Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOn-Device LLMs for Home Assistant: Dual Role in Intent Detection and Response Generation
This paper investigates whether Large Language Models (LLMs), fine-tuned on synthetic but domain-representative data, can perform the twofold task of (i) slot and intent detection and (ii) natural language response generation for a smart home assistant, while running solely on resource-limited, CPU-only edge hardware. We fine-tune LLMs to produce both JSON action calls and text responses. Our experiments show that 16-bit and 8-bit quantized variants preserve high accuracy on slot and intent detection and maintain strong semantic coherence in generated text, while the 4-bit model, while retaining generative fluency, suffers a noticeable drop in device-service classification accuracy. Further evaluations on noisy human (non-synthetic) prompts and out-of-domain intents confirm the models' generalization ability, obtaining around 80--86\% accuracy. While the average inference time is 5--6 seconds per query -- acceptable for one-shot commands but suboptimal for multi-turn dialogue -- our results affirm that an on-device LLM can effectively unify command interpretation and flexible response generation for home automation without relying on specialized hardware.
Gaperon: A Peppered English-French Generative Language Model Suite
We release Gaperon, a fully open suite of French-English-coding language models designed to advance transparency and reproducibility in large-scale model training. The Gaperon family includes 1.5B, 8B, and 24B parameter models trained on 2-4 trillion tokens, released with all elements of the training pipeline: French and English datasets filtered with a neural quality classifier, an efficient data curation and training framework, and hundreds of intermediate checkpoints. Through this work, we study how data filtering and contamination interact to shape both benchmark and generative performance. We find that filtering for linguistic quality enhances text fluency and coherence but yields subpar benchmark results, and that late deliberate contamination -- continuing training on data mixes that include test sets -- recovers competitive scores while only reasonably harming generation quality. We discuss how usual neural filtering can unintentionally amplify benchmark leakage. To support further research, we also introduce harmless data poisoning during pretraining, providing a realistic testbed for safety studies. By openly releasing all models, datasets, code, and checkpoints, Gaperon establishes a reproducible foundation for exploring the trade-offs between data curation, evaluation, safety, and openness in multilingual language model development.
(G)I-DLE: Generative Inference via Distribution-preserving Logit Exclusion with KL Divergence Minimization for Constrained Decoding
We propose (G)I-DLE, a new approach to constrained decoding that leverages KL divergence minimization to preserve the intrinsic conditional probability distribution of autoregressive language models while excluding undesirable tokens. Unlike conventional methods that naively set banned tokens' logits to -infty, which can distort the conversion from raw logits to posterior probabilities and increase output variance, (G)I-DLE re-normalizes the allowed token probabilities to minimize such distortion. We validate our method on the K2-Eval dataset, specifically designed to assess Korean language fluency, logical reasoning, and cultural appropriateness. Experimental results on Qwen2.5 models (ranging from 1.5B to 14B) demonstrate that G-IDLE not only boosts mean evaluation scores but also substantially reduces the variance of output quality.
Characterizing Attribution and Fluency Tradeoffs for Retrieval-Augmented Large Language Models
Despite recent progress, it has been difficult to prevent semantic hallucinations in generative Large Language Models. One common solution to this is augmenting LLMs with a retrieval system and making sure that the generated output is attributable to the retrieved information. Given this new added constraint, it is plausible to expect that the overall quality of the output will be affected, for example, in terms of fluency. Can scaling language models help? Here we examine the relationship between fluency and attribution in LLMs prompted with retrieved evidence in knowledge-heavy dialog settings. Our experiments were implemented with a set of auto-metrics that are aligned with human preferences. They were used to evaluate a large set of generations, produced under varying parameters of LLMs and supplied context. We show that larger models tend to do much better in both fluency and attribution, and that (naively) using top-k retrieval versus top-1 retrieval improves attribution but hurts fluency. We next propose a recipe that could allow smaller models to both close the gap with larger models and preserve the benefits of top-k retrieval while avoiding its drawbacks.
Knowledge-Grounded Conversational Data Augmentation with Generative Conversational Networks
While rich, open-domain textual data are generally available and may include interesting phenomena (humor, sarcasm, empathy, etc.) most are designed for language processing tasks, and are usually in a non-conversational format. In this work, we take a step towards automatically generating conversational data using Generative Conversational Networks, aiming to benefit from the breadth of available language and knowledge data, and train open domain social conversational agents. We evaluate our approach on conversations with and without knowledge on the Topical Chat dataset using automatic metrics and human evaluators. Our results show that for conversations without knowledge grounding, GCN can generalize from the seed data, producing novel conversations that are less relevant but more engaging and for knowledge-grounded conversations, it can produce more knowledge-focused, fluent, and engaging conversations. Specifically, we show that for open-domain conversations with 10\% of seed data, our approach performs close to the baseline that uses 100% of the data, while for knowledge-grounded conversations, it achieves the same using only 1% of the data, on human ratings of engagingness, fluency, and relevance.
Show and Tell: Lessons learned from the 2015 MSCOCO Image Captioning Challenge
Automatically describing the content of an image is a fundamental problem in artificial intelligence that connects computer vision and natural language processing. In this paper, we present a generative model based on a deep recurrent architecture that combines recent advances in computer vision and machine translation and that can be used to generate natural sentences describing an image. The model is trained to maximize the likelihood of the target description sentence given the training image. Experiments on several datasets show the accuracy of the model and the fluency of the language it learns solely from image descriptions. Our model is often quite accurate, which we verify both qualitatively and quantitatively. Finally, given the recent surge of interest in this task, a competition was organized in 2015 using the newly released COCO dataset. We describe and analyze the various improvements we applied to our own baseline and show the resulting performance in the competition, which we won ex-aequo with a team from Microsoft Research, and provide an open source implementation in TensorFlow.
Generative Pre-training for Speech with Flow Matching
Generative models have gained more and more attention in recent years for their remarkable success in tasks that required estimating and sampling data distribution to generate high-fidelity synthetic data. In speech, text-to-speech synthesis and neural vocoder are good examples where generative models have shined. While generative models have been applied to different applications in speech, there exists no general-purpose generative model that models speech directly. In this work, we take a step toward this direction by showing a single pre-trained generative model can be adapted to different downstream tasks with strong performance. Specifically, we pre-trained a generative model, named SpeechFlow, on 60k hours of untranscribed speech with Flow Matching and masked conditions. Experiment results show the pre-trained generative model can be fine-tuned with task-specific data to match or surpass existing expert models on speech enhancement, separation, and synthesis. Our work suggested a foundational model for generation tasks in speech can be built with generative pre-training.
Improving latent variable descriptiveness with AutoGen
Powerful generative models, particularly in Natural Language Modelling, are commonly trained by maximizing a variational lower bound on the data log likelihood. These models often suffer from poor use of their latent variable, with ad-hoc annealing factors used to encourage retention of information in the latent variable. We discuss an alternative and general approach to latent variable modelling, based on an objective that combines the data log likelihood as well as the likelihood of a perfect reconstruction through an autoencoder. Tying these together ensures by design that the latent variable captures information about the observations, whilst retaining the ability to generate well. Interestingly, though this approach is a priori unrelated to VAEs, the lower bound attained is identical to the standard VAE bound but with the addition of a simple pre-factor; thus, providing a formal interpretation of the commonly used, ad-hoc pre-factors in training VAEs.
Logical Natural Language Generation from Open-Domain Tables
Neural natural language generation (NLG) models have recently shown remarkable progress in fluency and coherence. However, existing studies on neural NLG are primarily focused on surface-level realizations with limited emphasis on logical inference, an important aspect of human thinking and language. In this paper, we suggest a new NLG task where a model is tasked with generating natural language statements that can be logically entailed by the facts in an open-domain semi-structured table. To facilitate the study of the proposed logical NLG problem, we use the existing TabFact dataset chen2019tabfact featured with a wide range of logical/symbolic inferences as our testbed, and propose new automatic metrics to evaluate the fidelity of generation models w.r.t.\ logical inference. The new task poses challenges to the existing monotonic generation frameworks due to the mismatch between sequence order and logical order. In our experiments, we comprehensively survey different generation architectures (LSTM, Transformer, Pre-Trained LM) trained with different algorithms (RL, Adversarial Training, Coarse-to-Fine) on the dataset and made following observations: 1) Pre-Trained LM can significantly boost both the fluency and logical fidelity metrics, 2) RL and Adversarial Training are trading fluency for fidelity, 3) Coarse-to-Fine generation can help partially alleviate the fidelity issue while maintaining high language fluency. The code and data are available at https://github.com/wenhuchen/LogicNLG.
On Training Data Influence of GPT Models
Amidst the rapid advancements in generative language models, the investigation of how training data shapes the performance of GPT models is still emerging. This paper presents GPTfluence, a novel approach that leverages a featurized simulation to assess the impact of training examples on the training dynamics of GPT models. Our approach not only traces the influence of individual training instances on performance trajectories, such as loss and other key metrics, on targeted test points but also enables a comprehensive comparison with existing methods across various training scenarios in GPT models, ranging from 14 million to 2.8 billion parameters, across a range of downstream tasks. Contrary to earlier methods that struggle with generalization to new data, GPTfluence introduces a parameterized simulation of training dynamics, demonstrating robust generalization capabilities to unseen training data. This adaptability is evident across both fine-tuning and instruction-tuning scenarios, spanning tasks in natural language understanding and generation. We will make our code and data publicly available.
Bob's Confetti: Phonetic Memorization Attacks in Music and Video Generation
Memorization in generative models extends far beyond verbatim text reproduction--it manifests through non-literal patterns, semantic associations, and surprisingly, across modalities in transcript-conditioned generation tasks such as Lyrics-to-Song (L2S) and Text-to-Video (T2V) models. We reveal a new class of cross-modality memorization where models trained on these tasks leak copyrighted content through indirect, phonetic pathways invisible to traditional text-based analysis. In this work, we introduce Adversarial PhoneTic Prompting (APT), an attack that replaces iconic phrases with homophonic alternatives--e.g., "mom's spaghetti" becomes "Bob's confetti"--preserving the acoustic form while largely changing semantic content. We demonstrate that models can be prompted to regurgitate memorized songs using phonetically similar but semantically unrelated lyrics. Despite the semantic drift, black-box models like SUNO and open-source models like YuE generate outputs that are strikingly similar to the original songs--melodically, rhythmically, and vocally--achieving high scores on AudioJudge, CLAP, and CoverID. These effects persist across genres and languages. More surprisingly, we find that phonetic prompts alone can trigger visual memorization in text-to-video models: when given altered lyrics from Lose Yourself, Veo 3 generates scenes that mirror the original music video--complete with a hooded rapper and dim urban settings--despite no explicit visual cues in the prompt. This cross-modality leakage represents an unprecedented threat: models memorize deep, structural patterns that transcend their training modality, making traditional safety measures like copyright filters ineffective. Our findings reveal a fundamental vulnerability in transcript-conditioned generative models and raise urgent concerns around copyright, provenance, and secure deployment of multimodal generation systems.
Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models
Recent text-to-image generative models have demonstrated an unparalleled ability to generate diverse and creative imagery guided by a target text prompt. While revolutionary, current state-of-the-art diffusion models may still fail in generating images that fully convey the semantics in the given text prompt. We analyze the publicly available Stable Diffusion model and assess the existence of catastrophic neglect, where the model fails to generate one or more of the subjects from the input prompt. Moreover, we find that in some cases the model also fails to correctly bind attributes (e.g., colors) to their corresponding subjects. To help mitigate these failure cases, we introduce the concept of Generative Semantic Nursing (GSN), where we seek to intervene in the generative process on the fly during inference time to improve the faithfulness of the generated images. Using an attention-based formulation of GSN, dubbed Attend-and-Excite, we guide the model to refine the cross-attention units to attend to all subject tokens in the text prompt and strengthen - or excite - their activations, encouraging the model to generate all subjects described in the text prompt. We compare our approach to alternative approaches and demonstrate that it conveys the desired concepts more faithfully across a range of text prompts.
Generative Teaching Networks: Accelerating Neural Architecture Search by Learning to Generate Synthetic Training Data
This paper investigates the intriguing question of whether we can create learning algorithms that automatically generate training data, learning environments, and curricula in order to help AI agents rapidly learn. We show that such algorithms are possible via Generative Teaching Networks (GTNs), a general approach that is, in theory, applicable to supervised, unsupervised, and reinforcement learning, although our experiments only focus on the supervised case. GTNs are deep neural networks that generate data and/or training environments that a learner (e.g. a freshly initialized neural network) trains on for a few SGD steps before being tested on a target task. We then differentiate through the entire learning process via meta-gradients to update the GTN parameters to improve performance on the target task. GTNs have the beneficial property that they can theoretically generate any type of data or training environment, making their potential impact large. This paper introduces GTNs, discusses their potential, and showcases that they can substantially accelerate learning. We also demonstrate a practical and exciting application of GTNs: accelerating the evaluation of candidate architectures for neural architecture search (NAS), which is rate-limited by such evaluations, enabling massive speed-ups in NAS. GTN-NAS improves the NAS state of the art, finding higher performing architectures when controlling for the search proposal mechanism. GTN-NAS also is competitive with the overall state of the art approaches, which achieve top performance while using orders of magnitude less computation than typical NAS methods. Speculating forward, GTNs may represent a first step toward the ambitious goal of algorithms that generate their own training data and, in doing so, open a variety of interesting new research questions and directions.
GUIDE: Guidance-based Incremental Learning with Diffusion Models
We introduce GUIDE, a novel continual learning approach that directs diffusion models to rehearse samples at risk of being forgotten. Existing generative strategies combat catastrophic forgetting by randomly sampling rehearsal examples from a generative model. Such an approach contradicts buffer-based approaches where sampling strategy plays an important role. We propose to bridge this gap by incorporating classifier guidance into the diffusion process to produce rehearsal examples specifically targeting information forgotten by a continuously trained model. This approach enables the generation of samples from preceding task distributions, which are more likely to be misclassified in the context of recently encountered classes. Our experimental results show that GUIDE significantly reduces catastrophic forgetting, outperforming conventional random sampling approaches and surpassing recent state-of-the-art methods in continual learning with generative replay.
Generative Models from the perspective of Continual Learning
Which generative model is the most suitable for Continual Learning? This paper aims at evaluating and comparing generative models on disjoint sequential image generation tasks. We investigate how several models learn and forget, considering various strategies: rehearsal, regularization, generative replay and fine-tuning. We used two quantitative metrics to estimate the generation quality and memory ability. We experiment with sequential tasks on three commonly used benchmarks for Continual Learning (MNIST, Fashion MNIST and CIFAR10). We found that among all models, the original GAN performs best and among Continual Learning strategies, generative replay outperforms all other methods. Even if we found satisfactory combinations on MNIST and Fashion MNIST, training generative models sequentially on CIFAR10 is particularly instable, and remains a challenge. Our code is available online \url{https://github.com/TLESORT/Generative\_Continual\_Learning}.
