors with the Llama-2 family across all scales (7B, 13B, 70B). We propose SAT Probe, a method probing self-attention patterns, that can predict constraint satisfaction and factual errors, and allows early error identification. The approach and findings demonstrate how using the mechanistic understanding of factuality in LLMs can enhance reliability.
Large Language Models Do NOT Really Know What They Don't Know
Recent work suggests that large language models (LLMs) encode factuality signals in their internal representations, such as hidden states, attention weights, or token probabilities, implying that LLMs may "know what they don't know". However, LLMs can also produce factual errors by relying on shortcuts or spurious associations. These error are driven by the same training objective that encourage correct predictions, raising the question of whether internal computations can reliably distinguish between factual and hallucinated outputs. In this work, we conduct a mechanistic analysis of how LLMs internally process factual queries by comparing two types of hallucinations based on their reliance on subject information. We find that when hallucinations are associated with subject knowledge, LLMs employ the same internal recall process as for correct responses, leading to overlapping and indistinguishable hidden-state geometries. In contrast, hallucinations detached from subject knowledge produce distinct, clustered representations that make them detectable. These findings reveal a fundamental limitation: LLMs do not encode truthfulness in their internal states but only patterns of knowledge recall, demonstrating that "LLMs don't really know what they don't know".
LM vs LM: Detecting Factual Errors via Cross Examination
A prominent weakness of modern language models (LMs) is their tendency to generate factually incorrect text, which hinders their usability. A natural question is whether such factual errors can be detected automatically. Inspired by truth-seeking mechanisms in law, we propose a factuality evaluation framework for LMs that is based on cross-examination. Our key idea is that an incorrect claim is likely to result in inconsistency with other claims that the model generates. To discover such inconsistencies, we facilitate a multi-turn interaction between the LM that generated the claim and another LM (acting as an examiner) which introduces questions to discover inconsistencies. We empirically evaluate our method on factual claims made by multiple recent LMs on four benchmarks, finding that it outperforms existing methods and baselines, often by a large gap. Our results demonstrate the potential of using interacting LMs for capturing factual errors.
Annotating and Modeling Fine-grained Factuality in Summarization
Recent pre-trained abstractive summarization systems have started to achieve credible performance, but a major barrier to their use in practice is their propensity to output summaries that are not faithful to the input and that contain factual errors. While a number of annotated datasets and statistical models for assessing factuality have been explored, there is no clear picture of what errors are most important to target or where current techniques are succeeding and failing. We explore both synthetic and human-labeled data sources for training models to identify factual errors in summarization, and study factuality at the word-, dependency-, and sentence-level. Our observations are threefold. First, exhibited factual errors differ significantly across datasets, and commonly-used training sets of simple synthetic errors do not reflect errors made on abstractive datasets like XSum. Second, human-labeled data with fine-grained annotations provides a more effective training signal than sentence-level annotations or synthetic data. Finally, we show that our best factuality detection model enables training of more factual XSum summarization models by allowing us to identify non-factual tokens in the training data.
VeriFact: Enhancing Long-Form Factuality Evaluation with Refined Fact Extraction and Reference Facts
Large language models (LLMs) excel at generating long-form responses, but evaluating their factuality remains challenging due to complex inter-sentence dependencies within the generated facts. Prior solutions predominantly follow a decompose-decontextualize-verify pipeline but often fail to capture essential context and miss key relational facts. In this paper, we introduce VeriFact, a factuality evaluation framework designed to enhance fact extraction by identifying and resolving incomplete and missing facts to support more accurate verification results. Moreover, we introduce FactRBench , a benchmark that evaluates both precision and recall in long-form model responses, whereas prior work primarily focuses on precision. FactRBench provides reference fact sets from advanced LLMs and human-written answers, enabling recall assessment. Empirical evaluations show that VeriFact significantly enhances fact completeness and preserves complex facts with critical relational information, resulting in more accurate factuality evaluation. Benchmarking various open- and close-weight LLMs on FactRBench indicate that larger models within same model family improve precision and recall, but high precision does not always correlate with high recall, underscoring the importance of comprehensive factuality assessment.
Locating and Editing Factual Associations in GPT
We analyze the storage and recall of factual associations in autoregressive transformer language models, finding evidence that these associations correspond to localized, directly-editable computations. We first develop a causal intervention for identifying neuron activations that are decisive in a model's factual predictions. This reveals a distinct set of steps in middle-layer feed-forward modules that mediate factual predictions while processing subject tokens. To test our hypothesis that these computations correspond to factual association recall, we modify feed-forward weights to update specific factual associations using Rank-One Model Editing (ROME). We find that ROME is effective on a standard zero-shot relation extraction (zsRE) model-editing task, comparable to existing methods. To perform a more sensitive evaluation, we also evaluate ROME on a new dataset of counterfactual assertions, on which it simultaneously maintains both specificity and generalization, whereas other methods sacrifice one or another. Our results confirm an important role for mid-layer feed-forward modules in storing factual associations and suggest that direct manipulation of computational mechanisms may be a feasible approach for model editing. The code, dataset, visualizations, and an interactive demo notebook are available at https://rome.baulab.info/
FactBench: A Dynamic Benchmark for In-the-Wild Language Model Factuality Evaluation
Language models (LMs) are widely used by an increasing number of users, underscoring the challenge of maintaining factuality across a broad range of topics. We first present VERIFY (Verification and Evidence RetrIeval for FactualitY evaluation), a pipeline to evaluate LMs' factuality in real-world user interactions. VERIFY considers the verifiability of LM-generated content and categorizes content units as supported, unsupported, or undecidable based on the retrieved evidence from the Web. Importantly, factuality judgment by VERIFY correlates better with human evaluations than existing methods. Using VERIFY, we identify "hallucination prompts" across diverse topics, i.e., those eliciting the highest rates of incorrect and inconclusive LM responses. These prompts form FactBench, a dataset of 1K prompts across 150 fine-grained topics. Our dataset captures emerging factuality challenges in real-world LM interactions and can be regularly updated with new prompts. We benchmark widely-used LMs from GPT, Gemini, and Llama3.1 family on FactBench, yielding the following key findings: (i) Proprietary models exhibit better factuality, with performance declining from Easy to Hard hallucination prompts. (ii) Llama3.1-405B-Instruct shows comparable or lower factual accuracy than Llama3.1-70B-Instruct across all evaluation methods due to its higher subjectivity that leads to more content labeled as undecidable. (iii) Gemini1.5-Pro shows a significantly higher refusal rate, with over-refusal in 25% of cases. Our code and data are publicly available at https://huggingface.co/spaces/launch/factbench.
FactAlign: Long-form Factuality Alignment of Large Language Models
Large language models have demonstrated significant potential as the next-generation information access engines. However, their reliability is hindered by issues of hallucination and generating non-factual content. This is particularly problematic in long-form responses, where assessing and ensuring factual accuracy is complex. In this paper, we address this gap by proposing FactAlign, a novel alignment framework designed to enhance the factuality of LLMs' long-form responses while maintaining their helpfulness. We introduce fKTO, a fine-grained, sentence-level alignment algorithm that extends the Kahneman-Tversky Optimization (KTO) alignment method. Leveraging recent advances in automatic factuality evaluation, FactAlign utilizes fine-grained factuality assessments to guide the alignment process. Our experiments on open-domain prompts and information-seeking questions demonstrate that FactAlign significantly improves the factual accuracy of LLM responses while also improving their helpfulness. Further analyses identify that FactAlign is capable of training LLMs to provide more information without losing factual precision, thus improving the factual F1 score. Our source code, datasets, and trained models are publicly available at https://github.com/MiuLab/FactAlign
How Does Response Length Affect Long-Form Factuality
Large language models (LLMs) are widely used for long-form text generation. However, factual errors in the responses would undermine their reliability. Despite growing attention to LLM factuality, the effect of response length on factuality remains underexplored. In this work, we systematically investigate this relationship by first introducing an automatic and bi-level long-form factuality evaluation framework, which achieves high agreement with human annotations while being cost-effective. Using this framework, we conduct controlled experiments and find that longer responses exhibit lower factual precision, confirming the presence of length bias. To explain this phenomenon, we empirically examine three hypotheses: error propagation, long context, and facts exhaustion. Our results reveal that facts exhaustion, where the model gradually exhausts more reliable knowledge, is the primary cause of factual degradation, rather than the other two hypotheses.
SH2: Self-Highlighted Hesitation Helps You Decode More Truthfully
Large language models (LLMs) demonstrate great performance in text generation. However, LLMs are still suffering from hallucinations. In this work, we propose an inference-time method, Self-Highlighted Hesitation (SH2), to help LLMs decode more truthfully. SH2 is based on a simple fact rooted in information theory that for an LLM, the tokens predicted with lower probabilities are prone to be more informative than others. Our analysis shows that the tokens assigned with lower probabilities by an LLM are more likely to be closely related to factual information, such as nouns, proper nouns, and adjectives. Therefore, we propose to ''highlight'' the factual information by selecting the tokens with the lowest probabilities and concatenating them to the original context, thus forcing the model to repeatedly read and hesitate on these tokens before generation. During decoding, we also adopt contrastive decoding to emphasize the difference in the output probabilities brought by the hesitation. Experimental results demonstrate that our SH2, requiring no additional data or models, can effectively help LLMs elicit factual knowledge and distinguish hallucinated contexts. Significant and consistent improvements are achieved by SH2 for LLaMA-7b and LLaMA2-7b on multiple hallucination tasks.
Mask-DPO: Generalizable Fine-grained Factuality Alignment of LLMs
Large language models (LLMs) exhibit hallucinations (i.e., unfaithful or nonsensical information) when serving as AI assistants in various domains. Since hallucinations always come with truthful content in the LLM responses, previous factuality alignment methods that conduct response-level preference learning inevitably introduced noises during training. Therefore, this paper proposes a fine-grained factuality alignment method based on Direct Preference Optimization (DPO), called Mask-DPO. Incorporating sentence-level factuality as mask signals, Mask-DPO only learns from factually correct sentences in the preferred samples and prevents the penalty on factual contents in the not preferred samples, which resolves the ambiguity in the preference learning. Extensive experimental results demonstrate that Mask-DPO can significantly improve the factuality of LLMs responses to questions from both in-domain and out-of-domain datasets, although these questions and their corresponding topics are unseen during training. Only trained on the ANAH train set, the score of Llama3.1-8B-Instruct on the ANAH test set is improved from 49.19% to 77.53%, even surpassing the score of Llama3.1-70B-Instruct (53.44%), while its FactScore on the out-of-domain Biography dataset is also improved from 30.29% to 39.39%. We further study the generalization property of Mask-DPO using different training sample scaling strategies and find that scaling the number of topics in the dataset is more effective than the number of questions. We provide a hypothesis of what factual alignment is doing with LLMs, on the implication of this phenomenon, and conduct proof-of-concept experiments to verify it. We hope the method and the findings pave the way for future research on scaling factuality alignment.
Monitoring Decoding: Mitigating Hallucination via Evaluating the Factuality of Partial Response during Generation
While large language models have demonstrated exceptional performance across a wide range of tasks, they remain susceptible to hallucinations -- generating plausible yet factually incorrect contents. Existing methods to mitigating such risk often rely on sampling multiple full-length generations, which introduces significant response latency and becomes ineffective when the model consistently produces hallucinated outputs with high confidence. To address these limitations, we introduce Monitoring Decoding (MD), a novel framework that dynamically monitors the generation process and selectively applies in-process interventions, focusing on revising crucial tokens responsible for hallucinations. Instead of waiting until completion of multiple full-length generations, we identify hallucination-prone tokens during generation using a monitor function, and further refine these tokens through a tree-based decoding strategy. This approach ensures an enhanced factual accuracy and coherence in the generated output while maintaining efficiency. Experimental results demonstrate that MD consistently outperforms self-consistency-based approaches in both effectiveness and efficiency, achieving higher factual accuracy while significantly reducing computational overhead.
Is This the Subspace You Are Looking for? An Interpretability Illusion for Subspace Activation Patching
Mechanistic interpretability aims to understand model behaviors in terms of specific, interpretable features, often hypothesized to manifest as low-dimensional subspaces of activations. Specifically, recent studies have explored subspace interventions (such as activation patching) as a way to simultaneously manipulate model behavior and attribute the features behind it to given subspaces. In this work, we demonstrate that these two aims diverge, potentially leading to an illusory sense of interpretability. Counterintuitively, even if a subspace intervention makes the model's output behave as if the value of a feature was changed, this effect may be achieved by activating a dormant parallel pathway leveraging another subspace that is causally disconnected from model outputs. We demonstrate this phenomenon in a distilled mathematical example, in two real-world domains (the indirect object identification task and factual recall), and present evidence for its prevalence in practice. In the context of factual recall, we further show a link to rank-1 fact editing, providing a mechanistic explanation for previous work observing an inconsistency between fact editing performance and fact localization. However, this does not imply that activation patching of subspaces is intrinsically unfit for interpretability. To contextualize our findings, we also show what a success case looks like in a task (indirect object identification) where prior manual circuit analysis informs an understanding of the location of a feature. We explore the additional evidence needed to argue that a patched subspace is faithful.
Summing Up the Facts: Additive Mechanisms Behind Factual Recall in LLMs
How do transformer-based large language models (LLMs) store and retrieve knowledge? We focus on the most basic form of this task -- factual recall, where the model is tasked with explicitly surfacing stored facts in prompts of form `Fact: The Colosseum is in the country of'. We find that the mechanistic story behind factual recall is more complex than previously thought. It comprises several distinct, independent, and qualitatively different mechanisms that additively combine, constructively interfering on the correct attribute. We term this generic phenomena the additive motif: models compute through summing up multiple independent contributions. Each mechanism's contribution may be insufficient alone, but summing results in constructive interfere on the correct answer. In addition, we extend the method of direct logit attribution to attribute an attention head's output to individual source tokens. We use this technique to unpack what we call `mixed heads' -- which are themselves a pair of two separate additive updates from different source tokens.
Belief in the Machine: Investigating Epistemological Blind Spots of Language Models
As language models (LMs) become integral to fields like healthcare, law, and journalism, their ability to differentiate between fact, belief, and knowledge is essential for reliable decision-making. Failure to grasp these distinctions can lead to significant consequences in areas such as medical diagnosis, legal judgments, and dissemination of fake news. Despite this, current literature has largely focused on more complex issues such as theory of mind, overlooking more fundamental epistemic challenges. This study systematically evaluates the epistemic reasoning capabilities of modern LMs, including GPT-4, Claude-3, and Llama-3, using a new dataset, KaBLE, consisting of 13,000 questions across 13 tasks. Our results reveal key limitations. First, while LMs achieve 86% accuracy on factual scenarios, their performance drops significantly with false scenarios, particularly in belief-related tasks. Second, LMs struggle with recognizing and affirming personal beliefs, especially when those beliefs contradict factual data, which raises concerns for applications in healthcare and counseling, where engaging with a person's beliefs is critical. Third, we identify a salient bias in how LMs process first-person versus third-person beliefs, performing better on third-person tasks (80.7%) compared to first-person tasks (54.4%). Fourth, LMs lack a robust understanding of the factive nature of knowledge, namely, that knowledge inherently requires truth. Fifth, LMs rely on linguistic cues for fact-checking and sometimes bypass the deeper reasoning. These findings highlight significant concerns about current LMs' ability to reason about truth, belief, and knowledge while emphasizing the need for advancements in these areas before broad deployment in critical sectors.
