Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeComparative analysis of neural network architectures for short-term FOREX forecasting
The present document delineates the analysis, design, implementation, and benchmarking of various neural network architectures within a short-term frequency prediction system for the foreign exchange market (FOREX). Our aim is to simulate the judgment of the human expert (technical analyst) using a system that responds promptly to changes in market conditions, thus enabling the optimization of short-term trading strategies. We designed and implemented a series of LSTM neural network architectures which are taken as input the exchange rate values and generate the short-term market trend forecasting signal and an ANN custom architecture based on technical analysis indicator simulators We performed a comparative analysis of the results and came to useful conclusions regarding the suitability of each architecture and the cost in terms of time and computational power to implement them. The ANN custom architecture produces better prediction quality with higher sensitivity using fewer resources and spending less time than LSTM architectures. The ANN custom architecture appears to be ideal for use in low-power computing systems and for use cases that need fast decisions with the least possible computational cost.
Advancing Exchange Rate Forecasting: Leveraging Machine Learning and AI for Enhanced Accuracy in Global Financial Markets
The prediction of foreign exchange rates, such as the US Dollar (USD) to Bangladeshi Taka (BDT), plays a pivotal role in global financial markets, influencing trade, investments, and economic stability. This study leverages historical USD/BDT exchange rate data from 2018 to 2023, sourced from Yahoo Finance, to develop advanced machine learning models for accurate forecasting. A Long Short-Term Memory (LSTM) neural network is employed, achieving an exceptional accuracy of 99.449%, a Root Mean Square Error (RMSE) of 0.9858, and a test loss of 0.8523, significantly outperforming traditional methods like ARIMA (RMSE 1.342). Additionally, a Gradient Boosting Classifier (GBC) is applied for directional prediction, with backtesting on a 10,000 initial capital revealing a 40.82% profitable trade rate, though resulting in a net loss of 20,653.25 over 49 trades. The study analyzes historical trends, showing a decline in BDT/USD rates from 0.012 to 0.009, and incorporates normalized daily returns to capture volatility. These findings highlight the potential of deep learning in forex forecasting, offering traders and policymakers robust tools to mitigate risks. Future work could integrate sentiment analysis and real-time economic indicators to further enhance model adaptability in volatile markets.
Analysis of Sectoral Profitability of the Indian Stock Market Using an LSTM Regression Model
Predictive model design for accurately predicting future stock prices has always been considered an interesting and challenging research problem. The task becomes complex due to the volatile and stochastic nature of the stock prices in the real world which is affected by numerous controllable and uncontrollable variables. This paper presents an optimized predictive model built on long-and-short-term memory (LSTM) architecture for automatically extracting past stock prices from the web over a specified time interval and predicting their future prices for a specified forecast horizon, and forecasts the future stock prices. The model is deployed for making buy and sell transactions based on its predicted results for 70 important stocks from seven different sectors listed in the National Stock Exchange (NSE) of India. The profitability of each sector is derived based on the total profit yielded by the stocks in that sector over a period from Jan 1, 2010 to Aug 26, 2021. The sectors are compared based on their profitability values. The prediction accuracy of the model is also evaluated for each sector. The results indicate that the model is highly accurate in predicting future stock prices.
Application of Machine Learning in Forecasting International Trade Trends
International trade policies have recently garnered attention for limiting cross-border exchange of essential goods (e.g. steel, aluminum, soybeans, and beef). Since trade critically affects employment and wages, predicting future patterns of trade is a high-priority for policy makers around the world. While traditional economic models aim to be reliable predictors, we consider the possibility that Machine Learning (ML) techniques allow for better predictions to inform policy decisions. Open-government data provide the fuel to power the algorithms that can explain and forecast trade flows to inform policies. Data collected in this article describe international trade transactions and commonly associated economic factors. Machine learning (ML) models deployed include: ARIMA, GBoosting, XGBoosting, and LightGBM for predicting future trade patterns, and K-Means clustering of countries according to economic factors. Unlike short-term and subjective (straight-line) projections and medium-term (aggre-gated) projections, ML methods provide a range of data-driven and interpretable projections for individual commodities. Models, their results, and policies are introduced and evaluated for prediction quality.
A Time Series Analysis-Based Stock Price Prediction Using Machine Learning and Deep Learning Models
Prediction of future movement of stock prices has always been a challenging task for the researchers. While the advocates of the efficient market hypothesis (EMH) believe that it is impossible to design any predictive framework that can accurately predict the movement of stock prices, there are seminal work in the literature that have clearly demonstrated that the seemingly random movement patterns in the time series of a stock price can be predicted with a high level of accuracy. Design of such predictive models requires choice of appropriate variables, right transformation methods of the variables, and tuning of the parameters of the models. In this work, we present a very robust and accurate framework of stock price prediction that consists of an agglomeration of statistical, machine learning and deep learning models. We use the daily stock price data, collected at five minutes interval of time, of a very well known company that is listed in the National Stock Exchange (NSE) of India. The granular data is aggregated into three slots in a day, and the aggregated data is used for building and training the forecasting models. We contend that the agglomerative approach of model building that uses a combination of statistical, machine learning, and deep learning approaches, can very effectively learn from the volatile and random movement patterns in a stock price data. We build eight classification and eight regression models based on statistical and machine learning approaches. In addition to these models, a deep learning regression model using a long-and-short-term memory (LSTM) network is also built. Extensive results have been presented on the performance of these models, and the results are critically analyzed.
Transforming Sentiment Analysis in the Financial Domain with ChatGPT
Financial sentiment analysis plays a crucial role in decoding market trends and guiding strategic trading decisions. Despite the deployment of advanced deep learning techniques and language models to refine sentiment analysis in finance, this study breaks new ground by investigating the potential of large language models, particularly ChatGPT 3.5, in financial sentiment analysis, with a strong emphasis on the foreign exchange market (forex). Employing a zero-shot prompting approach, we examine multiple ChatGPT prompts on a meticulously curated dataset of forex-related news headlines, measuring performance using metrics such as precision, recall, f1-score, and Mean Absolute Error (MAE) of the sentiment class. Additionally, we probe the correlation between predicted sentiment and market returns as an additional evaluation approach. ChatGPT, compared to FinBERT, a well-established sentiment analysis model for financial texts, exhibited approximately 35\% enhanced performance in sentiment classification and a 36\% higher correlation with market returns. By underlining the significance of prompt engineering, particularly in zero-shot contexts, this study spotlights ChatGPT's potential to substantially boost sentiment analysis in financial applications. By sharing the utilized dataset, our intention is to stimulate further research and advancements in the field of financial services.
PreBit -- A multimodal model with Twitter FinBERT embeddings for extreme price movement prediction of Bitcoin
Bitcoin, with its ever-growing popularity, has demonstrated extreme price volatility since its origin. This volatility, together with its decentralised nature, make Bitcoin highly subjective to speculative trading as compared to more traditional assets. In this paper, we propose a multimodal model for predicting extreme price fluctuations. This model takes as input a variety of correlated assets, technical indicators, as well as Twitter content. In an in-depth study, we explore whether social media discussions from the general public on Bitcoin have predictive power for extreme price movements. A dataset of 5,000 tweets per day containing the keyword `Bitcoin' was collected from 2015 to 2021. This dataset, called PreBit, is made available online. In our hybrid model, we use sentence-level FinBERT embeddings, pretrained on financial lexicons, so as to capture the full contents of the tweets and feed it to the model in an understandable way. By combining these embeddings with a Convolutional Neural Network, we built a predictive model for significant market movements. The final multimodal ensemble model includes this NLP model together with a model based on candlestick data, technical indicators and correlated asset prices. In an ablation study, we explore the contribution of the individual modalities. Finally, we propose and backtest a trading strategy based on the predictions of our models with varying prediction threshold and show that it can used to build a profitable trading strategy with a reduced risk over a `hold' or moving average strategy.
Neural Network-Based Algorithmic Trading Systems: Multi-Timeframe Analysis and High-Frequency Execution in Cryptocurrency Markets
This paper explores neural network-based approaches for algorithmic trading in cryptocurrency markets. Our approach combines multi-timeframe trend analysis with high-frequency direction prediction networks, achieving positive risk-adjusted returns through statistical modeling and systematic market exploitation. The system integrates diverse data sources including market data, on-chain metrics, and orderbook dynamics, translating these into unified buy/sell pressure signals. We demonstrate how machine learning models can effectively capture cross-timeframe relationships, enabling sub-second trading decisions with statistical confidence.
Boosting Stock Price Prediction with Anticipated Macro Policy Changes
Prediction of stock prices plays a significant role in aiding the decision-making of investors. Considering its importance, a growing literature has emerged trying to forecast stock prices with improved accuracy. In this study, we introduce an innovative approach for forecasting stock prices with greater accuracy. We incorporate external economic environment-related information along with stock prices. In our novel approach, we improve the performance of stock price prediction by taking into account variations due to future expected macroeconomic policy changes as investors adjust their current behavior ahead of time based on expected future macroeconomic policy changes. Furthermore, we incorporate macroeconomic variables along with historical stock prices to make predictions. Results from this strongly support the inclusion of future economic policy changes along with current macroeconomic information. We confirm the supremacy of our method over the conventional approach using several tree-based machine-learning algorithms. Results are strongly conclusive across various machine learning models. Our preferred model outperforms the conventional approach with an RMSE value of 1.61 compared to an RMSE value of 1.75 from the conventional approach.
Stock Price Prediction Using Time Series, Econometric, Machine Learning, and Deep Learning Models
For a long-time, researchers have been developing a reliable and accurate predictive model for stock price prediction. According to the literature, if predictive models are correctly designed and refined, they can painstakingly and faithfully estimate future stock values. This paper demonstrates a set of time series, econometric, and various learning-based models for stock price prediction. The data of Infosys, ICICI, and SUN PHARMA from the period of January 2004 to December 2019 was used here for training and testing the models to know which model performs best in which sector. One time series model (Holt-Winters Exponential Smoothing), one econometric model (ARIMA), two machine Learning models (Random Forest and MARS), and two deep learning-based models (simple RNN and LSTM) have been included in this paper. MARS has been proved to be the best performing machine learning model, while LSTM has proved to be the best performing deep learning model. But overall, for all three sectors - IT (on Infosys data), Banking (on ICICI data), and Health (on SUN PHARMA data), MARS has proved to be the best performing model in sales forecasting.
Label Unbalance in High-frequency Trading
In financial trading, return prediction is one of the foundation for a successful trading system. By the fast development of the deep learning in various areas such as graphical processing, natural language, it has also demonstrate significant edge in handling with financial data. While the success of the deep learning relies on huge amount of labeled sample, labeling each time/event as profitable or unprofitable, under the transaction cost, especially in the high-frequency trading world, suffers from serious label imbalance issue.In this paper, we adopts rigurious end-to-end deep learning framework with comprehensive label imbalance adjustment methods and succeed in predicting in high-frequency return in the Chinese future market. The code for our method is publicly available at https://github.com/RS2002/Label-Unbalance-in-High-Frequency-Trading .
Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models
We examine the potential of ChatGPT and other large language models in predicting stock market returns using news headlines. We use ChatGPT to assess whether each headline is good, bad, or neutral for firms' stock prices. We document a significantly positive correlation between ChatGPT scores and subsequent daily stock returns. We find that ChatGPT outperforms traditional sentiment analysis methods. More basic models such as GPT-1, GPT-2, and BERT cannot accurately forecast returns, indicating return predictability is an emerging capacity of complex language models. Long-short strategies based on ChatGPT-4 deliver the highest Sharpe ratio. Furthermore, we find predictability in both small and large stocks, suggesting market underreaction to company news. Predictability is stronger among smaller stocks and stocks with bad news, consistent with limits-to-arbitrage also playing an important role. Finally, we propose a new method to evaluate and understand the models' reasoning capabilities. Overall, our results suggest that incorporating advanced language models into the investment decision-making process can yield more accurate predictions and enhance the performance of quantitative trading strategies.
Design and Analysis of Robust Deep Learning Models for Stock Price Prediction
Building predictive models for robust and accurate prediction of stock prices and stock price movement is a challenging research problem to solve. The well-known efficient market hypothesis believes in the impossibility of accurate prediction of future stock prices in an efficient stock market as the stock prices are assumed to be purely stochastic. However, numerous works proposed by researchers have demonstrated that it is possible to predict future stock prices with a high level of precision using sophisticated algorithms, model architectures, and the selection of appropriate variables in the models. This chapter proposes a collection of predictive regression models built on deep learning architecture for robust and precise prediction of the future prices of a stock listed in the diversified sectors in the National Stock Exchange (NSE) of India. The Metastock tool is used to download the historical stock prices over a period of two years (2013- 2014) at 5 minutes intervals. While the records for the first year are used to train the models, the testing is carried out using the remaining records. The design approaches of all the models and their performance results are presented in detail. The models are also compared based on their execution time and accuracy of prediction.
A Robust Predictive Model for Stock Price Prediction Using Deep Learning and Natural Language Processing
Prediction of future movement of stock prices has been a subject matter of many research work. There is a gamut of literature of technical analysis of stock prices where the objective is to identify patterns in stock price movements and derive profit from it. Improving the prediction accuracy remains the single most challenge in this area of research. We propose a hybrid approach for stock price movement prediction using machine learning, deep learning, and natural language processing. We select the NIFTY 50 index values of the National Stock Exchange of India, and collect its daily price movement over a period of three years (2015 to 2017). Based on the data of 2015 to 2017, we build various predictive models using machine learning, and then use those models to predict the closing value of NIFTY 50 for the period January 2018 till June 2019 with a prediction horizon of one week. For predicting the price movement patterns, we use a number of classification techniques, while for predicting the actual closing price of the stock, various regression models have been used. We also build a Long and Short-Term Memory - based deep learning network for predicting the closing price of the stocks and compare the prediction accuracies of the machine learning models with the LSTM model. We further augment the predictive model by integrating a sentiment analysis module on twitter data to correlate the public sentiment of stock prices with the market sentiment. This has been done using twitter sentiment and previous week closing values to predict stock price movement for the next week. We tested our proposed scheme using a cross validation method based on Self Organizing Fuzzy Neural Networks and found extremely interesting results.