I2D2: Inductive Knowledge Distillation with NeuroLogic and Self-Imitation
Pre-trained language models, despite their rapid advancements powered by scale, still fall short of robust commonsense capabilities. And yet, scale appears to be the winning recipe; after all, the largest models seem to have acquired the largest amount of commonsense capabilities. Or is it? In this paper, we investigate the possibility of a seemingly impossible match: can smaller language models with dismal commonsense capabilities (i.e., GPT-2), ever win over models that are orders of magnitude larger and better (i.e., GPT-3), if the smaller models are powered with novel commonsense distillation algorithms? The key intellectual question we ask here is whether it is possible, if at all, to design a learning algorithm that does not benefit from scale, yet leads to a competitive level of commonsense acquisition. In this work, we study the generative models of commonsense knowledge, focusing on the task of generating generics, statements of commonsense facts about everyday concepts, e.g., birds can fly. We introduce a novel commonsense distillation framework, I2D2, that loosely follows the Symbolic Knowledge Distillation of West et al. but breaks the dependence on the extreme-scale models as the teacher model by two innovations: (1) the novel adaptation of NeuroLogic Decoding to enhance the generation quality of the weak, off-the-shelf language models, and (2) self-imitation learning to iteratively learn from the model's own enhanced commonsense acquisition capabilities. Empirical results suggest that scale is not the only way, as novel algorithms can be a promising alternative. Moreover, our study leads to a new corpus of generics, Gen-A-Tomic, that is of the largest and highest quality available to date.
SEED-Bench: Benchmarking Multimodal LLMs with Generative Comprehension
Based on powerful Large Language Models (LLMs), recent generative Multimodal Large Language Models (MLLMs) have gained prominence as a pivotal research area, exhibiting remarkable capability for both comprehension and generation. In this work, we address the evaluation of generative comprehension in MLLMs as a preliminary step towards a comprehensive assessment of generative models, by introducing a benchmark named SEED-Bench. SEED-Bench consists of 19K multiple choice questions with accurate human annotations (x 6 larger than existing benchmarks), which spans 12 evaluation dimensions including the comprehension of both the image and video modality. We develop an advanced pipeline for generating multiple-choice questions that target specific evaluation dimensions, integrating both automatic filtering and manual verification processes. Multiple-choice questions with groundtruth options derived from human annotation enables an objective and efficient assessment of model performance, eliminating the need for human or GPT intervention during evaluation. We further evaluate the performance of 18 models across all 12 dimensions, covering both the spatial and temporal understanding. By revealing the limitations of existing MLLMs through evaluation results, we aim for SEED-Bench to provide insights for motivating future research. We will launch and consistently maintain a leaderboard to provide a platform for the community to assess and investigate model capability.
A Comprehensive Survey on Continual Learning in Generative Models
The rapid advancement of generative models has enabled modern AI systems to comprehend and produce highly sophisticated content, even achieving human-level performance in specific domains. However, these models remain fundamentally constrained by catastrophic forgetting - a persistent challenge where adapting to new tasks typically leads to significant degradation in performance on previously learned tasks. To address this practical limitation, numerous approaches have been proposed to enhance the adaptability and scalability of generative models in real-world applications. In this work, we present a comprehensive survey of continual learning methods for mainstream generative models, including large language models, multimodal large language models, vision language action models, and diffusion models. Drawing inspiration from the memory mechanisms of the human brain, we systematically categorize these approaches into three paradigms: architecture-based, regularization-based, and replay-based methods, while elucidating their underlying methodologies and motivations. We further analyze continual learning setups for different generative models, including training objectives, benchmarks, and core backbones, offering deeper insights into the field. The project page of this paper is available at https://github.com/Ghy0501/Awesome-Continual-Learning-in-Generative-Models.
Diffusion Language Models Can Perform Many Tasks with Scaling and Instruction-Finetuning
The recent surge of generative AI has been fueled by the generative power of diffusion probabilistic models and the scalable capabilities of large language models. Despite their potential, it remains elusive whether diffusion language models can solve general language tasks comparable to their autoregressive counterparts. This paper demonstrates that scaling diffusion models w.r.t. data, sizes, and tasks can effectively make them strong language learners. We build competent diffusion language models at scale by first acquiring knowledge from massive data via masked language modeling pretraining thanks to their intrinsic connections. We then reprogram pretrained masked language models into diffusion language models via diffusive adaptation, wherein task-specific finetuning and instruction finetuning are explored to unlock their versatility in solving general language tasks. Experiments show that scaling diffusion language models consistently improves performance across downstream language tasks. We further discover that instruction finetuning can elicit zero-shot and few-shot in-context learning abilities that help tackle many unseen tasks by following natural language instructions, and show promise in advanced and challenging abilities such as reasoning.
Denoising Task Difficulty-based Curriculum for Training Diffusion Models
Diffusion-based generative models have emerged as powerful tools in the realm of generative modeling. Despite extensive research on denoising across various timesteps and noise levels, a conflict persists regarding the relative difficulties of the denoising tasks. While various studies argue that lower timesteps present more challenging tasks, others contend that higher timesteps are more difficult. To address this conflict, our study undertakes a comprehensive examination of task difficulties, focusing on convergence behavior and changes in relative entropy between consecutive probability distributions across timesteps. Our observational study reveals that denoising at earlier timesteps poses challenges characterized by slower convergence and higher relative entropy, indicating increased task difficulty at these lower timesteps. Building on these observations, we introduce an easy-to-hard learning scheme, drawing from curriculum learning, to enhance the training process of diffusion models. By organizing timesteps or noise levels into clusters and training models with ascending orders of difficulty, we facilitate an order-aware training regime, progressing from easier to harder denoising tasks, thereby deviating from the conventional approach of training diffusion models simultaneously across all timesteps. Our approach leads to improved performance and faster convergence by leveraging benefits of curriculum learning, while maintaining orthogonality with existing improvements in diffusion training techniques. We validate these advantages through comprehensive experiments in image generation tasks, including unconditional, class-conditional, and text-to-image generation.
DialectGen: Benchmarking and Improving Dialect Robustness in Multimodal Generation
Contact languages like English exhibit rich regional variations in the form of dialects, which are often used by dialect speakers interacting with generative models. However, can multimodal generative models effectively produce content given dialectal textual input? In this work, we study this question by constructing a new large-scale benchmark spanning six common English dialects. We work with dialect speakers to collect and verify over 4200 unique prompts and evaluate on 17 image and video generative models. Our automatic and human evaluation results show that current state-of-the-art multimodal generative models exhibit 32.26% to 48.17% performance degradation when a single dialect word is used in the prompt. Common mitigation methods such as fine-tuning and prompt rewriting can only improve dialect performance by small margins (< 7%), while potentially incurring significant performance degradation in Standard American English (SAE). To this end, we design a general encoder-based mitigation strategy for multimodal generative models. Our method teaches the model to recognize new dialect features while preserving SAE performance. Experiments on models such as Stable Diffusion 1.5 show that our method is able to simultaneously raise performance on five dialects to be on par with SAE (+34.4%), while incurring near zero cost to SAE performance.
Transcendence: Generative Models Can Outperform The Experts That Train Them
Generative models are trained with the simple objective of imitating the conditional probability distribution induced by the data they are trained on. Therefore, when trained on data generated by humans, we may not expect the artificial model to outperform the humans on their original objectives. In this work, we study the phenomenon of transcendence: when a generative model achieves capabilities that surpass the abilities of the experts generating its data. We demonstrate transcendence by training an autoregressive transformer to play chess from game transcripts, and show that the trained model can sometimes achieve better performance than all players in the dataset. We theoretically prove that transcendence is enabled by low-temperature sampling, and rigorously assess this experimentally. Finally, we discuss other sources of transcendence, laying the groundwork for future investigation of this phenomenon in a broader setting.
Enhancing Diffusion Models for High-Quality Image Generation
This report presents the comprehensive implementation, evaluation, and optimization of Denoising Diffusion Probabilistic Models (DDPMs) and Denoising Diffusion Implicit Models (DDIMs), which are state-of-the-art generative models. During inference, these models take random noise as input and iteratively generate high-quality images as output. The study focuses on enhancing their generative capabilities by incorporating advanced techniques such as Classifier-Free Guidance (CFG), Latent Diffusion Models with Variational Autoencoders (VAE), and alternative noise scheduling strategies. The motivation behind this work is the growing demand for efficient and scalable generative AI models that can produce realistic images across diverse datasets, addressing challenges in applications such as art creation, image synthesis, and data augmentation. Evaluations were conducted on datasets including CIFAR-10 and ImageNet-100, with a focus on improving inference speed, computational efficiency, and image quality metrics like Frechet Inception Distance (FID). Results demonstrate that DDIM + CFG achieves faster inference and superior image quality. Challenges with VAE and noise scheduling are also highlighted, suggesting opportunities for future optimization. This work lays the groundwork for developing scalable, efficient, and high-quality generative AI systems to benefit industries ranging from entertainment to robotics.
LinEAS: End-to-end Learning of Activation Steering with a Distributional Loss
The growing use of generative models in daily life calls for efficient mechanisms to control their generation, to e.g., produce safe content or provide users with tools to explore style changes. Ideally, such mechanisms should require low volume of unpaired data (i.e., without explicit preference), and should be cheap, both at train and inference time, while preserving output quality. Recent research has shown that such mechanisms can be obtained by intervening exclusively on model activations, with the goal of correcting distributional differences between activations seen when using prompts from a source vs. a target set (e.g., toxic and non-toxic sentences). While cheap, these fast methods are inherently crude: their maps are tuned locally, not accounting for their impact on downstream layers, resulting in interventions that cause unintended shifts when used out-of-sample. We propose in this work linear end-to-end activation steering (LinEAS), an approach trained with a global loss that accounts simultaneously for all layer-wise distributional shifts. In addition to being more robust, the loss used to train LinEAS can be regularized with sparsifying norms, which can automatically carry out neuron selection. LinEAS only requires a handful of unpaired samples to be effective, and beats similar baselines on toxicity mitigation in language models, becoming competitive with oracle-dependent methods that have access to strong supervision. LinEAS is modality-agnostic and we empirically find that it outperforms existing activation steering methods at mitigating and including new concepts at the output of single-step text-to-image generation models.
Multi-Modal Hallucination Control by Visual Information Grounding
Generative Vision-Language Models (VLMs) are prone to generate plausible-sounding textual answers that, however, are not always grounded in the input image. We investigate this phenomenon, usually referred to as "hallucination" and show that it stems from an excessive reliance on the language prior. In particular, we show that as more tokens are generated, the reliance on the visual prompt decreases, and this behavior strongly correlates with the emergence of hallucinations. To reduce hallucinations, we introduce Multi-Modal Mutual-Information Decoding (M3ID), a new sampling method for prompt amplification. M3ID amplifies the influence of the reference image over the language prior, hence favoring the generation of tokens with higher mutual information with the visual prompt. M3ID can be applied to any pre-trained autoregressive VLM at inference time without necessitating further training and with minimal computational overhead. If training is an option, we show that M3ID can be paired with Direct Preference Optimization (DPO) to improve the model's reliance on the prompt image without requiring any labels. Our empirical findings show that our algorithms maintain the fluency and linguistic capabilities of pre-trained VLMs while reducing hallucinations by mitigating visually ungrounded answers. Specifically, for the LLaVA 13B model, M3ID and M3ID+DPO reduce the percentage of hallucinated objects in captioning tasks by 25% and 28%, respectively, and improve the accuracy on VQA benchmarks such as POPE by 21% and 24%.
Can ChatGPT Make Explanatory Inferences? Benchmarks for Abductive Reasoning
Explanatory inference is the creation and evaluation of hypotheses that provide explanations, and is sometimes known as abduction or abductive inference. Generative AI is a new set of artificial intelligence models based on novel algorithms for generating text, images, and sounds. This paper proposes a set of benchmarks for assessing the ability of AI programs to perform explanatory inference, and uses them to determine the extent to which ChatGPT, a leading generative AI model, is capable of making explanatory inferences. Tests on the benchmarks reveal that ChatGPT performs creative and evaluative inferences in many domains, although it is limited to verbal and visual modalities. Claims that ChatGPT and similar models are incapable of explanation, understanding, causal reasoning, meaning, and creativity are rebutted.
Musical Form Generation
While recent generative models can produce engaging music, their utility is limited. The variation in the music is often left to chance, resulting in compositions that lack structure. Pieces extending beyond a minute can become incoherent or repetitive. This paper introduces an approach for generating structured, arbitrarily long musical pieces. Central to this approach is the creation of musical segments using a conditional generative model, with transitions between these segments. The generation of prompts that determine the high-level composition is distinct from the creation of finer, lower-level details. A large language model is then used to suggest the musical form.
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Deep generative models are a class of techniques that train deep neural networks to model the distribution of training samples. Research has fragmented into various interconnected approaches, each of which make trade-offs including run-time, diversity, and architectural restrictions. In particular, this compendium covers energy-based models, variational autoencoders, generative adversarial networks, autoregressive models, normalizing flows, in addition to numerous hybrid approaches. These techniques are compared and contrasted, explaining the premises behind each and how they are interrelated, while reviewing current state-of-the-art advances and implementations.
Sensitivity of Generative VLMs to Semantically and Lexically Altered Prompts
Despite the significant influx of prompt-tuning techniques for generative vision-language models (VLMs), it remains unclear how sensitive these models are to lexical and semantic alterations in prompts. In this paper, we evaluate the ability of generative VLMs to understand lexical and semantic changes in text using the SugarCrepe++ dataset. We analyze the sensitivity of VLMs to lexical alterations in prompts without corresponding semantic changes. Our findings demonstrate that generative VLMs are highly sensitive to such alterations. Additionally, we show that this vulnerability affects the performance of techniques aimed at achieving consistency in their outputs.
Beyond Memorization: The Challenge of Random Memory Access in Language Models
Recent developments in Language Models (LMs) have shown their effectiveness in NLP tasks, particularly in knowledge-intensive tasks. However, the mechanisms underlying knowledge storage and memory access within their parameters remain elusive. In this paper, we investigate whether a generative LM (e.g., GPT-2) is able to access its memory sequentially or randomly. Through carefully-designed synthetic tasks, covering the scenarios of full recitation, selective recitation and grounded question answering, we reveal that LMs manage to sequentially access their memory while encountering challenges in randomly accessing memorized content. We find that techniques including recitation and permutation improve the random memory access capability of LMs. Furthermore, by applying this intervention to realistic scenarios of open-domain question answering, we validate that enhancing random access by recitation leads to notable improvements in question answering. The code to reproduce our experiments can be found at https://github.com/sail-sg/lm-random-memory-access.
Fundamentals of Generative Large Language Models and Perspectives in Cyber-Defense
Generative Language Models gained significant attention in late 2022 / early 2023, notably with the introduction of models refined to act consistently with users' expectations of interactions with AI (conversational models). Arguably the focal point of public attention has been such a refinement of the GPT3 model -- the ChatGPT and its subsequent integration with auxiliary capabilities, including search as part of Microsoft Bing. Despite extensive prior research invested in their development, their performance and applicability to a range of daily tasks remained unclear and niche. However, their wider utilization without a requirement for technical expertise, made in large part possible through conversational fine-tuning, revealed the extent of their true capabilities in a real-world environment. This has garnered both public excitement for their potential applications and concerns about their capabilities and potential malicious uses. This review aims to provide a brief overview of the history, state of the art, and implications of Generative Language Models in terms of their principles, abilities, limitations, and future prospects -- especially in the context of cyber-defense, with a focus on the Swiss operational environment.
