new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 28

Decoupling Task-Solving and Output Formatting in LLM Generation

Large language models (LLMs) are increasingly adept at following instructions containing task descriptions to solve complex problems, such as mathematical reasoning and automatic evaluation (LLM-as-a-Judge). However, as prompts grow more complex, models often struggle to adhere to all instructions. This difficulty is especially common when instructive prompts intertwine reasoning directives -- specifying what the model should solve -- with rigid formatting requirements that dictate how the solution must be presented. The entanglement creates competing goals for the model, suggesting that more explicit separation of these two aspects could lead to improved performance. To this front, we introduce Deco-G, a decoding framework that explicitly decouples format adherence from task solving. Deco-G handles format compliance with a separate tractable probabilistic model (TPM), while prompts LLMs with only task instructions. At each decoding step, Deco-G combines next token probabilities from the LLM with the TPM calculated format compliance likelihood to form the output probability. To make this approach both practical and scalable for modern instruction-tuned LLMs, we introduce three key innovations: instruction-aware distillation, a flexible trie-building algorithm, and HMM state pruning for computational efficiency. We demonstrate the effectiveness of Deco-G across a wide range of tasks with diverse format requirements, including mathematical reasoning, LLM-as-a-judge, and event argument extraction. Overall, our approach yields 1.0% to 6.0% relative gain over regular prompting practice with guaranteed format compliance.

  • 3 authors
·
Oct 3

Look before Transcription: End-to-End SlideASR with Visually-Anchored Policy Optimization

Automatic speech recognition (ASR) systems often struggle with domain-specific terminology, especially in specialized settings such as academic lectures. To address this, we define the SlideASR task, which leverages the rich visual information from presentation slides to improve transcription accuracy. Existing pipeline methods for this task tend to be complex and underperform. Although omni-modal large language models (OLLMs) provide a promising end-to-end framework, they frequently fail in practice by degenerating into simple optical character recognition (OCR) systems. To overcome this, we propose Visually-Anchored Policy Optimization (VAPO), a novel post-training method designed to control the model's reasoning process. Drawing on the Chain-of-Thought reasoning paradigm, VAPO enforces a structured "Look before Transcription" procedure using a <think><answer> format. Specifically, the model first performs OCR on the slide content within the think step, then generates the transcription by referencing this recognized visual information in the answer step. This reasoning process is optimized via reinforcement learning with four distinct rewards targeting format compliance, OCR accuracy, ASR quality, and visual anchoring consistency. To support further research, we construct SlideASR-Bench, a new entity-rich benchmark consisting of a synthetic dataset for training and testing, and a challenging real-world set for evaluation. Extensive experiments demonstrate that VAPO significantly improves recognition of domain-specific terms, establishing an effective end-to-end paradigm for SlideASR.

  • 5 authors
·
Oct 8

When Models Can't Follow: Testing Instruction Adherence Across 256 LLMs

Despite widespread deployment of Large Language Models, systematic evaluation of instruction-following capabilities remains challenging. While comprehensive benchmarks exist, focused assessments that quickly diagnose specific instruction adherence patterns are valuable. As newer models may be trained on existing benchmarks, novel evaluation approaches are needed to assess genuine capabilities rather than memorized performance. This paper presents a streamlined evaluation framework using twenty carefully designed prompts to assess LLM instruction-following across diverse task categories. We demonstrate this framework through a large-scale empirical study conducted on October 14, 2025, testing 256 verified working models from 331 available via OpenRouter. To ensure methodological rigor and prevent selection bias, we first verified each model's basic functionality before inclusion. Unlike large-scale benchmarks requiring extensive computational resources, our approach offers a practical diagnostic tool researchers and practitioners can readily apply. Our methodology builds upon verifiable instructions while introducing a compact test suite balancing comprehensiveness with efficiency. Each prompt targets distinct aspects of instruction following, including format compliance, content constraints, logical sequencing, and multi-step task execution. We evaluate models from major providers (OpenAI, Anthropic, Google, Meta, Mistral) and emerging implementations (Qwen, DeepSeek, community models), providing comparative performance analysis. Our findings reveal consistent failure modes and identify specific instruction types posing particular challenges. This work contributes both a practical evaluation tool and one of the most comprehensive empirical analyses of instruction-following capabilities across the contemporary LLM landscape.