Stock Price Prediction Using CNN and LSTM-Based Deep Learning Models
Designing robust and accurate predictive models for stock price prediction has been an active area of research for a long time. While on one side, the supporters of the efficient market hypothesis claim that it is impossible to forecast stock prices accurately, many researchers believe otherwise. There exist propositions in the literature that have demonstrated that if properly designed and optimized, predictive models can very accurately and reliably predict future values of stock prices. This paper presents a suite of deep learning based models for stock price prediction. We use the historical records of the NIFTY 50 index listed in the National Stock Exchange of India, during the period from December 29, 2008 to July 31, 2020, for training and testing the models. Our proposition includes two regression models built on convolutional neural networks and three long and short term memory network based predictive models. To forecast the open values of the NIFTY 50 index records, we adopted a multi step prediction technique with walk forward validation. In this approach, the open values of the NIFTY 50 index are predicted on a time horizon of one week, and once a week is over, the actual index values are included in the training set before the model is trained again, and the forecasts for the next week are made. We present detailed results on the forecasting accuracies for all our proposed models. The results show that while all the models are very accurate in forecasting the NIFTY 50 open values, the univariate encoder decoder convolutional LSTM with the previous two weeks data as the input is the most accurate model. On the other hand, a univariate CNN model with previous one week data as the input is found to be the fastest model in terms of its execution speed.
TradExpert: Revolutionizing Trading with Mixture of Expert LLMs
The integration of Artificial Intelligence (AI) in the financial domain has opened new avenues for quantitative trading, particularly through the use of Large Language Models (LLMs). However, the challenge of effectively synthesizing insights from diverse data sources and integrating both structured and unstructured data persists. This paper presents TradeExpert, a novel framework that employs a mix of experts (MoE) approach, using four specialized LLMs, each analyzing distinct sources of financial data, including news articles, market data, alpha factors, and fundamental data. The insights of these expert LLMs are further synthesized by a General Expert LLM to make a final prediction or decision. With specific prompts, TradeExpert can be switched between the prediction mode and the ranking mode for stock movement prediction and quantitative stock trading, respectively. In addition to existing benchmarks, we also release a large-scale financial dataset to comprehensively evaluate TradeExpert's effectiveness. Our experimental results demonstrate TradeExpert's superior performance across all trading scenarios.
TRADES: Generating Realistic Market Simulations with Diffusion Models
Financial markets are complex systems characterized by high statistical noise, nonlinearity, and constant evolution. Thus, modeling them is extremely hard. We address the task of generating realistic and responsive Limit Order Book (LOB) market simulations, which are fundamental for calibrating and testing trading strategies, performing market impact experiments, and generating synthetic market data. Previous works lack realism, usefulness, and responsiveness of the generated simulations. To bridge this gap, we propose a novel TRAnsformer-based Denoising Diffusion Probabilistic Engine for LOB Simulations (TRADES). TRADES generates realistic order flows conditioned on the state of the market, leveraging a transformer-based architecture that captures the temporal and spatial characteristics of high-frequency market data. There is a notable absence of quantitative metrics for evaluating generative market simulation models in the literature. To tackle this problem, we adapt the predictive score, a metric measured as an MAE, by training a stock price predictive model on synthetic data and testing it on real data. We compare TRADES with previous works on two stocks, reporting an x3.27 and x3.47 improvement over SoTA according to the predictive score, demonstrating that we generate useful synthetic market data for financial downstream tasks. We assess TRADES's market simulation realism and responsiveness, showing that it effectively learns the conditional data distribution and successfully reacts to an experimental agent, giving sprout to possible calibrations and evaluations of trading strategies and market impact experiments. We developed DeepMarket, the first open-source Python framework for market simulation with deep learning. Our repository includes a synthetic LOB dataset composed of TRADES's generates simulations. We release the code at github.com/LeonardoBerti00/DeepMarket.
Profitability Analysis in Stock Investment Using an LSTM-Based Deep Learning Model
Designing robust systems for precise prediction of future prices of stocks has always been considered a very challenging research problem. Even more challenging is to build a system for constructing an optimum portfolio of stocks based on the forecasted future stock prices. We present a deep learning-based regression model built on a long-and-short-term memory network (LSTM) network that automatically scraps the web and extracts historical stock prices based on a stock's ticker name for a specified pair of start and end dates, and forecasts the future stock prices. We deploy the model on 75 significant stocks chosen from 15 critical sectors of the Indian stock market. For each of the stocks, the model is evaluated for its forecast accuracy. Moreover, the predicted values of the stock prices are used as the basis for investment decisions, and the returns on the investments are computed. Extensive results are presented on the performance of the model. The analysis of the results demonstrates the efficacy and effectiveness of the system and enables us to compare the profitability of the sectors from the point of view of the investors in the stock market.
Universal features of price formation in financial markets: perspectives from Deep Learning
Using a large-scale Deep Learning approach applied to a high-frequency database containing billions of electronic market quotes and transactions for US equities, we uncover nonparametric evidence for the existence of a universal and stationary price formation mechanism relating the dynamics of supply and demand for a stock, as revealed through the order book, to subsequent variations in its market price. We assess the model by testing its out-of-sample predictions for the direction of price moves given the history of price and order flow, across a wide range of stocks and time periods. The universal price formation model is shown to exhibit a remarkably stable out-of-sample prediction accuracy across time, for a wide range of stocks from different sectors. Interestingly, these results also hold for stocks which are not part of the training sample, showing that the relations captured by the model are universal and not asset-specific. The universal model --- trained on data from all stocks --- outperforms, in terms of out-of-sample prediction accuracy, asset-specific linear and nonlinear models trained on time series of any given stock, showing that the universal nature of price formation weighs in favour of pooling together financial data from various stocks, rather than designing asset- or sector-specific models as commonly done. Standard data normalizations based on volatility, price level or average spread, or partitioning the training data into sectors or categories such as large/small tick stocks, do not improve training results. On the other hand, inclusion of price and order flow history over many past observations is shown to improve forecasting performance, showing evidence of path-dependence in price dynamics.
Stock Price Prediction Using Convolutional Neural Networks on a Multivariate Timeseries
Prediction of future movement of stock prices has been a subject matter of many research work. In this work, we propose a hybrid approach for stock price prediction using machine learning and deep learning-based methods. We select the NIFTY 50 index values of the National Stock Exchange of India, over a period of four years, from January 2015 till December 2019. Based on the NIFTY data during the said period, we build various predictive models using machine learning approaches, and then use those models to predict the Close value of NIFTY 50 for the year 2019, with a forecast horizon of one week. For predicting the NIFTY index movement patterns, we use a number of classification methods, while for forecasting the actual Close values of NIFTY index, various regression models are built. We, then, augment our predictive power of the models by building a deep learning-based regression model using Convolutional Neural Network with a walk-forward validation. The CNN model is fine-tuned for its parameters so that the validation loss stabilizes with increasing number of iterations, and the training and validation accuracies converge. We exploit the power of CNN in forecasting the future NIFTY index values using three approaches which differ in number of variables used in forecasting, number of sub-models used in the overall models and, size of the input data for training the models. Extensive results are presented on various metrics for all classification and regression models. The results clearly indicate that CNN-based multivariate forecasting model is the most effective and accurate in predicting the movement of NIFTY index values with a weekly forecast horizon.
Stock Portfolio Optimization Using a Deep Learning LSTM Model
Predicting future stock prices and their movement patterns is a complex problem. Hence, building a portfolio of capital assets using the predicted prices to achieve the optimization between its return and risk is an even more difficult task. This work has carried out an analysis of the time series of the historical prices of the top five stocks from the nine different sectors of the Indian stock market from January 1, 2016, to December 31, 2020. Optimum portfolios are built for each of these sectors. For predicting future stock prices, a long-and-short-term memory (LSTM) model is also designed and fine-tuned. After five months of the portfolio construction, the actual and the predicted returns and risks of each portfolio are computed. The predicted and the actual returns of each portfolio are found to be high, indicating the high precision of the LSTM model.
Stock Market Prediction using Natural Language Processing -- A Survey
The stock market is a network which provides a platform for almost all major economic transactions. While investing in the stock market is a good idea, investing in individual stocks may not be, especially for the casual investor. Smart stock-picking requires in-depth research and plenty of dedication. Predicting this stock value offers enormous arbitrage profit opportunities. This attractiveness of finding a solution has prompted researchers to find a way past problems like volatility, seasonality, and dependence on time. This paper surveys recent literature in the domain of natural language processing and machine learning techniques used to predict stock market movements. The main contributions of this paper include the sophisticated categorizations of many recent articles and the illustration of the recent trends of research in stock market prediction and its related areas.
Robust Analysis of Stock Price Time Series Using CNN and LSTM-Based Deep Learning Models
Prediction of stock price and stock price movement patterns has always been a critical area of research. While the well-known efficient market hypothesis rules out any possibility of accurate prediction of stock prices, there are formal propositions in the literature demonstrating accurate modeling of the predictive systems that can enable us to predict stock prices with a very high level of accuracy. In this paper, we present a suite of deep learning-based regression models that yields a very high level of accuracy in stock price prediction. To build our predictive models, we use the historical stock price data of a well-known company listed in the National Stock Exchange (NSE) of India during the period December 31, 2012 to January 9, 2015. The stock prices are recorded at five minutes intervals of time during each working day in a week. Using these extremely granular stock price data, we build four convolutional neural network (CNN) and five long- and short-term memory (LSTM)-based deep learning models for accurate forecasting of the future stock prices. We provide detailed results on the forecasting accuracies of all our proposed models based on their execution time and their root mean square error (RMSE) values.
Review of deep learning models for crypto price prediction: implementation and evaluation
There has been much interest in accurate cryptocurrency price forecast models by investors and researchers. Deep Learning models are prominent machine learning techniques that have transformed various fields and have shown potential for finance and economics. Although various deep learning models have been explored for cryptocurrency price forecasting, it is not clear which models are suitable due to high market volatility. In this study, we review the literature about deep learning for cryptocurrency price forecasting and evaluate novel deep learning models for cryptocurrency stock price prediction. Our deep learning models include variants of long short-term memory (LSTM) recurrent neural networks, variants of convolutional neural networks (CNNs), and the Transformer model. We evaluate univariate and multivariate approaches for multi-step ahead predicting of cryptocurrencies close-price. We also carry out volatility analysis on the four cryptocurrencies which reveals significant fluctuations in their prices throughout the COVID-19 pandemic. Additionally, we investigate the prediction accuracy of two scenarios identified by different training sets for the models. First, we use the pre-COVID-19 datasets to model cryptocurrency close-price forecasting during the early period of COVID-19. Secondly, we utilise data from the COVID-19 period to predict prices for 2023 to 2024. Our results show that the convolutional LSTM with a multivariate approach provides the best prediction accuracy in two major experimental settings. Our results also indicate that the multivariate deep learning models exhibit better performance in forecasting four different cryptocurrencies when compared to the univariate models.
Enhancing Financial Market Predictions: Causality-Driven Feature Selection
This paper introduces the FinSen dataset that revolutionizes financial market analysis by integrating economic and financial news articles from 197 countries with stock market data. The dataset's extensive coverage spans 15 years from 2007 to 2023 with temporal information, offering a rich, global perspective with 160,000 records on financial market news. Our study leverages causally validated sentiment scores and LSTM models to enhance market forecast accuracy and reliability. Utilizing the FinSen dataset, we introduce an innovative Focal Calibration Loss, reducing Expected Calibration Error (ECE) to 3.34 percent with the DAN 3 model. This not only improves prediction accuracy but also aligns probabilistic forecasts closely with real outcomes, crucial for the financial sector where predicted probability is paramount. Our approach demonstrates the effectiveness of combining sentiment analysis with precise calibration techniques for trustworthy financial forecasting where the cost of misinterpretation can be high. Finsen Data can be found at [this github URL](https://github.com/EagleAdelaide/FinSen_Dataset.git).
TLOB: A Novel Transformer Model with Dual Attention for Stock Price Trend Prediction with Limit Order Book Data
Stock Price Trend Prediction (SPTP) based on Limit Order Book (LOB) data is a fundamental challenge in financial markets. Despite advances in deep learning, existing models fail to generalize across different market conditions and struggle to reliably predict short-term trends. Surprisingly, by adapting a simple MLP-based architecture to LOB, we show that we surpass SoTA performance; thus, challenging the necessity of complex architectures. Unlike past work that shows robustness issues, we propose TLOB, a transformer-based model that uses a dual attention mechanism to capture spatial and temporal dependencies in LOB data. This allows it to adaptively focus on the market microstructure, making it particularly effective for longer-horizon predictions and volatile market conditions. We also introduce a new labeling method that improves on previous ones, removing the horizon bias. We evaluate TLOB's effectiveness using the established FI-2010 benchmark, which exceeds the state-of-the-art by an average of 3.7 F1-score(\%). Additionally, TLOB shows improvements on Tesla and Intel with a 1.3 and 7.7 increase in F1-score(\%), respectively. Additionally, we empirically show how stock price predictability has declined over time (-6.68 absolute points in F1-score(\%)), highlighting the growing market efficiencies. Predictability must be considered in relation to transaction costs, so we experimented with defining trends using an average spread, reflecting the primary transaction cost. The resulting performance deterioration underscores the complexity of translating trend classification into profitable trading strategies. We argue that our work provides new insights into the evolving landscape of stock price trend prediction and sets a strong foundation for future advancements in financial AI. We release the code at https://github.com/LeonardoBerti00/TLOB.
Pre-training Time Series Models with Stock Data Customization
Stock selection, which aims to predict stock prices and identify the most profitable ones, is a crucial task in finance. While existing methods primarily focus on developing model structures and building graphs for improved selection, pre-training strategies remain underexplored in this domain. Current stock series pre-training follows methods from other areas without adapting to the unique characteristics of financial data, particularly overlooking stock-specific contextual information and the non-stationary nature of stock prices. Consequently, the latent statistical features inherent in stock data are underutilized. In this paper, we propose three novel pre-training tasks tailored to stock data characteristics: stock code classification, stock sector classification, and moving average prediction. We develop the Stock Specialized Pre-trained Transformer (SSPT) based on a two-layer transformer architecture. Extensive experimental results validate the effectiveness of our pre-training methods and provide detailed guidance on their application. Evaluations on five stock datasets, including four markets and two time periods, demonstrate that SSPT consistently outperforms the market and existing methods in terms of both cumulative investment return ratio and Sharpe ratio. Additionally, our experiments on simulated data investigate the underlying mechanisms of our methods, providing insights into understanding price series. Our code is publicly available at: https://github.com/astudentuser/Pre-training-Time-Series-Models-with-Stock-Data-Customization.