Reinforcement Learning for Generative AI: A Survey
Deep Generative AI has been a long-standing essential topic in the machine learning community, which can impact a number of application areas like text generation and computer vision. The major paradigm to train a generative model is maximum likelihood estimation, which pushes the learner to capture and approximate the target data distribution by decreasing the divergence between the model distribution and the target distribution. This formulation successfully establishes the objective of generative tasks, while it is incapable of satisfying all the requirements that a user might expect from a generative model. Reinforcement learning, serving as a competitive option to inject new training signals by creating new objectives that exploit novel signals, has demonstrated its power and flexibility to incorporate human inductive bias from multiple angles, such as adversarial learning, hand-designed rules and learned reward model to build a performant model. Thereby, reinforcement learning has become a trending research field and has stretched the limits of generative AI in both model design and application. It is reasonable to summarize and conclude advances in recent years with a comprehensive review. Although there are surveys in different application areas recently, this survey aims to shed light on a high-level review that spans a range of application areas. We provide a rigorous taxonomy in this area and make sufficient coverage on various models and applications. Notably, we also surveyed the fast-developing large language model area. We conclude this survey by showing the potential directions that might tackle the limit of current models and expand the frontiers for generative AI.
Compositional Generative Modeling: A Single Model is Not All You Need
Large monolithic generative models trained on massive amounts of data have become an increasingly dominant approach in AI research. In this paper, we argue that we should instead construct large generative systems by composing smaller generative models together. We show how such a compositional generative approach enables us to learn distributions in a more data-efficient manner, enabling generalization to parts of the data distribution unseen at training time. We further show how this enables us to program and construct new generative models for tasks completely unseen at training. Finally, we show that in many cases, we can discover separate compositional components from data.
On the Statistical Capacity of Deep Generative Models
Deep generative models are routinely used in generating samples from complex, high-dimensional distributions. Despite their apparent successes, their statistical properties are not well understood. A common assumption is that with enough training data and sufficiently large neural networks, deep generative model samples will have arbitrarily small errors in sampling from any continuous target distribution. We set up a unifying framework that debunks this belief. We demonstrate that broad classes of deep generative models, including variational autoencoders and generative adversarial networks, are not universal generators. Under the predominant case of Gaussian latent variables, these models can only generate concentrated samples that exhibit light tails. Using tools from concentration of measure and convex geometry, we give analogous results for more general log-concave and strongly log-concave latent variable distributions. We extend our results to diffusion models via a reduction argument. We use the Gromov--Levy inequality to give similar guarantees when the latent variables lie on manifolds with positive Ricci curvature. These results shed light on the limited capacity of common deep generative models to handle heavy tails. We illustrate the empirical relevance of our work with simulations and financial data.
Stochastic Parrots Looking for Stochastic Parrots: LLMs are Easy to Fine-Tune and Hard to Detect with other LLMs
The self-attention revolution allowed generative language models to scale and achieve increasingly impressive abilities. Such models - commonly referred to as Large Language Models (LLMs) - have recently gained prominence with the general public, thanks to conversational fine-tuning, putting their behavior in line with public expectations regarding AI. This prominence amplified prior concerns regarding the misuse of LLMs and led to the emergence of numerous tools to detect LLMs in the wild. Unfortunately, most such tools are critically flawed. While major publications in the LLM detectability field suggested that LLMs were easy to detect with fine-tuned autoencoders, the limitations of their results are easy to overlook. Specifically, they assumed publicly available generative models without fine-tunes or non-trivial prompts. While the importance of these assumptions has been demonstrated, until now, it remained unclear how well such detection could be countered. Here, we show that an attacker with access to such detectors' reference human texts and output not only evades detection but can fully frustrate the detector training - with a reasonable budget and all its outputs labeled as such. Achieving it required combining common "reinforcement from critic" loss function modification and AdamW optimizer, which led to surprisingly good fine-tuning generalization. Finally, we warn against the temptation to transpose the conclusions obtained in RNN-driven text GANs to LLMs due to their better representative ability. These results have critical implications for the detection and prevention of malicious use of generative language models, and we hope they will aid the designers of generative models and detectors.
On Training Sample Memorization: Lessons from Benchmarking Generative Modeling with a Large-scale Competition
Many recent developments on generative models for natural images have relied on heuristically-motivated metrics that can be easily gamed by memorizing a small sample from the true distribution or training a model directly to improve the metric. In this work, we critically evaluate the gameability of these metrics by designing and deploying a generative modeling competition. Our competition received over 11000 submitted models. The competitiveness between participants allowed us to investigate both intentional and unintentional memorization in generative modeling. To detect intentional memorization, we propose the ``Memorization-Informed Fr\'echet Inception Distance'' (MiFID) as a new memorization-aware metric and design benchmark procedures to ensure that winning submissions made genuine improvements in perceptual quality. Furthermore, we manually inspect the code for the 1000 top-performing models to understand and label different forms of memorization. Our analysis reveals that unintentional memorization is a serious and common issue in popular generative models. The generated images and our memorization labels of those models as well as code to compute MiFID are released to facilitate future studies on benchmarking generative models.
Multi-modal Latent Diffusion
Multi-modal data-sets are ubiquitous in modern applications, and multi-modal Variational Autoencoders are a popular family of models that aim to learn a joint representation of the different modalities. However, existing approaches suffer from a coherence-quality tradeoff, where models with good generation quality lack generative coherence across modalities, and vice versa. We discuss the limitations underlying the unsatisfactory performance of existing methods, to motivate the need for a different approach. We propose a novel method that uses a set of independently trained, uni-modal, deterministic autoencoders. Individual latent variables are concatenated into a common latent space, which is fed to a masked diffusion model to enable generative modeling. We also introduce a new multi-time training method to learn the conditional score network for multi-modal diffusion. Our methodology substantially outperforms competitors in both generation quality and coherence, as shown through an extensive experimental campaign.
CAFe: Unifying Representation and Generation with Contrastive-Autoregressive Finetuning
The rapid advancement of large vision-language models (LVLMs) has driven significant progress in multimodal tasks, enabling models to interpret, reason, and generate outputs across both visual and textual domains. While excelling in generative tasks, existing LVLMs often face limitations in tasks requiring high-fidelity representation learning, such as generating image or text embeddings for retrieval. Recent work has proposed finetuning LVLMs for representational learning, but the fine-tuned model often loses its generative capabilities due to the representational learning training paradigm. To address this trade-off, we introduce CAFe, a contrastive-autoregressive fine-tuning framework that enhances LVLMs for both representation and generative tasks. By integrating a contrastive objective with autoregressive language modeling, our approach unifies these traditionally separate tasks, achieving state-of-the-art results in both multimodal retrieval and multimodal generative benchmarks, including object hallucination (OH) mitigation. CAFe establishes a novel framework that synergizes embedding and generative functionalities in a single model, setting a foundation for future multimodal models that excel in both retrieval precision and coherent output generation.
Leveraging Large Language Models for Actionable Course Evaluation Student Feedback to Lecturers
End of semester student evaluations of teaching are the dominant mechanism for providing feedback to academics on their teaching practice. For large classes, however, the volume of feedback makes these tools impractical for this purpose. This paper explores the use of open-source generative AI to synthesise factual, actionable and appropriate summaries of student feedback from these survey responses. In our setup, we have 742 student responses ranging over 75 courses in a Computer Science department. For each course, we synthesise a summary of the course evaluations and actionable items for the instructor. Our results reveal a promising avenue for enhancing teaching practices in the classroom setting. Our contribution lies in demonstrating the feasibility of using generative AI to produce insightful feedback for teachers, thus providing a cost-effective means to support educators' development. Overall, our work highlights the possibility of using generative AI to produce factual, actionable, and appropriate feedback for teachers in the classroom setting.
Direct Discriminative Optimization: Your Likelihood-Based Visual Generative Model is Secretly a GAN Discriminator
While likelihood-based generative models, particularly diffusion and autoregressive models, have achieved remarkable fidelity in visual generation, the maximum likelihood estimation (MLE) objective inherently suffers from a mode-covering tendency that limits the generation quality under limited model capacity. In this work, we propose Direct Discriminative Optimization (DDO) as a unified framework that bridges likelihood-based generative training and the GAN objective to bypass this fundamental constraint. Our key insight is to parameterize a discriminator implicitly using the likelihood ratio between a learnable target model and a fixed reference model, drawing parallels with the philosophy of Direct Preference Optimization (DPO). Unlike GANs, this parameterization eliminates the need for joint training of generator and discriminator networks, allowing for direct, efficient, and effective finetuning of a well-trained model to its full potential beyond the limits of MLE. DDO can be performed iteratively in a self-play manner for progressive model refinement, with each round requiring less than 1% of pretraining epochs. Our experiments demonstrate the effectiveness of DDO by significantly advancing the previous SOTA diffusion model EDM, reducing FID scores from 1.79/1.58 to new records of 1.30/0.97 on CIFAR-10/ImageNet-64 datasets, and by consistently improving both guidance-free and CFG-enhanced FIDs of visual autoregressive models on ImageNet 256times256.
Diffusion-TTA: Test-time Adaptation of Discriminative Models via Generative Feedback
The advancements in generative modeling, particularly the advent of diffusion models, have sparked a fundamental question: how can these models be effectively used for discriminative tasks? In this work, we find that generative models can be great test-time adapters for discriminative models. Our method, Diffusion-TTA, adapts pre-trained discriminative models such as image classifiers, segmenters and depth predictors, to each unlabelled example in the test set using generative feedback from a diffusion model. We achieve this by modulating the conditioning of the diffusion model using the output of the discriminative model. We then maximize the image likelihood objective by backpropagating the gradients to discriminative model's parameters. We show Diffusion-TTA significantly enhances the accuracy of various large-scale pre-trained discriminative models, such as, ImageNet classifiers, CLIP models, image pixel labellers and image depth predictors. Diffusion-TTA outperforms existing test-time adaptation methods, including TTT-MAE and TENT, and particularly shines in online adaptation setups, where the discriminative model is continually adapted to each example in the test set. We provide access to code, results, and visualizations on our website: https://diffusion-tta.github.io/.
The Free Transformer
We propose an extension of the decoder Transformer that conditions its generative process on random latent variables which are learned without supervision thanks to a variational procedure. Experimental evaluations show that allowing such a conditioning translates into substantial improvements on downstream tasks.
MEGA: Multilingual Evaluation of Generative AI
Generative AI models have impressive performance on many Natural Language Processing tasks such as language understanding, reasoning and language generation. One of the most important questions that is being asked by the AI community today is about the capabilities and limits of these models, and it is clear that evaluating generative AI is very challenging. Most studies on generative Large Language Models (LLMs) are restricted to English and it is unclear how capable these models are at understanding and generating other languages. We present the first comprehensive benchmarking of generative LLMs - MEGA, which evaluates models on standard NLP benchmarks, covering 8 diverse tasks and 33 typologically diverse languages. We also compare the performance of generative LLMs to State of the Art (SOTA) non-autoregressive models on these tasks to determine how well generative models perform compared to the previous generation of LLMs. We present a thorough analysis of the performance of models across languages and discuss some of the reasons why generative LLMs are currently not optimal for all languages. We create a framework for evaluating generative LLMs in the multilingual setting and provide directions for future progress in the field.
Glow: Generative Flow with Invertible 1x1 Convolutions
Flow-based generative models (Dinh et al., 2014) are conceptually attractive due to tractability of the exact log-likelihood, tractability of exact latent-variable inference, and parallelizability of both training and synthesis. In this paper we propose Glow, a simple type of generative flow using an invertible 1x1 convolution. Using our method we demonstrate a significant improvement in log-likelihood on standard benchmarks. Perhaps most strikingly, we demonstrate that a generative model optimized towards the plain log-likelihood objective is capable of efficient realistic-looking synthesis and manipulation of large images. The code for our model is available at https://github.com/openai/glow
Beyond Probabilities: Unveiling the Misalignment in Evaluating Large Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities across various applications, fundamentally reshaping the landscape of natural language processing (NLP) research. However, recent evaluation frameworks often rely on the output probabilities of LLMs for predictions, primarily due to computational constraints, diverging from real-world LLM usage scenarios. While widely employed, the efficacy of these probability-based evaluation strategies remains an open research question. This study aims to scrutinize the validity of such probability-based evaluation methods within the context of using LLMs for Multiple Choice Questions (MCQs), highlighting their inherent limitations. Our empirical investigation reveals that the prevalent probability-based evaluation method inadequately aligns with generation-based prediction. Furthermore, current evaluation frameworks typically assess LLMs through predictive tasks based on output probabilities rather than directly generating responses, owing to computational limitations. We illustrate that these probability-based approaches do not effectively correspond with generative predictions. The outcomes of our study can enhance the understanding of LLM evaluation methodologies and provide insights for future research in this domain.
If generative AI is the answer, what is the question?
Beginning with text and images, generative AI has expanded to audio, video, computer code, and molecules. Yet, if generative AI is the answer, what is the question? We explore the foundations of generation as a distinct machine learning task with connections to prediction, compression, and decision-making. We survey five major generative model families: autoregressive models, variational autoencoders, normalizing flows, generative adversarial networks, and diffusion models. We then introduce a probabilistic framework that emphasizes the distinction between density estimation and generation. We review a game-theoretic framework with a two-player adversary-learner setup to study generation. We discuss post-training modifications that prepare generative models for deployment. We end by highlighting some important topics in socially responsible generation such as privacy, detection of AI-generated content, and copyright and IP. We adopt a task-first framing of generation, focusing on what generation is as a machine learning problem, rather than only on how models implement it.
Generating Intermediate Representations for Compositional Text-To-Image Generation
Text-to-image diffusion models have demonstrated an impressive ability to produce high-quality outputs. However, they often struggle to accurately follow fine-grained spatial information in an input text. To this end, we propose a compositional approach for text-to-image generation based on two stages. In the first stage, we design a diffusion-based generative model to produce one or more aligned intermediate representations (such as depth or segmentation maps) conditioned on text. In the second stage, we map these representations, together with the text, to the final output image using a separate diffusion-based generative model. Our findings indicate that such compositional approach can improve image generation, resulting in a notable improvement in FID score and a comparable CLIP score, when compared to the standard non-compositional baseline.
Towards Training One-Step Diffusion Models Without Distillation
Recent advances in one-step generative models typically follow a two-stage process: first training a teacher diffusion model and then distilling it into a one-step student model. This distillation process traditionally relies on both the teacher model's score function to compute the distillation loss and its weights for student initialization. In this paper, we explore whether one-step generative models can be trained directly without this distillation process. First, we show that the teacher's score function is not essential and propose a family of distillation methods that achieve competitive results without relying on score estimation. Next, we demonstrate that initialization from teacher weights is indispensable in successful training. Surprisingly, we find that this benefit is not due to improved ``input-output" mapping but rather the learned feature representations, which dominate distillation quality. Our findings provide a better understanding of the role of initialization in one-step model training and its impact on distillation quality.
DreamCom: Finetuning Text-guided Inpainting Model for Image Composition
The goal of image composition is merging a foreground object into a background image to obtain a realistic composite image. Recently, generative composition methods are built on large pretrained diffusion models, due to their unprecedented image generation ability. They train a model on abundant pairs of foregrounds and backgrounds, so that it can be directly applied to a new pair of foreground and background at test time. However, the generated results often lose the foreground details and exhibit noticeable artifacts. In this work, we propose an embarrassingly simple approach named DreamCom inspired by DreamBooth. Specifically, given a few reference images for a subject, we finetune text-guided inpainting diffusion model to associate this subject with a special token and inpaint this subject in the specified bounding box. We also construct a new dataset named MureCom well-tailored for this task.