Improving Factuality in Large Language Models via Decoding-Time Hallucinatory and Truthful Comparators
Despite their remarkable capabilities, Large Language Models (LLMs) are prone to generate responses that contradict verifiable facts, i.e., unfaithful hallucination content. Existing efforts generally focus on optimizing model parameters or editing semantic representations, which compromise the internal factual knowledge of target LLMs. In addition, hallucinations typically exhibit multifaceted patterns in downstream tasks, limiting the model's holistic performance across tasks. In this paper, we propose a Comparator-driven Decoding-Time (CDT) framework to alleviate the response hallucination. Firstly, we construct hallucinatory and truthful comparators with multi-task fine-tuning samples. In this case, we present an instruction prototype-guided mixture of experts strategy to enhance the ability of the corresponding comparators to capture different hallucination or truthfulness patterns in distinct task instructions. CDT constrains next-token predictions to factuality-robust distributions by contrasting the logit differences between the target LLMs and these comparators. Systematic experiments on multiple downstream tasks show that our framework can significantly improve the model performance and response factuality.
Training-free Truthfulness Detection via Value Vectors in LLMs
Large language models often generate factually incorrect outputs, motivating efforts to detect the truthfulness of their content. Most existing approaches rely on training probes over internal activations, but these methods suffer from scalability and generalization issues. A recent training-free method, NoVo, addresses this challenge by exploiting statistical patterns from the model itself. However, it focuses exclusively on attention mechanisms, potentially overlooking the MLP module-a core component of Transformer models known to support factual recall. In this paper, we show that certain value vectors within MLP modules exhibit truthfulness-related statistical patterns. Building on this insight, we propose TruthV, a simple and interpretable training-free method that detects content truthfulness by leveraging these value vectors. On the NoVo benchmark, TruthV significantly outperforms both NoVo and log-likelihood baselines, demonstrating that MLP modules-despite being neglected in prior training-free efforts-encode rich and useful signals for truthfulness detection. These findings offer new insights into how truthfulness is internally represented in LLMs and motivate further research on scalable and interpretable truthfulness detection.
Collaborative decoding of critical tokens for boosting factuality of large language models
The most common training pipeline for large language models includes pretraining, finetuning and aligning phases, with their respective resulting models, such as the pretrained model and the finetuned model. Finetuned and aligned models show improved abilities of instruction following and safe generation, however their abilities to stay factual about the world are impacted by the finetuning process. Furthermore, the common practice of using sampling during generation also increases chances of hallucination. In this work, we introduce a collaborative decoding framework to harness the high factuality within pretrained models through the concept of critical tokens. We first design a critical token classifier to decide which model to use for the next token, and subsequently generates the next token using different decoding strategies. Experiments with different models and datasets show that our decoding framework is able to reduce model hallucination significantly, showcasing the importance of the collaborative decoding framework.
When Benchmarks Age: Temporal Misalignment through Large Language Model Factuality Evaluation
The rapid evolution of large language models (LLMs) and the real world has outpaced the static nature of widely used evaluation benchmarks, raising concerns about their reliability for evaluating LLM factuality. While substantial works continue to rely on the popular but old benchmarks, their temporal misalignment with real-world facts and modern LLMs, and their effects on LLM factuality evaluation remain underexplored. Therefore, in this work, we present a systematic investigation of this issue by examining five popular factuality benchmarks and eight LLMs released across different years. An up-to-date fact retrieval pipeline and three metrics are tailored to quantify benchmark aging and its impact on LLM factuality evaluation. Experimental results and analysis illustrate that a considerable portion of samples in the widely used factuality benchmarks are outdated, leading to unreliable assessments of LLM factuality. We hope our work can provide a testbed to assess the reliability of a benchmark for LLM factuality evaluation and inspire more research on the benchmark aging issue. Codes are available in https://github.com/JiangXunyi/BenchAge.
Alleviating Hallucinations of Large Language Models through Induced Hallucinations
Despite their impressive capabilities, large language models (LLMs) have been observed to generate responses that include inaccurate or fabricated information, a phenomenon commonly known as ``hallucination''. In this work, we propose a simple Induce-then-Contrast Decoding (ICD) strategy to alleviate hallucinations. We first construct a factually weak LLM by inducing hallucinations from the original LLMs. Then, we penalize these induced hallucinations during decoding to enhance the factuality of the generated content. Concretely, we determine the final next-token predictions by amplifying the predictions from the original model and downplaying the induced untruthful predictions via contrastive decoding. Experimental results on both discrimination-based and generation-based hallucination evaluation benchmarks, such as TruthfulQA and FActScore, demonstrate that our proposed ICD methods can effectively enhance the factuality of LLMs across various model sizes and families. For example, when equipped with ICD, Llama2-7B-Chat and Mistral-7B-Instruct achieve performance comparable to ChatGPT and GPT4 on TruthfulQA, respectively.
Locating and Editing Factual Associations in Mamba
We investigate the mechanisms of factual recall in the Mamba state space model. Our work is inspired by previous findings in autoregressive transformer language models suggesting that their knowledge recall is localized to particular modules at specific token locations; we therefore ask whether factual recall in Mamba can be similarly localized. To investigate this, we conduct four lines of experiments on Mamba. First, we apply causal tracing or interchange interventions to localize key components inside Mamba that are responsible for recalling facts, revealing that specific components within middle layers show strong causal effects at the last token of the subject, while the causal effect of intervening on later layers is most pronounced at the last token of the prompt, matching previous findings on autoregressive transformers. Second, we show that rank-one model editing methods can successfully insert facts at specific locations, again resembling findings on transformer models. Third, we examine the linearity of Mamba's representations of factual relations. Finally we adapt attention-knockout techniques to Mamba to dissect information flow during factual recall. We compare Mamba directly to a similar-sized transformer and conclude that despite significant differences in architectural approach, when it comes to factual recall, the two architectures share many similarities.
Generating Benchmarks for Factuality Evaluation of Language Models
Before deploying a language model (LM) within a given domain, it is important to measure its tendency to generate factually incorrect information in that domain. Existing factual generation evaluation methods focus on facts sampled from the LM itself, and thus do not control the set of evaluated facts and might under-represent rare and unlikely facts. We propose FACTOR: Factual Assessment via Corpus TransfORmation, a scalable approach for evaluating LM factuality. FACTOR automatically transforms a factual corpus of interest into a benchmark evaluating an LM's propensity to generate true facts from the corpus vs. similar but incorrect statements. We use our framework to create two benchmarks: Wiki-FACTOR and News-FACTOR. We show that: (i) our benchmark scores increase with model size and improve when the LM is augmented with retrieval; (ii) benchmark score correlates with perplexity, but the two metrics do not always agree on model ranking; and (iii) when perplexity and benchmark score disagree, the latter better reflects factuality in open-ended generation, as measured by human annotators. We make our data and code publicly available in https://github.com/AI21Labs/factor.
How Do Large Language Models Acquire Factual Knowledge During Pretraining?
Despite the recent observation that large language models (LLMs) can store substantial factual knowledge, there is a limited understanding of the mechanisms of how they acquire factual knowledge through pretraining. This work addresses this gap by studying how LLMs acquire factual knowledge during pretraining. The findings reveal several important insights into the dynamics of factual knowledge acquisition during pretraining. First, counterintuitively, we observe that pretraining on more data shows no significant improvement in the model's capability to acquire and maintain factual knowledge. Next, there is a power-law relationship between training steps and forgetting of memorization and generalization of factual knowledge, and LLMs trained with duplicated training data exhibit faster forgetting. Third, training LLMs with larger batch sizes can enhance the models' robustness to forgetting. Overall, our observations suggest that factual knowledge acquisition in LLM pretraining occurs by progressively increasing the probability of factual knowledge presented in the pretraining data at each step. However, this increase is diluted by subsequent forgetting. Based on this interpretation, we demonstrate that we can provide plausible explanations for recently observed behaviors of LLMs, such as the poor performance of LLMs on long-tail knowledge and the benefits of deduplicating the pretraining corpus.
CO2Sum:Contrastive Learning for Factual-Consistent Abstractive Summarization
Generating factual-consistent summaries is a challenging task for abstractive summarization. Previous works mainly encode factual information or perform post-correct/rank after decoding. In this paper, we provide a factual-consistent solution from the perspective of contrastive learning, which is a natural extension of previous works. We propose CO2Sum (Contrastive for Consistency), a contrastive learning scheme that can be easily applied on sequence-to-sequence models for factual-consistent abstractive summarization, proving that the model can be fact-aware without modifying the architecture. CO2Sum applies contrastive learning on the encoder, which can help the model be aware of the factual information contained in the input article, or performs contrastive learning on the decoder, which makes the model to generate factual-correct output summary. What's more, these two schemes are orthogonal and can be combined to further improve faithfulness. Comprehensive experiments on public benchmarks demonstrate that CO2Sum improves the faithfulness on large pre-trained language models and reaches competitive results compared to other strong factual-consistent summarization baselines.
Knowledge Infused Decoding
Pre-trained language models (LMs) have been shown to memorize a substantial amount of knowledge from the pre-training corpora; however, they are still limited in recalling factually correct knowledge given a certain context. Hence, they tend to suffer from counterfactual or hallucinatory generation when used in knowledge-intensive natural language generation (NLG) tasks. Recent remedies to this problem focus on modifying either the pre-training or task fine-tuning objectives to incorporate knowledge, which normally require additional costly training or architecture modification of LMs for practical applications. We present Knowledge Infused Decoding (KID) -- a novel decoding algorithm for generative LMs, which dynamically infuses external knowledge into each step of the LM decoding. Specifically, we maintain a local knowledge memory based on the current context, interacting with a dynamically created external knowledge trie, and continuously update the local memory as a knowledge-aware constraint to guide decoding via reinforcement learning. On six diverse knowledge-intensive NLG tasks, task-agnostic LMs (e.g., GPT-2 and BART) armed with KID outperform many task-optimized state-of-the-art models, and show particularly strong performance in few-shot scenarios over seven related knowledge-infusion techniques. Human evaluation confirms KID's ability to generate more relevant and factual language for the input context when compared with multiple baselines. Finally, KID also alleviates exposure bias and provides stable generation quality when generating longer sequences. Code for KID is available at https://github.com/microsoft/KID.
Factuality Detection using Machine Translation -- a Use Case for German Clinical Text
Factuality can play an important role when automatically processing clinical text, as it makes a difference if particular symptoms are explicitly not present, possibly present, not mentioned, or affirmed. In most cases, a sufficient number of examples is necessary to handle such phenomena in a supervised machine learning setting. However, as clinical text might contain sensitive information, data cannot be easily shared. In the context of factuality detection, this work presents a simple solution using machine translation to translate English data to German to train a transformer-based factuality detection model.
Improving Factuality in LLMs via Inference-Time Knowledge Graph Construction
Large Language Models (LLMs) often struggle with producing factually consistent answers due to limitations in their parametric memory. Retrieval-Augmented Generation (RAG) paradigms mitigate this issue by incorporating external knowledge at inference time. However, such methods typically handle knowledge as unstructured text, which reduces retrieval accuracy, hinders compositional reasoning, and amplifies the influence of irrelevant information on the factual consistency of LLM outputs. To overcome these limitations, we propose a novel framework that dynamically constructs and expands knowledge graphs (KGs) during inference, integrating both internal knowledge extracted from LLMs and external knowledge retrieved from external sources. Our method begins by extracting a seed KG from the question via prompting, followed by iterative expansion using the LLM's internal knowledge. The KG is then selectively refined through external retrieval, enhancing factual coverage and correcting inaccuracies. We evaluate our approach on three diverse Factual QA benchmarks, demonstrating consistent gains in factual accuracy over baselines. Our findings reveal that inference-time KG construction is a promising direction for enhancing LLM factuality in a structured, interpretable, and scalable manner.
Does Fine-Tuning LLMs on New Knowledge Encourage Hallucinations?
When large language models are aligned via supervised fine-tuning, they may encounter new factual information that was not acquired through pre-training. It is often conjectured that this can teach the model the behavior of hallucinating factually incorrect responses, as the model is trained to generate facts that are not grounded in its pre-existing knowledge. In this work, we study the impact of such exposure to new knowledge on the capability of the fine-tuned model to utilize its pre-existing knowledge. To this end, we design a controlled setup, focused on closed-book QA, where we vary the proportion of the fine-tuning examples that introduce new knowledge. We demonstrate that large language models struggle to acquire new factual knowledge through fine-tuning, as fine-tuning examples that introduce new knowledge are learned significantly slower than those consistent with the model's knowledge. However, we also find that as the examples with new knowledge are eventually learned, they linearly increase the model's tendency to hallucinate. Taken together, our results highlight the risk in introducing new factual knowledge through fine-tuning, and support the view that large language models mostly acquire factual knowledge through pre-training, whereas fine-tuning teaches them to use it more efficiently.
Truth or Mirage? Towards End-to-End Factuality Evaluation with LLM-OASIS
After the introduction of Large Language Models (LLMs), there have been substantial improvements in the performance of Natural Language Generation (NLG) tasks, including Text Summarization and Machine Translation. However, LLMs still produce outputs containing hallucinations, that is, content not grounded in factual information. Therefore, developing methods to assess the factuality of LLMs has become urgent. Indeed, resources for factuality evaluation have recently emerged. Although challenging, these resources face one or more of the following limitations: (i) they are tailored to a specific task or domain; (ii) they are limited in size, thereby preventing the training of new factuality evaluators; (iii) they are designed for simpler verification tasks, such as claim verification. To address these issues, we introduce LLM-Oasis, to the best of our knowledge the largest resource for training end-to-end factuality evaluators. LLM-Oasis is constructed by extracting claims from Wikipedia, falsifying a subset of these claims, and generating pairs of factual and unfactual texts. We then rely on human annotators to both validate the quality of our dataset and to create a gold standard test set for benchmarking factuality evaluation systems. Our experiments demonstrate that LLM-Oasis presents a significant challenge for state-of-the-art LLMs, with GPT-4o achieving up to 60% accuracy in our proposed end-to-end factuality evaluation task, highlighting its potential to drive future research in the field.
Understanding Factual Errors in Summarization: Errors, Summarizers, Datasets, Error Detectors
The propensity of abstractive summarization models to make factual errors has been studied extensively, including design of metrics to detect factual errors and annotation of errors in current systems' outputs. However, the ever-evolving nature of summarization systems, metrics, and annotated benchmarks makes factuality evaluation a moving target, and drawing clear comparisons among metrics has become increasingly difficult. In this work, we aggregate factuality error annotations from nine existing datasets and stratify them according to the underlying summarization model. We compare performance of state-of-the-art factuality metrics, including recent ChatGPT-based metrics, on this stratified benchmark and show that their performance varies significantly across different types of summarization models. Critically, our analysis shows that much of the recent improvement in the factuality detection space has been on summaries from older (pre-Transformer) models instead of more relevant recent summarization models. We further perform a finer-grained analysis per error-type and find similar performance variance across error types for different factuality metrics. Our results show that no one metric is superior in all settings or for all error types, and we provide recommendations for best practices given these insights.
Improving Factuality with Explicit Working Memory
Large language models can generate factually inaccurate content, a problem known as hallucination. Recent works have built upon retrieved-augmented generation to improve factuality through iterative prompting but these methods are limited by the traditional RAG design. To address these challenges, we introduce EWE (Explicit Working Memory), a novel approach that enhances factuality in long-form text generation by integrating a working memory that receives real-time feedback from external resources. The memory is refreshed based on online fact-checking and retrieval feedback, allowing EWE to rectify false claims during the generation process and ensure more accurate and reliable outputs. Our experiments demonstrate that Ewe outperforms strong baselines on four fact-seeking long-form generation datasets, increasing the factuality metric, VeriScore, by 2 to 10 points absolute without sacrificing the helpfulness of the responses. Further analysis reveals that the design of rules for memory updates, configurations of memory units, and the quality of the retrieval datastore are crucial factors for influencing model performance.