Bitcoin Price Predictive Modeling Using Expert Correction
The paper studies the linear model for Bitcoin price which includes regression features based on Bitcoin currency statistics, mining processes, Google search trends, Wikipedia pages visits. The pattern of deviation of regression model prediction from real prices is simpler comparing to price time series. It is assumed that this pattern can be predicted by an experienced expert. In such a way, using the combination of the regression model and expert correction, one can receive better results than with either regression model or expert opinion only. It is shown that Bayesian approach makes it possible to utilize the probabilistic approach using distributions with fat tails and take into account the outliers in Bitcoin price time series.
An End-to-End Structure with Novel Position Mechanism and Improved EMD for Stock Forecasting
As a branch of time series forecasting, stock movement forecasting is one of the challenging problems for investors and researchers. Since Transformer was introduced to analyze financial data, many researchers have dedicated themselves to forecasting stock movement using Transformer or attention mechanisms. However, existing research mostly focuses on individual stock information but ignores stock market information and high noise in stock data. In this paper, we propose a novel method using the attention mechanism in which both stock market information and individual stock information are considered. Meanwhile, we propose a novel EMD-based algorithm for reducing short-term noise in stock data. Two randomly selected exchange-traded funds (ETFs) spanning over ten years from US stock markets are used to demonstrate the superior performance of the proposed attention-based method. The experimental analysis demonstrates that the proposed attention-based method significantly outperforms other state-of-the-art baselines. Code is available at https://github.com/DurandalLee/ACEFormer.
Empirical Study of Market Impact Conditional on Order-Flow Imbalance
In this research, we have empirically investigated the key drivers affecting liquidity in equity markets. We illustrated how theoretical models, such as Kyle's model, of agents' interplay in the financial markets, are aligned with the phenomena observed in publicly available trades and quotes data. Specifically, we confirmed that for small signed order-flows, the price impact grows linearly with increase in the order-flow imbalance. We have, further, implemented a machine learning algorithm to forecast market impact given a signed order-flow. Our findings suggest that machine learning models can be used in estimation of financial variables; and predictive accuracy of such learning algorithms can surpass the performance of traditional statistical approaches. Understanding the determinants of price impact is crucial for several reasons. From a theoretical stance, modelling the impact provides a statistical measure of liquidity. Practitioners adopt impact models as a pre-trade tool to estimate expected transaction costs and optimize the execution of their strategies. This further serves as a post-trade valuation benchmark as suboptimal execution can significantly deteriorate a portfolio performance. More broadly, the price impact reflects the balance of liquidity across markets. This is of central importance to regulators as it provides an all-encompassing explanation of the correlation between market design and systemic risk, enabling regulators to design more stable and efficient markets.
A Comprehensive Analysis of Machine Learning Models for Algorithmic Trading of Bitcoin
This study evaluates the performance of 41 machine learning models, including 21 classifiers and 20 regressors, in predicting Bitcoin prices for algorithmic trading. By examining these models under various market conditions, we highlight their accuracy, robustness, and adaptability to the volatile cryptocurrency market. Our comprehensive analysis reveals the strengths and limitations of each model, providing critical insights for developing effective trading strategies. We employ both machine learning metrics (e.g., Mean Absolute Error, Root Mean Squared Error) and trading metrics (e.g., Profit and Loss percentage, Sharpe Ratio) to assess model performance. Our evaluation includes backtesting on historical data, forward testing on recent unseen data, and real-world trading scenarios, ensuring the robustness and practical applicability of our models. Key findings demonstrate that certain models, such as Random Forest and Stochastic Gradient Descent, outperform others in terms of profit and risk management. These insights offer valuable guidance for traders and researchers aiming to leverage machine learning for cryptocurrency trading.
Stock Price Prediction Using Machine Learning and LSTM-Based Deep Learning Models
Prediction of stock prices has been an important area of research for a long time. While supporters of the efficient market hypothesis believe that it is impossible to predict stock prices accurately, there are formal propositions demonstrating that accurate modeling and designing of appropriate variables may lead to models using which stock prices and stock price movement patterns can be very accurately predicted. In this work, we propose an approach of hybrid modeling for stock price prediction building different machine learning and deep learning-based models. For the purpose of our study, we have used NIFTY 50 index values of the National Stock Exchange (NSE) of India, during the period December 29, 2014 till July 31, 2020. We have built eight regression models using the training data that consisted of NIFTY 50 index records during December 29, 2014 till December 28, 2018. Using these regression models, we predicted the open values of NIFTY 50 for the period December 31, 2018 till July 31, 2020. We, then, augment the predictive power of our forecasting framework by building four deep learning-based regression models using long-and short-term memory (LSTM) networks with a novel approach of walk-forward validation. We exploit the power of LSTM regression models in forecasting the future NIFTY 50 open values using four different models that differ in their architecture and in the structure of their input data. Extensive results are presented on various metrics for the all the regression models. The results clearly indicate that the LSTM-based univariate model that uses one-week prior data as input for predicting the next week open value of the NIFTY 50 time series is the most accurate model.
Robust Portfolio Design and Stock Price Prediction Using an Optimized LSTM Model
Accurate prediction of future prices of stocks is a difficult task to perform. Even more challenging is to design an optimized portfolio with weights allocated to the stocks in a way that optimizes its return and the risk. This paper presents a systematic approach towards building two types of portfolios, optimum risk, and eigen, for four critical economic sectors of India. The prices of the stocks are extracted from the web from Jan 1, 2016, to Dec 31, 2020. Sector-wise portfolios are built based on their ten most significant stocks. An LSTM model is also designed for predicting future stock prices. Six months after the construction of the portfolios, i.e., on Jul 1, 2021, the actual returns and the LSTM-predicted returns for the portfolios are computed. A comparison of the predicted and the actual returns indicate a high accuracy level of the LSTM model.
Precise Stock Price Prediction for Optimized Portfolio Design Using an LSTM Model
Accurate prediction of future prices of stocks is a difficult task to perform. Even more challenging is to design an optimized portfolio of stocks with the identification of proper weights of allocation to achieve the optimized values of return and risk. We present optimized portfolios based on the seven sectors of the Indian economy. The past prices of the stocks are extracted from the web from January 1, 2016, to December 31, 2020. Optimum portfolios are designed on the selected seven sectors. An LSTM regression model is also designed for predicting future stock prices. Five months after the construction of the portfolios, i.e., on June 1, 2021, the actual and predicted returns and risks of each portfolio are computed. The predicted and the actual returns indicate the very high accuracy of the LSTM model.
Learning to Predict Short-Term Volatility with Order Flow Image Representation
Introduction: The paper addresses the challenging problem of predicting the short-term realized volatility of the Bitcoin price using order flow information. The inherent stochastic nature and anti-persistence of price pose difficulties in accurate prediction. Methods: To address this, we propose a method that transforms order flow data over a fixed time interval (snapshots) into images. The order flow includes trade sizes, trade directions, and limit order book, and is mapped into image colour channels. These images are then used to train both a simple 3-layer Convolutional Neural Network (CNN) and more advanced ResNet-18 and ConvMixer, with additionally supplementing them with hand-crafted features. The models are evaluated against classical GARCH, Multilayer Perceptron trained on raw data, and a naive guess method that considers current volatility as a prediction. Results: The experiments are conducted using price data from January 2021 and evaluate model performance in terms of root mean square error (RMSPE). The results show that our order flow representation with a CNN as a predictive model achieves the best performance, with an RMSPE of 0.85+/-1.1 for the model with aggregated features and 1.0+/-1.4 for the model without feature supplementation. ConvMixer with feature supplementation follows closely. In comparison, the RMSPE for the naive guess method was 1.4+/-3.0.
Forecasting Bitcoin volatility spikes from whale transactions and CryptoQuant data using Synthesizer Transformer models
The cryptocurrency market is highly volatile compared to traditional financial markets. Hence, forecasting its volatility is crucial for risk management. In this paper, we investigate CryptoQuant data (e.g. on-chain analytics, exchange and miner data) and whale-alert tweets, and explore their relationship to Bitcoin's next-day volatility, with a focus on extreme volatility spikes. We propose a deep learning Synthesizer Transformer model for forecasting volatility. Our results show that the model outperforms existing state-of-the-art models when forecasting extreme volatility spikes for Bitcoin using CryptoQuant data as well as whale-alert tweets. We analysed our model with the Captum XAI library to investigate which features are most important. We also backtested our prediction results with different baseline trading strategies and the results show that we are able to minimize drawdown while keeping steady profits. Our findings underscore that the proposed method is a useful tool for forecasting extreme volatility movements in the Bitcoin market.
FNSPID: A Comprehensive Financial News Dataset in Time Series
Financial market predictions utilize historical data to anticipate future stock prices and market trends. Traditionally, these predictions have focused on the statistical analysis of quantitative factors, such as stock prices, trading volumes, inflation rates, and changes in industrial production. Recent advancements in large language models motivate the integrated financial analysis of both sentiment data, particularly market news, and numerical factors. Nonetheless, this methodology frequently encounters constraints due to the paucity of extensive datasets that amalgamate both quantitative and qualitative sentiment analyses. To address this challenge, we introduce a large-scale financial dataset, namely, Financial News and Stock Price Integration Dataset (FNSPID). It comprises 29.7 million stock prices and 15.7 million time-aligned financial news records for 4,775 S&P500 companies, covering the period from 1999 to 2023, sourced from 4 stock market news websites. We demonstrate that FNSPID excels existing stock market datasets in scale and diversity while uniquely incorporating sentiment information. Through financial analysis experiments on FNSPID, we propose: (1) the dataset's size and quality significantly boost market prediction accuracy; (2) adding sentiment scores modestly enhances performance on the transformer-based model; (3) a reproducible procedure that can update the dataset. Completed work, code, documentation, and examples are available at github.com/Zdong104/FNSPID. FNSPID offers unprecedented opportunities for the financial research community to advance predictive modeling and analysis.
Accurate Stock Price Forecasting Using Robust and Optimized Deep Learning Models
Designing robust frameworks for precise prediction of future prices of stocks has always been considered a very challenging research problem. The advocates of the classical efficient market hypothesis affirm that it is impossible to accurately predict the future prices in an efficiently operating market due to the stochastic nature of the stock price variables. However, numerous propositions exist in the literature with varying degrees of sophistication and complexity that illustrate how algorithms and models can be designed for making efficient, accurate, and robust predictions of stock prices. We present a gamut of ten deep learning models of regression for precise and robust prediction of the future prices of the stock of a critical company in the auto sector of India. Using a very granular stock price collected at 5 minutes intervals, we train the models based on the records from 31st Dec, 2012 to 27th Dec, 2013. The testing of the models is done using records from 30th Dec, 2013 to 9th Jan 2015. We explain the design principles of the models and analyze the results of their performance based on accuracy in forecasting and speed of execution.
Feature Learning for Stock Price Prediction Shows a Significant Role of Analyst Rating
To reject the Efficient Market Hypothesis a set of 5 technical indicators and 23 fundamental indicators was identified to establish the possibility of generating excess returns on the stock market. Leveraging these data points and various classification machine learning models, trading data of the 505 equities on the US S&P500 over the past 20 years was analysed to develop a classifier effective for our cause. From any given day, we were able to predict the direction of change in price by 1% up to 10 days in the future. The predictions had an overall accuracy of 83.62% with a precision of 85% for buy signals and a recall of 100% for sell signals. Moreover, we grouped equities by their sector and repeated the experiment to see if grouping similar assets together positively effected the results but concluded that it showed no significant improvements in the performance rejecting the idea of sector-based analysis. Also, using feature ranking we could identify an even smaller set of 6 indicators while maintaining similar accuracies as that from the original 28 features and also uncovered the importance of buy, hold and sell analyst ratings as they came out to be the top contributors in the model. Finally, to evaluate the effectiveness of the classifier in real-life situations, it was backtested on FAANG equities using a modest trading strategy where it generated high returns of above 60% over the term of the testing dataset. In conclusion, our proposed methodology with the combination of purposefully picked features shows an improvement over the previous studies, and our model predicts the direction of 1% price changes on the 10th day with high confidence and with enough buffer to even build a robotic trading system.
Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach
Accurate stock market predictions following earnings reports are crucial for investors. Traditional methods, particularly classical machine learning models, struggle with these predictions because they cannot effectively process and interpret extensive textual data contained in earnings reports and often overlook nuances that influence market movements. This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression. Our methodology integrates 'base factors', such as financial metric growth and earnings transcripts, with 'external factors', including recent market indices performances and analyst grades, to create a rich, supervised dataset. This comprehensive dataset enables our models to achieve superior predictive performance in terms of accuracy, weighted F1, and Matthews correlation coefficient (MCC), especially evident in the comparison with benchmarks such as GPT-4. We specifically highlight the efficacy of the llama-3-8b-Instruct-4bit model, which showcases significant improvements over baseline models. The paper also discusses the potential of expanding the output capabilities to include a 'Hold' option and extending the prediction horizon, aiming to accommodate various investment styles and time frames. This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools.
Intelligent Trading Systems: A Sentiment-Aware Reinforcement Learning Approach
The feasibility of making profitable trades on a single asset on stock exchanges based on patterns identification has long attracted researchers. Reinforcement Learning (RL) and Natural Language Processing have gained notoriety in these single-asset trading tasks, but only a few works have explored their combination. Moreover, some issues are still not addressed, such as extracting market sentiment momentum through the explicit capture of sentiment features that reflect the market condition over time and assessing the consistency and stability of RL results in different situations. Filling this gap, we propose the Sentiment-Aware RL (SentARL) intelligent trading system that improves profit stability by leveraging market mood through an adaptive amount of past sentiment features drawn from textual news. We evaluated SentARL across twenty assets, two transaction costs, and five different periods and initializations to show its consistent effectiveness against baselines. Subsequently, this thorough assessment allowed us to identify the boundary between news coverage and market sentiment regarding the correlation of price-time series above which SentARL's effectiveness is outstanding.