Provable Copyright Protection for Generative Models
There is a growing concern that learned conditional generative models may output samples that are substantially similar to some copyrighted data C that was in their training set. We give a formal definition of near access-freeness (NAF) and prove bounds on the probability that a model satisfying this definition outputs a sample similar to C, even if C is included in its training set. Roughly speaking, a generative model p is $k-NAF if for every potentially copyrighted data C, the output of p diverges by at most k-bits from the output of a model q that did not access C at all$. We also give generative model learning algorithms, which efficiently modify the original generative model learning algorithm in a black box manner, that output generative models with strong bounds on the probability of sampling protected content. Furthermore, we provide promising experiments for both language (transformers) and image (diffusion) generative models, showing minimal degradation in output quality while ensuring strong protections against sampling protected content.
Small But Funny: A Feedback-Driven Approach to Humor Distillation
The emergence of Large Language Models (LLMs) has brought to light promising language generation capabilities, particularly in performing tasks like complex reasoning and creative writing. Consequently, distillation through imitation of teacher responses has emerged as a popular technique to transfer knowledge from LLMs to more accessible, Small Language Models (SLMs). While this works well for simpler tasks, there is a substantial performance gap on tasks requiring intricate language comprehension and creativity, such as humor generation. We hypothesize that this gap may stem from the fact that creative tasks might be hard to learn by imitation alone and explore whether an approach, involving supplementary guidance from the teacher, could yield higher performance. To address this, we study the effect of assigning a dual role to the LLM - as a "teacher" generating data, as well as a "critic" evaluating the student's performance. Our experiments on humor generation reveal that the incorporation of feedback significantly narrows the performance gap between SLMs and their larger counterparts compared to merely relying on imitation. As a result, our research highlights the potential of using feedback as an additional dimension to data when transferring complex language abilities via distillation.
Conditional Image Generation with Pretrained Generative Model
In recent years, diffusion models have gained popularity for their ability to generate higher-quality images in comparison to GAN models. However, like any other large generative models, these models require a huge amount of data, computational resources, and meticulous tuning for successful training. This poses a significant challenge, rendering it infeasible for most individuals. As a result, the research community has devised methods to leverage pre-trained unconditional diffusion models with additional guidance for the purpose of conditional image generative. These methods enable conditional image generations on diverse inputs and, most importantly, circumvent the need for training the diffusion model. In this paper, our objective is to reduce the time-required and computational overhead introduced by the addition of guidance in diffusion models -- while maintaining comparable image quality. We propose a set of methods based on our empirical analysis, demonstrating a reduction in computation time by approximately threefold.
UFOGen: You Forward Once Large Scale Text-to-Image Generation via Diffusion GANs
Text-to-image diffusion models have demonstrated remarkable capabilities in transforming textual prompts into coherent images, yet the computational cost of their inference remains a persistent challenge. To address this issue, we present UFOGen, a novel generative model designed for ultra-fast, one-step text-to-image synthesis. In contrast to conventional approaches that focus on improving samplers or employing distillation techniques for diffusion models, UFOGen adopts a hybrid methodology, integrating diffusion models with a GAN objective. Leveraging a newly introduced diffusion-GAN objective and initialization with pre-trained diffusion models, UFOGen excels in efficiently generating high-quality images conditioned on textual descriptions in a single step. Beyond traditional text-to-image generation, UFOGen showcases versatility in applications. Notably, UFOGen stands among the pioneering models enabling one-step text-to-image generation and diverse downstream tasks, presenting a significant advancement in the landscape of efficient generative models. \blfootnote{*Work done as a student researcher of Google, dagger indicates equal contribution.
Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional Image Synthesis
Conditional generative models typically demand large annotated training sets to achieve high-quality synthesis. As a result, there has been significant interest in designing models that perform plug-and-play generation, i.e., to use a predefined or pretrained model, which is not explicitly trained on the generative task, to guide the generative process (e.g., using language). However, such guidance is typically useful only towards synthesizing high-level semantics rather than editing fine-grained details as in image-to-image translation tasks. To this end, and capitalizing on the powerful fine-grained generative control offered by the recent diffusion-based generative models, we introduce Steered Diffusion, a generalized framework for photorealistic zero-shot conditional image generation using a diffusion model trained for unconditional generation. The key idea is to steer the image generation of the diffusion model at inference time via designing a loss using a pre-trained inverse model that characterizes the conditional task. This loss modulates the sampling trajectory of the diffusion process. Our framework allows for easy incorporation of multiple conditions during inference. We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution. Our results demonstrate clear qualitative and quantitative improvements over state-of-the-art diffusion-based plug-and-play models while adding negligible additional computational cost.
GPTScore: Evaluate as You Desire
Generative Artificial Intelligence (AI) has enabled the development of sophisticated models that are capable of producing high-caliber text, images, and other outputs through the utilization of large pre-trained models. Nevertheless, assessing the quality of the generation is an even more arduous task than the generation itself, and this issue has not been given adequate consideration recently. This paper proposes a novel evaluation framework, GPTScore, which utilizes the emergent abilities (e.g., zero-shot instruction) of generative pre-trained models to score generated texts. There are 19 pre-trained models explored in this paper, ranging in size from 80M (e.g., FLAN-T5-small) to 175B (e.g., GPT3). Experimental results on four text generation tasks, 22 evaluation aspects, and corresponding 37 datasets demonstrate that this approach can effectively allow us to achieve what one desires to evaluate for texts simply by natural language instructions. This nature helps us overcome several long-standing challenges in text evaluation--how to achieve customized, multi-faceted evaluation without the need for annotated samples. We make our code publicly available at https://github.com/jinlanfu/GPTScore.
Inference-Time Scaling for Diffusion Models beyond Scaling Denoising Steps
Generative models have made significant impacts across various domains, largely due to their ability to scale during training by increasing data, computational resources, and model size, a phenomenon characterized by the scaling laws. Recent research has begun to explore inference-time scaling behavior in Large Language Models (LLMs), revealing how performance can further improve with additional computation during inference. Unlike LLMs, diffusion models inherently possess the flexibility to adjust inference-time computation via the number of denoising steps, although the performance gains typically flatten after a few dozen. In this work, we explore the inference-time scaling behavior of diffusion models beyond increasing denoising steps and investigate how the generation performance can further improve with increased computation. Specifically, we consider a search problem aimed at identifying better noises for the diffusion sampling process. We structure the design space along two axes: the verifiers used to provide feedback, and the algorithms used to find better noise candidates. Through extensive experiments on class-conditioned and text-conditioned image generation benchmarks, our findings reveal that increasing inference-time compute leads to substantial improvements in the quality of samples generated by diffusion models, and with the complicated nature of images, combinations of the components in the framework can be specifically chosen to conform with different application scenario.
Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space
Generating high-resolution, photo-realistic images has been a long-standing goal in machine learning. Recently, Nguyen et al. (2016) showed one interesting way to synthesize novel images by performing gradient ascent in the latent space of a generator network to maximize the activations of one or multiple neurons in a separate classifier network. In this paper we extend this method by introducing an additional prior on the latent code, improving both sample quality and sample diversity, leading to a state-of-the-art generative model that produces high quality images at higher resolutions (227x227) than previous generative models, and does so for all 1000 ImageNet categories. In addition, we provide a unified probabilistic interpretation of related activation maximization methods and call the general class of models "Plug and Play Generative Networks". PPGNs are composed of 1) a generator network G that is capable of drawing a wide range of image types and 2) a replaceable "condition" network C that tells the generator what to draw. We demonstrate the generation of images conditioned on a class (when C is an ImageNet or MIT Places classification network) and also conditioned on a caption (when C is an image captioning network). Our method also improves the state of the art of Multifaceted Feature Visualization, which generates the set of synthetic inputs that activate a neuron in order to better understand how deep neural networks operate. Finally, we show that our model performs reasonably well at the task of image inpainting. While image models are used in this paper, the approach is modality-agnostic and can be applied to many types of data.
Long Text Generation via Adversarial Training with Leaked Information
Automatically generating coherent and semantically meaningful text has many applications in machine translation, dialogue systems, image captioning, etc. Recently, by combining with policy gradient, Generative Adversarial Nets (GAN) that use a discriminative model to guide the training of the generative model as a reinforcement learning policy has shown promising results in text generation. However, the scalar guiding signal is only available after the entire text has been generated and lacks intermediate information about text structure during the generative process. As such, it limits its success when the length of the generated text samples is long (more than 20 words). In this paper, we propose a new framework, called LeakGAN, to address the problem for long text generation. We allow the discriminative net to leak its own high-level extracted features to the generative net to further help the guidance. The generator incorporates such informative signals into all generation steps through an additional Manager module, which takes the extracted features of current generated words and outputs a latent vector to guide the Worker module for next-word generation. Our extensive experiments on synthetic data and various real-world tasks with Turing test demonstrate that LeakGAN is highly effective in long text generation and also improves the performance in short text generation scenarios. More importantly, without any supervision, LeakGAN would be able to implicitly learn sentence structures only through the interaction between Manager and Worker.
LFS-GAN: Lifelong Few-Shot Image Generation
We address a challenging lifelong few-shot image generation task for the first time. In this situation, a generative model learns a sequence of tasks using only a few samples per task. Consequently, the learned model encounters both catastrophic forgetting and overfitting problems at a time. Existing studies on lifelong GANs have proposed modulation-based methods to prevent catastrophic forgetting. However, they require considerable additional parameters and cannot generate high-fidelity and diverse images from limited data. On the other hand, the existing few-shot GANs suffer from severe catastrophic forgetting when learning multiple tasks. To alleviate these issues, we propose a framework called Lifelong Few-Shot GAN (LFS-GAN) that can generate high-quality and diverse images in lifelong few-shot image generation task. Our proposed framework learns each task using an efficient task-specific modulator - Learnable Factorized Tensor (LeFT). LeFT is rank-constrained and has a rich representation ability due to its unique reconstruction technique. Furthermore, we propose a novel mode seeking loss to improve the diversity of our model in low-data circumstances. Extensive experiments demonstrate that the proposed LFS-GAN can generate high-fidelity and diverse images without any forgetting and mode collapse in various domains, achieving state-of-the-art in lifelong few-shot image generation task. Surprisingly, we find that our LFS-GAN even outperforms the existing few-shot GANs in the few-shot image generation task. The code is available at Github.
Multi-Concept Customization of Text-to-Image Diffusion
While generative models produce high-quality images of concepts learned from a large-scale database, a user often wishes to synthesize instantiations of their own concepts (for example, their family, pets, or items). Can we teach a model to quickly acquire a new concept, given a few examples? Furthermore, can we compose multiple new concepts together? We propose Custom Diffusion, an efficient method for augmenting existing text-to-image models. We find that only optimizing a few parameters in the text-to-image conditioning mechanism is sufficiently powerful to represent new concepts while enabling fast tuning (~6 minutes). Additionally, we can jointly train for multiple concepts or combine multiple fine-tuned models into one via closed-form constrained optimization. Our fine-tuned model generates variations of multiple, new concepts and seamlessly composes them with existing concepts in novel settings. Our method outperforms several baselines and concurrent works, regarding both qualitative and quantitative evaluations, while being memory and computationally efficient.
Exploring Representation-Aligned Latent Space for Better Generation
Generative models serve as powerful tools for modeling the real world, with mainstream diffusion models, particularly those based on the latent diffusion model paradigm, achieving remarkable progress across various tasks, such as image and video synthesis. Latent diffusion models are typically trained using Variational Autoencoders (VAEs), interacting with VAE latents rather than the real samples. While this generative paradigm speeds up training and inference, the quality of the generated outputs is limited by the latents' quality. Traditional VAE latents are often seen as spatial compression in pixel space and lack explicit semantic representations, which are essential for modeling the real world. In this paper, we introduce ReaLS (Representation-Aligned Latent Space), which integrates semantic priors to improve generation performance. Extensive experiments show that fundamental DiT and SiT trained on ReaLS can achieve a 15% improvement in FID metric. Furthermore, the enhanced semantic latent space enables more perceptual downstream tasks, such as segmentation and depth estimation.
LatentSpeech: Latent Diffusion for Text-To-Speech Generation
Diffusion-based Generative AI gains significant attention for its superior performance over other generative techniques like Generative Adversarial Networks and Variational Autoencoders. While it has achieved notable advancements in fields such as computer vision and natural language processing, their application in speech generation remains under-explored. Mainstream Text-to-Speech systems primarily map outputs to Mel-Spectrograms in the spectral space, leading to high computational loads due to the sparsity of MelSpecs. To address these limitations, we propose LatentSpeech, a novel TTS generation approach utilizing latent diffusion models. By using latent embeddings as the intermediate representation, LatentSpeech reduces the target dimension to 5% of what is required for MelSpecs, simplifying the processing for the TTS encoder and vocoder and enabling efficient high-quality speech generation. This study marks the first integration of latent diffusion models in TTS, enhancing the accuracy and naturalness of generated speech. Experimental results on benchmark datasets demonstrate that LatentSpeech achieves a 25% improvement in Word Error Rate and a 24% improvement in Mel Cepstral Distortion compared to existing models, with further improvements rising to 49.5% and 26%, respectively, with additional training data. These findings highlight the potential of LatentSpeech to advance the state-of-the-art in TTS technology
Tutorial on Diffusion Models for Imaging and Vision
The astonishing growth of generative tools in recent years has empowered many exciting applications in text-to-image generation and text-to-video generation. The underlying principle behind these generative tools is the concept of diffusion, a particular sampling mechanism that has overcome some shortcomings that were deemed difficult in the previous approaches. The goal of this tutorial is to discuss the essential ideas underlying the diffusion models. The target audience of this tutorial includes undergraduate and graduate students who are interested in doing research on diffusion models or applying these models to solve other problems.
The Generative AI Paradox: "What It Can Create, It May Not Understand"
The recent wave of generative AI has sparked unprecedented global attention, with both excitement and concern over potentially superhuman levels of artificial intelligence: models now take only seconds to produce outputs that would challenge or exceed the capabilities even of expert humans. At the same time, models still show basic errors in understanding that would not be expected even in non-expert humans. This presents us with an apparent paradox: how do we reconcile seemingly superhuman capabilities with the persistence of errors that few humans would make? In this work, we posit that this tension reflects a divergence in the configuration of intelligence in today's generative models relative to intelligence in humans. Specifically, we propose and test the Generative AI Paradox hypothesis: generative models, having been trained directly to reproduce expert-like outputs, acquire generative capabilities that are not contingent upon -- and can therefore exceed -- their ability to understand those same types of outputs. This contrasts with humans, for whom basic understanding almost always precedes the ability to generate expert-level outputs. We test this hypothesis through controlled experiments analyzing generation vs. understanding in generative models, across both language and image modalities. Our results show that although models can outperform humans in generation, they consistently fall short of human capabilities in measures of understanding, as well as weaker correlation between generation and understanding performance, and more brittleness to adversarial inputs. Our findings support the hypothesis that models' generative capability may not be contingent upon understanding capability, and call for caution in interpreting artificial intelligence by analogy to human intelligence.