Language Model Decoding as Likelihood-Utility Alignment
A critical component of a successful language generation pipeline is the decoding algorithm. However, the general principles that should guide the choice of decoding algorithm remain unclear. Previous works only compare decoding algorithms in narrow scenarios and their findings do not generalize across tasks. To better structure the discussion, we introduce a taxonomy that groups decoding strategies based on their implicit assumptions about how well the model's likelihood is aligned with the task-specific notion of utility. We argue that this taxonomy allows a broader view of the decoding problem and can lead to generalizable statements because it is grounded on the interplay between the decoding algorithms and the likelihood-utility misalignment. Specifically, by analyzing the correlation between the likelihood and the utility of predictions across a diverse set of tasks, we provide the first empirical evidence supporting the proposed taxonomy, and a set of principles to structure reasoning when choosing a decoding algorithm. Crucially, our analysis is the first one to relate likelihood-based decoding strategies with strategies that rely on external information such as value-guided methods and prompting, and covers the most diverse set of tasks up-to-date.
Do LVLMs Understand Charts? Analyzing and Correcting Factual Errors in Chart Captioning
Recent advancements in large vision-language models (LVLMs) have led to significant progress in generating natural language descriptions for visual content and thus enhancing various applications. One issue with these powerful models is that they sometimes produce texts that are factually inconsistent with the visual input. While there has been some effort to mitigate such inconsistencies in natural image captioning, the factuality of generated captions for structured document images, such as charts, has not received as much scrutiny, posing a potential threat to information reliability in critical applications. This work delves into the factuality aspect by introducing a comprehensive typology of factual errors in generated chart captions. A large-scale human annotation effort provides insight into the error patterns and frequencies in captions crafted by various chart captioning models, ultimately forming the foundation of a novel dataset, CHOCOLATE. Our analysis reveals that even state-of-the-art models, including GPT-4V, frequently produce captions laced with factual inaccuracies. In response to this challenge, we establish the new task of Chart Caption Factual Error Correction and introduce CHARTVE, a model for visual entailment that outperforms proprietary and open-source LVLMs in evaluating factual consistency. Furthermore, we propose C2TFEC, an interpretable two-stage framework that excels at correcting factual errors. This work inaugurates a new domain in factual error correction for chart captions, presenting a novel evaluation mechanism, and demonstrating an effective approach to ensuring the factuality of generated chart captions.
Toward Robust Hyper-Detailed Image Captioning: A Multiagent Approach and Dual Evaluation Metrics for Factuality and Coverage
Multimodal large language models (MLLMs) excel at generating highly detailed captions but often produce hallucinations. Our analysis reveals that existing hallucination detection methods struggle with detailed captions. We attribute this to the increasing reliance of MLLMs on their generated text, rather than the input image, as the sequence length grows. To address this issue, we propose a multiagent approach that leverages LLM-MLLM collaboration to correct given captions. Additionally, we introduce an evaluation framework and a benchmark dataset to facilitate the systematic analysis of detailed captions. Our experiments demonstrate that our proposed evaluation method better aligns with human judgments of factuality than existing metrics and that existing approaches to improve the MLLM factuality may fall short in hyper-detailed image captioning tasks. In contrast, our proposed method significantly enhances the factual accuracy of captions, even improving those generated by GPT-4V. Finally, we highlight a limitation of VQA-centric benchmarking by demonstrating that an MLLM's performance on VQA benchmarks may not correlate with its ability to generate detailed image captions.
Interpreting Key Mechanisms of Factual Recall in Transformer-Based Language Models
In this paper, we delve into several mechanisms employed by Transformer-based language models (LLMs) for factual recall tasks. We outline a pipeline consisting of three major steps: (1) Given a prompt ``The capital of France is,'' task-specific attention heads extract the topic token, such as ``France,'' from the context and pass it to subsequent MLPs. (2) As attention heads' outputs are aggregated with equal weight and added to the residual stream, the subsequent MLP acts as an ``activation,'' which either erases or amplifies the information originating from individual heads. As a result, the topic token ``France'' stands out in the residual stream. (3) A deep MLP takes ``France'' and generates a component that redirects the residual stream towards the direction of the correct answer, i.e., ``Paris.'' This procedure is akin to applying an implicit function such as ``get\_capital(X),'' and the argument X is the topic token information passed by attention heads. To achieve the above quantitative and qualitative analysis for MLPs, we proposed a novel analytic method aimed at decomposing the outputs of the MLP into components understandable by humans. Additionally, we observed a universal anti-overconfidence mechanism in the final layer of models, which suppresses correct predictions. We mitigate this suppression by leveraging our interpretation to improve factual recall confidence. The above interpretations are evaluated across diverse tasks spanning various domains of factual knowledge, using various language models from the GPT-2 families, 1.3B OPT, up to 7B Llama-2, and in both zero- and few-shot setups.
A Fictional Q&A Dataset for Studying Memorization and Knowledge Acquisition
When language models are trained on textual data, they acquire both knowledge about the structure of language as well as knowledge of facts about the world. At inference time, their knowledge of facts can be leveraged to solve interesting problems and perform useful knowledge work for users. It is well known that language models can verbatim memorize long sequences from their training data. However, it is much less well understood how language models memorize facts seen during training. In this work, we propose a new dataset to specifically empower researchers to study the dual processes of fact memorization and verbatim sequence memorization. The dataset consists of synthetically-generated, webtext-like documents about fictional events, as well as question-answer pairs about the events. We conduct training experiments showing how synthetic data about fictional events can be effective in teasing apart different forms of memorization. We also document the challenges in effectively building realistic, fictional synthetic data.
Give Me the Facts! A Survey on Factual Knowledge Probing in Pre-trained Language Models
Pre-trained Language Models (PLMs) are trained on vast unlabeled data, rich in world knowledge. This fact has sparked the interest of the community in quantifying the amount of factual knowledge present in PLMs, as this explains their performance on downstream tasks, and potentially justifies their use as knowledge bases. In this work, we survey methods and datasets that are used to probe PLMs for factual knowledge. Our contributions are: (1) We propose a categorization scheme for factual probing methods that is based on how their inputs, outputs and the probed PLMs are adapted; (2) We provide an overview of the datasets used for factual probing; (3) We synthesize insights about knowledge retention and prompt optimization in PLMs, analyze obstacles to adopting PLMs as knowledge bases and outline directions for future work.
PlainQAFact: Automatic Factuality Evaluation Metric for Biomedical Plain Language Summaries Generation
Hallucinated outputs from language models pose risks in the medical domain, especially for lay audiences making health-related decisions. Existing factuality evaluation methods, such as entailment- and question-answering-based (QA), struggle with plain language summary (PLS) generation due to elaborative explanation phenomenon, which introduces external content (e.g., definitions, background, examples) absent from the source document to enhance comprehension. To address this, we introduce PlainQAFact, a framework trained on a fine-grained, human-annotated dataset PlainFact, to evaluate the factuality of both source-simplified and elaboratively explained sentences. PlainQAFact first classifies factuality type and then assesses factuality using a retrieval-augmented QA-based scoring method. Our approach is lightweight and computationally efficient. Empirical results show that existing factuality metrics fail to effectively evaluate factuality in PLS, especially for elaborative explanations, whereas PlainQAFact achieves state-of-the-art performance. We further analyze its effectiveness across external knowledge sources, answer extraction strategies, overlap measures, and document granularity levels, refining its overall factuality assessment.
Polyglot or Not? Measuring Multilingual Encyclopedic Knowledge Retrieval from Foundation Language Models
In this work, we evaluate the capacity for foundation models to retrieve encyclopedic knowledge across a wide range of languages, topics, and contexts. To support this effort, we 1) produce a new dataset containing 303k factual associations in 20 different languages, 2) formulate a new counterfactual knowledge assessment, Polyglot or Not, and 3) benchmark 5 foundation models in a multilingual setting and a diverse set of 20 models in an English-only setting. We observed significant accuracy differences in models of interest, with Meta's LLaMA topping both the multilingual and English-only assessments. Error analysis reveals a significant deficiency in LLaMA's ability to retrieve facts in languages written in the Cyrillic script and gaps in its understanding of facts based on the location and gender of entailed subjects. Ultimately, we argue that the promise of utilizing foundation language models as bonafide polyglots is greatly diminished when they are tasked with retrieving information in languages other than English. Supporting code (https://github.com/daniel-furman/Polyglot-or-Not) and dataset (https://huggingface.co/datasets/Polyglot-or-Not/Fact-Completion) are openly released.
FactCHD: Benchmarking Fact-Conflicting Hallucination Detection
Despite their impressive generative capabilities, LLMs are hindered by fact-conflicting hallucinations in real-world applications. The accurate identification of hallucinations in texts generated by LLMs, especially in complex inferential scenarios, is a relatively unexplored area. To address this gap, we present FactCHD, a dedicated benchmark designed for the detection of fact-conflicting hallucinations from LLMs. FactCHD features a diverse dataset that spans various factuality patterns, including vanilla, multi-hop, comparison, and set operation. A distinctive element of FactCHD is its integration of fact-based evidence chains, significantly enhancing the depth of evaluating the detectors' explanations. Experiments on different LLMs expose the shortcomings of current approaches in detecting factual errors accurately. Furthermore, we introduce Truth-Triangulator that synthesizes reflective considerations by tool-enhanced ChatGPT and LoRA-tuning based on Llama2, aiming to yield more credible detection through the amalgamation of predictive results and evidence. The benchmark dataset is available at https://github.com/zjunlp/FactCHD.
Calibrating Factual Knowledge in Pretrained Language Models
Previous literature has proved that Pretrained Language Models (PLMs) can store factual knowledge. However, we find that facts stored in the PLMs are not always correct. It motivates us to explore a fundamental question: How do we calibrate factual knowledge in PLMs without re-training from scratch? In this work, we propose a simple and lightweight method CaliNet to achieve this goal. To be specific, we first detect whether PLMs can learn the right facts via a contrastive score between right and fake facts. If not, we then use a lightweight method to add and adapt new parameters to specific factual texts. Experiments on the knowledge probing task show the calibration effectiveness and efficiency. In addition, through closed-book question answering, we find that the calibrated PLM possesses knowledge generalization ability after fine-tuning. Beyond the calibration performance, we further investigate and visualize the knowledge calibration mechanism.
MedScore: Generalizable Factuality Evaluation of Free-Form Medical Answers by Domain-adapted Claim Decomposition and Verification
While Large Language Models (LLMs) can generate fluent and convincing responses, they are not necessarily correct. This is especially apparent in the popular decompose-then-verify factuality evaluation pipeline, where LLMs evaluate generations by decomposing the generations into individual, valid claims. Factuality evaluation is especially important for medical answers, since incorrect medical information could seriously harm the patient. However, existing factuality systems are a poor match for the medical domain, as they are typically only evaluated on objective, entity-centric, formulaic texts such as biographies and historical topics. This differs from condition-dependent, conversational, hypothetical, sentence-structure diverse, and subjective medical answers, which makes decomposition into valid facts challenging. We propose MedScore, a new pipeline to decompose medical answers into condition-aware valid facts and verify against in-domain corpora. Our method extracts up to three times more valid facts than existing methods, reducing hallucination and vague references, and retaining condition-dependency in facts. The resulting factuality score substantially varies by decomposition method, verification corpus, and used backbone LLM, highlighting the importance of customizing each step for reliable factuality evaluation by using our generalizable and modularized pipeline for domain adaptation.
LFD: Layer Fused Decoding to Exploit External Knowledge in Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) incorporates external knowledge into large language models (LLMs), improving their adaptability to downstream tasks and enabling information updates. Surprisingly, recent empirical evidence demonstrates that injecting noise into retrieved relevant documents paradoxically facilitates exploitation of external knowledge and improves generation quality. Although counterintuitive and challenging to apply in practice, this phenomenon enables granular control and rigorous analysis of how LLMs integrate external knowledge. Therefore, in this paper, we intervene on noise injection and establish a layer-specific functional demarcation within the LLM: shallow layers specialize in local context modeling, intermediate layers focus on integrating long-range external factual knowledge, and deeper layers primarily rely on parametric internal knowledge. Building on this insight, we propose Layer Fused Decoding (LFD), a simple decoding strategy that directly combines representations from an intermediate layer with final-layer decoding outputs to fully exploit the external factual knowledge. To identify the optimal intermediate layer, we introduce an internal knowledge score (IKS) criterion that selects the layer with the lowest IKS value in the latter half of layers. Experimental results across multiple benchmarks demonstrate that LFD helps RAG systems more effectively surface retrieved context knowledge with minimal cost.
Tracing Multilingual Factual Knowledge Acquisition in Pretraining
Large Language Models (LLMs) are capable of recalling multilingual factual knowledge present in their pretraining data. However, most studies evaluate only the final model, leaving the development of factual recall and crosslingual consistency throughout pretraining largely unexplored. In this work, we trace how factual recall and crosslingual consistency evolve during pretraining, focusing on OLMo-7B as a case study. We find that both accuracy and consistency improve over time for most languages. We show that this improvement is primarily driven by the fact frequency in the pretraining corpus: more frequent facts are more likely to be recalled correctly, regardless of language. Yet, some low-frequency facts in non-English languages can still be correctly recalled. Our analysis reveals that these instances largely benefit from crosslingual transfer of their English counterparts -- an effect that emerges predominantly in the early stages of pretraining. We pinpoint two distinct pathways through which multilingual factual knowledge acquisition occurs: (1) frequency-driven learning, which is dominant and language-agnostic, and (2) crosslingual transfer, which is limited in scale and typically constrained to relation types involving named entities. We release our code and data to facilitate further research at https://github.com/cisnlp/multilingual-fact-tracing.
RULE: Reliable Multimodal RAG for Factuality in Medical Vision Language Models
The recent emergence of Medical Large Vision Language Models (Med-LVLMs) has enhanced medical diagnosis. However, current Med-LVLMs frequently encounter factual issues, often generating responses that do not align with established medical facts. Retrieval-Augmented Generation (RAG), which utilizes external knowledge, can improve the factual accuracy of these models but introduces two major challenges. First, limited retrieved contexts might not cover all necessary information, while excessive retrieval can introduce irrelevant and inaccurate references, interfering with the model's generation. Second, in cases where the model originally responds correctly, applying RAG can lead to an over-reliance on retrieved contexts, resulting in incorrect answers. To address these issues, we propose RULE, which consists of two components. First, we introduce a provably effective strategy for controlling factuality risk through the calibrated selection of the number of retrieved contexts. Second, based on samples where over-reliance on retrieved contexts led to errors, we curate a preference dataset to fine-tune the model, balancing its dependence on inherent knowledge and retrieved contexts for generation. We demonstrate the effectiveness of RULE on three medical VQA datasets, achieving an average improvement of 20.8% in factual accuracy. We publicly release our benchmark and code in https://github.com/richard-peng-xia/RULE.
TrueTeacher: Learning Factual Consistency Evaluation with Large Language Models
Factual consistency evaluation is often conducted using Natural Language Inference (NLI) models, yet these models exhibit limited success in evaluating summaries. Previous work improved such models with synthetic training data. However, the data is typically based on perturbed human-written summaries, which often differ in their characteristics from real model-generated summaries and have limited coverage of possible factual errors. Alternatively, large language models (LLMs) have recently shown promising results in directly evaluating generative tasks, but are too computationally expensive for practical use. Motivated by these limitations, we introduce TrueTeacher, a method for generating synthetic data by annotating diverse model-generated summaries using a LLM. Unlike prior work, TrueTeacher does not rely on human-written summaries, and is multilingual by nature. Experiments on the TRUE benchmark show that a student model trained using our data, substantially outperforms both the state-of-the-art model with similar capacity, and the LLM teacher. In a systematic study, we compare TrueTeacher to existing synthetic data generation methods and demonstrate its superiority and robustness to domain-shift. Using the the mFACE dataset, we also show that our method generalizes to multilingual scenarios. Finally, we release a large-scale synthetic dataset with 1.4M examples generated using TrueTeacher.