Hedging Properties of Algorithmic Investment Strategies using Long Short-Term Memory and Time Series models for Equity Indices
This paper proposes a novel approach to hedging portfolios of risky assets when financial markets are affected by financial turmoils. We introduce a completely novel approach to diversification activity not on the level of single assets but on the level of ensemble algorithmic investment strategies (AIS) built based on the prices of these assets. We employ four types of diverse theoretical models (LSTM - Long Short-Term Memory, ARIMA-GARCH - Autoregressive Integrated Moving Average - Generalized Autoregressive Conditional Heteroskedasticity, momentum, and contrarian) to generate price forecasts, which are then used to produce investment signals in single and complex AIS. In such a way, we are able to verify the diversification potential of different types of investment strategies consisting of various assets (energy commodities, precious metals, cryptocurrencies, or soft commodities) in hedging ensemble AIS built for equity indices (S&P 500 index). Empirical data used in this study cover the period between 2004 and 2022. Our main conclusion is that LSTM-based strategies outperform the other models and that the best diversifier for the AIS built for the S&P 500 index is the AIS built for Bitcoin. Finally, we test the LSTM model for a higher frequency of data (1 hour). We conclude that it outperforms the results obtained using daily data.
Stockformer: A Price-Volume Factor Stock Selection Model Based on Wavelet Transform and Multi-Task Self-Attention Networks
As the Chinese stock market continues to evolve and its market structure grows increasingly complex, traditional quantitative trading methods are facing escalating challenges. Particularly, due to policy uncertainty and the frequent market fluctuations triggered by sudden economic events, existing models often struggle to accurately predict market dynamics. To address these challenges, this paper introduces Stockformer, a price-volume factor stock selection model that integrates wavelet transformation and a multitask self-attention network, aimed at enhancing responsiveness and predictive accuracy regarding market instabilities. Through discrete wavelet transform, Stockformer decomposes stock returns into high and low frequencies, meticulously capturing long-term market trends and short-term fluctuations, including abrupt events. Moreover, the model incorporates a Dual-Frequency Spatiotemporal Encoder and graph embedding techniques to effectively capture complex temporal and spatial relationships among stocks. Employing a multitask learning strategy, it simultaneously predicts stock returns and directional trends. Experimental results show that Stockformer outperforms existing advanced methods on multiple real stock market datasets. In strategy backtesting, Stockformer consistently demonstrates exceptional stability and reliability across market conditions-whether rising, falling, or fluctuating-particularly maintaining high performance during downturns or volatile periods, indicating a high adaptability to market fluctuations. To foster innovation and collaboration in the financial analysis sector, the Stockformer model's code has been open-sourced and is available on the GitHub repository: https://github.com/Eric991005/Multitask-Stockformer.
Machine learning and economic forecasting: the role of international trade networks
This study examines the effects of de-globalization trends on international trade networks and their role in improving forecasts for economic growth. Using section-level trade data from nearly 200 countries from 2010 to 2022, we identify significant shifts in the network topology driven by rising trade policy uncertainty. Our analysis highlights key global players through centrality rankings, with the United States, China, and Germany maintaining consistent dominance. Using a horse race of supervised regressors, we find that network topology descriptors evaluated from section-specific trade networks substantially enhance the quality of a country's GDP growth forecast. We also find that non-linear models, such as Random Forest, XGBoost, and LightGBM, outperform traditional linear models used in the economics literature. Using SHAP values to interpret these non-linear model's predictions, we find that about half of most important features originate from the network descriptors, underscoring their vital role in refining forecasts. Moreover, this study emphasizes the significance of recent economic performance, population growth, and the primary sector's influence in shaping economic growth predictions, offering novel insights into the intricacies of economic growth forecasting.
An Alternative Framework for Time Series Decomposition and Forecasting and its Relevance for Portfolio Choice: A Comparative Study of the Indian Consumer Durable and Small Cap Sectors
One of the challenging research problems in the domain of time series analysis and forecasting is making efficient and robust prediction of stock market prices. With rapid development and evolution of sophisticated algorithms and with the availability of extremely fast computing platforms, it has now become possible to effectively extract, store, process and analyze high volume stock market time series data. Complex algorithms for forecasting are now available for speedy execution over parallel architecture leading to fairly accurate results. In this paper, we have used time series data of the two sectors of the Indian economy: Consumer Durables sector and the Small Cap sector for the period January 2010 to December 2015 and proposed a decomposition approach for better understanding of the behavior of each of the time series. Our contention is that various sectors reveal different time series patterns and understanding them is essential for portfolio formation. Further, based on this structural analysis, we have also proposed several robust forecasting techniques and analyzed their accuracy in prediction using suitably chosen training and test data sets. Extensive results are presented to demonstrate the effectiveness of our propositions.
Transformer Based Time-Series Forecasting for Stock
To the naked eye, stock prices are considered chaotic, dynamic, and unpredictable. Indeed, it is one of the most difficult forecasting tasks that hundreds of millions of retail traders and professional traders around the world try to do every second even before the market opens. With recent advances in the development of machine learning and the amount of data the market generated over years, applying machine learning techniques such as deep learning neural networks is unavoidable. In this work, we modeled the task as a multivariate forecasting problem, instead of a naive autoregression problem. The multivariate analysis is done using the attention mechanism via applying a mutated version of the Transformer, "Stockformer", which we created.
Quantformer: from attention to profit with a quantitative transformer trading strategy
In traditional quantitative trading practice, navigating the complicated and dynamic financial market presents a persistent challenge. Fully capturing various market variables, including long-term information, as well as essential signals that may lead to profit remains a difficult task for learning algorithms. In order to tackle this challenge, this paper introduces quantformer, an enhanced neural network architecture based on transformers, to build investment factors. By transfer learning from sentiment analysis, quantformer not only exploits its original inherent advantages in capturing long-range dependencies and modeling complex data relationships, but is also able to solve tasks with numerical inputs and accurately forecast future returns over a given period. This work collects more than 5,000,000 rolling data of 4,601 stocks in the Chinese capital market from 2010 to 2019. The results of this study demonstrated the model's superior performance in predicting stock trends compared with other 100 factor-based quantitative strategies. Notably, the model's innovative use of transformer-liked model to establish factors, in conjunction with market sentiment information, has been shown to enhance the accuracy of trading signals significantly, thereby offering promising implications for the future of quantitative trading strategies.
On Creating a Causally Grounded Usable Rating Method for Assessing the Robustness of Foundation Models Supporting Time Series
Foundation Models (FMs) have improved time series forecasting in various sectors, such as finance, but their vulnerability to input disturbances can hinder their adoption by stakeholders, such as investors and analysts. To address this, we propose a causally grounded rating framework to study the robustness of Foundational Models for Time Series (FMTS) with respect to input perturbations. We evaluate our approach to the stock price prediction problem, a well-studied problem with easily accessible public data, evaluating six state-of-the-art (some multi-modal) FMTS across six prominent stocks spanning three industries. The ratings proposed by our framework effectively assess the robustness of FMTS and also offer actionable insights for model selection and deployment. Within the scope of our study, we find that (1) multi-modal FMTS exhibit better robustness and accuracy compared to their uni-modal versions and, (2) FMTS pre-trained on time series forecasting task exhibit better robustness and forecasting accuracy compared to general-purpose FMTS pre-trained across diverse settings. Further, to validate our framework's usability, we conduct a user study showcasing FMTS prediction errors along with our computed ratings. The study confirmed that our ratings reduced the difficulty for users in comparing the robustness of different systems.
Optimizing Sales Forecasts through Automated Integration of Market Indicators
Recognizing that traditional forecasting models often rely solely on historical demand, this work investigates the potential of data-driven techniques to automatically select and integrate market indicators for improving customer demand predictions. By adopting an exploratory methodology, we integrate macroeconomic time series, such as national GDP growth, from the Eurostat database into Neural Prophet and SARIMAX forecasting models. Suitable time series are automatically identified through different state-of-the-art feature selection methods and applied to sales data from our industrial partner. It could be shown that forecasts can be significantly enhanced by incorporating external information. Notably, the potential of feature selection methods stands out, especially due to their capability for automation without expert knowledge and manual selection effort. In particular, the Forward Feature Selection technique consistently yielded superior forecasting accuracy for both SARIMAX and Neural Prophet across different company sales datasets. In the comparative analysis of the errors of the selected forecasting models, namely Neural Prophet and SARIMAX, it is observed that neither model demonstrates a significant superiority over the other.
Research on Optimizing Real-Time Data Processing in High-Frequency Trading Algorithms using Machine Learning
High-frequency trading (HFT) represents a pivotal and intensely competitive domain within the financial markets. The velocity and accuracy of data processing exert a direct influence on profitability, underscoring the significance of this field. The objective of this work is to optimise the real-time processing of data in high-frequency trading algorithms. The dynamic feature selection mechanism is responsible for monitoring and analysing market data in real time through clustering and feature weight analysis, with the objective of automatically selecting the most relevant features. This process employs an adaptive feature extraction method, which enables the system to respond and adjust its feature set in a timely manner when the data input changes, thus ensuring the efficient utilisation of data. The lightweight neural networks are designed in a modular fashion, comprising fast convolutional layers and pruning techniques that facilitate the expeditious completion of data processing and output prediction. In contrast to conventional deep learning models, the neural network architecture has been specifically designed to minimise the number of parameters and computational complexity, thereby markedly reducing the inference time. The experimental results demonstrate that the model is capable of maintaining consistent performance in the context of varying market conditions, thereby illustrating its advantages in terms of processing speed and revenue enhancement.
Temporal-Spatial dependencies ENhanced deep learning model (TSEN) for household leverage series forecasting
Analyzing both temporal and spatial patterns for an accurate forecasting model for financial time series forecasting is a challenge due to the complex nature of temporal-spatial dynamics: time series from different locations often have distinct patterns; and for the same time series, patterns may vary as time goes by. Inspired by the successful applications of deep learning, we propose a new model to resolve the issues of forecasting household leverage in China. Our solution consists of multiple RNN-based layers and an attention layer: each RNN-based layer automatically learns the temporal pattern of a specific series with multivariate exogenous series, and then the attention layer learns the spatial correlative weight and obtains the global representations simultaneously. The results show that the new approach can capture the temporal-spatial dynamics of household leverage well and get more accurate and solid predictive results. More, the simulation also studies show that clustering and choosing correlative series are necessary to obtain accurate forecasting results.
Kronos: A Foundation Model for the Language of Financial Markets
The success of large-scale pre-training paradigm, exemplified by Large Language Models (LLMs), has inspired the development of Time Series Foundation Models (TSFMs). However, their application to financial candlestick (K-line) data remains limited, often underperforming non-pre-trained architectures. Moreover, existing TSFMs often overlook crucial downstream tasks such as volatility prediction and synthetic data generation. To address these limitations, we propose Kronos, a unified, scalable pre-training framework tailored to financial K-line modeling. Kronos introduces a specialized tokenizer that discretizes continuous market information into token sequences, preserving both price dynamics and trade activity patterns. We pre-train Kronos using an autoregressive objective on a massive, multi-market corpus of over 12 billion K-line records from 45 global exchanges, enabling it to learn nuanced temporal and cross-asset representations. Kronos excels in a zero-shot setting across a diverse set of financial tasks. On benchmark datasets, Kronos boosts price series forecasting RankIC by 93% over the leading TSFM and 87% over the best non-pre-trained baseline. It also achieves a 9% lower MAE in volatility forecasting and a 22% improvement in generative fidelity for synthetic K-line sequences. These results establish Kronos as a robust, versatile foundation model for end-to-end financial time series analysis. Our pre-trained model is publicly available at https://github.com/shiyu-coder/Kronos.
Can ChatGPT Compute Trustworthy Sentiment Scores from Bloomberg Market Wraps?
We used a dataset of daily Bloomberg Financial Market Summaries from 2010 to 2023, reposted on large financial media, to determine how global news headlines may affect stock market movements using ChatGPT and a two-stage prompt approach. We document a statistically significant positive correlation between the sentiment score and future equity market returns over short to medium term, which reverts to a negative correlation over longer horizons. Validation of this correlation pattern across multiple equity markets indicates its robustness across equity regions and resilience to non-linearity, evidenced by comparison of Pearson and Spearman correlations. Finally, we provide an estimate of the optimal horizon that strikes a balance between reactivity to new information and correlation.
QuantAgent: Price-Driven Multi-Agent LLMs for High-Frequency Trading
Recent advances in Large Language Models (LLMs) have demonstrated impressive capabilities in financial reasoning and market understanding. Multi-agent LLM frameworks such as TradingAgent and FINMEM augment these models to long-horizon investment tasks, leveraging fundamental and sentiment-based inputs for strategic decision-making. However, such systems are ill-suited for the high-speed, precision-critical demands of High-Frequency Trading (HFT). HFT requires rapid, risk-aware decisions based on structured, short-horizon signals, including technical indicators, chart patterns, and trend-based features, distinct from the long-term semantic reasoning typical of traditional financial LLM applications. To this end, we introduce QuantAgent, the first multi-agent LLM framework explicitly designed for high-frequency algorithmic trading. The system decomposes trading into four specialized agents, Indicator, Pattern, Trend, and Risk, each equipped with domain-specific tools and structured reasoning capabilities to capture distinct aspects of market dynamics over short temporal windows. In zero-shot evaluations across ten financial instruments, including Bitcoin and Nasdaq futures, QuantAgent demonstrates superior performance in both predictive accuracy and cumulative return over 4-hour trading intervals, outperforming strong neural and rule-based baselines. Our findings suggest that combining structured financial priors with language-native reasoning unlocks new potential for traceable, real-time decision systems in high-frequency financial markets.
A Framework for Predictive Analysis of Stock Market Indices : A Study of the Indian Auto Sector
Analysis and prediction of stock market time series data has attracted considerable interest from the research community over the last decade. Rapid development and evolution of sophisticated algorithms for statistical analysis of time series data, and availability of high-performance hardware has made it possible to process and analyze high volume stock market time series data effectively, in real-time. Among many other important characteristics and behavior of such data, forecasting is an area which has witnessed considerable focus. In this work, we have used time series of the index values of the Auto sector in India during January 2010 to December 2015 for a deeper understanding of the behavior of its three constituent components, e.g., the trend, the seasonal component, and the random component. Based on this structural analysis, we have also designed five approaches for forecasting and also computed their accuracy in prediction using suitably chosen training and test data sets. Extensive results are presented to demonstrate the effectiveness of our proposed decomposition approaches of time series and the efficiency of our forecasting techniques, even in presence of a random component and a sharply changing trend component in the time-series.