  • 3 authors
·
Oct 18

MCP-Universe: Benchmarking Large Language Models with Real-World Model Context Protocol Servers

The Model Context Protocol has emerged as a transformative standard for connecting large language models to external data sources and tools, rapidly gaining adoption across major AI providers and development platforms. However, existing benchmarks are overly simplistic and fail to capture real application challenges such as long-horizon reasoning and large, unfamiliar tool spaces. To address this critical gap, we introduce MCP-Universe, the first comprehensive benchmark specifically designed to evaluate LLMs in realistic and hard tasks through interaction with real-world MCP servers. Our benchmark encompasses 6 core domains spanning 11 different MCP servers: Location Navigation, Repository Management, Financial Analysis, 3D Design, Browser Automation, and Web Searching. To ensure rigorous evaluation, we implement execution-based evaluators, including format evaluators for agent format compliance, static evaluators for time-invariant content matching, and dynamic evaluators that automatically retrieve real-time ground truth for temporally sensitive tasks. Through extensive evaluation of leading LLMs, we find that even SOTA models such as GPT-5 (43.72%), Grok-4 (33.33%) and Claude-4.0-Sonnet (29.44%) exhibit significant performance limitations. In addition, our benchmark poses a significant long-context challenge for LLM agents, as the number of input tokens increases rapidly with the number of interaction steps. Moreover, it introduces an unknown-tools challenge, as LLM agents often lack familiarity with the precise usage of the MCP servers. Notably, enterprise-level agents like Cursor cannot achieve better performance than standard ReAct frameworks. Beyond evaluation, we open-source our extensible evaluation framework with UI support, enabling researchers and practitioners to seamlessly integrate new agents and MCP servers while fostering innovation in the rapidly evolving MCP ecosystem.

  • 10 authors
·
Aug 20 10

CODE-ACCORD: A Corpus of Building Regulatory Data for Rule Generation towards Automatic Compliance Checking

Automatic Compliance Checking (ACC) within the Architecture, Engineering, and Construction (AEC) sector necessitates automating the interpretation of building regulations to achieve its full potential. However, extracting information from textual rules to convert them to a machine-readable format has been a challenge due to the complexities associated with natural language and the limited resources that can support advanced machine-learning techniques. To address this challenge, we introduce CODE-ACCORD, a unique dataset compiled under the EU Horizon ACCORD project. CODE-ACCORD comprises 862 self-contained sentences extracted from the building regulations of England and Finland. Aligned with our core objective of facilitating information extraction from text for machine-readable rule generation, each sentence was annotated with entities and relations. Entities represent specific components such as "window" and "smoke detectors", while relations denote semantic associations between these entities, collectively capturing the conveyed ideas in natural language. We manually annotated all the sentences using a group of 12 annotators. Each sentence underwent annotations by multiple annotators and subsequently careful data curation to finalise annotations, ensuring their accuracy and reliability, thereby establishing the dataset as a solid ground truth. CODE-ACCORD offers a rich resource for diverse machine learning and natural language processing (NLP) related tasks in ACC, including text classification, entity recognition and relation extraction. To the best of our knowledge, this is the first entity and relation-annotated dataset in compliance checking, which is also publicly available.

  • 14 authors
·
Mar 4, 2024

Generating Structured Outputs from Language Models: Benchmark and Studies

Reliably generating structured outputs has become a critical capability for modern language model (LM) applications. Constrained decoding has emerged as the dominant technology across sectors for enforcing structured outputs during generation. Despite its growing adoption, little has been done with the systematic evaluation of the behaviors and performance of constrained decoding. Constrained decoding frameworks have standardized around JSON Schema as a structured data format, with most uses guaranteeing constraint compliance given a schema. However, there is poor understanding of the effectiveness of the methods in practice. We present an evaluation framework to assess constrained decoding approaches across three critical dimensions: efficiency in generating constraint-compliant outputs, coverage of diverse constraint types, and quality of the generated outputs. To facilitate this evaluation, we introduce JSONSchemaBench, a benchmark for constrained decoding comprising 10K real-world JSON schemas that encompass a wide range of constraints with varying complexity. We pair the benchmark with the existing official JSON Schema Test Suite and evaluate six state-of-the-art constrained decoding frameworks, including Guidance, Outlines, Llamacpp, XGrammar, OpenAI, and Gemini. Through extensive experiments, we gain insights into the capabilities and limitations of constrained decoding on structured generation with real-world JSON schemas. Our work provides actionable insights for improving constrained decoding frameworks and structured generation tasks, setting a new standard for evaluating constrained decoding and structured generation. We release JSONSchemaBench at https://github.com/guidance-ai/jsonschemabench