Evaluating the Ripple Effects of Knowledge Editing in Language Models
Modern language models capture a large body of factual knowledge. However, some facts can be incorrectly induced or become obsolete over time, resulting in factually incorrect generations. This has led to the development of various editing methods that allow updating facts encoded by the model. Evaluation of these methods has primarily focused on testing whether an individual fact has been successfully injected, and if similar predictions for other subjects have not changed. Here we argue that such evaluation is limited, since injecting one fact (e.g. ``Jack Depp is the son of Johnny Depp'') introduces a ``ripple effect'' in the form of additional facts that the model needs to update (e.g.``Jack Depp is the sibling of Lily-Rose Depp''). To address this issue, we propose a novel set of evaluation criteria that consider the implications of an edit on related facts. Using these criteria, we then construct , a diagnostic benchmark of 5K factual edits, capturing a variety of types of ripple effects. We evaluate prominent editing methods on , showing that current methods fail to introduce consistent changes in the model's knowledge. In addition, we find that a simple in-context editing baseline obtains the best scores on our benchmark, suggesting a promising research direction for model editing.
TofuEval: Evaluating Hallucinations of LLMs on Topic-Focused Dialogue Summarization
Single document news summarization has seen substantial progress on faithfulness in recent years, driven by research on the evaluation of factual consistency, or hallucinations. We ask whether these advances carry over to other text summarization domains. We propose a new evaluation benchmark on topic-focused dialogue summarization, generated by LLMs of varying sizes. We provide binary sentence-level human annotations of the factual consistency of these summaries along with detailed explanations of factually inconsistent sentences. Our analysis shows that existing LLMs hallucinate significant amounts of factual errors in the dialogue domain, regardless of the model's size. On the other hand, when LLMs, including GPT-4, serve as binary factual evaluators, they perform poorly and can be outperformed by prevailing state-of-the-art specialized factuality evaluation metrics. Finally, we conducted an analysis of hallucination types with a curated error taxonomy. We find that there are diverse errors and error distributions in model-generated summaries and that non-LLM based metrics can capture all error types better than LLM-based evaluators.
FaaF: Facts as a Function for the evaluation of RAG systems
Factual recall from a reference source is crucial for evaluating the performance of Retrieval Augmented Generation (RAG) systems, as it directly probes into the quality of both retrieval and generation. However, it still remains a challenge to perform this evaluation reliably and efficiently. Recent work has focused on fact verification via prompting language model (LM) evaluators, however we demonstrate that these methods are unreliable in the presence of incomplete or inaccurate information. We introduce Facts as a Function (FaaF), a new approach to fact verification that utilizes the function calling abilities of LMs and a framework for RAG factual recall evaluation. FaaF substantially improves the ability of LMs to identify unsupported facts in text with incomplete information whilst improving efficiency and lowering cost by several times, compared to prompt-based approaches.
Improving Factuality of Abstractive Summarization via Contrastive Reward Learning
Modern abstractive summarization models often generate summaries that contain hallucinated or contradictory information. In this paper, we propose a simple but effective contrastive learning framework that incorporates recent developments in reward learning and factuality metrics. Empirical studies demonstrate that the proposed framework enables summarization models to learn from feedback of factuality metrics using contrastive reward learning, leading to more factual summaries by human evaluations. This suggests that further advances in learning and evaluation algorithms can feed directly into providing more factual summaries.
Don't Let It Hallucinate: Premise Verification via Retrieval-Augmented Logical Reasoning
Large language models (LLMs) have shown substantial capacity for generating fluent, contextually appropriate responses. However, they can produce hallucinated outputs, especially when a user query includes one or more false premises-claims that contradict established facts. Such premises can mislead LLMs into offering fabricated or misleading details. Existing approaches include pretraining, fine-tuning, and inference-time techniques that often rely on access to logits or address hallucinations after they occur. These methods tend to be computationally expensive, require extensive training data, or lack proactive mechanisms to prevent hallucination before generation, limiting their efficiency in real-time applications. We propose a retrieval-based framework that identifies and addresses false premises before generation. Our method first transforms a user's query into a logical representation, then applies retrieval-augmented generation (RAG) to assess the validity of each premise using factual sources. Finally, we incorporate the verification results into the LLM's prompt to maintain factual consistency in the final output. Experiments show that this approach effectively reduces hallucinations, improves factual accuracy, and does not require access to model logits or large-scale fine-tuning.
ComFact: A Benchmark for Linking Contextual Commonsense Knowledge
Understanding rich narratives, such as dialogues and stories, often requires natural language processing systems to access relevant knowledge from commonsense knowledge graphs. However, these systems typically retrieve facts from KGs using simple heuristics that disregard the complex challenges of identifying situationally-relevant commonsense knowledge (e.g., contextualization, implicitness, ambiguity). In this work, we propose the new task of commonsense fact linking, where models are given contexts and trained to identify situationally-relevant commonsense knowledge from KGs. Our novel benchmark, ComFact, contains ~293k in-context relevance annotations for commonsense triplets across four stylistically diverse dialogue and storytelling datasets. Experimental results confirm that heuristic fact linking approaches are imprecise knowledge extractors. Learned fact linking models demonstrate across-the-board performance improvements (~34.6% F1) over these heuristics. Furthermore, improved knowledge retrieval yielded average downstream improvements of 9.8% for a dialogue response generation task. However, fact linking models still significantly underperform humans, suggesting our benchmark is a promising testbed for research in commonsense augmentation of NLP systems.
FENICE: Factuality Evaluation of summarization based on Natural language Inference and Claim Extraction
Recent advancements in text summarization, particularly with the advent of Large Language Models (LLMs), have shown remarkable performance. However, a notable challenge persists as a substantial number of automatically-generated summaries exhibit factual inconsistencies, such as hallucinations. In response to this issue, various approaches for the evaluation of consistency for summarization have emerged. Yet, these newly-introduced metrics face several limitations, including lack of interpretability, focus on short document summaries (e.g., news articles), and computational impracticality, especially for LLM-based metrics. To address these shortcomings, we propose Factuality Evaluation of summarization based on Natural language Inference and Claim Extraction (FENICE), a more interpretable and efficient factuality-oriented metric. FENICE leverages an NLI-based alignment between information in the source document and a set of atomic facts, referred to as claims, extracted from the summary. Our metric sets a new state of the art on AGGREFACT, the de-facto benchmark for factuality evaluation. Moreover, we extend our evaluation to a more challenging setting by conducting a human annotation process of long-form summarization.
Textual Entailment for Effective Triple Validation in Object Prediction
Knowledge base population seeks to expand knowledge graphs with facts that are typically extracted from a text corpus. Recently, language models pretrained on large corpora have been shown to contain factual knowledge that can be retrieved using cloze-style strategies. Such approach enables zero-shot recall of facts, showing competitive results in object prediction compared to supervised baselines. However, prompt-based fact retrieval can be brittle and heavily depend on the prompts and context used, which may produce results that are unintended or hallucinatory.We propose to use textual entailment to validate facts extracted from language models through cloze statements. Our results show that triple validation based on textual entailment improves language model predictions in different training regimes. Furthermore, we show that entailment-based triple validation is also effective to validate candidate facts extracted from other sources including existing knowledge graphs and text passages where named entities are recognized.
Generalization or Hallucination? Understanding Out-of-Context Reasoning in Transformers
Large language models (LLMs) can acquire new knowledge through fine-tuning, but this process exhibits a puzzling duality: models can generalize remarkably from new facts, yet are also prone to hallucinating incorrect information. However, the reasons for this phenomenon remain poorly understood. In this work, we argue that both behaviors stem from a single mechanism known as out-of-context reasoning (OCR): the ability to deduce implications by associating concepts, even those without a causal link. Our experiments across five prominent LLMs confirm that OCR indeed drives both generalization and hallucination, depending on whether the associated concepts are causally related. To build a rigorous theoretical understanding of this phenomenon, we then formalize OCR as a synthetic factual recall task. We empirically show that a one-layer single-head attention-only transformer with factorized output and value matrices can learn to solve this task, while a model with combined weights cannot, highlighting the crucial role of matrix factorization. Our theoretical analysis shows that the OCR capability can be attributed to the implicit bias of gradient descent, which favors solutions that minimize the nuclear norm of the combined output-value matrix. This mathematical structure explains why the model learns to associate facts and implications with high sample efficiency, regardless of whether the correlation is causal or merely spurious. Ultimately, our work provides a theoretical foundation for understanding the OCR phenomenon, offering a new lens for analyzing and mitigating undesirable behaviors from knowledge injection.
Personas as a Way to Model Truthfulness in Language Models
Large Language Models are trained on vast amounts of text from the internet, which contains both factual and misleading information about the world. Can language models discern truth from falsehood in this contradicting data? Expanding on the view that LLMs can model different agents producing the corpora, we hypothesize that they can cluster truthful text by modeling a truthful persona: a group of agents that are likely to produce truthful text and share similar features. For example, trustworthy sources like Wikipedia and Science usually use formal writing styles and make consistent claims. By modeling this persona, LLMs can generalize truthfulness beyond the specific contexts in which each agent generated the training text. For example, the model can infer that the agent "Wikipedia" will behave truthfully on topics that were only generated by "Science" because they share a persona. We first show evidence for the persona hypothesis via two observations: (1) we can probe whether a model's answer will be truthful before it is generated; (2) finetuning a model on a set of facts improves its truthfulness on unseen topics. Next, using arithmetics as a synthetic environment, we show that language models can separate true and false statements, and generalize truthfulness across agents; but only if agents in the training data share a truthful generative process that enables the creation of a truthful persona. Overall, our findings suggest that models can exploit hierarchical structures in the data to learn abstract concepts like truthfulness.
FActScore: Fine-grained Atomic Evaluation of Factual Precision in Long Form Text Generation
Evaluating the factuality of long-form text generated by large language models (LMs) is non-trivial because (1) generations often contain a mixture of supported and unsupported pieces of information, making binary judgments of quality inadequate, and (2) human evaluation is time-consuming and costly. In this paper, we introduce FActScore (Factual precision in Atomicity Score), a new evaluation that breaks a generation into a series of atomic facts and computes the percentage of atomic facts supported by a reliable knowledge source. We conduct an extensive human evaluation to obtain FActScores of people biographies generated by several state-of-the-art commercial LMs -- InstructGPT, ChatGPT, and the retrieval-augmented PerplexityAI -- and report new analysis demonstrating the need for such a fine-grained score (e.g., ChatGPT only achieves 58%). Since human evaluation is costly, we also introduce an automated model that estimates FActScore, using retrieval and a strong language model, with less than a 2% error rate. Finally, we use this automated metric to evaluate 6,500 generations from a new set of 13 recent LMs that would have cost $26K if evaluated by humans, with various findings: GPT-4 and ChatGPT are more factual than public models, and Vicuna and Alpaca are some of the best public models.
AFaCTA: Assisting the Annotation of Factual Claim Detection with Reliable LLM Annotators
With the rise of generative AI, automated fact-checking methods to combat misinformation are becoming more and more important. However, factual claim detection, the first step in a fact-checking pipeline, suffers from two key issues that limit its scalability and generalizability: (1) inconsistency in definitions of the task and what a claim is, and (2) the high cost of manual annotation. To address (1), we review the definitions in related work and propose a unifying definition of factual claims that focuses on verifiability. To address (2), we introduce AFaCTA (Automatic Factual Claim deTection Annotator), a novel framework that assists in the annotation of factual claims with the help of large language models (LLMs). AFaCTA calibrates its annotation confidence with consistency along three predefined reasoning paths. Extensive evaluation and experiments in the domain of political speech reveal that AFaCTA can efficiently assist experts in annotating factual claims and training high-quality classifiers, and can work with or without expert supervision. Our analyses also result in PoliClaim, a comprehensive claim detection dataset spanning diverse political topics.
FactSelfCheck: Fact-Level Black-Box Hallucination Detection for LLMs
Large Language Models (LLMs) frequently generate hallucinated content, posing significant challenges for applications where factuality is crucial. While existing hallucination detection methods typically operate at the sentence level or passage level, we propose FactSelfCheck, a novel black-box sampling-based method that enables fine-grained fact-level detection. Our approach represents text as knowledge graphs consisting of facts in the form of triples. Through analyzing factual consistency across multiple LLM responses, we compute fine-grained hallucination scores without requiring external resources or training data. Our evaluation demonstrates that FactSelfCheck performs competitively with leading sampling-based methods while providing more detailed insights. Most notably, our fact-level approach significantly improves hallucination correction, achieving a 35% increase in factual content compared to the baseline, while sentence-level SelfCheckGPT yields only an 8% improvement. The granular nature of our detection enables more precise identification and correction of hallucinated content.
Promote, Suppress, Iterate: How Language Models Answer One-to-Many Factual Queries
To answer one-to-many factual queries (e.g., listing cities of a country), a language model (LM) must simultaneously recall knowledge and avoid repeating previous answers. How are these two subtasks implemented and integrated internally? Across multiple datasets and models, we identify a promote-then-suppress mechanism: the model first recalls all answers, and then suppresses previously generated ones. Specifically, LMs use both the subject and previous answer tokens to perform knowledge recall, with attention propagating subject information and MLPs promoting the answers. Then, attention attends to and suppresses previous answer tokens, while MLPs amplify the suppression signal. Our mechanism is corroborated by extensive experimental evidence: in addition to using early decoding and causal tracing, we analyze how components use different tokens by introducing both Token Lens, which decodes aggregated attention updates from specified tokens, and a knockout method that analyzes changes in MLP outputs after removing attention to specified tokens. Overall, we provide new insights into how LMs' internal components interact with different input tokens to support complex factual recall. Code is available at https://github.com/Lorenayannnnn/how-lms-answer-one-to-many-factual-queries.
TRUE: Re-evaluating Factual Consistency Evaluation
Grounded text generation systems often generate text that contains factual inconsistencies, hindering their real-world applicability. Automatic factual consistency evaluation may help alleviate this limitation by accelerating evaluation cycles, filtering inconsistent outputs and augmenting training data. While attracting increasing attention, such evaluation metrics are usually developed and evaluated in silo for a single task or dataset, slowing their adoption. Moreover, previous meta-evaluation protocols focused on system-level correlations with human annotations, which leave the example-level accuracy of such metrics unclear. In this work, we introduce TRUE: a comprehensive survey and assessment of factual consistency metrics on a standardized collection of existing texts from diverse tasks, manually annotated for factual consistency. Our standardization enables an example-level meta-evaluation protocol that is more actionable and interpretable than previously reported correlations, yielding clearer quality measures. Across diverse state-of-the-art metrics and 11 datasets we find that large-scale NLI and question generation-and-answering-based approaches achieve strong and complementary results. We recommend those methods as a starting point for model and metric developers, and hope TRUE will foster progress towards even better evaluation methods.