FinMultiTime: A Four-Modal Bilingual Dataset for Financial Time-Series Analysis
Pure time series forecasting tasks typically focus exclusively on numerical features; however, real-world financial decision-making demands the comparison and analysis of heterogeneous sources of information. Recent advances in deep learning and large scale language models (LLMs) have made significant strides in capturing sentiment and other qualitative signals, thereby enhancing the accuracy of financial time series predictions. Despite these advances, most existing datasets consist solely of price series and news text, are confined to a single market, and remain limited in scale. In this paper, we introduce FinMultiTime, the first large scale, multimodal financial time series dataset. FinMultiTime temporally aligns four distinct modalities financial news, structured financial tables, K-line technical charts, and stock price time series across both the S&P 500 and HS 300 universes. Covering 5,105 stocks from 2009 to 2025 in the United States and China, the dataset totals 112.6 GB and provides minute-level, daily, and quarterly resolutions, thus capturing short, medium, and long term market signals with high fidelity. Our experiments demonstrate that (1) scale and data quality markedly boost prediction accuracy; (2) multimodal fusion yields moderate gains in Transformer models; and (3) a fully reproducible pipeline enables seamless dataset updates.
Simulating Financial Market via Large Language Model based Agents
Most economic theories typically assume that financial market participants are fully rational individuals and use mathematical models to simulate human behavior in financial markets. However, human behavior is often not entirely rational and is challenging to predict accurately with mathematical models. In this paper, we propose Agent-based Simulated Financial Market (ASFM), which first constructs a simulated stock market with a real order matching system. Then, we propose a large language model based agent as the stock trader, which contains the profile, observation, and tool-learning based action module. The trading agent can comprehensively understand current market dynamics and financial policy information, and make decisions that align with their trading strategy. In the experiments, we first verify that the reactions of our ASFM are consistent with the real stock market in two controllable scenarios. In addition, we also conduct experiments in two popular economics research directions, and we find that conclusions drawn in our \model align with the preliminary findings in economics research. Based on these observations, we believe our proposed ASFM provides a new paradigm for economic research.
Convolutional Feature Extraction and Neural Arithmetic Logic Units for Stock Prediction
Stock prediction is a topic undergoing intense study for many years. Finance experts and mathematicians have been working on a way to predict the future stock price so as to decide to buy the stock or sell it to make profit. Stock experts or economists, usually analyze on the previous stock values using technical indicators, sentiment analysis etc to predict the future stock price. In recent years, many researches have extensively used machine learning for predicting the stock behaviour. In this paper we propose data driven deep learning approach to predict the future stock value with the previous price with the feature extraction property of convolutional neural network and to use Neural Arithmetic Logic Units with it.
VISTA: Vision-Language Inference for Training-Free Stock Time-Series Analysis
Stock price prediction remains a complex and high-stakes task in financial analysis, traditionally addressed using statistical models or, more recently, language models. In this work, we introduce VISTA (Vision-Language Inference for Stock Time-series Analysis), a novel, training-free framework that leverages Vision-Language Models (VLMs) for multi-modal stock forecasting. VISTA prompts a VLM with both textual representations of historical stock prices and their corresponding line charts to predict future price values. By combining numerical and visual modalities in a zero-shot setting and using carefully designed chain-of-thought prompts, VISTA captures complementary patterns that unimodal approaches often miss. We benchmark VISTA against standard baselines, including ARIMA and text-only LLM-based prompting methods. Experimental results show that VISTA outperforms these baselines by up to 89.83%, demonstrating the effectiveness of multi-modal inference for stock time-series analysis and highlighting the potential of VLMs in financial forecasting tasks without requiring task-specific training.
ResNLS: An Improved Model for Stock Price Forecasting
Stock prices forecasting has always been a challenging task. Although many research projects adopt machine learning and deep learning algorithms to address the problem, few of them pay attention to the varying degrees of dependencies between stock prices. In this paper we introduce a hybrid model that improves stock price prediction by emphasizing the dependencies between adjacent stock prices. The proposed model, ResNLS, is mainly composed of two neural architectures, ResNet and LSTM. ResNet serves as a feature extractor to identify dependencies between stock prices across time windows, while LSTM analyses the initial time-series data with the combination of dependencies which considered as residuals. In predicting the SSE Composite Index, our experiment reveals that when the closing price data for the previous 5 consecutive trading days is used as the input, the performance of the model (ResNLS-5) is optimal compared to those with other inputs. Furthermore, ResNLS-5 outperforms vanilla CNN, RNN, LSTM, and BiLSTM models in terms of prediction accuracy. It also demonstrates at least a 20% improvement over the current state-of-the-art baselines. To verify whether ResNLS-5 can help clients effectively avoid risks and earn profits in the stock market, we construct a quantitative trading framework for back testing. The experimental results show that the trading strategy based on predictions from ResNLS-5 can successfully mitigate losses during declining stock prices and generate profits in the periods of rising stock prices.
Trillion Dollar Words: A New Financial Dataset, Task & Market Analysis
Monetary policy pronouncements by Federal Open Market Committee (FOMC) are a major driver of financial market returns. We construct the largest tokenized and annotated dataset of FOMC speeches, meeting minutes, and press conference transcripts in order to understand how monetary policy influences financial markets. In this study, we develop a novel task of hawkish-dovish classification and benchmark various pre-trained language models on the proposed dataset. Using the best-performing model (RoBERTa-large), we construct a measure of monetary policy stance for the FOMC document release days. To evaluate the constructed measure, we study its impact on the treasury market, stock market, and macroeconomic indicators. Our dataset, models, and code are publicly available on Huggingface and GitHub under CC BY-NC 4.0 license.
Enhancing Inflation Nowcasting with LLM: Sentiment Analysis on News
This study explores the integration of large language models (LLMs) into classic inflation nowcasting frameworks, particularly in light of high inflation volatility periods such as the COVID-19 pandemic. We propose InflaBERT, a BERT-based LLM fine-tuned to predict inflation-related sentiment in news. We use this model to produce NEWS, an index capturing the monthly sentiment of the news regarding inflation. Incorporating our expectation index into the Cleveland Fed's model, which is only based on macroeconomic autoregressive processes, shows a marginal improvement in nowcast accuracy during the pandemic. This highlights the potential of combining sentiment analysis with traditional economic indicators, suggesting further research to refine these methodologies for better real-time inflation monitoring. The source code is available at https://github.com/paultltc/InflaBERT.
Rating Multi-Modal Time-Series Forecasting Models (MM-TSFM) for Robustness Through a Causal Lens
AI systems are notorious for their fragility; minor input changes can potentially cause major output swings. When such systems are deployed in critical areas like finance, the consequences of their uncertain behavior could be severe. In this paper, we focus on multi-modal time-series forecasting, where imprecision due to noisy or incorrect data can lead to erroneous predictions, impacting stakeholders such as analysts, investors, and traders. Recently, it has been shown that beyond numeric data, graphical transformations can be used with advanced visual models to achieve better performance. In this context, we introduce a rating methodology to assess the robustness of Multi-Modal Time-Series Forecasting Models (MM-TSFM) through causal analysis, which helps us understand and quantify the isolated impact of various attributes on the forecasting accuracy of MM-TSFM. We apply our novel rating method on a variety of numeric and multi-modal forecasting models in a large experimental setup (six input settings of control and perturbations, ten data distributions, time series from six leading stocks in three industries over a year of data, and five time-series forecasters) to draw insights on robust forecasting models and the context of their strengths. Within the scope of our study, our main result is that multi-modal (numeric + visual) forecasting, which was found to be more accurate than numeric forecasting in previous studies, can also be more robust in diverse settings. Our work will help different stakeholders of time-series forecasting understand the models` behaviors along trust (robustness) and accuracy dimensions to select an appropriate model for forecasting using our rating method, leading to improved decision-making.
Sector Rotation by Factor Model and Fundamental Analysis
This study presents an analytical approach to sector rotation, leveraging both factor models and fundamental metrics. We initiate with a systematic classification of sectors, followed by an empirical investigation into their returns. Through factor analysis, the paper underscores the significance of momentum and short-term reversion in dictating sectoral shifts. A subsequent in-depth fundamental analysis evaluates metrics such as PE, PB, EV-to-EBITDA, Dividend Yield, among others. Our primary contribution lies in developing a predictive framework based on these fundamental indicators. The constructed models, post rigorous training, exhibit noteworthy predictive capabilities. The findings furnish a nuanced understanding of sector rotation strategies, with implications for asset management and portfolio construction in the financial domain.
GPT Deciphering Fedspeak: Quantifying Dissent Among Hawks and Doves
Markets and policymakers around the world hang on the consequential monetary policy decisions made by the Federal Open Market Committee (FOMC). Publicly available textual documentation of their meetings provides insight into members' attitudes about the economy. We use GPT-4 to quantify dissent among members on the topic of inflation. We find that transcripts and minutes reflect the diversity of member views about the macroeconomic outlook in a way that is lost or omitted from the public statements. In fact, diverging opinions that shed light upon the committee's "true" attitudes are almost entirely omitted from the final statements. Hence, we argue that forecasting FOMC sentiment based solely on statements will not sufficiently reflect dissent among the hawks and doves.
Short-term Volatility Estimation for High Frequency Trades using Gaussian processes (GPs)
The fundamental theorem behind financial markets is that stock prices are intrinsically complex and stochastic. One of the complexities is the volatility associated with stock prices. Volatility is a tendency for prices to change unexpectedly [1]. Price volatility is often detrimental to the return economics, and thus, investors should factor it in whenever making investment decisions, choices, and temporal or permanent moves. It is, therefore, crucial to make necessary and regular short and long-term stock price volatility forecasts for the safety and economics of investors returns. These forecasts should be accurate and not misleading. Different models and methods, such as ARCH GARCH models, have been intuitively implemented to make such forecasts. However, such traditional means fail to capture the short-term volatility forecasts effectively. This paper, therefore, investigates and implements a combination of numeric and probabilistic models for short-term volatility and return forecasting for high-frequency trades. The essence is that one-day-ahead volatility forecasts were made with Gaussian Processes (GPs) applied to the outputs of a Numerical market prediction (NMP) model. Firstly, the stock price data from NMP was corrected by a GP. Since it is not easy to set price limits in a market due to its free nature and randomness, a Censored GP was used to model the relationship between the corrected stock prices and returns. Forecasting errors were evaluated using the implied and estimated data.
Dynamic Factor Analysis of Price Movements in the Philippine Stock Exchange
The intricate dynamics of stock markets have led to extensive research on models that are able to effectively explain their inherent complexities. This study leverages the econometrics literature to explore the dynamic factor model as an interpretable model with sufficient predictive capabilities for capturing essential market phenomena. Although the model has been extensively applied for predictive purposes, this study focuses on analyzing the extracted loadings and common factors as an alternative framework for understanding stock price dynamics. The results reveal novel insights into traditional market theories when applied to the Philippine Stock Exchange using the Kalman method and maximum likelihood estimation, with subsequent validation against the capital asset pricing model. Notably, a one-factor model extracts a common factor representing systematic or market dynamics similar to the composite index, whereas a two-factor model extracts common factors representing market trends and volatility. Furthermore, an application of the model for nowcasting the growth rates of the Philippine gross domestic product highlights the potential of the extracted common factors as viable real-time market indicators, yielding over a 34% decrease in the out-of-sample prediction error. Overall, the results underscore the value of dynamic factor analysis in gaining a deeper understanding of market price movement dynamics.
Mamba Meets Financial Markets: A Graph-Mamba Approach for Stock Price Prediction
Stock markets play an important role in the global economy, where accurate stock price predictions can lead to significant financial returns. While existing transformer-based models have outperformed long short-term memory networks and convolutional neural networks in financial time series prediction, their high computational complexity and memory requirements limit their practicality for real-time trading and long-sequence data processing. To address these challenges, we propose SAMBA, an innovative framework for stock return prediction that builds on the Mamba architecture and integrates graph neural networks. SAMBA achieves near-linear computational complexity by utilizing a bidirectional Mamba block to capture long-term dependencies in historical price data and employing adaptive graph convolution to model dependencies between daily stock features. Our experimental results demonstrate that SAMBA significantly outperforms state-of-the-art baseline models in prediction accuracy, maintaining low computational complexity. The code and datasets are available at github.com/Ali-Meh619/SAMBA.
An Investigation of the Structural Characteristics of the Indian IT Sector and the Capital Goods Sector: An Application of the R Programming in Time Series Decomposition and Forecasting
Time series analysis and forecasting of stock market prices has been a very active area of research over the last two decades. Availability of extremely fast and parallel architecture of computing and sophisticated algorithms has made it possible to extract, store, process and analyze high volume stock market time series data very efficiently. In this paper, we have used time series data of the two sectors of the Indian economy: Information Technology and Capital Goods for the period January 2009 till April 2016 and have studied the relationships of these two time series with the time series of DJIA index, NIFTY index and the US Dollar to Indian Rupee exchange rate. We establish by graphical and statistical tests that while the IT sector of India has a strong association with DJIA index and the Dollar to Rupee exchange rate, the Indian CG sector exhibits a strong association with the NIFTY index. We contend that these observations corroborate our hypotheses that the Indian IT sector is strongly coupled with the world economy whereas the CG sector of India reflects internal economic growth of India. We also present several models of regression between the time series which exhibit strong association among them. The effectiveness of these models have been demonstrated by very low values of their forecasting errors.
Portfolio Optimization on NIFTY Thematic Sector Stocks Using an LSTM Model
Portfolio optimization has been a broad and intense area of interest for quantitative and statistical finance researchers and financial analysts. It is a challenging task to design a portfolio of stocks to arrive at the optimized values of the return and risk. This paper presents an algorithmic approach for designing optimum risk and eigen portfolios for five thematic sectors of the NSE of India. The prices of the stocks are extracted from the web from Jan 1, 2016, to Dec 31, 2020. Optimum risk and eigen portfolios for each sector are designed based on ten critical stocks from the sector. An LSTM model is designed for predicting future stock prices. Seven months after the portfolios were formed, on Aug 3, 2021, the actual returns of the portfolios are compared with the LSTM-predicted returns. The predicted and the actual returns indicate a very high-level accuracy of the LSTM model.
CrudeBERT: Applying Economic Theory towards fine-tuning Transformer-based Sentiment Analysis Models to the Crude Oil Market
Predicting market movements based on the sentiment of news media has a long tradition in data analysis. With advances in natural language processing, transformer architectures have emerged that enable contextually aware sentiment classification. Nevertheless, current methods built for the general financial market such as FinBERT cannot distinguish asset-specific value-driving factors. This paper addresses this shortcoming by presenting a method that identifies and classifies events that impact supply and demand in the crude oil markets within a large corpus of relevant news headlines. We then introduce CrudeBERT, a new sentiment analysis model that draws upon these events to contextualize and fine-tune FinBERT, thereby yielding improved sentiment classifications for headlines related to the crude oil futures market. An extensive evaluation demonstrates that CrudeBERT outperforms proprietary and open-source solutions in the domain of crude oil.