  • 9 authors
·
Jan 18

Regulatory Compliance through Doc2Doc Information Retrieval: A case study in EU/UK legislation where text similarity has limitations

Major scandals in corporate history have urged the need for regulatory compliance, where organizations need to ensure that their controls (processes) comply with relevant laws, regulations, and policies. However, keeping track of the constantly changing legislation is difficult, thus organizations are increasingly adopting Regulatory Technology (RegTech) to facilitate the process. To this end, we introduce regulatory information retrieval (REG-IR), an application of document-to-document information retrieval (DOC2DOC IR), where the query is an entire document making the task more challenging than traditional IR where the queries are short. Furthermore, we compile and release two datasets based on the relationships between EU directives and UK legislation. We experiment on these datasets using a typical two-step pipeline approach comprising a pre-fetcher and a neural re-ranker. Experimenting with various pre-fetchers from BM25 to k nearest neighbors over representations from several BERT models, we show that fine-tuning a BERT model on an in-domain classification task produces the best representations for IR. We also show that neural re-rankers under-perform due to contradicting supervision, i.e., similar query-document pairs with opposite labels. Thus, they are biased towards the pre-fetcher's score. Interestingly, applying a date filter further improves the performance, showcasing the importance of the time dimension.

  • 5 authors
·
Jan 26, 2021

Ensuring Safe and High-Quality Outputs: A Guideline Library Approach for Language Models

Large Language Models (LLMs) exhibit impressive capabilities but also present risks such as biased content generation and privacy issues. One of the current alignment techniques includes principle-driven integration, but it faces challenges arising from the imprecision of manually crafted rules and inadequate risk perception in models without safety training. To address these, we introduce Guide-Align, a two-stage approach. Initially, a safety-trained model identifies potential risks and formulates specific guidelines for various inputs, establishing a comprehensive library of guidelines and a model for input-guidelines retrieval. Subsequently, the retrieval model correlates new inputs with relevant guidelines, which guide LLMs in response generation to ensure safe and high-quality outputs, thereby aligning with human values. An additional optional stage involves fine-tuning a model with well-aligned datasets generated through the process implemented in the second stage. Our method customizes guidelines to accommodate diverse inputs, thereby enhancing the fine-grainedness and comprehensiveness of the guideline library. Furthermore, it incorporates safety expertise from a safety-trained LLM through a lightweight retrieval model. We evaluate our approach on three benchmarks, demonstrating significant improvements in LLM security and quality. Notably, our fine-tuned model, Labrador, even at 13 billion parameters, outperforms GPT-3.5-turbo and surpasses GPT-4 in alignment capabilities.

  • 10 authors
·
Mar 18, 2024

FinSage: A Multi-aspect RAG System for Financial Filings Question Answering

Leveraging large language models in real-world settings often entails a need to utilize domain-specific data and tools in order to follow the complex regulations that need to be followed for acceptable use. Within financial sectors, modern enterprises increasingly rely on Retrieval-Augmented Generation (RAG) systems to address complex compliance requirements in financial document workflows. However, existing solutions struggle to account for the inherent heterogeneity of data (e.g., text, tables, diagrams) and evolving nature of regulatory standards used in financial filings, leading to compromised accuracy in critical information extraction. We propose the FinSage framework as a solution, utilizing a multi-aspect RAG framework tailored for regulatory compliance analysis in multi-modal financial documents. FinSage introduces three innovative components: (1) a multi-modal pre-processing pipeline that unifies diverse data formats and generates chunk-level metadata summaries, (2) a multi-path sparse-dense retrieval system augmented with query expansion (HyDE) and metadata-aware semantic search, and (3) a domain-specialized re-ranking module fine-tuned via Direct Preference Optimization (DPO) to prioritize compliance-critical content. Extensive experiments demonstrate that FinSage achieves an impressive recall of 92.51% on 75 expert-curated questions derived from surpasses the best baseline method on the FinanceBench question answering datasets by 24.06% in accuracy. Moreover, FinSage has been successfully deployed as financial question-answering agent in online meetings, where it has already served more than 1,200 people.