HALoGEN: Fantastic LLM Hallucinations and Where to Find Them
Despite their impressive ability to generate high-quality and fluent text, generative large language models (LLMs) also produce hallucinations: statements that are misaligned with established world knowledge or provided input context. However, measuring hallucination can be challenging, as having humans verify model generations on-the-fly is both expensive and time-consuming. In this work, we release HALoGEN, a comprehensive hallucination benchmark consisting of: (1) 10,923 prompts for generative models spanning nine domains including programming, scientific attribution, and summarization, and (2) automatic high-precision verifiers for each use case that decompose LLM generations into atomic units, and verify each unit against a high-quality knowledge source. We use this framework to evaluate ~150,000 generations from 14 language models, finding that even the best-performing models are riddled with hallucinations (sometimes up to 86% of generated atomic facts depending on the domain). We further define a novel error classification for LLM hallucinations based on whether they likely stem from incorrect recollection of training data (Type A errors), or incorrect knowledge in training data (Type B errors), or are fabrication (Type C errors). We hope our framework provides a foundation to enable the principled study of why generative models hallucinate, and advances the development of trustworthy large language models.
LearnLM: Improving Gemini for Learning
Today's generative AI systems are tuned to present information by default rather than engage users in service of learning as a human tutor would. To address the wide range of potential education use cases for these systems, we reframe the challenge of injecting pedagogical behavior as one of pedagogical instruction following, where training and evaluation examples include system-level instructions describing the specific pedagogy attributes present or desired in subsequent model turns. This framing avoids committing our models to any particular definition of pedagogy, and instead allows teachers or developers to specify desired model behavior. It also clears a path to improving Gemini models for learning -- by enabling the addition of our pedagogical data to post-training mixtures -- alongside their rapidly expanding set of capabilities. Both represent important changes from our initial tech report. We show how training with pedagogical instruction following produces a LearnLM model (available on Google AI Studio) that is preferred substantially by expert raters across a diverse set of learning scenarios, with average preference strengths of 31\% over GPT-4o, 11\% over Claude 3.5, and 13\% over the Gemini 1.5 Pro model LearnLM was based on.
TBAC-UniImage: Unified Understanding and Generation by Ladder-Side Diffusion Tuning
This paper introduces TBAC-UniImage, a novel unified model for multimodal understanding and generation. We achieve this by deeply integrating a pre-trained Diffusion Model, acting as a generative ladder, with a Multimodal Large Language Model (MLLM). Previous diffusion-based unified models face two primary limitations. One approach uses only the MLLM's final hidden state as the generative condition. This creates a shallow connection, as the generator is isolated from the rich, hierarchical representations within the MLLM's intermediate layers. The other approach, pretraining a unified generative architecture from scratch, is computationally expensive and prohibitive for many researchers. To overcome these issues, our work explores a new paradigm. Instead of relying on a single output, we use representations from multiple, diverse layers of the MLLM as generative conditions for the diffusion model. This method treats the pre-trained generator as a ladder, receiving guidance from various depths of the MLLM's understanding process. Consequently, TBAC-UniImage achieves a much deeper and more fine-grained unification of understanding and generation.
Generative Modeling of Weights: Generalization or Memorization?
Generative models, with their success in image and video generation, have recently been explored for synthesizing effective neural network weights. These approaches take trained neural network checkpoints as training data, and aim to generate high-performing neural network weights during inference. In this work, we examine four representative methods on their ability to generate novel model weights, i.e., weights that are different from the checkpoints seen during training. Surprisingly, we find that these methods synthesize weights largely by memorization: they produce either replicas, or at best simple interpolations, of the training checkpoints. Current methods fail to outperform simple baselines, such as adding noise to the weights or taking a simple weight ensemble, in obtaining different and simultaneously high-performing models. We further show that this memorization cannot be effectively mitigated by modifying modeling factors commonly associated with memorization in image diffusion models, or applying data augmentations. Our findings provide a realistic assessment of what types of data current generative models can model, and highlight the need for more careful evaluation of generative models in new domains. Our code is available at https://github.com/boyazeng/weight_memorization.
Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective
Latent-based image generative models, such as Latent Diffusion Models (LDMs) and Mask Image Models (MIMs), have achieved notable success in image generation tasks. These models typically leverage reconstructive autoencoders like VQGAN or VAE to encode pixels into a more compact latent space and learn the data distribution in the latent space instead of directly from pixels. However, this practice raises a pertinent question: Is it truly the optimal choice? In response, we begin with an intriguing observation: despite sharing the same latent space, autoregressive models significantly lag behind LDMs and MIMs in image generation. This finding contrasts sharply with the field of NLP, where the autoregressive model GPT has established a commanding presence. To address this discrepancy, we introduce a unified perspective on the relationship between latent space and generative models, emphasizing the stability of latent space in image generative modeling. Furthermore, we propose a simple but effective discrete image tokenizer to stabilize the latent space for image generative modeling. Experimental results show that image autoregressive modeling with our tokenizer (DiGIT) benefits both image understanding and image generation with the next token prediction principle, which is inherently straightforward for GPT models but challenging for other generative models. Remarkably, for the first time, a GPT-style autoregressive model for images outperforms LDMs, which also exhibits substantial improvement akin to GPT when scaling up model size. Our findings underscore the potential of an optimized latent space and the integration of discrete tokenization in advancing the capabilities of image generative models. The code is available at https://github.com/DAMO-NLP-SG/DiGIT.
Natural scene reconstruction from fMRI signals using generative latent diffusion
In neural decoding research, one of the most intriguing topics is the reconstruction of perceived natural images based on fMRI signals. Previous studies have succeeded in re-creating different aspects of the visuals, such as low-level properties (shape, texture, layout) or high-level features (category of objects, descriptive semantics of scenes) but have typically failed to reconstruct these properties together for complex scene images. Generative AI has recently made a leap forward with latent diffusion models capable of generating high-complexity images. Here, we investigate how to take advantage of this innovative technology for brain decoding. We present a two-stage scene reconstruction framework called ``Brain-Diffuser''. In the first stage, starting from fMRI signals, we reconstruct images that capture low-level properties and overall layout using a VDVAE (Very Deep Variational Autoencoder) model. In the second stage, we use the image-to-image framework of a latent diffusion model (Versatile Diffusion) conditioned on predicted multimodal (text and visual) features, to generate final reconstructed images. On the publicly available Natural Scenes Dataset benchmark, our method outperforms previous models both qualitatively and quantitatively. When applied to synthetic fMRI patterns generated from individual ROI (region-of-interest) masks, our trained model creates compelling ``ROI-optimal'' scenes consistent with neuroscientific knowledge. Thus, the proposed methodology can have an impact on both applied (e.g. brain-computer interface) and fundamental neuroscience.
Scaling Language-Centric Omnimodal Representation Learning
Recent multimodal embedding approaches leveraging multimodal large language models (MLLMs) fine-tuned with contrastive learning (CL) have shown promising results, yet the underlying reasons behind their superiority remain underexplored. This work argues that a crucial advantage of MLLM-based approaches stems from implicit cross-modal alignment achieved during generative pretraining, where the language decoder learns to exploit multimodal signals within a shared representation space for generating unimodal outputs. Through analysis of anisotropy and kernel similarity structure, we empirically confirm that latent alignment emerges within MLLM representations, allowing CL to serve as a lightweight refinement stage. Leveraging this insight, we propose a Language-Centric Omnimodal Embedding framework, termed LCO-Emb. Extensive experiments across diverse backbones and benchmarks demonstrate its effectiveness, achieving state-of-the-art performance across modalities. Furthermore, we identify a Generation-Representation Scaling Law (GRSL), showing that the representational capabilities gained through contrastive refinement scales positively with the MLLM's generative capabilities. This suggests that improving generative abilities evolves as an effective paradigm for enhancing representation quality. We provide a theoretical explanation of GRSL, which formally links the MLLM's generative quality to the upper bound on its representation performance, and validate it on a challenging, low-resource visual-document retrieval task, showing that continual generative pretraining before CL can further enhance the potential of a model's embedding capabilities. Codes, models, and resources are available at https://github.com/LCO-Embedding/LCO-Embedding.
Is Conditional Generative Modeling all you need for Decision-Making?
Recent improvements in conditional generative modeling have made it possible to generate high-quality images from language descriptions alone. We investigate whether these methods can directly address the problem of sequential decision-making. We view decision-making not through the lens of reinforcement learning (RL), but rather through conditional generative modeling. To our surprise, we find that our formulation leads to policies that can outperform existing offline RL approaches across standard benchmarks. By modeling a policy as a return-conditional diffusion model, we illustrate how we may circumvent the need for dynamic programming and subsequently eliminate many of the complexities that come with traditional offline RL. We further demonstrate the advantages of modeling policies as conditional diffusion models by considering two other conditioning variables: constraints and skills. Conditioning on a single constraint or skill during training leads to behaviors at test-time that can satisfy several constraints together or demonstrate a composition of skills. Our results illustrate that conditional generative modeling is a powerful tool for decision-making.
Aligning Generative Denoising with Discriminative Objectives Unleashes Diffusion for Visual Perception
With the success of image generation, generative diffusion models are increasingly adopted for discriminative tasks, as pixel generation provides a unified perception interface. However, directly repurposing the generative denoising process for discriminative objectives reveals critical gaps rarely addressed previously. Generative models tolerate intermediate sampling errors if the final distribution remains plausible, but discriminative tasks require rigorous accuracy throughout, as evidenced in challenging multi-modal tasks like referring image segmentation. Motivated by this gap, we analyze and enhance alignment between generative diffusion processes and perception tasks, focusing on how perception quality evolves during denoising. We find: (1) earlier denoising steps contribute disproportionately to perception quality, prompting us to propose tailored learning objectives reflecting varying timestep contributions; (2) later denoising steps show unexpected perception degradation, highlighting sensitivity to training-denoising distribution shifts, addressed by our diffusion-tailored data augmentation; and (3) generative processes uniquely enable interactivity, serving as controllable user interfaces adaptable to correctional prompts in multi-round interactions. Our insights significantly improve diffusion-based perception models without architectural changes, achieving state-of-the-art performance on depth estimation, referring image segmentation, and generalist perception tasks. Code available at https://github.com/ziqipang/ADDP.
DiffuseHigh: Training-free Progressive High-Resolution Image Synthesis through Structure Guidance
Recent surge in large-scale generative models has spurred the development of vast fields in computer vision. In particular, text-to-image diffusion models have garnered widespread adoption across diverse domain due to their potential for high-fidelity image generation. Nonetheless, existing large-scale diffusion models are confined to generate images of up to 1K resolution, which is far from meeting the demands of contemporary commercial applications. Directly sampling higher-resolution images often yields results marred by artifacts such as object repetition and distorted shapes. Addressing the aforementioned issues typically necessitates training or fine-tuning models on higher resolution datasets. However, this undertaking poses a formidable challenge due to the difficulty in collecting large-scale high-resolution contents and substantial computational resources. While several preceding works have proposed alternatives, they often fail to produce convincing results. In this work, we probe the generative ability of diffusion models at higher resolution beyond its original capability and propose a novel progressive approach that fully utilizes generated low-resolution image to guide the generation of higher resolution image. Our method obviates the need for additional training or fine-tuning which significantly lowers the burden of computational costs. Extensive experiments and results validate the efficiency and efficacy of our method. Project page: https://yhyun225.github.io/DiffuseHigh/
The Unmet Promise of Synthetic Training Images: Using Retrieved Real Images Performs Better
Generative text-to-image models enable us to synthesize unlimited amounts of images in a controllable manner, spurring many recent efforts to train vision models with synthetic data. However, every synthetic image ultimately originates from the upstream data used to train the generator. What additional value does the intermediate generator provide over directly training on relevant parts of the upstream data? Grounding this question in the setting of image classification,a we compare finetuning on task-relevant, targeted synthetic data generated by Stable Diffusion -- a generative model trained on the LAION-2B dataset -- against finetuning on targeted real images retrieved directly from LAION-2B. We show that while synthetic data can benefit some downstream tasks, it is universally matched or outperformed by real data from our simple retrieval baseline. Our analysis suggests that this underperformance is partially due to generator artifacts and inaccurate task-relevant visual details in the synthetic images. Overall, we argue that retrieval is a critical baseline to consider when training with synthetic data -- a baseline that current methods do not yet surpass. We release code, data, and models at https://github.com/scottgeng00/unmet-promise.
Model Dementia: Generated Data Makes Models Forget
Stable Diffusion revolutionised image creation from descriptive text. GPT-2, GPT-3(.5) and GPT-4 demonstrated astonishing performance across a variety of language tasks. ChatGPT introduced such language models to the general public. It is now clear that large language models (LLMs) are here to stay, and will bring about drastic change in the whole ecosystem of online text and images. In this paper we consider what the future might hold. What will happen to GPT-{n} once LLMs contribute much of the language found online? We find that use of model-generated content in training causes irreversible defects in the resulting models, where tails of the original content distribution disappear. We call this effect model dementia and show that it can occur in Variational Autoencoders (VAEs), Gaussian Mixture Models (GMMs) and LLMs. We build theoretical intuition behind the phenomenon and portray its ubiquity amongst all learned generative models. We demonstrate that it has to be taken seriously if we are to sustain the benefits of training from large-scale data scraped from the web. Indeed, the value of data collected about genuine human interactions with systems will be increasingly valuable in the presence of content generated by LLMs in data crawled from the Internet.
Image Tokenizer Needs Post-Training
Recent image generative models typically capture the image distribution in a pre-constructed latent space, relying on a frozen image tokenizer. However, there exists a significant discrepancy between the reconstruction and generation distribution, where current tokenizers only prioritize the reconstruction task that happens before generative training without considering the generation errors during sampling. In this paper, we comprehensively analyze the reason for this discrepancy in a discrete latent space, and, from which, we propose a novel tokenizer training scheme including both main-training and post-training, focusing on improving latent space construction and decoding respectively. During the main training, a latent perturbation strategy is proposed to simulate sampling noises, \ie, the unexpected tokens generated in generative inference. Specifically, we propose a plug-and-play tokenizer training scheme, which significantly enhances the robustness of tokenizer, thus boosting the generation quality and convergence speed, and a novel tokenizer evaluation metric, \ie, pFID, which successfully correlates the tokenizer performance to generation quality. During post-training, we further optimize the tokenizer decoder regarding a well-trained generative model to mitigate the distribution difference between generated and reconstructed tokens. With a sim400M generator, a discrete tokenizer trained with our proposed main training achieves a notable 1.60 gFID and further obtains 1.36 gFID with the additional post-training. Further experiments are conducted to broadly validate the effectiveness of our post-training strategy on off-the-shelf discrete and continuous tokenizers, coupled with autoregressive and diffusion-based generators.