Enhancing Price Prediction in Cryptocurrency Using Transformer Neural Network and Technical Indicators
This study presents an innovative approach for predicting cryptocurrency time series, specifically focusing on Bitcoin, Ethereum, and Litecoin. The methodology integrates the use of technical indicators, a Performer neural network, and BiLSTM (Bidirectional Long Short-Term Memory) to capture temporal dynamics and extract significant features from raw cryptocurrency data. The application of technical indicators, such facilitates the extraction of intricate patterns, momentum, volatility, and trends. The Performer neural network, employing Fast Attention Via positive Orthogonal Random features (FAVOR+), has demonstrated superior computational efficiency and scalability compared to the traditional Multi-head attention mechanism in Transformer models. Additionally, the integration of BiLSTM in the feedforward network enhances the model's capacity to capture temporal dynamics in the data, processing it in both forward and backward directions. This is particularly advantageous for time series data where past and future data points can influence the current state. The proposed method has been applied to the hourly and daily timeframes of the major cryptocurrencies and its performance has been benchmarked against other methods documented in the literature. The results underscore the potential of the proposed method to outperform existing models, marking a significant progression in the field of cryptocurrency price prediction.
Stock Volatility Prediction Based on Transformer Model Using Mixed-Frequency Data
With the increasing volume of high-frequency data in the information age, both challenges and opportunities arise in the prediction of stock volatility. On one hand, the outcome of prediction using tradition method combining stock technical and macroeconomic indicators still leaves room for improvement; on the other hand, macroeconomic indicators and peoples' search record on those search engines affecting their interested topics will intuitively have an impact on the stock volatility. For the convenience of assessment of the influence of these indicators, macroeconomic indicators and stock technical indicators are then grouped into objective factors, while Baidu search indices implying people's interested topics are defined as subjective factors. To align different frequency data, we introduce GARCH-MIDAS model. After mixing all the above data, we then feed them into Transformer model as part of the training data. Our experiments show that this model outperforms the baselines in terms of mean square error. The adaption of both types of data under Transformer model significantly reduces the mean square error from 1.00 to 0.86.
Realised Volatility Forecasting: Machine Learning via Financial Word Embedding
This study develops FinText, a financial word embedding compiled from 15 years of business news archives. The results show that FinText produces substantially more accurate results than general word embeddings based on the gold-standard financial benchmark we introduced. In contrast to well-known econometric models, and over the sample period from 27 July 2007 to 27 January 2022 for 23 NASDAQ stocks, using stock-related news, our simple natural language processing model supported by different word embeddings improves realised volatility forecasts on high volatility days. This improvement in realised volatility forecasting performance switches to normal volatility days when general hot news is used. By utilising SHAP, an Explainable AI method, we also identify and classify key phrases in stock-related and general hot news that moved volatility.
NumHTML: Numeric-Oriented Hierarchical Transformer Model for Multi-task Financial Forecasting
Financial forecasting has been an important and active area of machine learning research because of the challenges it presents and the potential rewards that even minor improvements in prediction accuracy or forecasting may entail. Traditionally, financial forecasting has heavily relied on quantitative indicators and metrics derived from structured financial statements. Earnings conference call data, including text and audio, is an important source of unstructured data that has been used for various prediction tasks using deep earning and related approaches. However, current deep learning-based methods are limited in the way that they deal with numeric data; numbers are typically treated as plain-text tokens without taking advantage of their underlying numeric structure. This paper describes a numeric-oriented hierarchical transformer model to predict stock returns, and financial risk using multi-modal aligned earnings calls data by taking advantage of the different categories of numbers (monetary, temporal, percentages etc.) and their magnitude. We present the results of a comprehensive evaluation of NumHTML against several state-of-the-art baselines using a real-world publicly available dataset. The results indicate that NumHTML significantly outperforms the current state-of-the-art across a variety of evaluation metrics and that it has the potential to offer significant financial gains in a practical trading context.
Multi-Agent Stock Prediction Systems: Machine Learning Models, Simulations, and Real-Time Trading Strategies
This paper presents a comprehensive study on stock price prediction, leveragingadvanced machine learning (ML) and deep learning (DL) techniques to improve financial forecasting accuracy. The research evaluates the performance of various recurrent neural network (RNN) architectures, including Long Short-Term Memory (LSTM) networks, Gated Recurrent Units (GRU), and attention-based models. These models are assessed for their ability to capture complex temporal dependencies inherent in stock market data. Our findings show that attention-based models outperform other architectures, achieving the highest accuracy by capturing both short and long-term dependencies. This study contributes valuable insights into AI-driven financial forecasting, offering practical guidance for developing more accurate and efficient trading systems.
FinPT: Financial Risk Prediction with Profile Tuning on Pretrained Foundation Models
Financial risk prediction plays a crucial role in the financial sector. Machine learning methods have been widely applied for automatically detecting potential risks and thus saving the cost of labor. However, the development in this field is lagging behind in recent years by the following two facts: 1) the algorithms used are somewhat outdated, especially in the context of the fast advance of generative AI and large language models (LLMs); 2) the lack of a unified and open-sourced financial benchmark has impeded the related research for years. To tackle these issues, we propose FinPT and FinBench: the former is a novel approach for financial risk prediction that conduct Profile Tuning on large pretrained foundation models, and the latter is a set of high-quality datasets on financial risks such as default, fraud, and churn. In FinPT, we fill the financial tabular data into the pre-defined instruction template, obtain natural-language customer profiles by prompting LLMs, and fine-tune large foundation models with the profile text to make predictions. We demonstrate the effectiveness of the proposed FinPT by experimenting with a range of representative strong baselines on FinBench. The analytical studies further deepen the understanding of LLMs for financial risk prediction.
Precise Stock Price Prediction for Robust Portfolio Design from Selected Sectors of the Indian Stock Market
Stock price prediction is a challenging task and a lot of propositions exist in the literature in this area. Portfolio construction is a process of choosing a group of stocks and investing in them optimally to maximize the return while minimizing the risk. Since the time when Markowitz proposed the Modern Portfolio Theory, several advancements have happened in the area of building efficient portfolios. An investor can get the best benefit out of the stock market if the investor invests in an efficient portfolio and could take the buy or sell decision in advance, by estimating the future asset value of the portfolio with a high level of precision. In this project, we have built an efficient portfolio and to predict the future asset value by means of individual stock price prediction of the stocks in the portfolio. As part of building an efficient portfolio we have studied multiple portfolio optimization methods beginning with the Modern Portfolio theory. We have built the minimum variance portfolio and optimal risk portfolio for all the five chosen sectors by using past daily stock prices over the past five years as the training data, and have also conducted back testing to check the performance of the portfolio. A comparative study of minimum variance portfolio and optimal risk portfolio with equal weight portfolio is done by backtesting.
Combining Deep Learning and GARCH Models for Financial Volatility and Risk Forecasting
In this paper, we develop a hybrid approach to forecasting the volatility and risk of financial instruments by combining common econometric GARCH time series models with deep learning neural networks. For the latter, we employ Gated Recurrent Unit (GRU) networks, whereas four different specifications are used as the GARCH component: standard GARCH, EGARCH, GJR-GARCH and APARCH. Models are tested using daily logarithmic returns on the S&P 500 index as well as gold price Bitcoin prices, with the three assets representing quite distinct volatility dynamics. As the main volatility estimator, also underlying the target function of our hybrid models, we use the price-range-based Garman-Klass estimator, modified to incorporate the opening and closing prices. Volatility forecasts resulting from the hybrid models are employed to evaluate the assets' risk using the Value-at-Risk (VaR) and Expected Shortfall (ES) at two different tolerance levels of 5% and 1%. Gains from combining the GARCH and GRU approaches are discussed in the contexts of both the volatility and risk forecasts. In general, it can be concluded that the hybrid solutions produce more accurate point volatility forecasts, although it does not necessarily translate into superior VaR and ES forecasts.
Retrieval-augmented Large Language Models for Financial Time Series Forecasting
Stock movement prediction, a fundamental task in financial time-series forecasting, requires identifying and retrieving critical influencing factors from vast amounts of time-series data. However, existing text-trained or numeric similarity-based retrieval methods fall short in handling complex financial analysis. To address this, we propose the first retrieval-augmented generation (RAG) framework for financial time-series forecasting, featuring three key innovations: a fine-tuned 1B parameter large language model (StockLLM) as the backbone, a novel candidate selection method leveraging LLM feedback, and a training objective that maximizes similarity between queries and historically significant sequences. This enables our retriever, FinSeer, to uncover meaningful patterns while minimizing noise in complex financial data. We also construct new datasets integrating financial indicators and historical stock prices to train FinSeer and ensure robust evaluation. Experimental results demonstrate that our RAG framework outperforms bare StockLLM and random retrieval, highlighting its effectiveness, while FinSeer surpasses existing retrieval methods, achieving an 8\% higher accuracy on BIGDATA22 and retrieving more impactful sequences. This work underscores the importance of tailored retrieval models in financial forecasting and provides a novel framework for future research.
MIGA: Mixture-of-Experts with Group Aggregation for Stock Market Prediction
Stock market prediction has remained an extremely challenging problem for many decades owing to its inherent high volatility and low information noisy ratio. Existing solutions based on machine learning or deep learning demonstrate superior performance by employing a single model trained on the entire stock dataset to generate predictions across all types of stocks. However, due to the significant variations in stock styles and market trends, a single end-to-end model struggles to fully capture the differences in these stylized stock features, leading to relatively inaccurate predictions for all types of stocks. In this paper, we present MIGA, a novel Mixture of Expert with Group Aggregation framework designed to generate specialized predictions for stocks with different styles by dynamically switching between distinct style experts. To promote collaboration among different experts in MIGA, we propose a novel inner group attention architecture, enabling experts within the same group to share information and thereby enhancing the overall performance of all experts. As a result, MIGA significantly outperforms other end-to-end models on three Chinese Stock Index benchmarks including CSI300, CSI500, and CSI1000. Notably, MIGA-Conv reaches 24 % excess annual return on CSI300 benchmark, surpassing the previous state-of-the-art model by 8% absolute. Furthermore, we conduct a comprehensive analysis of mixture of experts for stock market prediction, providing valuable insights for future research.
Stock Prices Prediction using Deep Learning Models
Financial markets have a vital role in the development of modern society. They allow the deployment of economic resources. Changes in stock prices reflect changes in the market. In this study, we focus on predicting stock prices by deep learning model. This is a challenge task, because there is much noise and uncertainty in information that is related to stock prices. So this work uses sparse autoencoders with one-dimension (1-D) residual convolutional networks which is a deep learning model, to de-noise the data. Long-short term memory (LSTM) is then used to predict the stock price. The prices, indices and macroeconomic variables in past are the features used to predict the next day's price. Experiment results show that 1-D residual convolutional networks can de-noise data and extract deep features better than a model that combines wavelet transforms (WT) and stacked autoencoders (SAEs). In addition, we compare the performances of model with two different forecast targets of stock price: absolute stock price and price rate of change. The results show that predicting stock price through price rate of change is better than predicting absolute prices directly.
Mean Absolute Directional Loss as a New Loss Function for Machine Learning Problems in Algorithmic Investment Strategies
This paper investigates the issue of an adequate loss function in the optimization of machine learning models used in the forecasting of financial time series for the purpose of algorithmic investment strategies (AIS) construction. We propose the Mean Absolute Directional Loss (MADL) function, solving important problems of classical forecast error functions in extracting information from forecasts to create efficient buy/sell signals in algorithmic investment strategies. Finally, based on the data from two different asset classes (cryptocurrencies: Bitcoin and commodities: Crude Oil), we show that the new loss function enables us to select better hyperparameters for the LSTM model and obtain more efficient investment strategies, with regard to risk-adjusted return metrics on the out-of-sample data.
Monash Time Series Forecasting Archive
Many businesses and industries nowadays rely on large quantities of time series data making time series forecasting an important research area. Global forecasting models that are trained across sets of time series have shown a huge potential in providing accurate forecasts compared with the traditional univariate forecasting models that work on isolated series. However, there are currently no comprehensive time series archives for forecasting that contain datasets of time series from similar sources available for the research community to evaluate the performance of new global forecasting algorithms over a wide variety of datasets. In this paper, we present such a comprehensive time series forecasting archive containing 20 publicly available time series datasets from varied domains, with different characteristics in terms of frequency, series lengths, and inclusion of missing values. We also characterise the datasets, and identify similarities and differences among them, by conducting a feature analysis. Furthermore, we present the performance of a set of standard baseline forecasting methods over all datasets across eight error metrics, for the benefit of researchers using the archive to benchmark their forecasting algorithms.
Stock Volatility Prediction using Time Series and Deep Learning Approach
Volatility clustering is a crucial property that has a substantial impact on stock market patterns. Nonetheless, developing robust models for accurately predicting future stock price volatility is a difficult research topic. For predicting the volatility of three equities listed on India's national stock market (NSE), we propose multiple volatility models depending on the generalized autoregressive conditional heteroscedasticity (GARCH), Glosten-Jagannathan-GARCH (GJR-GARCH), Exponential general autoregressive conditional heteroskedastic (EGARCH), and LSTM framework. Sector-wise stocks have been chosen in our study. The sectors which have been considered are banking, information technology (IT), and pharma. yahoo finance has been used to obtain stock price data from Jan 2017 to Dec 2021. Among the pulled-out records, the data from Jan 2017 to Dec 2020 have been taken for training, and data from 2021 have been chosen for testing our models. The performance of predicting the volatility of stocks of three sectors has been evaluated by implementing three different types of GARCH models as well as by the LSTM model are compared. It has been observed the LSTM performed better in predicting volatility in pharma over banking and IT sectors. In tandem, it was also observed that E-GARCH performed better in the case of the banking sector and for IT and pharma, GJR-GARCH performed better.