  • 16 authors
·
Apr 20

Trustworthy LLMs: a Survey and Guideline for Evaluating Large Language Models' Alignment

Ensuring alignment, which refers to making models behave in accordance with human intentions [1,2], has become a critical task before deploying large language models (LLMs) in real-world applications. For instance, OpenAI devoted six months to iteratively aligning GPT-4 before its release [3]. However, a major challenge faced by practitioners is the lack of clear guidance on evaluating whether LLM outputs align with social norms, values, and regulations. This obstacle hinders systematic iteration and deployment of LLMs. To address this issue, this paper presents a comprehensive survey of key dimensions that are crucial to consider when assessing LLM trustworthiness. The survey covers seven major categories of LLM trustworthiness: reliability, safety, fairness, resistance to misuse, explainability and reasoning, adherence to social norms, and robustness. Each major category is further divided into several sub-categories, resulting in a total of 29 sub-categories. Additionally, a subset of 8 sub-categories is selected for further investigation, where corresponding measurement studies are designed and conducted on several widely-used LLMs. The measurement results indicate that, in general, more aligned models tend to perform better in terms of overall trustworthiness. However, the effectiveness of alignment varies across the different trustworthiness categories considered. This highlights the importance of conducting more fine-grained analyses, testing, and making continuous improvements on LLM alignment. By shedding light on these key dimensions of LLM trustworthiness, this paper aims to provide valuable insights and guidance to practitioners in the field. Understanding and addressing these concerns will be crucial in achieving reliable and ethically sound deployment of LLMs in various applications.

  • 8 authors
·
Aug 10, 2023 2

Stronger Together: on the Articulation of Ethical Charters, Legal Tools, and Technical Documentation in ML

The growing need for accountability of the people behind AI systems can be addressed by leveraging processes in three fields of study: ethics, law, and computer science. While these fields are often considered in isolation, they rely on complementary notions in their interpretation and implementation. In this work, we detail this interdependence and motivate the necessary role of collaborative governance tools in shaping a positive evolution of AI. We first contrast notions of compliance in the ethical, legal, and technical fields; we outline both their differences and where they complement each other, with a particular focus on the roles of ethical charters, licenses, and technical documentation in these interactions. We then focus on the role of values in articulating the synergies between the fields and outline specific mechanisms of interaction between them in practice. We identify how these mechanisms have played out in several open governance fora: an open collaborative workshop, a responsible licensing initiative, and a proposed regulatory framework. By leveraging complementary notions of compliance in these three domains, we can create a more comprehensive framework for governing AI systems that jointly takes into account their technical capabilities, their impact on society, and how technical specifications can inform relevant regulations. Our analysis thus underlines the necessity of joint consideration of the ethical, legal, and technical in AI ethics frameworks to be used on a larger scale to govern AI systems and how the thinking in each of these areas can inform the others.

  • 4 authors
·
May 9, 2023

EU-Agent-Bench: Measuring Illegal Behavior of LLM Agents Under EU Law

Large language models (LLMs) are increasingly deployed as agents in various contexts by providing tools at their disposal. However, LLM agents can exhibit unpredictable behaviors, including taking undesirable and/or unsafe actions. In order to measure the latent propensity of LLM agents for taking illegal actions under an EU legislative context, we introduce EU-Agent-Bench, a verifiable human-curated benchmark that evaluates an agent's alignment with EU legal norms in situations where benign user inputs could lead to unlawful actions. Our benchmark spans scenarios across several categories, including data protection, bias/discrimination, and scientific integrity, with each user request allowing for both compliant and non-compliant execution of the requested actions. Comparing the model's function calls against a rubric exhaustively supported by citations of the relevant legislature, we evaluate the legal compliance of frontier LLMs, and furthermore investigate the compliance effect of providing the relevant legislative excerpts in the agent's system prompt along with explicit instructions to comply. We release a public preview set for the research community, while holding out a private test set to prevent data contamination in evaluating upcoming models. We encourage future work extending agentic safety benchmarks to different legal jurisdictions and to multi-turn and multilingual interactions. We release our code on https://github.com/ilijalichkovski/eu-agent-bench{this URL}.

  • 4 authors
·
Oct 24

LiCoEval: Evaluating LLMs on License Compliance in Code Generation

Recent advances in Large Language Models (LLMs) have revolutionized code generation, leading to widespread adoption of AI coding tools by developers. However, LLMs can generate license-protected code without providing the necessary license information, leading to potential intellectual property violations during software production. This paper addresses the critical, yet underexplored, issue of license compliance in LLM-generated code by establishing a benchmark to evaluate the ability of LLMs to provide accurate license information for their generated code. To establish this benchmark, we conduct an empirical study to identify a reasonable standard for "striking similarity" that excludes the possibility of independent creation, indicating a copy relationship between the LLM output and certain open-source code. Based on this standard, we propose LiCoEval, to evaluate the license compliance capabilities of LLMs, i.e., the ability to provide accurate license or copyright information when they generate code with striking similarity to already existing copyrighted code. Using LiCoEval, we evaluate 14 popular LLMs, finding that even top-performing LLMs produce a non-negligible proportion (0.88% to 2.01%) of code strikingly similar to existing open-source implementations. Notably, most LLMs fail to provide accurate license information, particularly for code under copyleft licenses. These findings underscore the urgent need to enhance LLM compliance capabilities in code generation tasks. Our study provides a foundation for future research and development to improve license compliance in AI-assisted software development, contributing to both the protection of open-source software copyrights and the mitigation of legal risks for LLM users.