Maverick: Efficient and Accurate Coreference Resolution Defying Recent Trends
Large autoregressive generative models have emerged as the cornerstone for achieving the highest performance across several Natural Language Processing tasks. However, the urge to attain superior results has, at times, led to the premature replacement of carefully designed task-specific approaches without exhaustive experimentation. The Coreference Resolution task is no exception; all recent state-of-the-art solutions adopt large generative autoregressive models that outperform encoder-based discriminative systems. In this work,we challenge this recent trend by introducing Maverick, a carefully designed - yet simple - pipeline, which enables running a state-of-the-art Coreference Resolution system within the constraints of an academic budget, outperforming models with up to 13 billion parameters with as few as 500 million parameters. Maverick achieves state-of-the-art performance on the CoNLL-2012 benchmark, training with up to 0.006x the memory resources and obtaining a 170x faster inference compared to previous state-of-the-art systems. We extensively validate the robustness of the Maverick framework with an array of diverse experiments, reporting improvements over prior systems in data-scarce, long-document, and out-of-domain settings. We release our code and models for research purposes at https://github.com/SapienzaNLP/maverick-coref.
VLM-Guided Adaptive Negative Prompting for Creative Generation
Creative generation is the synthesis of new, surprising, and valuable samples that reflect user intent yet cannot be envisioned in advance. This task aims to extend human imagination, enabling the discovery of visual concepts that exist in the unexplored spaces between familiar domains. While text-to-image diffusion models excel at rendering photorealistic scenes that faithfully match user prompts, they still struggle to generate genuinely novel content. Existing approaches to enhance generative creativity either rely on interpolation of image features, which restricts exploration to predefined categories, or require time-intensive procedures such as embedding optimization or model fine-tuning. We propose VLM-Guided Adaptive Negative-Prompting, a training-free, inference-time method that promotes creative image generation while preserving the validity of the generated object. Our approach utilizes a vision-language model (VLM) that analyzes intermediate outputs of the generation process and adaptively steers it away from conventional visual concepts, encouraging the emergence of novel and surprising outputs. We evaluate creativity through both novelty and validity, using statistical metrics in the CLIP embedding space. Through extensive experiments, we show consistent gains in creative novelty with negligible computational overhead. Moreover, unlike existing methods that primarily generate single objects, our approach extends to complex scenarios, such as generating coherent sets of creative objects and preserving creativity within elaborate compositional prompts. Our method integrates seamlessly into existing diffusion pipelines, offering a practical route to producing creative outputs that venture beyond the constraints of textual descriptions.
MULTISCRIPT: Multimodal Script Learning for Supporting Open Domain Everyday Tasks
Automatically generating scripts (i.e. sequences of key steps described in text) from video demonstrations and reasoning about the subsequent steps are crucial to the modern AI virtual assistants to guide humans to complete everyday tasks, especially unfamiliar ones. However, current methods for generative script learning rely heavily on well-structured preceding steps described in text and/or images or are limited to a certain domain, resulting in a disparity with real-world user scenarios. To address these limitations, we present a new benchmark challenge -- MultiScript, with two new tasks on task-oriented multimodal script learning: (1) multimodal script generation, and (2) subsequent step prediction. For both tasks, the input consists of a target task name and a video illustrating what has been done to complete the target task, and the expected output is (1) a sequence of structured step descriptions in text based on the demonstration video, and (2) a single text description for the subsequent step, respectively. Built from WikiHow, MultiScript covers multimodal scripts in videos and text descriptions for over 6,655 human everyday tasks across 19 diverse domains. To establish baseline performance on MultiScript, we propose two knowledge-guided multimodal generative frameworks that incorporate the task-related knowledge prompted from large language models such as Vicuna. Experimental results show that our proposed approaches significantly improve over the competitive baselines.
Pretrained Generative Language Models as General Learning Frameworks for Sequence-Based Tasks
We propose that small pretrained foundational generative language models with millions of parameters can be utilized as a general learning framework for sequence-based tasks. Our proposal overcomes the computational resource, skill set, and timeline challenges associated with training neural networks and language models from scratch. Further, our approach focuses on creating small and highly specialized models that can accurately execute a challenging task of which the base model is incapable of performing. We demonstrate that 125M, 350M, and 1.3B parameter pretrained foundational language models can be instruction fine-tuned with 10,000-to-1,000,000 instruction examples to achieve near state-of-the-art results on challenging cheminformatics tasks. We also demonstrate the role of successive language model fine-tuning epochs on improved outcomes, as well as the importance of both data formatting and pretrained foundational language model selection for instruction fine-tuning success.
MaxFusion: Plug&Play Multi-Modal Generation in Text-to-Image Diffusion Models
Large diffusion-based Text-to-Image (T2I) models have shown impressive generative powers for text-to-image generation as well as spatially conditioned image generation. For most applications, we can train the model end-toend with paired data to obtain photorealistic generation quality. However, to add an additional task, one often needs to retrain the model from scratch using paired data across all modalities to retain good generation performance. In this paper, we tackle this issue and propose a novel strategy to scale a generative model across new tasks with minimal compute. During our experiments, we discovered that the variance maps of intermediate feature maps of diffusion models capture the intensity of conditioning. Utilizing this prior information, we propose MaxFusion, an efficient strategy to scale up text-to-image generation models to accommodate new modality conditions. Specifically, we combine aligned features of multiple models, hence bringing a compositional effect. Our fusion strategy can be integrated into off-the-shelf models to enhance their generative prowess.
Accelerating Video Diffusion Models via Distribution Matching
Generative models, particularly diffusion models, have made significant success in data synthesis across various modalities, including images, videos, and 3D assets. However, current diffusion models are computationally intensive, often requiring numerous sampling steps that limit their practical application, especially in video generation. This work introduces a novel framework for diffusion distillation and distribution matching that dramatically reduces the number of inference steps while maintaining-and potentially improving-generation quality. Our approach focuses on distilling pre-trained diffusion models into a more efficient few-step generator, specifically targeting video generation. By leveraging a combination of video GAN loss and a novel 2D score distribution matching loss, we demonstrate the potential to generate high-quality video frames with substantially fewer sampling steps. To be specific, the proposed method incorporates a denoising GAN discriminator to distil from the real data and a pre-trained image diffusion model to enhance the frame quality and the prompt-following capabilities. Experimental results using AnimateDiff as the teacher model showcase the method's effectiveness, achieving superior performance in just four sampling steps compared to existing techniques.
Four-Plane Factorized Video Autoencoders
Latent variable generative models have emerged as powerful tools for generative tasks including image and video synthesis. These models are enabled by pretrained autoencoders that map high resolution data into a compressed lower dimensional latent space, where the generative models can subsequently be developed while requiring fewer computational resources. Despite their effectiveness, the direct application of latent variable models to higher dimensional domains such as videos continues to pose challenges for efficient training and inference. In this paper, we propose an autoencoder that projects volumetric data onto a four-plane factorized latent space that grows sublinearly with the input size, making it ideal for higher dimensional data like videos. The design of our factorized model supports straightforward adoption in a number of conditional generation tasks with latent diffusion models (LDMs), such as class-conditional generation, frame prediction, and video interpolation. Our results show that the proposed four-plane latent space retains a rich representation needed for high-fidelity reconstructions despite the heavy compression, while simultaneously enabling LDMs to operate with significant improvements in speed and memory.
ACI-BENCH: a Novel Ambient Clinical Intelligence Dataset for Benchmarking Automatic Visit Note Generation
Recent immense breakthroughs in generative models such as in GPT4 have precipitated re-imagined ubiquitous usage of these models in all applications. One area that can benefit by improvements in artificial intelligence (AI) is healthcare. The note generation task from doctor-patient encounters, and its associated electronic medical record documentation, is one of the most arduous time-consuming tasks for physicians. It is also a natural prime potential beneficiary to advances in generative models. However with such advances, benchmarking is more critical than ever. Whether studying model weaknesses or developing new evaluation metrics, shared open datasets are an imperative part of understanding the current state-of-the-art. Unfortunately as clinic encounter conversations are not routinely recorded and are difficult to ethically share due to patient confidentiality, there are no sufficiently large clinic dialogue-note datasets to benchmark this task. Here we present the Ambient Clinical Intelligence Benchmark (ACI-BENCH) corpus, the largest dataset to date tackling the problem of AI-assisted note generation from visit dialogue. We also present the benchmark performances of several common state-of-the-art approaches.
InstructCV: Instruction-Tuned Text-to-Image Diffusion Models as Vision Generalists
Recent advances in generative diffusion models have enabled text-controlled synthesis of realistic and diverse images with impressive quality. Despite these remarkable advances, the application of text-to-image generative models in computer vision for standard visual recognition tasks remains limited. The current de facto approach for these tasks is to design model architectures and loss functions that are tailored to the task at hand. In this paper, we develop a unified language interface for computer vision tasks that abstracts away task-specific design choices and enables task execution by following natural language instructions. Our approach involves casting multiple computer vision tasks as text-to-image generation problems. Here, the text represents an instruction describing the task, and the resulting image is a visually-encoded task output. To train our model, we pool commonly-used computer vision datasets covering a range of tasks, including segmentation, object detection, depth estimation, and classification. We then use a large language model to paraphrase prompt templates that convey the specific tasks to be conducted on each image, and through this process, we create a multi-modal and multi-task training dataset comprising input and output images along with annotated instructions. Following the InstructPix2Pix architecture, we apply instruction-tuning to a text-to-image diffusion model using our constructed dataset, steering its functionality from a generative model to an instruction-guided multi-task vision learner. Experiments demonstrate that our model, dubbed InstructCV, performs competitively compared to other generalist and task-specific vision models. Moreover, it exhibits compelling generalization capabilities to unseen data, categories, and user instructions.
Sample what you cant compress
For learned image representations, basic autoencoders often produce blurry results. Reconstruction quality can be improved by incorporating additional penalties such as adversarial (GAN) and perceptual losses. Arguably, these approaches lack a principled interpretation. Concurrently, in generative settings diffusion has demonstrated a remarkable ability to create crisp, high quality results and has solid theoretical underpinnings (from variational inference to direct study as the Fisher Divergence). Our work combines autoencoder representation learning with diffusion and is, to our knowledge, the first to demonstrate the efficacy of jointly learning a continuous encoder and decoder under a diffusion-based loss. We demonstrate that this approach yields better reconstruction quality as compared to GAN-based autoencoders while being easier to tune. We also show that the resulting representation is easier to model with a latent diffusion model as compared to the representation obtained from a state-of-the-art GAN-based loss. Since our decoder is stochastic, it can generate details not encoded in the otherwise deterministic latent representation; we therefore name our approach "Sample what you can't compress", or SWYCC for short.
Adversarial Feature Learning
The ability of the Generative Adversarial Networks (GANs) framework to learn generative models mapping from simple latent distributions to arbitrarily complex data distributions has been demonstrated empirically, with compelling results showing that the latent space of such generators captures semantic variation in the data distribution. Intuitively, models trained to predict these semantic latent representations given data may serve as useful feature representations for auxiliary problems where semantics are relevant. However, in their existing form, GANs have no means of learning the inverse mapping -- projecting data back into the latent space. We propose Bidirectional Generative Adversarial Networks (BiGANs) as a means of learning this inverse mapping, and demonstrate that the resulting learned feature representation is useful for auxiliary supervised discrimination tasks, competitive with contemporary approaches to unsupervised and self-supervised feature learning.
High Fidelity Speech Synthesis with Adversarial Networks
Generative adversarial networks have seen rapid development in recent years and have led to remarkable improvements in generative modelling of images. However, their application in the audio domain has received limited attention, and autoregressive models, such as WaveNet, remain the state of the art in generative modelling of audio signals such as human speech. To address this paucity, we introduce GAN-TTS, a Generative Adversarial Network for Text-to-Speech. Our architecture is composed of a conditional feed-forward generator producing raw speech audio, and an ensemble of discriminators which operate on random windows of different sizes. The discriminators analyse the audio both in terms of general realism, as well as how well the audio corresponds to the utterance that should be pronounced. To measure the performance of GAN-TTS, we employ both subjective human evaluation (MOS - Mean Opinion Score), as well as novel quantitative metrics (Fr\'echet DeepSpeech Distance and Kernel DeepSpeech Distance), which we find to be well correlated with MOS. We show that GAN-TTS is capable of generating high-fidelity speech with naturalness comparable to the state-of-the-art models, and unlike autoregressive models, it is highly parallelisable thanks to an efficient feed-forward generator. Listen to GAN-TTS reading this abstract at https://storage.googleapis.com/deepmind-media/research/abstract.wav.
Déjà Vu: Multilingual LLM Evaluation through the Lens of Machine Translation Evaluation
Generation capabilities and language coverage of multilingual large language models (mLLMs) are advancing rapidly. However, evaluation practices for generative abilities of mLLMs are still lacking comprehensiveness, scientific rigor, and consistent adoption across research labs, which undermines their potential to meaningfully guide mLLM development. We draw parallels with machine translation (MT) evaluation, a field that faced similar challenges and has, over decades, developed transparent reporting standards and reliable evaluations for multilingual generative models. Through targeted experiments across key stages of the generative evaluation pipeline, we demonstrate how best practices from MT evaluation can deepen the understanding of quality differences between models. Additionally, we identify essential components for robust meta-evaluation of mLLMs, ensuring the evaluation methods themselves are rigorously assessed. We distill these insights into a checklist of actionable recommendations for mLLM research and development.
Emergent Asymmetry of Precision and Recall for Measuring Fidelity and Diversity of Generative Models in High Dimensions
Precision and Recall are two prominent metrics of generative performance, which were proposed to separately measure the fidelity and diversity of generative models. Given their central role in comparing and improving generative models, understanding their limitations are crucially important. To that end, in this work, we identify a critical flaw in the common approximation of these metrics using k-nearest-neighbors, namely, that the very interpretations of fidelity and diversity that are assigned to Precision and Recall can fail in high dimensions, resulting in very misleading conclusions. Specifically, we empirically and theoretically show that as the number of dimensions grows, two model distributions with supports at equal point-wise distance from the support of the real distribution, can have vastly different Precision and Recall regardless of their respective distributions, hence an emergent asymmetry in high dimensions. Based on our theoretical insights, we then provide simple yet effective modifications to these metrics to construct symmetric metrics regardless of the number of dimensions. Finally, we provide experiments on real-world datasets to illustrate that the identified flaw is not merely a pathological case, and that our proposed metrics are effective in alleviating its impact.
Towards Multi-Task Multi-Modal Models: A Video Generative Perspective
Advancements in language foundation models have primarily fueled the recent surge in artificial intelligence. In contrast, generative learning of non-textual modalities, especially videos, significantly trails behind language modeling. This thesis chronicles our endeavor to build multi-task models for generating videos and other modalities under diverse conditions, as well as for understanding and compression applications. Given the high dimensionality of visual data, we pursue concise and accurate latent representations. Our video-native spatial-temporal tokenizers preserve high fidelity. We unveil a novel approach to mapping bidirectionally between visual observation and interpretable lexical terms. Furthermore, our scalable visual token representation proves beneficial across generation, compression, and understanding tasks. This achievement marks the first instances of language models surpassing diffusion models in visual synthesis and a video tokenizer outperforming industry-standard codecs. Within these multi-modal latent spaces, we study the design of multi-task generative models. Our masked multi-task transformer excels at the quality, efficiency, and flexibility of video generation. We enable a frozen language model, trained solely on text, to generate visual content. Finally, we build a scalable generative multi-modal transformer trained from scratch, enabling the generation of videos containing high-fidelity motion with the corresponding audio given diverse conditions. Throughout the course, we have shown the effectiveness of integrating multiple tasks, crafting high-fidelity latent representation, and generating multiple modalities. This work suggests intriguing potential for future exploration in generating non-textual data and enabling real-time, interactive experiences across various media forms.