Improving Embedding Accuracy for Document Retrieval Using Entity Relationship Maps and Model-Aware Contrastive Sampling
In this paper we present APEX-Embedding-7B (Advanced Processing for Epistemic eXtraction), a 7-billion parameter decoder-only text Feature Extraction Model, specifically designed for Document Retrieval-Augmented Generation (RAG) tasks. Our approach employs two training techniques that yield an emergent improvement in factual focus: (1) Pre-convergence interrupted fine-tuning using Structured Entity Relationship Maps as training data input: designed to shift the model's attention and create a bias towards factual content rather than semantic style - this enhances plain text performance despite not being directly trained for it; and (2) Model-Aware Contrastive Sampling, creating a balanced and evenly distributed collation map of hard and soft negatives directly informed by the base model's competency. This combined methodology yields significant improvements, enhancing plain text query/document pair retrieval to achieve an absolute rank@1 accuracy of 90.86% (an increase of 6.26% compared to the next leading model) in our evaluation, and reducing training data input context size by an average of 37.71% compared to plain text for both queries and document texts. Based on our evaluations, our model establishes a new state-of-the-art standard in text feature extraction for longer context document retrieval tasks.
ChineseSimpleVQA -- "See the World, Discover Knowledge": A Chinese Factuality Evaluation for Large Vision Language Models
The evaluation of factual accuracy in large vision language models (LVLMs) has lagged behind their rapid development, making it challenging to fully reflect these models' knowledge capacity and reliability. In this paper, we introduce the first factuality-based visual question-answering benchmark in Chinese, named ChineseSimpleVQA, aimed at assessing the visual factuality of LVLMs across 8 major topics and 56 subtopics. The key features of this benchmark include a focus on the Chinese language, diverse knowledge types, a multi-hop question construction, high-quality data, static consistency, and easy-to-evaluate through short answers. Moreover, we contribute a rigorous data construction pipeline and decouple the visual factuality into two parts: seeing the world (i.e., object recognition) and discovering knowledge. This decoupling allows us to analyze the capability boundaries and execution mechanisms of LVLMs. Subsequently, we evaluate 34 advanced open-source and closed-source models, revealing critical performance gaps within this field.
Trusting Your Evidence: Hallucinate Less with Context-aware Decoding
Language models (LMs) often struggle to pay enough attention to the input context, and generate texts that are unfaithful or contain hallucinations. To mitigate this issue, we present context-aware decoding (CAD), which follows a contrastive output distribution that amplifies the difference between the output probabilities when a model is used with and without context. Our experiments show that CAD, without additional training, significantly improves the faithfulness of different LM families, including OPT, GPT, LLaMA and FLAN-T5 for summarization tasks (e.g., 14.3% gain for LLaMA in factuality metrics). Furthermore, CAD is particularly effective in overriding a model's prior knowledge when it contradicts the provided context, leading to substantial improvements in tasks where resolving the knowledge conflict is essential.
Factcheck-GPT: End-to-End Fine-Grained Document-Level Fact-Checking and Correction of LLM Output
The increased use of large language models (LLMs) across a variety of real-world applications calls for mechanisms to verify the factual accuracy of their outputs. In this work, we present a holistic end-to-end solution for annotating the factuality of LLM-generated responses, which encompasses a multi-stage annotation scheme designed to yield detailed labels concerning the verifiability and factual inconsistencies found in LLM outputs. We design and build an annotation tool to speed up the labelling procedure and ease the workload of raters. It allows flexible incorporation of automatic results in any stage, e.g. automatically-retrieved evidence. We further construct an open-domain document-level factuality benchmark in three-level granularity: claim, sentence and document. Preliminary experiments show that FacTool, FactScore and Perplexity.ai are struggling to identify false claims with the best F1=0.53. Annotation tool, benchmark and code are available at https://github.com/yuxiaw/Factcheck-GPT.
Impact of Co-occurrence on Factual Knowledge of Large Language Models
Large language models (LLMs) often make factually incorrect responses despite their success in various applications. In this paper, we hypothesize that relying heavily on simple co-occurrence statistics of the pre-training corpora is one of the main factors that cause factual errors. Our results reveal that LLMs are vulnerable to the co-occurrence bias, defined as preferring frequently co-occurred words over the correct answer. Consequently, LLMs struggle to recall facts whose subject and object rarely co-occur in the pre-training dataset although they are seen during finetuning. We show that co-occurrence bias remains despite scaling up model sizes or finetuning. Therefore, we suggest finetuning on a debiased dataset to mitigate the bias by filtering out biased samples whose subject-object co-occurrence count is high. Although debiased finetuning allows LLMs to memorize rare facts in the training set, it is not effective in recalling rare facts unseen during finetuning. Further research in mitigation will help build reliable language models by preventing potential errors. The code is available at https://github.com/CheongWoong/impact_of_cooccurrence.
LaMDA: Language Models for Dialog Applications
We present LaMDA: Language Models for Dialog Applications. LaMDA is a family of Transformer-based neural language models specialized for dialog, which have up to 137B parameters and are pre-trained on 1.56T words of public dialog data and web text. While model scaling alone can improve quality, it shows less improvements on safety and factual grounding. We demonstrate that fine-tuning with annotated data and enabling the model to consult external knowledge sources can lead to significant improvements towards the two key challenges of safety and factual grounding. The first challenge, safety, involves ensuring that the model's responses are consistent with a set of human values, such as preventing harmful suggestions and unfair bias. We quantify safety using a metric based on an illustrative set of human values, and we find that filtering candidate responses using a LaMDA classifier fine-tuned with a small amount of crowdworker-annotated data offers a promising approach to improving model safety. The second challenge, factual grounding, involves enabling the model to consult external knowledge sources, such as an information retrieval system, a language translator, and a calculator. We quantify factuality using a groundedness metric, and we find that our approach enables the model to generate responses grounded in known sources, rather than responses that merely sound plausible. Finally, we explore the use of LaMDA in the domains of education and content recommendations, and analyze their helpfulness and role consistency.
LLMs Know More Than They Show: On the Intrinsic Representation of LLM Hallucinations
Large language models (LLMs) often produce errors, including factual inaccuracies, biases, and reasoning failures, collectively referred to as "hallucinations". Recent studies have demonstrated that LLMs' internal states encode information regarding the truthfulness of their outputs, and that this information can be utilized to detect errors. In this work, we show that the internal representations of LLMs encode much more information about truthfulness than previously recognized. We first discover that the truthfulness information is concentrated in specific tokens, and leveraging this property significantly enhances error detection performance. Yet, we show that such error detectors fail to generalize across datasets, implying that -- contrary to prior claims -- truthfulness encoding is not universal but rather multifaceted. Next, we show that internal representations can also be used for predicting the types of errors the model is likely to make, facilitating the development of tailored mitigation strategies. Lastly, we reveal a discrepancy between LLMs' internal encoding and external behavior: they may encode the correct answer, yet consistently generate an incorrect one. Taken together, these insights deepen our understanding of LLM errors from the model's internal perspective, which can guide future research on enhancing error analysis and mitigation.
Grokking in the Wild: Data Augmentation for Real-World Multi-Hop Reasoning with Transformers
Transformers have achieved great success in numerous NLP tasks but continue to exhibit notable gaps in multi-step factual reasoning, especially when real-world knowledge is sparse. Recent advances in grokking have demonstrated that neural networks can transition from memorizing to perfectly generalizing once they detect underlying logical patterns - yet these studies have primarily used small, synthetic tasks. In this paper, for the first time, we extend grokking to real-world factual data and address the challenge of dataset sparsity by augmenting existing knowledge graphs with carefully designed synthetic data to raise the ratio phi_r of inferred facts to atomic facts above the threshold required for grokking. Surprisingly, we find that even factually incorrect synthetic data can strengthen emergent reasoning circuits rather than degrade accuracy, as it forces the model to rely on relational structure rather than memorization. When evaluated on multi-hop reasoning benchmarks, our approach achieves up to 95-100% accuracy on 2WikiMultiHopQA - substantially improving over strong baselines and matching or exceeding current state-of-the-art results. We further provide an in-depth analysis of how increasing phi_r drives the formation of generalizing circuits inside Transformers. Our findings suggest that grokking-based data augmentation can unlock implicit multi-hop reasoning capabilities, opening the door to more robust and interpretable factual reasoning in large-scale language models.
WikiFactDiff: A Large, Realistic, and Temporally Adaptable Dataset for Atomic Factual Knowledge Update in Causal Language Models
The factuality of large language model (LLMs) tends to decay over time since events posterior to their training are "unknown" to them. One way to keep models up-to-date could be factual update: the task of inserting, replacing, or removing certain simple (atomic) facts within the model. To study this task, we present WikiFactDiff, a dataset that describes the evolution of factual knowledge between two dates as a collection of simple facts divided into three categories: new, obsolete, and static. We describe several update scenarios arising from various combinations of these three types of basic update. The facts are represented by subject-relation-object triples; indeed, WikiFactDiff was constructed by comparing the state of the Wikidata knowledge base at 4 January 2021 and 27 February 2023. Those fact are accompanied by verbalization templates and cloze tests that enable running update algorithms and their evaluation metrics. Contrary to other datasets, such as zsRE and CounterFact, WikiFactDiff constitutes a realistic update setting that involves various update scenarios, including replacements, archival, and new entity insertions. We also present an evaluation of existing update algorithms on WikiFactDiff.
When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories
Despite their impressive performance on diverse tasks, large language models (LMs) still struggle with tasks requiring rich world knowledge, implying the limitations of relying solely on their parameters to encode a wealth of world knowledge. This paper aims to understand LMs' strengths and limitations in memorizing factual knowledge, by conducting large-scale knowledge probing experiments of 10 models and 4 augmentation methods on PopQA, our new open-domain QA dataset with 14k questions. We find that LMs struggle with less popular factual knowledge, and that scaling fails to appreciably improve memorization of factual knowledge in the long tail. We then show that retrieval-augmented LMs largely outperform orders of magnitude larger LMs, while unassisted LMs remain competitive in questions about high-popularity entities. Based on those findings, we devise a simple, yet effective, method for powerful and efficient retrieval-augmented LMs, which retrieves non-parametric memories only when necessary. Experimental results show that this significantly improves models' performance while reducing the inference costs.
Towards Tracing Factual Knowledge in Language Models Back to the Training Data
Language models (LMs) have been shown to memorize a great deal of factual knowledge contained in their training data. But when an LM generates an assertion, it is often difficult to determine where it learned this information and whether it is true. In this paper, we propose the problem of fact tracing: identifying which training examples taught an LM to generate a particular factual assertion. Prior work on training data attribution (TDA) may offer effective tools for identifying such examples, known as "proponents". We present the first quantitative benchmark to evaluate this. We compare two popular families of TDA methods -- gradient-based and embedding-based -- and find that much headroom remains. For example, both methods have lower proponent-retrieval precision than an information retrieval baseline (BM25) that does not have access to the LM at all. We identify key challenges that may be necessary for further improvement such as overcoming the problem of gradient saturation, and also show how several nuanced implementation details of existing neural TDA methods can significantly improve overall fact tracing performance.
DELL: Generating Reactions and Explanations for LLM-Based Misinformation Detection
Large language models are limited by challenges in factuality and hallucinations to be directly employed off-the-shelf for judging the veracity of news articles, where factual accuracy is paramount. In this work, we propose DELL that identifies three key stages in misinformation detection where LLMs could be incorporated as part of the pipeline: 1) LLMs could generate news reactions to represent diverse perspectives and simulate user-news interaction networks; 2) LLMs could generate explanations for proxy tasks (e.g., sentiment, stance) to enrich the contexts of news articles and produce experts specializing in various aspects of news understanding; 3) LLMs could merge task-specific experts and provide an overall prediction by incorporating the predictions and confidence scores of varying experts. Extensive experiments on seven datasets with three LLMs demonstrate that DELL outperforms state-of-the-art baselines by up to 16.8\% in macro f1-score. Further analysis reveals that the generated reactions and explanations are greatly helpful in misinformation detection, while our proposed LLM-guided expert merging helps produce better-calibrated predictions.
Provable Benefits of In-Tool Learning for Large Language Models
Tool-augmented language models, equipped with retrieval, memory, or external APIs, are reshaping AI, yet their theoretical advantages remain underexplored. In this paper, we address this question by demonstrating the benefits of in-tool learning (external retrieval) over in-weight learning (memorization) for factual recall. We show that the number of facts a model can memorize solely in its weights is fundamentally limited by its parameter count. In contrast, we prove that tool-use enables unbounded factual recall via a simple and efficient circuit construction. These results are validated in controlled experiments, where tool-using models consistently outperform memorizing ones. We further show that for pretrained large language models, teaching tool-use and general rules is more effective than finetuning facts into memory. Our work provides both a theoretical and empirical foundation, establishing why tool-augmented workflows are not just practical, but provably more scalable.
MultiFC: A Real-World Multi-Domain Dataset for Evidence-Based Fact Checking of Claims
We contribute the largest publicly available dataset of naturally occurring factual claims for the purpose of automatic claim verification. It is collected from 26 fact checking websites in English, paired with textual sources and rich metadata, and labelled for veracity by human expert journalists. We present an in-depth analysis of the dataset, highlighting characteristics and challenges. Further, we present results for automatic veracity prediction, both with established baselines and with a novel method for joint ranking of evidence pages and predicting veracity that outperforms all baselines. Significant performance increases are achieved by encoding evidence, and by modelling metadata. Our best-performing model achieves a Macro F1 of 49.2%, showing that this is a challenging testbed for claim veracity prediction.
The Earth is Flat because...: Investigating LLMs' Belief towards Misinformation via Persuasive Conversation
Large Language Models (LLMs) encapsulate vast amounts of knowledge but still remain vulnerable to external misinformation. Existing research mainly studied this susceptibility behavior in a single-turn setting. However, belief can change during a multi-turn conversation, especially a persuasive one. Therefore, in this study, we delve into LLMs' susceptibility to persuasive conversations, particularly on factual questions that they can answer correctly. We first curate the Farm (i.e., Fact to Misinform) dataset, which contains factual questions paired with systematically generated persuasive misinformation. Then, we develop a testing framework to track LLMs' belief changes in a persuasive dialogue. Through extensive experiments, we find that LLMs' correct beliefs on factual knowledge can be easily manipulated by various persuasive strategies.
Zero-shot Factual Consistency Evaluation Across Domains
This work addresses the challenge of factual consistency in text generation systems. We unify the tasks of Natural Language Inference, Summarization Evaluation, Factuality Verification and Factual Consistency Evaluation to train models capable of evaluating the factual consistency of source-target pairs across diverse domains. We rigorously evaluate these against eight baselines on a comprehensive benchmark suite comprising 22 datasets that span various tasks, domains, and document lengths. Results demonstrate that our method achieves state-of-the-art performance on this heterogeneous benchmark while addressing efficiency concerns and attaining cross-domain generalization.
NewsEdits 2.0: Learning the Intentions Behind Updating News
As events progress, news articles often update with new information: if we are not cautious, we risk propagating outdated facts. In this work, we hypothesize that linguistic features indicate factual fluidity, and that we can predict which facts in a news article will update using solely the text of a news article (i.e. not external resources like search engines). We test this hypothesis, first, by isolating fact-updates in large news revisions corpora. News articles may update for many reasons (e.g. factual, stylistic, narrative). We introduce the NewsEdits 2.0 taxonomy, an edit-intentions schema that separates fact updates from stylistic and narrative updates in news writing. We annotate over 9,200 pairs of sentence revisions and train high-scoring ensemble models to apply this schema. Then, taking a large dataset of silver-labeled pairs, we show that we can predict when facts will update in older article drafts with high precision. Finally, to demonstrate the usefulness of these findings, we construct a language model question asking (LLM-QA) abstention task. We wish the LLM to abstain from answering questions when information is likely to become outdated. Using our predictions, we show, LLM absention reaches near oracle levels of accuracy.