  • 4 authors
·
Aug 5, 2024

Red Teaming for Generative AI, Report on a Copyright-Focused Exercise Completed in an Academic Medical Center

Background: Generative artificial intelligence (AI) deployment in academic medical settings raises copyright compliance concerns. Dana-Farber Cancer Institute implemented GPT4DFCI, an internal generative AI tool utilizing OpenAI models, that is approved for enterprise use in research and operations. Given (1) the exceptionally broad adoption of the tool in our organization, (2) our research mission, and (3) the shared responsibility model required to benefit from Customer Copyright Commitment in Azure OpenAI Service products, we deemed rigorous copyright compliance testing necessary. Case Description: We conducted a structured red teaming exercise in Nov. 2024, with 42 participants from academic, industry, and government institutions. Four teams attempted to extract copyrighted content from GPT4DFCI across four domains: literary works, news articles, scientific publications, and access-restricted clinical notes. Teams successfully extracted verbatim book dedications and near-exact passages through various strategies. News article extraction failed despite jailbreak attempts. Scientific article reproduction yielded only high-level summaries. Clinical note testing revealed appropriate privacy safeguards. Discussion: The successful extraction of literary content indicates potential copyrighted material presence in training data, necessitating inference-time filtering. Differential success rates across content types suggest varying protective mechanisms. The event led to implementation of a copyright-specific meta-prompt in GPT4DFCI; this mitigation has been in production since Jan. 2025. Conclusion: Systematic red teaming revealed specific vulnerabilities in generative AI copyright compliance, leading to concrete mitigation strategies. Academic medical institutions deploying generative AI should implement continuous testing protocols to ensure legal and ethical compliance.

  • 41 authors
·
Jun 26

Compliance Cards: Computational Artifacts for Automated AI Regulation Compliance

As the artificial intelligence (AI) supply chain grows more complex, AI systems and models are increasingly likely to incorporate externally-sourced ingredients such as datasets and other models. In such cases, determining whether or not an AI system or model complies with the EU AI Act will require gathering compliance-related metadata about both the AI system or model at-large as well as those externally-supplied ingredients. There must then be an analysis that looks across all of this metadata to render a prediction about the compliance of the overall AI system or model. Up until now, this process has not been automated. Thus, it has not been possible to make real-time compliance determinations in scenarios where doing so would be advantageous, such as the iterative workflows of today's AI developers, search and acquisition of AI ingredients on communities like Hugging Face, federated and continuous learning, and more. To address this shortcoming, we introduce a highly automated system for AI Act compliance analysis. This system has two key elements. First is an interlocking set of computational artifacts that capture compliance-related metadata about both: (1) the AI system or model at-large; (2) any constituent ingredients such as datasets and models. Second is an automated analysis algorithm that operates across those computational artifacts to render a run-time prediction about whether or not the overall AI system or model complies with the AI Act. Working together, these elements promise to enhance and accelerate AI Act compliance assessments.

  • 7 authors
·
Jun 20, 2024

DocGenome: An Open Large-scale Scientific Document Benchmark for Training and Testing Multi-modal Large Language Models

Scientific documents record research findings and valuable human knowledge, comprising a vast corpus of high-quality data. Leveraging multi-modality data extracted from these documents and assessing large models' abilities to handle scientific document-oriented tasks is therefore meaningful. Despite promising advancements, large models still perform poorly on multi-page scientific document extraction and understanding tasks, and their capacity to process within-document data formats such as charts and equations remains under-explored. To address these issues, we present DocGenome, a structured document benchmark constructed by annotating 500K scientific documents from 153 disciplines in the arXiv open-access community, using our custom auto-labeling pipeline. DocGenome features four key characteristics: 1) Completeness: It is the first dataset to structure data from all modalities including 13 layout attributes along with their LaTeX source codes. 2) Logicality: It provides 6 logical relationships between different entities within each scientific document. 3) Diversity: It covers various document-oriented tasks, including document classification, visual grounding, document layout detection, document transformation, open-ended single-page QA and multi-page QA. 4) Correctness: It undergoes rigorous quality control checks conducted by a specialized team. We conduct extensive experiments to demonstrate the advantages of DocGenome and objectively evaluate the performance of large models on our benchmark.