Enhancing Image Caption Generation Using Reinforcement Learning with Human Feedback
Research on generative models to produce human-aligned / human-preferred outputs has seen significant recent contributions. Between text and image-generative models, we narrowed our focus to text-based generative models, particularly to produce captions for images that align with human preferences. In this research, we explored a potential method to amplify the performance of the Deep Neural Network Model to generate captions that are preferred by humans. This was achieved by integrating Supervised Learning and Reinforcement Learning with Human Feedback (RLHF) using the Flickr8k dataset. Also, a novel loss function that is capable of optimizing the model based on human feedback is introduced. In this paper, we provide a concise sketch of our approach and results, hoping to contribute to the ongoing advances in the field of human-aligned generative AI models.
Scaling Up Probabilistic Circuits by Latent Variable Distillation
Probabilistic Circuits (PCs) are a unified framework for tractable probabilistic models that support efficient computation of various probabilistic queries (e.g., marginal probabilities). One key challenge is to scale PCs to model large and high-dimensional real-world datasets: we observe that as the number of parameters in PCs increases, their performance immediately plateaus. This phenomenon suggests that the existing optimizers fail to exploit the full expressive power of large PCs. We propose to overcome such bottleneck by latent variable distillation: we leverage the less tractable but more expressive deep generative models to provide extra supervision over the latent variables of PCs. Specifically, we extract information from Transformer-based generative models to assign values to latent variables of PCs, providing guidance to PC optimizers. Experiments on both image and language modeling benchmarks (e.g., ImageNet and WikiText-2) show that latent variable distillation substantially boosts the performance of large PCs compared to their counterparts without latent variable distillation. In particular, on the image modeling benchmarks, PCs achieve competitive performance against some of the widely-used deep generative models, including variational autoencoders and flow-based models, opening up new avenues for tractable generative modeling.
Why Do Pretrained Language Models Help in Downstream Tasks? An Analysis of Head and Prompt Tuning
Pretrained language models have achieved state-of-the-art performance when adapted to a downstream NLP task. However, theoretical analysis of these models is scarce and challenging since the pretraining and downstream tasks can be very different. We propose an analysis framework that links the pretraining and downstream tasks with an underlying latent variable generative model of text -- the downstream classifier must recover a function of the posterior distribution over the latent variables. We analyze head tuning (learning a classifier on top of the frozen pretrained model) and prompt tuning in this setting. The generative model in our analysis is either a Hidden Markov Model (HMM) or an HMM augmented with a latent memory component, motivated by long-term dependencies in natural language. We show that 1) under certain non-degeneracy conditions on the HMM, simple classification heads can solve the downstream task, 2) prompt tuning obtains downstream guarantees with weaker non-degeneracy conditions, and 3) our recovery guarantees for the memory-augmented HMM are stronger than for the vanilla HMM because task-relevant information is easier to recover from the long-term memory. Experiments on synthetically generated data from HMMs back our theoretical findings.
Hierarchical Multi-Grained Generative Model for Expressive Speech Synthesis
This paper proposes a hierarchical generative model with a multi-grained latent variable to synthesize expressive speech. In recent years, fine-grained latent variables are introduced into the text-to-speech synthesis that enable the fine control of the prosody and speaking styles of synthesized speech. However, the naturalness of speech degrades when these latent variables are obtained by sampling from the standard Gaussian prior. To solve this problem, we propose a novel framework for modeling the fine-grained latent variables, considering the dependence on an input text, a hierarchical linguistic structure, and a temporal structure of latent variables. This framework consists of a multi-grained variational autoencoder, a conditional prior, and a multi-level auto-regressive latent converter to obtain the different time-resolution latent variables and sample the finer-level latent variables from the coarser-level ones by taking into account the input text. Experimental results indicate an appropriate method of sampling fine-grained latent variables without the reference signal at the synthesis stage. Our proposed framework also provides the controllability of speaking style in an entire utterance.
Exposing flaws of generative model evaluation metrics and their unfair treatment of diffusion models
We systematically study a wide variety of image-based generative models spanning semantically-diverse datasets to understand and improve the feature extractors and metrics used to evaluate them. Using best practices in psychophysics, we measure human perception of image realism for generated samples by conducting the largest experiment evaluating generative models to date, and find that no existing metric strongly correlates with human evaluations. Comparing to 16 modern metrics for evaluating the overall performance, fidelity, diversity, and memorization of generative models, we find that the state-of-the-art perceptual realism of diffusion models as judged by humans is not reflected in commonly reported metrics such as FID. This discrepancy is not explained by diversity in generated samples, though one cause is over-reliance on Inception-V3. We address these flaws through a study of alternative self-supervised feature extractors, find that the semantic information encoded by individual networks strongly depends on their training procedure, and show that DINOv2-ViT-L/14 allows for much richer evaluation of generative models. Next, we investigate data memorization, and find that generative models do memorize training examples on simple, smaller datasets like CIFAR10, but not necessarily on more complex datasets like ImageNet. However, our experiments show that current metrics do not properly detect memorization; none in the literature is able to separate memorization from other phenomena such as underfitting or mode shrinkage. To facilitate further development of generative models and their evaluation we release all generated image datasets, human evaluation data, and a modular library to compute 16 common metrics for 8 different encoders at https://github.com/layer6ai-labs/dgm-eval.
Antagonising explanation and revealing bias directly through sequencing and multimodal inference
Deep generative models produce data according to a learned representation, e.g. diffusion models, through a process of approximation computing possible samples. Approximation can be understood as reconstruction and the large datasets used to train models as sets of records in which we represent the physical world with some data structure (photographs, audio recordings, manuscripts). During the process of reconstruction, e.g., image frames develop each timestep towards a textual input description. While moving forward in time, frame sets are shaped according to learned bias and their production, we argue here, can be considered as going back in time; not by inspiration on the backward diffusion process but acknowledging culture is specifically marked in the records. Futures of generative modelling, namely in film and audiovisual arts, can benefit by dealing with diffusion systems as a process to compute the future by inevitably being tied to the past, if acknowledging the records as to capture fields of view at a specific time, and to correlate with our own finite memory ideals. Models generating new data distributions can target video production as signal processors and by developing sequences through timelines we ourselves also go back to decade-old algorithmic and multi-track methodologies revealing the actual predictive failure of contemporary approaches to synthesis in moving image, both as relevant to composition and not explanatory.
Statistical Methods in Generative AI
Generative Artificial Intelligence is emerging as an important technology, promising to be transformative in many areas. At the same time, generative AI techniques are based on sampling from probabilistic models, and by default, they come with no guarantees about correctness, safety, fairness, or other properties. Statistical methods offer a promising potential approach to improve the reliability of generative AI techniques. In addition, statistical methods are also promising for improving the quality and efficiency of AI evaluation, as well as for designing interventions and experiments in AI. In this paper, we review some of the existing work on these topics, explaining both the general statistical techniques used, as well as their applications to generative AI. We also discuss limitations and potential future directions.
FiE: Building a Global Probability Space by Leveraging Early Fusion in Encoder for Open-Domain Question Answering
Generative models have recently started to outperform extractive models in Open Domain Question Answering, largely by leveraging their decoder to attend over multiple encoded passages and combining their information. However, generative models tend to be larger than extractive models due to the need for a decoder, run slower during inference due to auto-regressive decoder beam search, and their generated output often suffers from hallucinations. We propose to extend transformer encoders with the ability to fuse information from multiple passages, using global representation to provide cross-sample attention over all tokens across samples. Furthermore, we propose an alternative answer span probability calculation to better aggregate answer scores in the global space of all samples. Using our proposed method, we outperform the current state-of-the-art method by 2.5 Exact Match score on the Natural Question dataset while using only 25% of parameters and 35% of the latency during inference, and 4.4 Exact Match on WebQuestions dataset. When coupled with synthetic data augmentation, we outperform larger models on the TriviaQA dataset as well. The latency and parameter savings of our method make it particularly attractive for open-domain question answering, as these models are often compute-intensive.
Understanding and Mitigating Compositional Issues in Text-to-Image Generative Models
Recent text-to-image diffusion-based generative models have the stunning ability to generate highly detailed and photo-realistic images and achieve state-of-the-art low FID scores on challenging image generation benchmarks. However, one of the primary failure modes of these text-to-image generative models is in composing attributes, objects, and their associated relationships accurately into an image. In our paper, we investigate this compositionality-based failure mode and highlight that imperfect text conditioning with CLIP text-encoder is one of the primary reasons behind the inability of these models to generate high-fidelity compositional scenes. In particular, we show that (i) there exists an optimal text-embedding space that can generate highly coherent compositional scenes which shows that the output space of the CLIP text-encoder is sub-optimal, and (ii) we observe that the final token embeddings in CLIP are erroneous as they often include attention contributions from unrelated tokens in compositional prompts. Our main finding shows that the best compositional improvements can be achieved (without harming the model's FID scores) by fine-tuning {\it only} a simple linear projection on CLIP's representation space in Stable-Diffusion variants using a small set of compositional image-text pairs. This result demonstrates that the sub-optimality of the CLIP's output space is a major error source. We also show that re-weighting the erroneous attention contributions in CLIP can also lead to improved compositional performances, however these improvements are often less significant than those achieved by solely learning a linear projection head, highlighting erroneous attentions to be only a minor error source.
Missing Fine Details in Images: Last Seen in High Frequencies
Latent generative models have shown remarkable progress in high-fidelity image synthesis, typically using a two-stage training process that involves compressing images into latent embeddings via learned tokenizers in the first stage. The quality of generation strongly depends on how expressive and well-optimized these latent embeddings are. While various methods have been proposed to learn effective latent representations, generated images often lack realism, particularly in textured regions with sharp transitions, due to loss of fine details governed by high frequencies. We conduct a detailed frequency decomposition of existing state-of-the-art (SOTA) latent tokenizers and show that conventional objectives inherently prioritize low-frequency reconstruction, often at the expense of high-frequency fidelity. Our analysis reveals these latent tokenizers exhibit a bias toward low-frequency information during optimization, leading to over-smoothed outputs and visual artifacts that diminish perceptual quality. To address this, we propose a wavelet-based, frequency-aware variational autoencoder (FA-VAE) framework that explicitly decouples the optimization of low- and high-frequency components. This decoupling enables improved reconstruction of fine textures while preserving global structure. Moreover, we integrate our frequency-preserving latent embeddings into a SOTA latent diffusion model, resulting in sharper and more realistic image generation. Our approach bridges the fidelity gap in current latent tokenizers and emphasizes the importance of frequency-aware optimization for realistic image synthesis, with broader implications for applications in content creation, neural rendering, and medical imaging.
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators
Can a generative model be trained to produce images from a specific domain, guided by a text prompt only, without seeing any image? In other words: can an image generator be trained "blindly"? Leveraging the semantic power of large scale Contrastive-Language-Image-Pre-training (CLIP) models, we present a text-driven method that allows shifting a generative model to new domains, without having to collect even a single image. We show that through natural language prompts and a few minutes of training, our method can adapt a generator across a multitude of domains characterized by diverse styles and shapes. Notably, many of these modifications would be difficult or outright impossible to reach with existing methods. We conduct an extensive set of experiments and comparisons across a wide range of domains. These demonstrate the effectiveness of our approach and show that our shifted models maintain the latent-space properties that make generative models appealing for downstream tasks.
InfoVAE: Information Maximizing Variational Autoencoders
A key advance in learning generative models is the use of amortized inference distributions that are jointly trained with the models. We find that existing training objectives for variational autoencoders can lead to inaccurate amortized inference distributions and, in some cases, improving the objective provably degrades the inference quality. In addition, it has been observed that variational autoencoders tend to ignore the latent variables when combined with a decoding distribution that is too flexible. We again identify the cause in existing training criteria and propose a new class of objectives (InfoVAE) that mitigate these problems. We show that our model can significantly improve the quality of the variational posterior and can make effective use of the latent features regardless of the flexibility of the decoding distribution. Through extensive qualitative and quantitative analyses, we demonstrate that our models outperform competing approaches on multiple performance metrics.
PLATO-2: Towards Building an Open-Domain Chatbot via Curriculum Learning
To build a high-quality open-domain chatbot, we introduce the effective training process of PLATO-2 via curriculum learning. There are two stages involved in the learning process. In the first stage, a coarse-grained generation model is trained to learn response generation under the simplified framework of one-to-one mapping. In the second stage, a fine-grained generative model augmented with latent variables and an evaluation model are further trained to generate diverse responses and to select the best response, respectively. PLATO-2 was trained on both Chinese and English data, whose effectiveness and superiority are verified through comprehensive evaluations, achieving new state-of-the-art results.
Verif.ai: Towards an Open-Source Scientific Generative Question-Answering System with Referenced and Verifiable Answers
In this paper, we present the current progress of the project Verif.ai, an open-source scientific generative question-answering system with referenced and verified answers. The components of the system are (1) an information retrieval system combining semantic and lexical search techniques over scientific papers (PubMed), (2) a fine-tuned generative model (Mistral 7B) taking top answers and generating answers with references to the papers from which the claim was derived, and (3) a verification engine that cross-checks the generated claim and the abstract or paper from which the claim was derived, verifying whether there may have been any hallucinations in generating the claim. We are reinforcing the generative model by providing the abstract in context, but in addition, an independent set of methods and models are verifying the answer and checking for hallucinations. Therefore, we believe that by using our method, we can make scientists more productive, while building trust in the use of generative language models in scientific environments, where hallucinations and misinformation cannot be tolerated.
Evaluating Verifiability in Generative Search Engines
Generative search engines directly generate responses to user queries, along with in-line citations. A prerequisite trait of a trustworthy generative search engine is verifiability, i.e., systems should cite comprehensively (high citation recall; all statements are fully supported by citations) and accurately (high citation precision; every cite supports its associated statement). We conduct human evaluation to audit four popular generative search engines -- Bing Chat, NeevaAI, perplexity.ai, and YouChat -- across a diverse set of queries from a variety of sources (e.g., historical Google user queries, dynamically-collected open-ended questions on Reddit, etc.). We find that responses from existing generative search engines are fluent and appear informative, but frequently contain unsupported statements and inaccurate citations: on average, a mere 51.5% of generated sentences are fully supported by citations and only 74.5% of citations support their associated sentence. We believe that these results are concerningly low for systems that may serve as a primary tool for information-seeking users, especially given their facade of trustworthiness. We hope that our results further motivate the development of trustworthy generative search engines and help researchers and users better understand the shortcomings of existing commercial systems.
Evaluating ChatGPT and GPT-4 for Visual Programming
Generative AI and large language models have the potential to drastically improve the landscape of computing education by automatically generating personalized feedback and content. Recent works have studied the capabilities of these models for different programming education scenarios; however, these works considered only text-based programming, in particular, Python programming. Consequently, they leave open the question of how well these models would perform in visual programming domains popularly used for K-8 programming education. The main research question we study is: Do state-of-the-art generative models show advanced capabilities in visual programming on par with their capabilities in text-based Python programming? In our work, we evaluate two models, ChatGPT (based on GPT-3.5) and GPT-4, in visual programming domains for various scenarios and assess performance using expert-based annotations. In particular, we base our evaluation using reference tasks from the domains of Hour of Code: Maze Challenge by Code-dot-org and Karel. Our results show that these models perform poorly and struggle to combine spatial, logical, and programming skills crucial for visual programming. These results also provide exciting directions for future work on developing techniques to improve the performance of generative models in visual programming.