Physics of Language Models: Part 3.2, Knowledge Manipulation
Language models can store vast amounts of factual knowledge, but their ability to use this knowledge for logical reasoning remains questionable. This paper explores a language model's ability to manipulate its stored knowledge during inference. We focus on four manipulation types: retrieval (e.g., "What is person A's attribute X"), classification (e.g., "Is A's attribute X even or odd?"), comparison (e.g., "Is A greater than B in attribute X?") and inverse search (e.g., "Which person's attribute X equals T?") We observe that pre-trained language models like GPT2/3/4 excel in knowledge retrieval but struggle with simple classification or comparison tasks unless Chain of Thoughts (CoTs) are employed during both training and inference. They also perform poorly in inverse knowledge search, irrespective of the prompts. Our primary contribution is a synthetic dataset for a controlled experiment that confirms these inherent weaknesses: a language model cannot efficiently manipulate knowledge from pre-training data, even when such knowledge is perfectly stored and fully extractable in the models, and despite adequate instruct fine-tuning.
Does Localization Inform Editing? Surprising Differences in Causality-Based Localization vs. Knowledge Editing in Language Models
Language models learn a great quantity of factual information during pretraining, and recent work localizes this information to specific model weights like mid-layer MLP weights. In this paper, we find that we can change how a fact is stored in a model by editing weights that are in a different location than where existing methods suggest that the fact is stored. This is surprising because we would expect that localizing facts to specific model parameters would tell us where to manipulate knowledge in models, and this assumption has motivated past work on model editing methods. Specifically, we show that localization conclusions from representation denoising (also known as Causal Tracing) do not provide any insight into which model MLP layer would be best to edit in order to override an existing stored fact with a new one. This finding raises questions about how past work relies on Causal Tracing to select which model layers to edit. Next, we consider several variants of the editing problem, including erasing and amplifying facts. For one of our editing problems, editing performance does relate to localization results from representation denoising, but we find that which layer we edit is a far better predictor of performance. Our results suggest, counterintuitively, that better mechanistic understanding of how pretrained language models work may not always translate to insights about how to best change their behavior. Our code is available at https://github.com/google/belief-localization
Long-form factuality in large language models
Large language models (LLMs) often generate content that contains factual errors when responding to fact-seeking prompts on open-ended topics. To benchmark a model's long-form factuality in open domains, we first use GPT-4 to generate LongFact, a prompt set comprising thousands of questions spanning 38 topics. We then propose that LLM agents can be used as automated evaluators for long-form factuality through a method which we call Search-Augmented Factuality Evaluator (SAFE). SAFE utilizes an LLM to break down a long-form response into a set of individual facts and to evaluate the accuracy of each fact using a multi-step reasoning process comprising sending search queries to Google Search and determining whether a fact is supported by the search results. Furthermore, we propose extending F1 score as an aggregated metric for long-form factuality. To do so, we balance the percentage of supported facts in a response (precision) with the percentage of provided facts relative to a hyperparameter representing a user's preferred response length (recall). Empirically, we demonstrate that LLM agents can achieve superhuman rating performance - on a set of ~16k individual facts, SAFE agrees with crowdsourced human annotators 72% of the time, and on a random subset of 100 disagreement cases, SAFE wins 76% of the time. At the same time, SAFE is more than 20 times cheaper than human annotators. We also benchmark thirteen language models on LongFact across four model families (Gemini, GPT, Claude, and PaLM-2), finding that larger language models generally achieve better long-form factuality. LongFact, SAFE, and all experimental code are available at https://github.com/google-deepmind/long-form-factuality.
ExpertQA: Expert-Curated Questions and Attributed Answers
As language models are adapted by a more sophisticated and diverse set of users, the importance of guaranteeing that they provide factually correct information supported by verifiable sources is critical across fields of study & professions. This is especially the case for high-stakes fields, such as medicine and law, where the risk of propagating false information is high and can lead to undesirable societal consequences. Previous work studying factuality and attribution has not focused on analyzing these characteristics of language model outputs in domain-specific scenarios. In this work, we present an evaluation study analyzing various axes of factuality and attribution provided in responses from a few systems, by bringing domain experts in the loop. Specifically, we first collect expert-curated questions from 484 participants across 32 fields of study, and then ask the same experts to evaluate generated responses to their own questions. We also ask experts to revise answers produced by language models, which leads to ExpertQA, a high-quality long-form QA dataset with 2177 questions spanning 32 fields, along with verified answers and attributions for claims in the answers.
The Curious Case of Factual (Mis)Alignment between LLMs' Short- and Long-Form Answers
Large language models (LLMs) can correctly answer "When was Einstein born?" yet fail to provide the same date when writing about Einstein's life revealing a fundamental inconsistency in how models access factual knowledge across task complexities. While models display impressive accuracy on factual question-answering benchmarks, the reliability gap between simple and complex queries remains poorly understood, eroding their trustworthiness. In this work, we introduce Short-Long Form Alignment for Factual Question Answering (SLAQ), a controlled evaluation framework that compares LLMs' answers to the same factual questions asked (a) in isolation (short) vs. (b) integrated into complex queries (long). Looking at 16 LLMs across 600 queries, we find a systematic misalignment of answers to the corresponding short and long queries. We further uncover position-dependent accuracy loss and momentum effects where consecutive correct or incorrect answers create self-reinforcing patterns. Through mechanistic analysis, we find that aligned facts activate overlapping model internals, and that metrics based on mechanistic similarity can predict short-long answer alignment with up to 78% accuracy. Our work establishes factual consistency over query complexity as an important aspect of LLMs' trustworthiness and challenges current evaluation practices, which implicitly assume that good performance for simple factual queries implies reliability in more complex knowledge-seeking tasks too.
Optimizing Factual Accuracy in Text Generation through Dynamic Knowledge Selection
Language models (LMs) have revolutionized the way we interact with information, but they often generate nonfactual text, raising concerns about their reliability. Previous methods use external knowledge as references for text generation to enhance factuality but often struggle with the knowledge mix-up(e.g., entity mismatch) of irrelevant references. Besides,as the length of the output text grows, the randomness of sampling can escalate, detrimentally impacting the factual accuracy of the generated text. In this paper, we present DKGen, which divide the text generation process into an iterative process. In each iteration, DKGen takes the input query, the previously generated text and a subset of the reference passages as input to generate short text. During the process, the subset is dynamically selected from the full passage set based on their relevance to the previously generated text and the query, largely eliminating the irrelevant references from input. To further enhance DKGen's ability to correctly use these external knowledge, DKGen distills the relevance order of reference passages to the cross-attention distribution of decoder. We train and evaluate DKGen on a large-scale benchmark dataset. Experiment results show that DKGen outperforms all baseline models.
Adapters for Enhanced Modeling of Multilingual Knowledge and Text
Large language models appear to learn facts from the large text corpora they are trained on. Such facts are encoded implicitly within their many parameters, making it difficult to verify or manipulate what knowledge has been learned. Language models have recently been extended to multilingual language models (MLLMs), enabling knowledge to be learned across hundreds of languages. Meanwhile, knowledge graphs contain facts in an explicit triple format, which require careful and costly curation and are only available in a few high-resource languages, restricting their research and application. To address these issues, we propose to enhance MLLMs with knowledge from multilingual knowledge graphs (MLKGs) so as to tackle language and knowledge graph tasks across many languages, including low-resource ones. Specifically, we introduce a lightweight adapter set to enhance MLLMs with cross-lingual entity alignment and facts from MLKGs for many languages. Experiments on common benchmarks show that such enhancement benefits both MLLMs and MLKGs, achieving: (1) comparable or improved performance for knowledge graph completion and entity alignment relative to baselines, especially for low-resource languages (for which knowledge graphs are unavailable); and (2) improved MLLM performance on language understanding tasks that require multilingual factual knowledge; all while maintaining performance on other general language tasks.
Inside-Out: Hidden Factual Knowledge in LLMs
This work presents a framework for assessing whether large language models (LLMs) encode more factual knowledge in their parameters than what they express in their outputs. While a few studies hint at this possibility, none has clearly defined or demonstrated this phenomenon. We first propose a formal definition of knowledge, quantifying it for a given question as the fraction of correct-incorrect answer pairs where the correct one is ranked higher. This gives rise to external and internal knowledge, depending on the information used to score individual answer candidates: either the model's observable token-level probabilities or its intermediate computations. Hidden knowledge arises when internal knowledge exceeds external knowledge. We then present a case study, applying this framework to three popular open-weights LLMs in a closed-book QA setup. Our results indicate that: (1) LLMs consistently encode more factual knowledge internally than what they express externally, with an average gap of 40%. (2) Surprisingly, some knowledge is so deeply hidden that a model can internally know an answer perfectly, yet fail to generate it even once, despite large-scale repeated sampling of 1,000 answers. This reveals fundamental limitations in the generation capabilities of LLMs, which (3) puts a practical constraint on scaling test-time compute via repeated answer sampling in closed-book QA: significant performance improvements remain inaccessible because some answers are practically never sampled, yet if they were, we would be guaranteed to rank them first.
CaPE: Contrastive Parameter Ensembling for Reducing Hallucination in Abstractive Summarization
Hallucination is a known issue for neural abstractive summarization models. Recent work suggests that the degree of hallucination may depend on errors in the training data. In this work, we propose a new method called Contrastive Parameter Ensembling (CaPE) to use training data more effectively, utilizing variations in noise in training samples to reduce hallucination. We first select clean and noisy subsets from the training data using different automatic factual metrics. Then, we fine-tune a base summarization model, which is trained on all training samples, on the clean (noisy) subset to obtain an expert (anti-expert) model. Finally, we adjust the parameters of base model by the difference between parameters of the expert and anti-expert models, steering the base model towards the expert model and away from the anti-expert model. Experimental results show that CaPE improves performance across different automatic factual metrics and human evaluation, with the maximum improvement of 16.69\% and 15.78\% on summary-level dependency-arc entailment accuracy for the XSUM and CNN/DM datasets. The improvement in factual performance does not degrade the performance on other metrics of informativeness such as ROUGE.
ChatGPT as a Factual Inconsistency Evaluator for Text Summarization
The performance of text summarization has been greatly boosted by pre-trained language models. A main concern of existing methods is that most generated summaries are not factually inconsistent with their source documents. To alleviate the problem, many efforts have focused on developing effective factuality evaluation metrics based on natural language inference, question answering, and syntactic dependency et al. However, these approaches are limited by either their high computational complexity or the uncertainty introduced by multi-component pipelines, resulting in only partial agreement with human judgement. Most recently, large language models(LLMs) have shown excellent performance in not only text generation but also language comprehension. In this paper, we particularly explore ChatGPT's ability to evaluate factual inconsistency under a zero-shot setting by examining it on both coarse-grained and fine-grained evaluation tasks including binary entailment inference, summary ranking, and consistency rating. Experimental results indicate that ChatGPT generally outperforms previous evaluation metrics across the three tasks, indicating its great potential for factual inconsistency evaluation. However, a closer inspection of ChatGPT's output reveals certain limitations including its preference for more lexically similar candidates, false reasoning, and inadequate understanding of instructions.
The Law of Knowledge Overshadowing: Towards Understanding, Predicting, and Preventing LLM Hallucination
Hallucination is a persistent challenge in large language models (LLMs), where even with rigorous quality control, models often generate distorted facts. This paradox, in which error generation continues despite high-quality training data, calls for a deeper understanding of the underlying LLM mechanisms. To address it, we propose a novel concept: knowledge overshadowing, where model's dominant knowledge can obscure less prominent knowledge during text generation, causing the model to fabricate inaccurate details. Building on this idea, we introduce a novel framework to quantify factual hallucinations by modeling knowledge overshadowing. Central to our approach is the log-linear law, which predicts that the rate of factual hallucination increases linearly with the logarithmic scale of (1) Knowledge Popularity, (2) Knowledge Length, and (3) Model Size. The law provides a means to preemptively quantify hallucinations, offering foresight into their occurrence even before model training or inference. Built on overshadowing effect, we propose a new decoding strategy CoDa, to mitigate hallucinations, which notably enhance model factuality on Overshadow (27.9%), MemoTrap (13.1%) and NQ-Swap (18.3%). Our findings not only deepen understandings of the underlying mechanisms behind hallucinations but also provide actionable insights for developing more predictable and controllable language models.
MultiHal: Multilingual Dataset for Knowledge-Graph Grounded Evaluation of LLM Hallucinations
Large Language Models (LLMs) have inherent limitations of faithfulness and factuality, commonly referred to as hallucinations. Several benchmarks have been developed that provide a test bed for factuality evaluation within the context of English-centric datasets, while relying on supplementary informative context like web links or text passages but ignoring the available structured factual resources. To this end, Knowledge Graphs (KGs) have been identified as a useful aid for hallucination mitigation, as they provide a structured way to represent the facts about entities and their relations with minimal linguistic overhead. We bridge the lack of KG paths and multilinguality for factual language modeling within the existing hallucination evaluation benchmarks and propose a KG-based multilingual, multihop benchmark called MultiHal framed for generative text evaluation. As part of our data collection pipeline, we mined 140k KG-paths from open-domain KGs, from which we pruned noisy KG-paths, curating a high-quality subset of 25.9k. Our baseline evaluation shows an absolute scale increase by approximately 0.12 to 0.36 points for the semantic similarity score in KG-RAG over vanilla QA across multiple languages and multiple models, demonstrating the potential of KG integration. We anticipate MultiHal will foster future research towards several graph-based hallucination mitigation and fact-checking tasks.
VeriFastScore: Speeding up long-form factuality evaluation
Metrics like FactScore and VeriScore that evaluate long-form factuality operate by decomposing an input response into atomic claims and then individually verifying each claim. While effective and interpretable, these methods incur numerous LLM calls and can take upwards of 100 seconds to evaluate a single response, limiting their practicality in large-scale evaluation and training scenarios. To address this, we propose VeriFastScore, which leverages synthetic data to fine-tune Llama3.1 8B for simultaneously extracting and verifying all verifiable claims within a given text based on evidence from Google Search. We show that this task cannot be solved via few-shot prompting with closed LLMs due to its complexity: the model receives ~4K tokens of evidence on average and needs to concurrently decompose claims, judge their verifiability, and verify them against noisy evidence. However, our fine-tuned VeriFastScore model demonstrates strong correlation with the original VeriScore pipeline at both the example level (r=0.80) and system level (r=0.94) while achieving an overall speedup of 6.6x (9.9x excluding evidence retrieval) over VeriScore. To facilitate future factuality research, we publicly release our VeriFastScore model and synthetic datasets.
Factual Error Correction for Abstractive Summaries Using Entity Retrieval
Despite the recent advancements in abstractive summarization systems leveraged from large-scale datasets and pre-trained language models, the factual correctness of the summary is still insufficient. One line of trials to mitigate this problem is to include a post-editing process that can detect and correct factual errors in the summary. In building such a post-editing system, it is strongly required that 1) the process has a high success rate and interpretability and 2) has a fast running time. Previous approaches focus on regeneration of the summary using the autoregressive models, which lack interpretability and require high computing resources. In this paper, we propose an efficient factual error correction system RFEC based on entities retrieval post-editing process. RFEC first retrieves the evidence sentences from the original document by comparing the sentences with the target summary. This approach greatly reduces the length of text for a system to analyze. Next, RFEC detects the entity-level errors in the summaries by considering the evidence sentences and substitutes the wrong entities with the accurate entities from the evidence sentences. Experimental results show that our proposed error correction system shows more competitive performance than baseline methods in correcting the factual errors with a much faster speed.