  • 23 authors
·
Jun 17, 2024

OVERT: A Benchmark for Over-Refusal Evaluation on Text-to-Image Models

Text-to-Image (T2I) models have achieved remarkable success in generating visual content from text inputs. Although multiple safety alignment strategies have been proposed to prevent harmful outputs, they often lead to overly cautious behavior -- rejecting even benign prompts -- a phenomenon known as over-refusal that reduces the practical utility of T2I models. Despite over-refusal having been observed in practice, there is no large-scale benchmark that systematically evaluates this phenomenon for T2I models. In this paper, we present an automatic workflow to construct synthetic evaluation data, resulting in OVERT (OVEr-Refusal evaluation on Text-to-image models), the first large-scale benchmark for assessing over-refusal behaviors in T2I models. OVERT includes 4,600 seemingly harmful but benign prompts across nine safety-related categories, along with 1,785 genuinely harmful prompts (OVERT-unsafe) to evaluate the safety-utility trade-off. Using OVERT, we evaluate several leading T2I models and find that over-refusal is a widespread issue across various categories (Figure 1), underscoring the need for further research to enhance the safety alignment of T2I models without compromising their functionality. As a preliminary attempt to reduce over-refusal, we explore prompt rewriting; however, we find it often compromises faithfulness to the meaning of the original prompts. Finally, we demonstrate the flexibility of our generation framework in accommodating diverse safety requirements by generating customized evaluation data adapting to user-defined policies.

  • 7 authors
·
May 27

The Ethics of ChatGPT in Medicine and Healthcare: A Systematic Review on Large Language Models (LLMs)

With the introduction of ChatGPT, Large Language Models (LLMs) have received enormous attention in healthcare. Despite their potential benefits, researchers have underscored various ethical implications. While individual instances have drawn much attention, the debate lacks a systematic overview of practical applications currently researched and ethical issues connected to them. Against this background, this work aims to map the ethical landscape surrounding the current stage of deployment of LLMs in medicine and healthcare. Electronic databases and preprint servers were queried using a comprehensive search strategy. Studies were screened and extracted following a modified rapid review approach. Methodological quality was assessed using a hybrid approach. For 53 records, a meta-aggregative synthesis was performed. Four fields of applications emerged and testify to a vivid exploration phase. Advantages of using LLMs are attributed to their capacity in data analysis, personalized information provisioning, support in decision-making, mitigating information loss and enhancing information accessibility. However, we also identifies recurrent ethical concerns connected to fairness, bias, non-maleficence, transparency, and privacy. A distinctive concern is the tendency to produce harmful misinformation or convincingly but inaccurate content. A recurrent plea for ethical guidance and human oversight is evident. Given the variety of use cases, it is suggested that the ethical guidance debate be reframed to focus on defining what constitutes acceptable human oversight across the spectrum of applications. This involves considering diverse settings, varying potentials for harm, and different acceptable thresholds for performance and certainty in healthcare. In addition, a critical inquiry is necessary to determine the extent to which the current experimental use of LLMs is necessary and justified.

  • 2 authors
·
Mar 21, 2024

Struc-Bench: Are Large Language Models Really Good at Generating Complex Structured Data?

Despite the power of Large Language Models (LLMs) like GPT-4, they still struggle with tasks that require generating complex, structured outputs. In this study, we assess the capability of Current LLMs in generating complex structured data and propose a structure-aware fine-tuning approach as a solution to improve this ability. To perform a comprehensive evaluation, we propose Struc-Bench, include five representative LLMs (i.e., GPT-NeoX 20B, GPT-3.5, GPT-4, and Vicuna) and evaluate them on our carefully constructed datasets spanning raw text, HTML, and LaTeX tables. Based on our analysis of current model performance, we identify specific common formatting errors and areas of potential improvement. To address complex formatting requirements, we utilize FormatCoT (Chain-of-Thought) to generate format instructions from target outputs. Our experiments show that our structure-aware fine-tuning method, when applied to LLaMA-7B, significantly improves adherence to natural language constraints, outperforming other evaluated LLMs. Based on these results, we present an ability map of model capabilities from six dimensions (i.e., coverage, formatting, reasoning, comprehension, pragmatics, and hallucination). This map highlights the weaknesses of LLMs in handling complex structured outputs and suggests promising directions for future work. Our code and models can be found at https://github.com/gersteinlab/Struc-Bench.