Binary Tree Option Pricing Under Market Microstructure Effects: A Random Forest Approach
We propose a machine learning-based extension of the classical binomial option pricing model that incorporates key market microstructure effects. Traditional models assume frictionless markets, overlooking empirical features such as bid-ask spreads, discrete price movements, and serial return correlations. Our framework augments the binomial tree with path-dependent transition probabilities estimated via Random Forest classifiers trained on high-frequency market data. This approach preserves no-arbitrage conditions while embedding real-world trading dynamics into the pricing model. Using 46,655 minute-level observations of SPY from January to June 2025, we achieve an AUC of 88.25% in forecasting one-step price movements. Order flow imbalance is identified as the most influential predictor, contributing 43.2% to feature importance. After resolving time-scaling inconsistencies in tree construction, our model yields option prices that deviate by 13.79% from Black-Scholes benchmarks, highlighting the impact of microstructure on fair value estimation. While computational limitations restrict the model to short-term derivatives, our results offer a robust, data-driven alternative to classical pricing methods grounded in empirical market behavior.
Financial Time Series Forecasting using CNN and Transformer
Time series forecasting is important across various domains for decision-making. In particular, financial time series such as stock prices can be hard to predict as it is difficult to model short-term and long-term temporal dependencies between data points. Convolutional Neural Networks (CNN) are good at capturing local patterns for modeling short-term dependencies. However, CNNs cannot learn long-term dependencies due to the limited receptive field. Transformers on the other hand are capable of learning global context and long-term dependencies. In this paper, we propose to harness the power of CNNs and Transformers to model both short-term and long-term dependencies within a time series, and forecast if the price would go up, down or remain the same (flat) in the future. In our experiments, we demonstrated the success of the proposed method in comparison to commonly adopted statistical and deep learning methods on forecasting intraday stock price change of S&P 500 constituents.
Monash University, UEA, UCR Time Series Extrinsic Regression Archive
Time series research has gathered lots of interests in the last decade, especially for Time Series Classification (TSC) and Time Series Forecasting (TSF). Research in TSC has greatly benefited from the University of California Riverside and University of East Anglia (UCR/UEA) Time Series Archives. On the other hand, the advancement in Time Series Forecasting relies on time series forecasting competitions such as the Makridakis competitions, NN3 and NN5 Neural Network competitions, and a few Kaggle competitions. Each year, thousands of papers proposing new algorithms for TSC and TSF have utilized these benchmarking archives. These algorithms are designed for these specific problems, but may not be useful for tasks such as predicting the heart rate of a person using photoplethysmogram (PPG) and accelerometer data. We refer to this problem as Time Series Extrinsic Regression (TSER), where we are interested in a more general methodology of predicting a single continuous value, from univariate or multivariate time series. This prediction can be from the same time series or not directly related to the predictor time series and does not necessarily need to be a future value or depend heavily on recent values. To the best of our knowledge, research into TSER has received much less attention in the time series research community and there are no models developed for general time series extrinsic regression problems. Most models are developed for a specific problem. Therefore, we aim to motivate and support the research into TSER by introducing the first TSER benchmarking archive. This archive contains 19 datasets from different domains, with varying number of dimensions, unequal length dimensions, and missing values. In this paper, we introduce the datasets in this archive and did an initial benchmark on existing models.
MM-DREX: Multimodal-Driven Dynamic Routing of LLM Experts for Financial Trading
The inherent non-stationarity of financial markets and the complexity of multi-modal information pose significant challenges to existing quantitative trading models. Traditional methods relying on fixed structures and unimodal data struggle to adapt to market regime shifts, while large language model (LLM)-driven solutions - despite their multi-modal comprehension - suffer from static strategies and homogeneous expert designs, lacking dynamic adjustment and fine-grained decision mechanisms. To address these limitations, we propose MM-DREX: a Multimodal-driven, Dynamically-Routed EXpert framework based on large language models. MM-DREX explicitly decouples market state perception from strategy execution to enable adaptive sequential decision-making in non-stationary environments. Specifically, it (1) introduces a vision-language model (VLM)-powered dynamic router that jointly analyzes candlestick chart patterns and long-term temporal features to allocate real-time expert weights; (2) designs four heterogeneous trading experts (trend, reversal, breakout, positioning) generating specialized fine-grained sub-strategies; and (3) proposes an SFT-RL hybrid training paradigm to synergistically optimize the router's market classification capability and experts' risk-adjusted decision-making. Extensive experiments on multi-modal datasets spanning stocks, futures, and cryptocurrencies demonstrate that MM-DREX significantly outperforms 15 baselines (including state-of-the-art financial LLMs and deep reinforcement learning models) across key metrics: total return, Sharpe ratio, and maximum drawdown, validating its robustness and generalization. Additionally, an interpretability module traces routing logic and expert behavior in real time, providing an audit trail for strategy transparency.
Dynamic graph neural networks for enhanced volatility prediction in financial markets
Volatility forecasting is essential for risk management and decision-making in financial markets. Traditional models like Generalized Autoregressive Conditional Heteroskedasticity (GARCH) effectively capture volatility clustering but often fail to model complex, non-linear interdependencies between multiple indices. This paper proposes a novel approach using Graph Neural Networks (GNNs) to represent global financial markets as dynamic graphs. The Temporal Graph Attention Network (Temporal GAT) combines Graph Convolutional Networks (GCNs) and Graph Attention Networks (GATs) to capture the temporal and structural dynamics of volatility spillovers. By utilizing correlation-based and volatility spillover indices, the Temporal GAT constructs directed graphs that enhance the accuracy of volatility predictions. Empirical results from a 15-year study of eight major global indices show that the Temporal GAT outperforms traditional GARCH models and other machine learning methods, particularly in short- to mid-term forecasts. The sensitivity and scenario-based analysis over a range of parameters and hyperparameters further demonstrate the significance of the proposed technique. Hence, this work highlights the potential of GNNs in modeling complex market behaviors, providing valuable insights for financial analysts and investors.
FinEAS: Financial Embedding Analysis of Sentiment
We introduce a new language representation model in finance called Financial Embedding Analysis of Sentiment (FinEAS). In financial markets, news and investor sentiment are significant drivers of security prices. Thus, leveraging the capabilities of modern NLP approaches for financial sentiment analysis is a crucial component in identifying patterns and trends that are useful for market participants and regulators. In recent years, methods that use transfer learning from large Transformer-based language models like BERT, have achieved state-of-the-art results in text classification tasks, including sentiment analysis using labelled datasets. Researchers have quickly adopted these approaches to financial texts, but best practices in this domain are not well-established. In this work, we propose a new model for financial sentiment analysis based on supervised fine-tuned sentence embeddings from a standard BERT model. We demonstrate our approach achieves significant improvements in comparison to vanilla BERT, LSTM, and FinBERT, a financial domain specific BERT.
Sentiment-Aware Mean-Variance Portfolio Optimization for Cryptocurrencies
This paper presents a dynamic cryptocurrency portfolio optimization strategy that integrates technical indicators and sentiment analysis to enhance investment decision-making. The proposed method employs the 14-day Relative Strength Index (RSI) and 14-day Simple Moving Average (SMA) to capture market momentum, while sentiment scores are extracted from news articles using the VADER (Valence Aware Dictionary and sEntiment Reasoner) model, with compound scores quantifying overall market tone. The large language model Google Gemini is used to further verify the sentiment scores predicted by VADER and give investment decisions. These technical indicator and sentiment signals are incorporated into the expected return estimates before applying mean-variance optimization with constraints on asset weights. The strategy is evaluated through a rolling-window backtest over cryptocurrency market data, with Bitcoin (BTC) and an equal-weighted portfolio of selected cryptocurrencies serving as benchmarks. Experimental results show that the proposed approach achieves a cumulative return of 38.72, substantially exceeding Bitcoin's 8.85 and the equal-weighted portfolio's 21.65 over the same period, and delivers a higher Sharpe ratio (1.1093 vs. 0.8853 and 1.0194, respectively). However, the strategy exhibits a larger maximum drawdown (-18.52%) compared to Bitcoin (-4.48%) and the equal-weighted portfolio (-11.02%), indicating higher short-term downside risk. These results highlight the potential of combining sentiment and technical signals to improve cryptocurrency portfolio performance, while also emphasizing the need to address risk exposure in volatile markets.
Forecasting Probability Distributions of Financial Returns with Deep Neural Networks
This study evaluates deep neural networks for forecasting probability distributions of financial returns. 1D convolutional neural networks (CNN) and Long Short-Term Memory (LSTM) architectures are used to forecast parameters of three probability distributions: Normal, Student's t, and skewed Student's t. Using custom negative log-likelihood loss functions, distribution parameters are optimized directly. The models are tested on six major equity indices (S\&P 500, BOVESPA, DAX, WIG, Nikkei 225, and KOSPI) using probabilistic evaluation metrics including Log Predictive Score (LPS), Continuous Ranked Probability Score (CRPS), and Probability Integral Transform (PIT). Results show that deep learning models provide accurate distributional forecasts and perform competitively with classical GARCH models for Value-at-Risk estimation. The LSTM with skewed Student's t distribution performs best across multiple evaluation criteria, capturing both heavy tails and asymmetry in financial returns. This work shows that deep neural networks are viable alternatives to traditional econometric models for financial risk assessment and portfolio management.
Constructing Time-Series Momentum Portfolios with Deep Multi-Task Learning
A diversified risk-adjusted time-series momentum (TSMOM) portfolio can deliver substantial abnormal returns and offer some degree of tail risk protection during extreme market events. The performance of existing TSMOM strategies, however, relies not only on the quality of the momentum signal but also on the efficacy of the volatility estimator. Yet many of the existing studies have always considered these two factors to be independent. Inspired by recent progress in Multi-Task Learning (MTL), we present a new approach using MTL in a deep neural network architecture that jointly learns portfolio construction and various auxiliary tasks related to volatility, such as forecasting realized volatility as measured by different volatility estimators. Through backtesting from January 2000 to December 2020 on a diversified portfolio of continuous futures contracts, we demonstrate that even after accounting for transaction costs of up to 3 basis points, our approach outperforms existing TSMOM strategies. Moreover, experiments confirm that adding auxiliary tasks indeed boosts the portfolio's performance. These findings demonstrate that MTL can be a powerful tool in finance.
Volatility Modeling of Stocks from Selected Sectors of the Indian Economy Using GARCH
Volatility clustering is an important characteristic that has a significant effect on the behavior of stock markets. However, designing robust models for accurate prediction of future volatilities of stock prices is a very challenging research problem. We present several volatility models based on generalized autoregressive conditional heteroscedasticity (GARCH) framework for modeling the volatility of ten stocks listed in the national stock exchange (NSE) of India. The stocks are selected from the auto sector and the banking sector of the Indian economy, and they have a significant impact on the sectoral index of their respective sectors in the NSE. The historical stock price records from Jan 1, 2010, to Apr 30, 2021, are scraped from the Yahoo Finance website using the DataReader API of the Pandas module in the Python programming language. The GARCH modules are built and fine-tuned on the training data and then tested on the out-of-sample data to evaluate the performance of the models. The analysis of the results shows that asymmetric GARCH models yield more accurate forecasts on the future volatility of stocks.
A Time Series Analysis-Based Forecasting Framework for the Indian Healthcare Sector
Designing efficient and robust algorithms for accurate prediction of stock market prices is one of the most exciting challenges in the field of time series analysis and forecasting. With the exponential rate of development and evolution of sophisticated algorithms and with the availability of fast computing platforms, it has now become possible to effectively and efficiently extract, store, process and analyze high volume of stock market data with diversity in its contents. Availability of complex algorithms which can execute very fast on parallel architecture over the cloud has made it possible to achieve higher accuracy in forecasting results while reducing the time required for computation. In this paper, we use the time series data of the healthcare sector of India for the period January 2010 till December 2016. We first demonstrate a decomposition approach of the time series and then illustrate how the decomposition results provide us with useful insights into the behavior and properties exhibited by the time series. Further, based on the structural analysis of the time series, we propose six different methods of forecasting for predicting the time series index of the healthcare sector. Extensive results are provided on the performance of the forecasting methods to demonstrate their effectiveness.
AI-Powered Energy Algorithmic Trading: Integrating Hidden Markov Models with Neural Networks
In quantitative finance, machine learning methods are essential for alpha generation. This study introduces a new approach that combines Hidden Markov Models (HMM) and neural networks, integrated with Black-Litterman portfolio optimization. During the COVID period (2019-2022), this dual-model approach achieved a 83% return with a Sharpe ratio of 0.77. It incorporates two risk models to enhance risk management, showing efficiency during volatile periods. The methodology was implemented on the QuantConnect platform, which was chosen for its robust framework and experimental reproducibility. The system, which predicts future price movements, includes a three-year warm-up to ensure proper algorithm function. It targets highly liquid, large-cap energy stocks to ensure stable and predictable performance while also considering broker payments. The dual-model alpha system utilizes log returns to select the optimal state based on the historical performance. It combines state predictions with neural network outputs, which are based on historical data, to generate trading signals. This study examined the architecture of the trading system, data pre-processing, training, and performance. The full code and backtesting data are available under the QuantConnect terms.
Large Language Model Prediction Capabilities: Evidence from a Real-World Forecasting Tournament
Accurately predicting the future would be an important milestone in the capabilities of artificial intelligence. However, research on the ability of large language models to provide probabilistic predictions about future events remains nascent. To empirically test this ability, we enrolled OpenAI's state-of-the-art large language model, GPT-4, in a three-month forecasting tournament hosted on the Metaculus platform. The tournament, running from July to October 2023, attracted 843 participants and covered diverse topics including Big Tech, U.S. politics, viral outbreaks, and the Ukraine conflict. Focusing on binary forecasts, we show that GPT-4's probabilistic forecasts are significantly less accurate than the median human-crowd forecasts. We find that GPT-4's forecasts did not significantly differ from the no-information forecasting strategy of assigning a 50% probability to every question. We explore a potential explanation, that GPT-4 might be predisposed to predict probabilities close to the midpoint of the scale, but our data do not support this hypothesis. Overall, we find that GPT-4 significantly underperforms in real-world predictive tasks compared to median human-crowd forecasts. A potential explanation for this underperformance is that in real-world forecasting tournaments, the true answers are genuinely unknown at the time of prediction; unlike in other benchmark tasks like professional exams or time series forecasting, where strong performance may at least partly be due to the answers being memorized from the training data. This makes real-world forecasting tournaments an ideal environment for testing the generalized reasoning and prediction capabilities of artificial intelligence going forward.