BaRDa: A Belief and Reasoning Dataset that Separates Factual Accuracy and Reasoning Ability
While there are numerous benchmarks comparing the performance of modern language models (LMs), end-task evaluations often conflate notions of *factual accuracy* ("truth") and *reasoning ability* ("rationality", or "honesty" in the sense of correctly reporting implications of beliefs). Our goal is a dataset that clearly distinguishes these two notions. Our approach is to leverage and extend a collection of human-annotated *entailment trees*, engineered to express both good and bad chains of reasoning, and using a mixture of true and false facts, in particular including counterfactual examples, to avoid belief bias (also known as the "content effect"). The resulting dataset, called BaRDa, contains 3000 entailments (1787 valid, 1213 invalid), using 6681 true and 2319 false statements. Testing on four GPT-series models, GPT3(curie)/GPT3(davinici)/3.5/4, we find factual accuracy (truth) scores of 74.1/80.6/82.6/87.1 and reasoning accuracy scores of 63.1/78.0/71.8/79.2. This shows the clear progression of models towards improved factual accuracy and entailment reasoning, and the dataset provides a new benchmark that more cleanly separates and quantifies these two notions.
How Do Multilingual Models Remember? Investigating Multilingual Factual Recall Mechanisms
Large Language Models (LLMs) store and retrieve vast amounts of factual knowledge acquired during pre-training. Prior research has localized and identified mechanisms behind knowledge recall; however, it has primarily focused on English monolingual models. The question of how these processes generalize to other languages and multilingual LLMs remains unexplored. In this paper, we address this gap by conducting a comprehensive analysis of two highly multilingual LLMs. We assess the extent to which previously identified components and mechanisms of factual recall in English apply to a multilingual context. Then, we examine when language plays a role in the recall process, uncovering evidence of language-independent and language-dependent mechanisms.
CsFEVER and CTKFacts: Acquiring Czech data for fact verification
In this paper, we examine several methods of acquiring Czech data for automated fact-checking, which is a task commonly modeled as a classification of textual claim veracity w.r.t. a corpus of trusted ground truths. We attempt to collect sets of data in form of a factual claim, evidence within the ground truth corpus, and its veracity label (supported, refuted or not enough info). As a first attempt, we generate a Czech version of the large-scale FEVER dataset built on top of Wikipedia corpus. We take a hybrid approach of machine translation and document alignment; the approach and the tools we provide can be easily applied to other languages. We discuss its weaknesses and inaccuracies, propose a future approach for their cleaning and publish the 127k resulting translations, as well as a version of such dataset reliably applicable for the Natural Language Inference task - the CsFEVER-NLI. Furthermore, we collect a novel dataset of 3,097 claims, which is annotated using the corpus of 2.2M articles of Czech News Agency. We present its extended annotation methodology based on the FEVER approach, and, as the underlying corpus is kept a trade secret, we also publish a standalone version of the dataset for the task of Natural Language Inference we call CTKFactsNLI. We analyze both acquired datasets for spurious cues - annotation patterns leading to model overfitting. CTKFacts is further examined for inter-annotator agreement, thoroughly cleaned, and a typology of common annotator errors is extracted. Finally, we provide baseline models for all stages of the fact-checking pipeline and publish the NLI datasets, as well as our annotation platform and other experimental data.
Inference-Time Intervention: Eliciting Truthful Answers from a Language Model
We introduce Inference-Time Intervention (ITI), a technique designed to enhance the truthfulness of large language models (LLMs). ITI operates by shifting model activations during inference, following a set of directions across a limited number of attention heads. This intervention significantly improves the performance of LLaMA models on the TruthfulQA benchmark. On an instruction-finetuned LLaMA called Alpaca, ITI improves its truthfulness from 32.5% to 65.1%. We identify a tradeoff between truthfulness and helpfulness and demonstrate how to balance it by tuning the intervention strength. ITI is minimally invasive and computationally inexpensive. Moreover, the technique is data efficient: while approaches like RLHF require extensive annotations, ITI locates truthful directions using only few hundred examples. Our findings suggest that LLMs may have an internal representation of the likelihood of something being true, even as they produce falsehoods on the surface.
Evaluating the Factual Consistency of Abstractive Text Summarization
Currently used metrics for assessing summarization algorithms do not account for whether summaries are factually consistent with source documents. We propose a weakly-supervised, model-based approach for verifying factual consistency and identifying conflicts between source documents and a generated summary. Training data is generated by applying a series of rule-based transformations to the sentences of source documents. The factual consistency model is then trained jointly for three tasks: 1) identify whether sentences remain factually consistent after transformation, 2) extract a span in the source documents to support the consistency prediction, 3) extract a span in the summary sentence that is inconsistent if one exists. Transferring this model to summaries generated by several state-of-the art models reveals that this highly scalable approach substantially outperforms previous models, including those trained with strong supervision using standard datasets for natural language inference and fact checking. Additionally, human evaluation shows that the auxiliary span extraction tasks provide useful assistance in the process of verifying factual consistency.
OLAPH: Improving Factuality in Biomedical Long-form Question Answering
In the medical domain, numerous scenarios necessitate the long-form generation ability of large language models (LLMs). Specifically, when addressing patients' questions, it is essential that the model's response conveys factual claims, highlighting the need for an automated method to evaluate those claims. Thus, we introduce MedLFQA, a benchmark dataset reconstructed using long-form question-answering datasets related to the biomedical domain. We use MedLFQA to facilitate the automatic evaluations of factuality. We also propose OLAPH, a simple and novel framework that enables the improvement of factuality through automatic evaluations. The OLAPH framework iteratively trains LLMs to mitigate hallucinations using sampling predictions and preference optimization. In other words, we iteratively set the highest-scoring response as a preferred response derived from sampling predictions and train LLMs to align with the preferred response that improves factuality. We highlight that, even on evaluation metrics not used during training, LLMs trained with our OLAPH framework demonstrate significant performance improvement in factuality. Our findings reveal that a 7B LLM trained with our OLAPH framework can provide long answers comparable to the medical experts' answers in terms of factuality. We believe that our work could shed light on gauging the long-text generation ability of LLMs in the medical domain. Our code and datasets are available at https://github.com/dmis-lab/OLAPH}{https://github.com/dmis-lab/OLAPH.
Self-Augmented Visual Contrastive Decoding
Large Vision-Language Models (LVLMs) have demonstrated remarkable multimodal capabilities, but they inherit the tendency to hallucinate from their underlying language models. While visual contrastive decoding has been proposed to mitigate this issue, existing methods often apply generic visual augmentations that disregard the specific context provided by the text query, limiting their effectiveness. This study introduces a novel training-free decoding strategy that addresses these limitations, featuring two key contributions. First, a self-augmentation prompting strategy that leverages the intrinsic knowledge of the model to dynamically align semantics between the query and the visual augmentation. Second, an adaptive thresholding algorithm that adaptively adjusts next token candidate size based on the output sparsity, utilizing full information from the logit distribution. Extensive experiments across four LVLMs and seven benchmarks demonstrate that the proposed decoding significantly enhances factual consistency compared to state-of-the-art decoding methods. This work highlights the importance of integrating query-dependent augmentation and entropy-aware decoding for improving effective generation of LVLMs.
WildHallucinations: Evaluating Long-form Factuality in LLMs with Real-World Entity Queries
While hallucinations of large language models (LLMs) prevail as a major challenge, existing evaluation benchmarks on factuality do not cover the diverse domains of knowledge that the real-world users of LLMs seek information about. To bridge this gap, we introduce WildHallucinations, a benchmark that evaluates factuality. It does so by prompting LLMs to generate information about entities mined from user-chatbot conversations in the wild. These generations are then automatically fact-checked against a systematically curated knowledge source collected from web search. Notably, half of these real-world entities do not have associated Wikipedia pages. We evaluate 118,785 generations from 15 LLMs on 7,919 entities. We find that LLMs consistently hallucinate more on entities without Wikipedia pages and exhibit varying hallucination rates across different domains. Finally, given the same base models, adding a retrieval component only slightly reduces hallucinations but does not eliminate hallucinations.
Video SimpleQA: Towards Factuality Evaluation in Large Video Language Models
Recent advancements in Large Video Language Models (LVLMs) have highlighted their potential for multi-modal understanding, yet evaluating their factual grounding in video contexts remains a critical unsolved challenge. To address this gap, we introduce Video SimpleQA, the first comprehensive benchmark tailored for factuality evaluation of LVLMs. Our work distinguishes from existing video benchmarks through the following key features: 1) Knowledge required: demanding integration of external knowledge beyond the explicit narrative; 2) Fact-seeking question: targeting objective, undisputed events or relationships, avoiding subjective interpretation; 3) Definitive & short-form answer: Answers are crafted as unambiguous and definitively correct in a short format, enabling automated evaluation through LLM-as-a-judge frameworks with minimal scoring variance; 4) External-source verified: All annotations undergo rigorous validation against authoritative external references to ensure the reliability; 5) Temporal reasoning required: The annotated question types encompass both static single-frame understanding and dynamic temporal reasoning, explicitly evaluating LVLMs factuality under the long-context dependencies. We extensively evaluate 41 state-of-the-art LVLMs and summarize key findings as follows: 1) Current LVLMs exhibit notable deficiencies in factual adherence, particularly for open-source models. The best-performing model Gemini-1.5-Pro achieves merely an F-score of 54.4%; 2) Test-time compute paradigms show insignificant performance gains, revealing fundamental constraints for enhancing factuality through post-hoc computation; 3) Retrieval-Augmented Generation demonstrates consistent improvements at the cost of additional inference time overhead, presenting a critical efficiency-performance trade-off.
FACTOID: FACtual enTailment fOr hallucInation Detection
The widespread adoption of Large Language Models (LLMs) has facilitated numerous benefits. However, hallucination is a significant concern. In response, Retrieval Augmented Generation (RAG) has emerged as a highly promising paradigm to improve LLM outputs by grounding them in factual information. RAG relies on textual entailment (TE) or similar methods to check if the text produced by LLMs is supported or contradicted, compared to retrieved documents. This paper argues that conventional TE methods are inadequate for spotting hallucinations in content generated by LLMs. For instance, consider a prompt about the 'USA's stance on the Ukraine war''. The AI-generated text states, ...U.S. President Barack Obama says the U.S. will not put troops in Ukraine...'' However, during the war the U.S. president is Joe Biden which contradicts factual reality. Moreover, current TE systems are unable to accurately annotate the given text and identify the exact portion that is contradicted. To address this, we introduces a new type of TE called ``Factual Entailment (FE).'', aims to detect factual inaccuracies in content generated by LLMs while also highlighting the specific text segment that contradicts reality. We present FACTOID (FACTual enTAILment for hallucInation Detection), a benchmark dataset for FE. We propose a multi-task learning (MTL) framework for FE, incorporating state-of-the-art (SoTA) long text embeddings such as e5-mistral-7b-instruct, along with GPT-3, SpanBERT, and RoFormer. The proposed MTL architecture for FE achieves an avg. 40\% improvement in accuracy on the FACTOID benchmark compared to SoTA TE methods. As FE automatically detects hallucinations, we assessed 15 modern LLMs and ranked them using our proposed Auto Hallucination Vulnerability Index (HVI_auto). This index quantifies and offers a comparative scale to evaluate and rank LLMs according to their hallucinations.
FactPICO: Factuality Evaluation for Plain Language Summarization of Medical Evidence
Plain language summarization with LLMs can be useful for improving textual accessibility of technical content. But how factual are these summaries in a high-stakes domain like medicine? This paper presents FactPICO, a factuality benchmark for plain language summarization of medical texts describing randomized controlled trials (RCTs), which are the basis of evidence-based medicine and can directly inform patient treatment. FactPICO consists of 345 plain language summaries of RCT abstracts generated from three LLMs (i.e., GPT-4, Llama-2, and Alpaca), with fine-grained evaluation and natural language rationales from experts. We assess the factuality of critical elements of RCTs in those summaries: Populations, Interventions, Comparators, Outcomes (PICO), as well as the reported findings concerning these. We also evaluate the correctness of the extra information (e.g., explanations) added by LLMs. Using FactPICO, we benchmark a range of existing factuality metrics, including the newly devised ones based on LLMs. We find that plain language summarization of medical evidence is still challenging, especially when balancing between simplicity and factuality, and that existing metrics correlate poorly with expert judgments on the instance level.
Superposed Decoding: Multiple Generations from a Single Autoregressive Inference Pass
Many applications today provide users with multiple auto-complete drafts as they type, including GitHub's code completion, Gmail's smart compose, and Apple's messaging auto-suggestions. Under the hood, language models support this by running an autoregressive inference pass to provide a draft. Consequently, providing k drafts to the user requires running an expensive language model k times. To alleviate the computation cost of running k inference passes, we propose Superposed Decoding, a new decoding algorithm that generates k drafts at the computation cost of one autoregressive inference pass. We achieve this by feeding a superposition of the most recent token embeddings from the k drafts as input to the next decoding step of the language model. At every inference step we combine the k drafts with the top-k tokens to get k^2 new drafts and cache the k most likely options, using an n-gram interpolation with minimal compute overhead to filter out incoherent generations. Our experiments show that k drafts from Superposed Decoding are at least as coherent and factual as Nucleus Sampling and Greedy Decoding respectively, while being at least 2.44times faster for kge3. In a compute-normalized setting, user evaluations demonstrably favor text generated by Superposed Decoding over Nucleus Sampling. Code and more examples open-sourced at https://github.com/RAIVNLab/SuperposedDecoding.
Penalty Decoding: Well Suppress the Self-Reinforcement Effect in Open-Ended Text Generation
The decoding algorithm is critical for open-ended text generation, transforming latent representations into coherent and meaningful outputs. This paper investigates the self-reinforcement effect in text generation and the effectiveness of a repetition penalty to mitigate it. However, determining the optimal repetition penalty value is challenging. To tackle this, we propose a forgetting mechanism that disregards distant tokens, reducing the burden of penalty selection. In addition, we introduce a length penalty to address overly short sentences caused by excessive penalties. Our penalty decoding approach incorporating three strategies helps resolve issues with sampling methods deviating from factual information. Experimental results demonstrate the efficacy of our approach in generating high-quality sentences resembling human output.
Fine-Tuning or Retrieval? Comparing Knowledge Injection in LLMs
Large language models (LLMs) encapsulate a vast amount of factual information within their pre-trained weights, as evidenced by their ability to answer diverse questions across different domains. However, this knowledge is inherently limited, relying heavily on the characteristics of the training data. Consequently, using external datasets to incorporate new information or refine the capabilities of LLMs on previously seen information poses a significant challenge. In this study, we compare two common approaches: unsupervised fine-tuning and retrieval-augmented generation (RAG). We evaluate both approaches on a variety of knowledge-intensive tasks across different topics. Our findings reveal that while unsupervised fine-tuning offers some improvement, RAG consistently outperforms it, both for existing knowledge encountered during training and entirely new knowledge. Moreover, we find that LLMs struggle to learn new factual information through unsupervised fine-tuning, and that exposing them to numerous variations of the same fact during training could alleviate this problem.
Liar, Liar, Logical Mire: A Benchmark for Suppositional Reasoning in Large Language Models
Knights and knaves problems represent a classic genre of logical puzzles where characters either tell the truth or lie. The objective is to logically deduce each character's identity based on their statements. The challenge arises from the truth-telling or lying behavior, which influences the logical implications of each statement. Solving these puzzles requires not only direct deductions from individual statements, but the ability to assess the truthfulness of statements by reasoning through various hypothetical scenarios. As such, knights and knaves puzzles serve as compelling examples of suppositional reasoning. In this paper, we introduce TruthQuest, a benchmark for suppositional reasoning based on the principles of knights and knaves puzzles. Our benchmark presents problems of varying complexity, considering both the number of characters and the types of logical statements involved. Evaluations on TruthQuest show that large language models like Llama 3 and Mixtral-8x7B exhibit significant difficulties solving these tasks. A detailed error analysis of the models' output reveals that lower-performing models exhibit a diverse range of reasoning errors, frequently failing to grasp the concept of truth and lies. In comparison, more proficient models primarily struggle with accurately inferring the logical implications of potentially false statements.