  • 5 authors
·
Sep 16, 2023 1

Leveraging Graph-RAG and Prompt Engineering to Enhance LLM-Based Automated Requirement Traceability and Compliance Checks

Ensuring that Software Requirements Specifications (SRS) align with higher-level organizational or national requirements is vital, particularly in regulated environments such as finance and aerospace. In these domains, maintaining consistency, adhering to regulatory frameworks, minimizing errors, and meeting critical expectations are essential for the reliable functioning of systems. The widespread adoption of large language models (LLMs) highlights their immense potential, yet there remains considerable scope for improvement in retrieving relevant information and enhancing reasoning capabilities. This study demonstrates that integrating a robust Graph-RAG framework with advanced prompt engineering techniques, such as Chain of Thought and Tree of Thought, can significantly enhance performance. Compared to baseline RAG methods and simple prompting strategies, this approach delivers more accurate and context-aware results. While this method demonstrates significant improvements in performance, it comes with challenges. It is both costly and more complex to implement across diverse contexts, requiring careful adaptation to specific scenarios. Additionally, its effectiveness heavily relies on having complete and accurate input data, which may not always be readily available, posing further limitations to its scalability and practicality.

  • 5 authors
·
Dec 11, 2024

IryoNLP at MEDIQA-CORR 2024: Tackling the Medical Error Detection & Correction Task On the Shoulders of Medical Agents

In natural language processing applied to the clinical domain, utilizing large language models has emerged as a promising avenue for error detection and correction on clinical notes, a knowledge-intensive task for which annotated data is scarce. This paper presents MedReAct'N'MedReFlex, which leverages a suite of four LLM-based medical agents. The MedReAct agent initiates the process by observing, analyzing, and taking action, generating trajectories to guide the search to target a potential error in the clinical notes. Subsequently, the MedEval agent employs five evaluators to assess the targeted error and the proposed correction. In cases where MedReAct's actions prove insufficient, the MedReFlex agent intervenes, engaging in reflective analysis and proposing alternative strategies. Finally, the MedFinalParser agent formats the final output, preserving the original style while ensuring the integrity of the error correction process. One core component of our method is our RAG pipeline based on our ClinicalCorp corpora. Among other well-known sources containing clinical guidelines and information, we preprocess and release the open-source MedWiki dataset for clinical RAG application. Our results demonstrate the central role of our RAG approach with ClinicalCorp leveraged through the MedReAct'N'MedReFlex framework. It achieved the ninth rank on the MEDIQA-CORR 2024 final leaderboard.

  • 1 authors
·
Apr 23, 2024

Foundation Models and Fair Use

Existing foundation models are trained on copyrighted material. Deploying these models can pose both legal and ethical risks when data creators fail to receive appropriate attribution or compensation. In the United States and several other countries, copyrighted content may be used to build foundation models without incurring liability due to the fair use doctrine. However, there is a caveat: If the model produces output that is similar to copyrighted data, particularly in scenarios that affect the market of that data, fair use may no longer apply to the output of the model. In this work, we emphasize that fair use is not guaranteed, and additional work may be necessary to keep model development and deployment squarely in the realm of fair use. First, we survey the potential risks of developing and deploying foundation models based on copyrighted content. We review relevant U.S. case law, drawing parallels to existing and potential applications for generating text, source code, and visual art. Experiments confirm that popular foundation models can generate content considerably similar to copyrighted material. Second, we discuss technical mitigations that can help foundation models stay in line with fair use. We argue that more research is needed to align mitigation strategies with the current state of the law. Lastly, we suggest that the law and technical mitigations should co-evolve. For example, coupled with other policy mechanisms, the law could more explicitly consider safe harbors when strong technical tools are used to mitigate infringement harms. This co-evolution may help strike a balance between intellectual property and innovation, which speaks to the original goal of fair use. But we emphasize that the strategies we describe here are not a panacea and more work is needed to develop policies that address the potential harms of foundation models.