TimeSeriesScientist: A General-Purpose AI Agent for Time Series Analysis
Time series forecasting is central to decision-making in domains as diverse as energy, finance, climate, and public health. In practice, forecasters face thousands of short, noisy series that vary in frequency, quality, and horizon, where the dominant cost lies not in model fitting, but in the labor-intensive preprocessing, validation, and ensembling required to obtain reliable predictions. Prevailing statistical and deep learning models are tailored to specific datasets or domains and generalize poorly. A general, domain-agnostic framework that minimizes human intervention is urgently in demand. In this paper, we introduce TimeSeriesScientist (TSci), the first LLM-driven agentic framework for general time series forecasting. The framework comprises four specialized agents: Curator performs LLM-guided diagnostics augmented by external tools that reason over data statistics to choose targeted preprocessing; Planner narrows the hypothesis space of model choice by leveraging multi-modal diagnostics and self-planning over the input; Forecaster performs model fitting and validation and, based on the results, adaptively selects the best model configuration as well as ensemble strategy to make final predictions; and Reporter synthesizes the whole process into a comprehensive, transparent report. With transparent natural-language rationales and comprehensive reports, TSci transforms the forecasting workflow into a white-box system that is both interpretable and extensible across tasks. Empirical results on eight established benchmarks demonstrate that TSci consistently outperforms both statistical and LLM-based baselines, reducing forecast error by an average of 10.4% and 38.2%, respectively. Moreover, TSci produces a clear and rigorous report that makes the forecasting workflow more transparent and interpretable.
BALM-TSF: Balanced Multimodal Alignment for LLM-Based Time Series Forecasting
Time series forecasting is a long-standing and highly challenging research topic. Recently, driven by the rise of large language models (LLMs), research has increasingly shifted from purely time series methods toward harnessing textual modalities to enhance forecasting performance. However, the vast discrepancy between text and temporal data often leads current multimodal architectures to over-emphasise one modality while neglecting the other, resulting in information loss that harms forecasting performance. To address this modality imbalance, we introduce BALM-TSF (Balanced Multimodal Alignment for LLM-Based Time Series Forecasting), a lightweight time series forecasting framework that maintains balance between the two modalities. Specifically, raw time series are processed by the time series encoder, while descriptive statistics of raw time series are fed to an LLM with learnable prompt, producing compact textual embeddings. To ensure balanced cross-modal context alignment of time series and textual embeddings, a simple yet effective scaling strategy combined with a contrastive objective then maps these textual embeddings into the latent space of the time series embeddings. Finally, the aligned textual semantic embeddings and time series embeddings are together integrated for forecasting. Extensive experiments on standard benchmarks show that, with minimal trainable parameters, BALM-TSF achieves state-of-the-art performance in both long-term and few-shot forecasting, confirming its ability to harness complementary information from text and time series. Code is available at https://github.com/ShiqiaoZhou/BALM-TSF.
Risk forecasting using Long Short-Term Memory Mixture Density Networks
This work aims to implement Long Short-Term Memory mixture density networks (LSTM-MDNs) for Value-at-Risk forecasting and compare their performance with established models (historical simulation, CMM, and GARCH) using a defined backtesting procedure. The focus was on the neural network's ability to capture volatility clustering and its real-world applicability. Three architectures were tested: a 2-component mixture density network, a regularized 2-component model (Arimond et al., 2020), and a 3-component mixture model, the latter being tested for the first time in Value-at-Risk forecasting. Backtesting was performed on three stock indices (FTSE 100, S&P 500, EURO STOXX 50) over two distinct two-year periods (2017-2018 as a calm period, 2021-2022 as turbulent). Model performance was assessed through unconditional coverage and independence assumption tests. The neural network's ability to handle volatility clustering was validated via correlation analysis and graphical evaluation. Results show limited success for the neural network approach. LSTM-MDNs performed poorly for 2017/2018 but outperformed benchmark models in 2021/2022. The LSTM mechanism allowed the neural network to capture volatility clustering similarly to GARCH models. However, several issues were identified: the need for proper model initialization and reliance on large datasets for effective learning. The findings suggest that while LSTM-MDNs provide adequate risk forecasts, further research and adjustments are necessary for stable performance.
Evaluating Impact of Social Media Posts by Executives on Stock Prices
Predicting stock market movements has always been of great interest to investors and an active area of research. Research has proven that popularity of products is highly influenced by what people talk about. Social media like Twitter, Reddit have become hotspots of such influences. This paper investigates the impact of social media posts on close price prediction of stocks using Twitter and Reddit posts. Our objective is to integrate sentiment of social media data with historical stock data and study its effect on closing prices using time series models. We carried out rigorous experiments and deep analysis using multiple deep learning based models on different datasets to study the influence of posts by executives and general people on the close price. Experimental results on multiple stocks (Apple and Tesla) and decentralised currencies (Bitcoin and Ethereum) consistently show improvements in prediction on including social media data and greater improvements on including executive posts.
Stock Price Prediction Using a Hybrid LSTM-GNN Model: Integrating Time-Series and Graph-Based Analysis
This paper presents a novel hybrid model that integrates long-short-term memory (LSTM) networks and Graph Neural Networks (GNNs) to significantly enhance the accuracy of stock market predictions. The LSTM component adeptly captures temporal patterns in stock price data, effectively modeling the time series dynamics of financial markets. Concurrently, the GNN component leverages Pearson correlation and association analysis to model inter-stock relational data, capturing complex nonlinear polyadic dependencies influencing stock prices. The model is trained and evaluated using an expanding window validation approach, enabling continuous learning from increasing amounts of data and adaptation to evolving market conditions. Extensive experiments conducted on historical stock data demonstrate that our hybrid LSTM-GNN model achieves a mean square error (MSE) of 0.00144, representing a substantial reduction of 10.6% compared to the MSE of the standalone LSTM model of 0.00161. Furthermore, the hybrid model outperforms traditional and advanced benchmarks, including linear regression, convolutional neural networks (CNN), and dense networks. These compelling results underscore the significant potential of combining temporal and relational data through a hybrid approach, offering a powerful tool for real-time trading and financial analysis.
Generating Synergistic Formulaic Alpha Collections via Reinforcement Learning
In the field of quantitative trading, it is common practice to transform raw historical stock data into indicative signals for the market trend. Such signals are called alpha factors. Alphas in formula forms are more interpretable and thus favored by practitioners concerned with risk. In practice, a set of formulaic alphas is often used together for better modeling precision, so we need to find synergistic formulaic alpha sets that work well together. However, most traditional alpha generators mine alphas one by one separately, overlooking the fact that the alphas would be combined later. In this paper, we propose a new alpha-mining framework that prioritizes mining a synergistic set of alphas, i.e., it directly uses the performance of the downstream combination model to optimize the alpha generator. Our framework also leverages the strong exploratory capabilities of reinforcement learning~(RL) to better explore the vast search space of formulaic alphas. The contribution to the combination models' performance is assigned to be the return used in the RL process, driving the alpha generator to find better alphas that improve upon the current set. Experimental evaluations on real-world stock market data demonstrate both the effectiveness and the efficiency of our framework for stock trend forecasting. The investment simulation results show that our framework is able to achieve higher returns compared to previous approaches.
TSGym: Design Choices for Deep Multivariate Time-Series Forecasting
Recently, deep learning has driven significant advancements in multivariate time series forecasting (MTSF) tasks. However, much of the current research in MTSF tends to evaluate models from a holistic perspective, which obscures the individual contributions and leaves critical issues unaddressed. Adhering to the current modeling paradigms, this work bridges these gaps by systematically decomposing deep MTSF methods into their core, fine-grained components like series-patching tokenization, channel-independent strategy, attention modules, or even Large Language Models and Time-series Foundation Models. Through extensive experiments and component-level analysis, our work offers more profound insights than previous benchmarks that typically discuss models as a whole. Furthermore, we propose a novel automated solution called TSGym for MTSF tasks. Unlike traditional hyperparameter tuning, neural architecture searching or fixed model selection, TSGym performs fine-grained component selection and automated model construction, which enables the creation of more effective solutions tailored to diverse time series data, therefore enhancing model transferability across different data sources and robustness against distribution shifts. Extensive experiments indicate that TSGym significantly outperforms existing state-of-the-art MTSF and AutoML methods. All code is publicly available on https://github.com/SUFE-AILAB/TSGym.
SNFinLLM: Systematic and Nuanced Financial Domain Adaptation of Chinese Large Language Models
Large language models (LLMs) have become powerful tools for advancing natural language processing applications in the financial industry. However, existing financial LLMs often face challenges such as hallucinations or superficial parameter training, resulting in suboptimal performance, particularly in financial computing and machine reading comprehension (MRC). To address these issues, we propose a novel large language model specifically designed for the Chinese financial domain, named SNFinLLM. SNFinLLM excels in domain-specific tasks such as answering questions, summarizing financial research reports, analyzing sentiment, and executing financial calculations. We then perform the supervised fine-tuning (SFT) to enhance the model's proficiency across various financial domains. Specifically, we gather extensive financial data and create a high-quality instruction dataset composed of news articles, professional papers, and research reports of finance domain. Utilizing both domain-specific and general datasets, we proceed with continuous pre-training on an established open-source base model, resulting in SNFinLLM-base. Following this, we engage in supervised fine-tuning (SFT) to bolster the model's capability across multiple financial tasks. Crucially, we employ a straightforward Direct Preference Optimization (DPO) method to better align the model with human preferences. Extensive experiments conducted on finance benchmarks and our evaluation dataset demonstrate that SNFinLLM markedly outperforms other state-of-the-art financial language models. For more details, check out our demo video here: https://www.youtube.com/watch?v=GYT-65HZwus.
Stock Performance Evaluation for Portfolio Design from Different Sectors of the Indian Stock Market
The stock market offers a platform where people buy and sell shares of publicly listed companies. Generally, stock prices are quite volatile; hence predicting them is a daunting task. There is still much research going to develop more accuracy in stock price prediction. Portfolio construction refers to the allocation of different sector stocks optimally to achieve a maximum return by taking a minimum risk. A good portfolio can help investors earn maximum profit by taking a minimum risk. Beginning with Dow Jones Theory a lot of advancement has happened in the area of building efficient portfolios. In this project, we have tried to predict the future value of a few stocks from six important sectors of the Indian economy and also built a portfolio. As part of the project, our team has conducted a study of the performance of various Time series, machine learning, and deep learning models in stock price prediction on selected stocks from the chosen six important sectors of the economy. As part of building an efficient portfolio, we have studied multiple portfolio optimization theories beginning with the Modern Portfolio theory. We have built a minimum variance portfolio and optimal risk portfolio for all the six chosen sectors by using the daily stock prices over the past five years as training data and have also conducted back testing to check the performance of the portfolio. We look forward to continuing our study in the area of stock price prediction and asset allocation and consider this project as the first stepping stone.
100-Day Analysis of USD/IDR Exchange Rate Dynamics Around the 2025 U.S. Presidential Inauguration
Using a 100-day symmetric window around the January 2025 U.S. presidential inauguration, non-parametric statistical methods with bootstrap resampling (10,000 iterations) analyze distributional properties and anomalies. Results indicate a statistically significant 3.61\% Indonesian rupiah depreciation post-inauguration, with a large effect size (Cliff's Delta = -0.9224, CI: [-0.9727, -0.8571]). Central tendency shifted markedly, yet volatility remained stable (variance ratio = 0.9061, p = 0.504). Four significant anomalies exhibiting temporal clustering are detected. These findings provide quantitative evidence of political transition effects on emerging market currencies, highlighting implications for monetary policy and currency risk management.
Efficient Multivariate Time Series Forecasting via Calibrated Language Models with Privileged Knowledge Distillation
Multivariate time series forecasting (MTSF) endeavors to predict future observations given historical data, playing a crucial role in time series data management systems. With advancements in large language models (LLMs), recent studies employ textual prompt tuning to infuse the knowledge of LLMs into MTSF. However, the deployment of LLMs often suffers from low efficiency during the inference phase. To address this problem, we introduce TimeKD, an efficient MTSF framework that leverages the calibrated language models and privileged knowledge distillation. TimeKD aims to generate high-quality future representations from the proposed cross-modality teacher model and cultivate an effective student model. The cross-modality teacher model adopts calibrated language models (CLMs) with ground truth prompts, motivated by the paradigm of Learning Under Privileged Information (LUPI). In addition, we design a subtractive cross attention (SCA) mechanism to refine these representations. To cultivate an effective student model, we propose an innovative privileged knowledge distillation (PKD) mechanism including correlation and feature distillation. PKD enables the student to replicate the teacher's behavior while minimizing their output discrepancy. Extensive experiments on real data offer insight into the effectiveness, efficiency, and scalability of the proposed TimeKD.
Impact of News on the Commodity Market: Dataset and Results
Over the last few years, machine learning based methods have been applied to extract information from news flow in the financial domain. However, this information has mostly been in the form of the financial sentiments contained in the news headlines, primarily for the stock prices. In our current work, we propose that various other dimensions of information can be extracted from news headlines, which will be of interest to investors, policy-makers and other practitioners. We propose a framework that extracts information such as past movements and expected directionality in prices, asset comparison and other general information that the news is referring to. We apply this framework to the commodity "Gold" and train the machine learning models using a dataset of 11,412 human-annotated news headlines (released with this study), collected from the period 2000-2019. We experiment to validate the causal effect of news flow on gold prices and observe that the information produced from our framework significantly impacts the future gold price.
Learn to Rank Risky Investors: A Case Study of Predicting Retail Traders' Behaviour and Profitability
Identifying risky traders with high profits in financial markets is crucial for market makers, such as trading exchanges, to ensure effective risk management through real-time decisions on regulation compliance and hedging. However, capturing the complex and dynamic behaviours of individual traders poses significant challenges. Traditional classification and anomaly detection methods often establish a fixed risk boundary, failing to account for this complexity and dynamism. To tackle this issue, we propose a profit-aware risk ranker (PA-RiskRanker) that reframes the problem of identifying risky traders as a ranking task using Learning-to-Rank (LETOR) algorithms. Our approach features a Profit-Aware binary cross entropy (PA-BCE) loss function and a transformer-based ranker enhanced with a self-cross-trader attention pipeline. These components effectively integrate profit and loss (P&L) considerations into the training process while capturing intra- and inter-trader relationships. Our research critically examines the limitations of existing deep learning-based LETOR algorithms in trading risk management, which often overlook the importance of P&L in financial scenarios. By prioritising P&L, our method improves risky trader identification, achieving an 8.4% increase in F1 score compared to state-of-the-art (SOTA) ranking models like Rankformer. Additionally, it demonstrates a 10%-17% increase in average profit compared to all benchmark models.