Generalization or Memorization: Dynamic Decoding for Mode Steering
Large Language Models (LLMs) exhibit a troubling duality, capable of both remarkable generalization and brittle, verbatim memorization of their training data. This unpredictability undermines their reliability in high-stakes applications. In this work, we propose a unified framework to understand, identify, and control these distinct reasoning modes. First, we introduce a theoretical model based on the Information Bottleneck (IB) principle, formalizing generalization as the learning of a compressed, task-relevant representation and memorization as a failure to compress. Building on this theory, we develop Dynamic Mode Steering (DMS), a novel inference-time algorithm which comprises two components: (1) a lightweight, causally-grounded linear probe that identifies the model's instantaneous reliance on memorization, and (2) a dynamic activation steering mechanism that nudges the model's computation towards pre-identified generalization circuits. We frame DMS as a form of adaptive, self-contrastive decoding. Experiments on reasoning and faithfulness tasks demonstrate that DMS significantly improves logical consistency and factual accuracy, thereby offering a principled approach to enhancing LLM reliability.
Logically at Factify 2: A Multi-Modal Fact Checking System Based on Evidence Retrieval techniques and Transformer Encoder Architecture
In this paper, we present the Logically submissions to De-Factify 2 challenge (DE-FACTIFY 2023) on the task 1 of Multi-Modal Fact Checking. We describes our submissions to this challenge including explored evidence retrieval and selection techniques, pre-trained cross-modal and unimodal models, and a cross-modal veracity model based on the well established Transformer Encoder (TE) architecture which is heavily relies on the concept of self-attention. Exploratory analysis is also conducted on this Factify 2 data set that uncovers the salient multi-modal patterns and hypothesis motivating the architecture proposed in this work. A series of preliminary experiments were done to investigate and benchmarking different pre-trained embedding models, evidence retrieval settings and thresholds. The final system, a standard two-stage evidence based veracity detection system, yields weighted avg. 0.79 on both val set and final blind test set on the task 1, which achieves 3rd place with a small margin to the top performing system on the leaderboard among 9 participants.
FACTORY: A Challenging Human-Verified Prompt Set for Long-Form Factuality
Long-form factuality evaluation assesses the ability of models to generate accurate, comprehensive responses to short prompts. Existing benchmarks often lack human verification, leading to potential quality issues. To address this limitation, we introduce FACTORY, a large-scale, human-verified prompt set. Developed using a model-in-the-loop approach and refined by humans, FACTORY includes challenging prompts that are fact-seeking, answerable, and unambiguous. We conduct human evaluations on 6 state-of-the-art language models using FACTORY and existing datasets. Our results show that FACTORY is a challenging benchmark: approximately 40% of the claims made in the responses of SOTA models are not factual, compared to only 10% for other datasets. Our analysis identifies the strengths of FACTORY over prior benchmarks, emphasizing its reliability and the necessity for models to reason across long-tailed facts.
Decoupling Contrastive Decoding: Robust Hallucination Mitigation in Multimodal Large Language Models
Although multimodal large language models (MLLMs) exhibit remarkable reasoning capabilities on complex multimodal understanding tasks, they still suffer from the notorious hallucination issue: generating outputs misaligned with obvious visual or factual evidence. Currently, training-based solutions, like direct preference optimization (DPO), leverage paired preference data to suppress hallucinations. However, they risk sacrificing general reasoning capabilities due to the likelihood displacement. Meanwhile, training-free solutions, like contrastive decoding, achieve this goal by subtracting the estimated hallucination pattern from a distorted input. Yet, these handcrafted perturbations (e.g., add noise to images) may poorly capture authentic hallucination patterns. To avoid these weaknesses of existing methods, and realize robust hallucination mitigation (i.e., maintaining general reasoning performance), we propose a novel framework: Decoupling Contrastive Decoding (DCD). Specifically, DCD decouples the learning of positive and negative samples in preference datasets, and trains separate positive and negative image projections within the MLLM. The negative projection implicitly models real hallucination patterns, which enables vision-aware negative images in the contrastive decoding inference stage. Our DCD alleviates likelihood displacement by avoiding pairwise optimization and generalizes robustly without handcrafted degradation. Extensive ablations across hallucination benchmarks and general reasoning tasks demonstrate the effectiveness of DCD, i.e., it matches DPO's hallucination suppression while preserving general capabilities and outperforms the handcrafted contrastive decoding methods.
How Optimal is Greedy Decoding for Extractive Question Answering?
Fine-tuned language models use greedy decoding to answer reading comprehension questions with relative success. However, this approach does not ensure that the answer is a span in the given passage, nor does it guarantee that it is the most probable one. Does greedy decoding actually perform worse than an algorithm that does adhere to these properties? To study the performance and optimality of greedy decoding, we present exact-extract, a decoding algorithm that efficiently finds the most probable answer span in the context. We compare the performance of T5 with both decoding algorithms on zero-shot and few-shot extractive question answering. When no training examples are available, exact-extract significantly outperforms greedy decoding. However, greedy decoding quickly converges towards the performance of exact-extract with the introduction of a few training examples, becoming more extractive and increasingly likelier to generate the most probable span as the training set grows. We also show that self-supervised training can bias the model towards extractive behavior, increasing performance in the zero-shot setting without resorting to annotated examples. Overall, our results suggest that pretrained language models are so good at adapting to extractive question answering, that it is often enough to fine-tune on a small training set for the greedy algorithm to emulate the optimal decoding strategy.
Identifying Factual Inconsistencies in Summaries: Grounding Model Inference via Task Taxonomy
Factual inconsistencies pose a significant hurdle for the faithful summarization by generative models. While a major direction to enhance inconsistency detection is to derive stronger Natural Language Inference (NLI) models, we propose an orthogonal aspect that underscores the importance of incorporating task-specific taxonomy into the inference. To this end, we consolidate key error types of inconsistent facts in summaries, and incorporate them to facilitate both the zero-shot and supervised paradigms of LLMs. Extensive experiments on ten datasets of five distinct domains suggest that, zero-shot LLM inference could benefit from the explicit solution space depicted by the error type taxonomy, and achieves state-of-the-art performance overall, surpassing specialized non-LLM baselines, as well as recent LLM baselines. We further distill models that fuse the taxonomy into parameters through our designed prompt completions and supervised training strategies, efficiently substituting state-of-the-art zero-shot inference with much larger LLMs.
Linearity of Relation Decoding in Transformer Language Models
Much of the knowledge encoded in transformer language models (LMs) may be expressed in terms of relations: relations between words and their synonyms, entities and their attributes, etc. We show that, for a subset of relations, this computation is well-approximated by a single linear transformation on the subject representation. Linear relation representations may be obtained by constructing a first-order approximation to the LM from a single prompt, and they exist for a variety of factual, commonsense, and linguistic relations. However, we also identify many cases in which LM predictions capture relational knowledge accurately, but this knowledge is not linearly encoded in their representations. Our results thus reveal a simple, interpretable, but heterogeneously deployed knowledge representation strategy in transformer LMs.
Open Multimodal Retrieval-Augmented Factual Image Generation
Large Multimodal Models (LMMs) have achieved remarkable progress in generating photorealistic and prompt-aligned images, but they often produce outputs that contradict verifiable knowledge, especially when prompts involve fine-grained attributes or time-sensitive events. Conventional retrieval-augmented approaches attempt to address this issue by introducing external information, yet they are fundamentally incapable of grounding generation in accurate and evolving knowledge due to their reliance on static sources and shallow evidence integration. To bridge this gap, we introduce ORIG, an agentic open multimodal retrieval-augmented framework for Factual Image Generation (FIG), a new task that requires both visual realism and factual grounding. ORIG iteratively retrieves and filters multimodal evidence from the web and incrementally integrates the refined knowledge into enriched prompts to guide generation. To support systematic evaluation, we build FIG-Eval, a benchmark spanning ten categories across perceptual, compositional, and temporal dimensions. Experiments demonstrate that ORIG substantially improves factual consistency and overall image quality over strong baselines, highlighting the potential of open multimodal retrieval for factual image generation.
Fine-grained Conversational Decoding via Isotropic and Proximal Search
General-purpose text decoding approaches are usually adopted for dialogue response generation. Although the quality of the generated responses can be improved with dialogue-specific encoding methods, conversational decoding methods are still under-explored. Inspired by wu2023learning that a good dialogue feature space should follow the rules of locality and isotropy, we present a fine-grained conversational decoding method, termed isotropic and proximal search (IPS). Our method is designed to generate the semantic-concentrated response, while still maintaining informativeness and discrimination against the context. Experiments show that our approach outperforms existing decoding strategies in the dialogue field across both automatic and human evaluation metrics. More in-depth analyses further confirm the effectiveness of our approach.
Learning Facts at Scale with Active Reading
LLMs are known to store vast amounts of knowledge in their parametric memory. However, learning and recalling facts from this memory is known to be unreliable, depending largely on the prevalence of particular facts in the training data and other factors which are poorly understood. Practitioners are lacking tools which will allow them to ensure that the models learn a given body of knowledge reliably and consistently. To this end, we propose Active Reading: a framework where we train models to study a given set of material with self-generated learning strategies. First, we demonstrate models trained with Active Reading on expert domains absorb significantly more knowledge than vanilla finetuning and other data augmentations. We train expert 8B models that achieve 66% on a Wikipedia-grounded subset of SimpleQA (+313% relative over vanilla finetuning) and 26% on FinanceBench (+160% relative over vanilla finetuning) by applying Active Reading to the source documents for each benchmark. Finally, we show that Active Reading can be utilized at pre-training scale to build more factual models. As a demonstration of this, we release Meta WikiExpert-8B, a Wikipedia-expert model trained on 1 trillion generated tokens, which outcompetes models with hundreds of billions of parameters on factual QA.
Unlocking Anticipatory Text Generation: A Constrained Approach for Faithful Decoding with Large Language Models
Large Language Models (LLMs) have demonstrated a powerful ability for text generation. However, achieving optimal results with a given prompt or instruction can be challenging, especially for billion-sized models. Additionally, undesired behaviors such as toxicity or hallucinations can manifest. While much larger models (e.g., ChatGPT) may demonstrate strength in mitigating these issues, there is still no guarantee of complete prevention. In this work, we propose formalizing text generation as a future-constrained generation problem to minimize undesirable behaviors and enforce faithfulness to instructions. The estimation of future constraint satisfaction, accomplished using LLMs, guides the text generation process. Our extensive experiments demonstrate the effectiveness of the proposed approach across three distinct text generation tasks: keyword-constrained generation (Lin et al., 2020), toxicity reduction (Gehman et al., 2020), and factual correctness in question-answering (Gao et al., 2023).
Fact Recall, Heuristics or Pure Guesswork? Precise Interpretations of Language Models for Fact Completion
Language models (LMs) can make a correct prediction based on many possible signals in a prompt, not all corresponding to recall of factual associations. However, current interpretations of LMs fail to take this into account. For example, given the query "Astrid Lindgren was born in" with the corresponding completion "Sweden", no difference is made between whether the prediction was based on knowing where the author was born or assuming that a person with a Swedish-sounding name was born in Sweden. In this paper, we present a model-specific recipe - PrISM - for constructing datasets with examples of four different prediction scenarios: generic language modeling, guesswork, heuristics recall and exact fact recall. We apply two popular interpretability methods to the scenarios: causal tracing (CT) and information flow analysis. We find that both yield distinct results for each scenario. Results for exact fact recall and generic language modeling scenarios confirm previous conclusions about the importance of mid-range MLP sublayers for fact recall, while results for guesswork and heuristics indicate a critical role of late last token position MLP sublayers. In summary, we contribute resources for a more extensive and granular study of fact completion in LMs, together with analyses that provide a more nuanced understanding of how LMs process fact-related queries.
SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models
Generative Large Language Models (LLMs) such as GPT-3 are capable of generating highly fluent responses to a wide variety of user prompts. However, LLMs are known to hallucinate facts and make non-factual statements which can undermine trust in their output. Existing fact-checking approaches either require access to token-level output probability distribution (which may not be available for systems such as ChatGPT) or external databases that are interfaced via separate, often complex, modules. In this work, we propose "SelfCheckGPT", a simple sampling-based approach that can be used to fact-check black-box models in a zero-resource fashion, i.e. without an external database. SelfCheckGPT leverages the simple idea that if a LLM has knowledge of a given concept, sampled responses are likely to be similar and contain consistent facts. However, for hallucinated facts, stochastically sampled responses are likely to diverge and contradict one another. We investigate this approach by using GPT-3 to generate passages about individuals from the WikiBio dataset, and manually annotate the factuality of the generated passages. We demonstrate that SelfCheckGPT can: i) detect non-factual and factual sentences; and ii) rank passages in terms of factuality. We compare our approach to several existing baselines and show that in sentence hallucination detection, our approach has AUC-PR scores comparable to grey-box methods, while SelfCheckGPT is best at passage factuality assessment.
What Matters in Learning Facts in Language Models? Multifaceted Knowledge Probing with Diverse Multi-Prompt Datasets
Large language models (LLMs) face issues in handling factual knowledge, making it vital to evaluate their true ability to understand facts. In this study, we introduce knowledge probing frameworks, BELIEF(-ICL), to evaluate the knowledge understanding ability of not only encoder-based PLMs but also decoder-based PLMs from diverse perspectives. BELIEFs utilize a multi-prompt dataset to evaluate PLM's accuracy, consistency, and reliability in factual knowledge understanding. To provide a more reliable evaluation with BELIEFs, we semi-automatically create MyriadLAMA, which has more diverse prompts than existing datasets. We validate the effectiveness of BELIEFs in correctly and comprehensively evaluating PLM's factual understanding ability through extensive evaluations. We further investigate key factors in learning facts in LLMs, and reveal the limitation of the prompt-based knowledge probing. The dataset is anonymously publicized.
Contrastive Decoding: Open-ended Text Generation as Optimization
Given a language model (LM), maximum probability is a poor decoding objective for open-ended generation, because it produces short and repetitive text. On the other hand, sampling can often produce incoherent text that drifts from the original topics. We propose contrastive decoding (CD), a reliable decoding approach that optimizes a contrastive objective subject to a plausibility constraint. The contrastive objective returns the difference between the likelihood under a large LM (called the expert, e.g. OPT-13B) and a small LM (called the amateur, e.g. OPT-125M), and the constraint ensures that the outputs are plausible. CD is inspired by the fact that the failures of larger LMs (e.g., repetition, incoherence) are even more prevalent in smaller LMs, and that this difference signals which texts should be preferred. CD requires zero additional training, and produces higher quality text than decoding from the larger LM alone. It also works across model scales (OPT-13B and GPT2-1.5B) and significantly outperforms four strong decoding algorithms (e.g., nucleus, top-k) in automatic and human evaluations across wikipedia, news and story domains.
Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions
Large amounts of training data are one of the major reasons for the high performance of state-of-the-art NLP models. But what exactly in the training data causes a model to make a certain prediction? We seek to answer this question by providing a language for describing how training data influences predictions, through a causal framework. Importantly, our framework bypasses the need to retrain expensive models and allows us to estimate causal effects based on observational data alone. Addressing the problem of extracting factual knowledge from pretrained language models (PLMs), we focus on simple data statistics such as co-occurrence counts and show that these statistics do influence the predictions of PLMs, suggesting that such models rely on shallow heuristics. Our causal framework and our results demonstrate the importance of studying datasets and the benefits of causality for understanding NLP models.

 
			 
			 
			 
			 
			 
			 
			 
	 
			 
			 
			 
	 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
	 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
	 
			 
			 
			 
			 
			 
			 
			 
			 
			 
	 
			 
			 
			 
			