  • 6 authors
·
Mar 27, 2023 1

SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore

The legality of training language models (LMs) on copyrighted or otherwise restricted data is under intense debate. However, as we show, model performance significantly degrades if trained only on low-risk text (e.g., out-of-copyright books or government documents), due to its limited size and domain coverage. We present SILO, a new language model that manages this risk-performance tradeoff during inference. SILO is built by (1) training a parametric LM on Open License Corpus (OLC), a new corpus we curate with 228B tokens of public domain and permissively licensed text and (2) augmenting it with a more general and easily modifiable nonparametric datastore (e.g., containing copyrighted books or news) that is only queried during inference. The datastore allows use of high-risk data without training on it, supports sentence-level data attribution, and enables data producers to opt out from the model by removing content from the store. These capabilities can foster compliance with data-use regulations such as the fair use doctrine in the United States and the GDPR in the European Union. Our experiments show that the parametric LM struggles on domains not covered by OLC. However, access to the datastore greatly improves out of domain performance, closing 90% of the performance gap with an LM trained on the Pile, a more diverse corpus with mostly high-risk text. We also analyze which nonparametric approach works best, where the remaining errors lie, and how performance scales with datastore size. Our results suggest that it is possible to build high quality language models while mitigating their legal risk.

  • 6 authors
·
Aug 8, 2023

Demystifying Large Language Models for Medicine: A Primer

Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare by generating human-like responses across diverse contexts and adapting to novel tasks following human instructions. Their potential application spans a broad range of medical tasks, such as clinical documentation, matching patients to clinical trials, and answering medical questions. In this primer paper, we propose an actionable guideline to help healthcare professionals more efficiently utilize LLMs in their work, along with a set of best practices. This approach consists of several main phases, including formulating the task, choosing LLMs, prompt engineering, fine-tuning, and deployment. We start with the discussion of critical considerations in identifying healthcare tasks that align with the core capabilities of LLMs and selecting models based on the selected task and data, performance requirements, and model interface. We then review the strategies, such as prompt engineering and fine-tuning, to adapt standard LLMs to specialized medical tasks. Deployment considerations, including regulatory compliance, ethical guidelines, and continuous monitoring for fairness and bias, are also discussed. By providing a structured step-by-step methodology, this tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice, ensuring that these powerful technologies are applied in a safe, reliable, and impactful manner.

  • 23 authors
·
Oct 24, 2024

StyleTokenizer: Defining Image Style by a Single Instance for Controlling Diffusion Models

Despite the burst of innovative methods for controlling the diffusion process, effectively controlling image styles in text-to-image generation remains a challenging task. Many adapter-based methods impose image representation conditions on the denoising process to accomplish image control. However these conditions are not aligned with the word embedding space, leading to interference between image and text control conditions and the potential loss of semantic information from the text prompt. Addressing this issue involves two key challenges. Firstly, how to inject the style representation without compromising the effectiveness of text representation in control. Secondly, how to obtain the accurate style representation from a single reference image. To tackle these challenges, we introduce StyleTokenizer, a zero-shot style control image generation method that aligns style representation with text representation using a style tokenizer. This alignment effectively minimizes the impact on the effectiveness of text prompts. Furthermore, we collect a well-labeled style dataset named Style30k to train a style feature extractor capable of accurately representing style while excluding other content information. Experimental results demonstrate that our method fully grasps the style characteristics of the reference image, generating appealing images that are consistent with both the target image style and text prompt. The code and dataset are available at https://github.com/alipay/style-tokenizer.

  • 8 authors
·
Sep 4, 2024

Challenges and Considerations in Annotating Legal Data: A Comprehensive Overview

The process of annotating data within the legal sector is filled with distinct challenges that differ from other fields, primarily due to the inherent complexities of legal language and documentation. The initial task usually involves selecting an appropriate raw dataset that captures the intricate aspects of legal texts. Following this, extracting text becomes a complicated task, as legal documents often have complex structures, footnotes, references, and unique terminology. The importance of data cleaning is magnified in this context, ensuring that redundant information is eliminated while maintaining crucial legal details and context. Creating comprehensive yet straightforward annotation guidelines is imperative, as these guidelines serve as the road map for maintaining uniformity and addressing the subtle nuances of legal terminology. Another critical aspect is the involvement of legal professionals in the annotation process. Their expertise is valuable in ensuring that the data not only remains contextually accurate but also adheres to prevailing legal standards and interpretations. This paper provides an expanded view of these challenges and aims to offer a foundational understanding and guidance for researchers and professionals engaged in legal data annotation projects. In addition, we provide links to our created and fine-tuned datasets and language models. These resources are outcomes of our discussed projects and solutions to challenges faced while working on them.

  • 3 authors
·
Jul 5, 2024