Best Prompts for Text-to-Image Models and How to Find Them
Recent progress in generative models, especially in text-guided diffusion models, has enabled the production of aesthetically-pleasing imagery resembling the works of professional human artists. However, one has to carefully compose the textual description, called the prompt, and augment it with a set of clarifying keywords. Since aesthetics are challenging to evaluate computationally, human feedback is needed to determine the optimal prompt formulation and keyword combination. In this paper, we present a human-in-the-loop approach to learning the most useful combination of prompt keywords using a genetic algorithm. We also show how such an approach can improve the aesthetic appeal of images depicting the same descriptions.
On the Challenges and Opportunities in Generative AI
The field of deep generative modeling has grown rapidly and consistently over the years. With the availability of massive amounts of training data coupled with advances in scalable unsupervised learning paradigms, recent large-scale generative models show tremendous promise in synthesizing high-resolution images and text, as well as structured data such as videos and molecules. However, we argue that current large-scale generative AI models do not sufficiently address several fundamental issues that hinder their widespread adoption across domains. In this work, we aim to identify key unresolved challenges in modern generative AI paradigms that should be tackled to further enhance their capabilities, versatility, and reliability. By identifying these challenges, we aim to provide researchers with valuable insights for exploring fruitful research directions, thereby fostering the development of more robust and accessible generative AI solutions.
Data-Copying in Generative Models: A Formal Framework
There has been some recent interest in detecting and addressing memorization of training data by deep neural networks. A formal framework for memorization in generative models, called "data-copying," was proposed by Meehan et. al. (2020). We build upon their work to show that their framework may fail to detect certain kinds of blatant memorization. Motivated by this and the theory of non-parametric methods, we provide an alternative definition of data-copying that applies more locally. We provide a method to detect data-copying, and provably show that it works with high probability when enough data is available. We also provide lower bounds that characterize the sample requirement for reliable detection.
Uniform Complexity for Text Generation
Large language models (LLMs) have shown promising results in a wide array of generative NLP tasks, such as summarization and machine translation. In the context of narrative generation, however, existing models still do not capture factors that contribute to producing consistent text. For instance, it is logical that a piece of text or a story should be uniformly readable throughout and that this form of complexity should be controllable. As such, if the complexity of an input text prompt is rated first-grade reading level in the Flesch Reading Ease test, then the generated text continuing the plot should also be within this range of complexity. With this in mind, we introduce Uniform Complexity for Text Generation (UCTG), a new benchmark test which raises the challenge of making generative models observe uniform linguistic properties with respect to prompts. We experiment with over 150+ linguistically and cognitively motivated features for evaluating text complexity in humans and generative models. From our results, we find that models such as GPT-2 struggle to preserve the complexity of input prompts used in its generations, even if finetuned with professionally written texts.
ChatGPT is not all you need. A State of the Art Review of large Generative AI models
During the last two years there has been a plethora of large generative models such as ChatGPT or Stable Diffusion that have been published. Concretely, these models are able to perform tasks such as being a general question and answering system or automatically creating artistic images that are revolutionizing several sectors. Consequently, the implications that these generative models have in the industry and society are enormous, as several job positions may be transformed. For example, Generative AI is capable of transforming effectively and creatively texts to images, like the DALLE-2 model; text to 3D images, like the Dreamfusion model; images to text, like the Flamingo model; texts to video, like the Phenaki model; texts to audio, like the AudioLM model; texts to other texts, like ChatGPT; texts to code, like the Codex model; texts to scientific texts, like the Galactica model or even create algorithms like AlphaTensor. This work consists on an attempt to describe in a concise way the main models are sectors that are affected by generative AI and to provide a taxonomy of the main generative models published recently.
A Note on the Inception Score
Deep generative models are powerful tools that have produced impressive results in recent years. These advances have been for the most part empirically driven, making it essential that we use high quality evaluation metrics. In this paper, we provide new insights into the Inception Score, a recently proposed and widely used evaluation metric for generative models, and demonstrate that it fails to provide useful guidance when comparing models. We discuss both suboptimalities of the metric itself and issues with its application. Finally, we call for researchers to be more systematic and careful when evaluating and comparing generative models, as the advancement of the field depends upon it.
Marigold: Affordable Adaptation of Diffusion-Based Image Generators for Image Analysis
The success of deep learning in computer vision over the past decade has hinged on large labeled datasets and strong pretrained models. In data-scarce settings, the quality of these pretrained models becomes crucial for effective transfer learning. Image classification and self-supervised learning have traditionally been the primary methods for pretraining CNNs and transformer-based architectures. Recently, the rise of text-to-image generative models, particularly those using denoising diffusion in a latent space, has introduced a new class of foundational models trained on massive, captioned image datasets. These models' ability to generate realistic images of unseen content suggests they possess a deep understanding of the visual world. In this work, we present Marigold, a family of conditional generative models and a fine-tuning protocol that extracts the knowledge from pretrained latent diffusion models like Stable Diffusion and adapts them for dense image analysis tasks, including monocular depth estimation, surface normals prediction, and intrinsic decomposition. Marigold requires minimal modification of the pre-trained latent diffusion model's architecture, trains with small synthetic datasets on a single GPU over a few days, and demonstrates state-of-the-art zero-shot generalization. Project page: https://marigoldcomputervision.github.io
PromptKD: Distilling Student-Friendly Knowledge for Generative Language Models via Prompt Tuning
Recent advancements in large language models (LLMs) have raised concerns about inference costs, increasing the need for research into model compression. While knowledge distillation (KD) is a prominent method for this, research on KD for generative language models like LLMs is relatively sparse, and the approach of distilling student-friendly knowledge, which has shown promising performance in KD for classification models, remains unexplored in generative language models. To explore this approach, we propose PromptKD, a simple yet effective method that utilizes prompt tuning - for the first time in KD - to enable generative language models to transfer student-friendly knowledge. Unlike previous works in classification that require fine-tuning the entire teacher model for extracting student-friendly knowledge, PromptKD achieves similar effects by adding a small number of prompt tokens and tuning only the prompt with student guidance. Extensive experiments on instruction-following datasets using the GPT-2 model family show that PromptKD achieves state-of-the-art performance while adding only 0.0007% of the teacher's parameters as prompts. Further analysis suggests that distilling student-friendly knowledge alleviates exposure bias effectively throughout the entire training process, leading to performance enhancements.
VSTAR: Generative Temporal Nursing for Longer Dynamic Video Synthesis
Despite tremendous progress in the field of text-to-video (T2V) synthesis, open-sourced T2V diffusion models struggle to generate longer videos with dynamically varying and evolving content. They tend to synthesize quasi-static videos, ignoring the necessary visual change-over-time implied in the text prompt. At the same time, scaling these models to enable longer, more dynamic video synthesis often remains computationally intractable. To address this challenge, we introduce the concept of Generative Temporal Nursing (GTN), where we aim to alter the generative process on the fly during inference to improve control over the temporal dynamics and enable generation of longer videos. We propose a method for GTN, dubbed VSTAR, which consists of two key ingredients: 1) Video Synopsis Prompting (VSP) - automatic generation of a video synopsis based on the original single prompt leveraging LLMs, which gives accurate textual guidance to different visual states of longer videos, and 2) Temporal Attention Regularization (TAR) - a regularization technique to refine the temporal attention units of the pre-trained T2V diffusion models, which enables control over the video dynamics. We experimentally showcase the superiority of the proposed approach in generating longer, visually appealing videos over existing open-sourced T2V models. We additionally analyze the temporal attention maps realized with and without VSTAR, demonstrating the importance of applying our method to mitigate neglect of the desired visual change over time.
DOSA: A Dataset of Social Artifacts from Different Indian Geographical Subcultures
Generative models are increasingly being used in various applications, such as text generation, commonsense reasoning, and question-answering. To be effective globally, these models must be aware of and account for local socio-cultural contexts, making it necessary to have benchmarks to evaluate the models for their cultural familiarity. Since the training data for LLMs is web-based and the Web is limited in its representation of information, it does not capture knowledge present within communities that are not on the Web. Thus, these models exacerbate the inequities, semantic misalignment, and stereotypes from the Web. There has been a growing call for community-centered participatory research methods in NLP. In this work, we respond to this call by using participatory research methods to introduce DOSA, the first community-generated Dataset of 615 Social Artifacts, by engaging with 260 participants from 19 different Indian geographic subcultures. We use a gamified framework that relies on collective sensemaking to collect the names and descriptions of these artifacts such that the descriptions semantically align with the shared sensibilities of the individuals from those cultures. Next, we benchmark four popular LLMs and find that they show significant variation across regional sub-cultures in their ability to infer the artifacts.
GPT-SW3: An Autoregressive Language Model for the Nordic Languages
This paper details the process of developing the first native large generative language model for the Nordic languages, GPT-SW3. We cover all parts of the development process, from data collection and processing, training configuration and instruction finetuning, to evaluation and considerations for release strategies. We hope that this paper can serve as a guide and reference for other researchers that undertake the development of large generative models for smaller languages.
UME-R1: Exploring Reasoning-Driven Generative Multimodal Embeddings
The remarkable success of multimodal large language models (MLLMs) has driven advances in multimodal embeddings, yet existing models remain inherently discriminative, limiting their ability to benefit from reasoning-driven generation paradigm. In this work, we pioneer the exploration of generative embeddings, unifying embedding tasks within a generative paradigm. We propose UME-R1, a universal multimodal embedding framework consisting of a two-stage training strategy: a cold-start supervised fine-tuning equips the model with reasoning capabilities and enables it to generate both discriminative and generative embeddings; a subsequent reinforcement learning enhances reasoning and further optimizes generative embedding quality. This pioneering work reveals four key insights: 1) generative embeddings unlock substantial performance gains over conventional discriminative embeddings by leveraging the powerful generative reasoning capabilities of MLLMs; 2) discriminative and generative embeddings are complementary, whose combined oracle performance far exceeding that of either alone; 3) RL can effectively enhance generative embeddings, establishing a scalable optimization paradigm.; 4) repeated sampling at inference boosts downstream task coverage (pass@k), highlighting the inference-time scalability potential of generative embeddings. Evaluated on the MMEB-V2 benchmark across 78 tasks spanning video, image, and visual documents, UME-R1 significantly outperforms conventional discriminative embedding models and offers a foundation for more interpretable, reasoning-driven generative multimodal embeddings. Our code, models, and datasets will be publicly available at https://github.com/XMUDeepLIT/UME-R1.
Efficient Fine-Grained Guidance for Diffusion-Based Symbolic Music Generation
Developing generative models to create or conditionally create symbolic music presents unique challenges due to the combination of limited data availability and the need for high precision in note pitch. To address these challenges, we introduce an efficient Fine-Grained Guidance (FGG) approach within diffusion models. FGG guides the diffusion models to generate music that aligns more closely with the control and intent of expert composers, which is critical to improve the accuracy, listenability, and quality of generated music. This approach empowers diffusion models to excel in advanced applications such as improvisation, and interactive music creation. We derive theoretical characterizations for both the challenges in symbolic music generation and the effects of the FGG approach. We provide numerical experiments and subjective evaluation to demonstrate the effectiveness of our approach. We have published a demo page to showcase performances, as one of the first in the symbolic music literature's demo pages that enables real-time interactive generation.
DiffIER: Optimizing Diffusion Models with Iterative Error Reduction
Diffusion models have demonstrated remarkable capabilities in generating high-quality samples and enhancing performance across diverse domains through Classifier-Free Guidance (CFG). However, the quality of generated samples is highly sensitive to the selection of the guidance weight. In this work, we identify a critical ``training-inference gap'' and we argue that it is the presence of this gap that undermines the performance of conditional generation and renders outputs highly sensitive to the guidance weight. We quantify this gap by measuring the accumulated error during the inference stage and establish a correlation between the selection of guidance weight and minimizing this gap. Furthermore, to mitigate this gap, we propose DiffIER, an optimization-based method for high-quality generation. We demonstrate that the accumulated error can be effectively reduced by an iterative error minimization at each step during inference. By introducing this novel plug-and-play optimization framework, we enable the optimization of errors at every single inference step and enhance generation quality. Empirical results demonstrate that our proposed method outperforms baseline approaches in conditional generation tasks. Furthermore, the method achieves consistent success in text-to-image generation, image super-resolution, and text-to-speech generation, underscoring its versatility and potential for broad applications in future research.
Adversarial Negotiation Dynamics in Generative Language Models
Generative language models are increasingly used for contract drafting and enhancement, creating a scenario where competing parties deploy different language models against each other. This introduces not only a game-theory challenge but also significant concerns related to AI safety and security, as the language model employed by the opposing party can be unknown. These competitive interactions can be seen as adversarial testing grounds, where models are effectively red-teamed to expose vulnerabilities such as generating biased, harmful or legally problematic text. Despite the importance of these challenges, the competitive robustness and safety of these models in adversarial settings remain poorly understood. In this small study, we approach this problem by evaluating the performance and vulnerabilities of major open-source language models in head-to-head competitions, simulating real-world contract negotiations. We further explore how these adversarial interactions can reveal potential risks, informing the development of more secure and reliable models. Our findings contribute to the growing body of research on AI safety, offering insights into model selection and optimisation in competitive legal contexts and providing actionable strategies for mitigating risks.
Sources of Hallucination by Large Language Models on Inference Tasks
Large Language Models (LLMs) are claimed to be capable of Natural Language Inference (NLI), necessary for applied tasks like question answering and summarization. We present a series of behavioral studies on several LLM families (LLaMA, GPT-3.5, and PaLM) which probe their behavior using controlled experiments. We establish two biases originating from pretraining which predict much of their behavior, and show that these are major sources of hallucination in generative LLMs. First, memorization at the level of sentences: we show that, regardless of the premise, models falsely label NLI test samples as entailing when the hypothesis is attested in training data, and that entities are used as ``indices'' to access the memorized data. Second, statistical patterns of usage learned at the level of corpora: we further show a similar effect when the premise predicate is less frequent than that of the hypothesis in the training data, a bias following from previous studies. We demonstrate that LLMs perform significantly worse on NLI test samples which do not conform to these biases than those which do, and we offer these as valuable controls for future LLM evaluation.
Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion
This paper presents Diffusion Forcing, a new training paradigm where a diffusion model is trained to denoise a set of tokens with independent per-token noise levels. We apply Diffusion Forcing to sequence generative modeling by training a causal next-token prediction model to generate one or several future tokens without fully diffusing past ones. Our approach is shown to combine the strengths of next-token prediction models, such as variable-length generation, with the strengths of full-sequence diffusion models, such as the ability to guide sampling to desirable trajectories. Our method offers a range of additional capabilities, such as (1) rolling-out sequences of continuous tokens, such as video, with lengths past the training horizon, where baselines diverge and (2) new sampling and guiding schemes that uniquely profit from Diffusion Forcing's variable-horizon and causal architecture, and which lead to marked performance gains in decision-making and planning tasks. In addition to its empirical success, our method is proven to optimize a variational lower bound on the likelihoods of all subsequences of tokens drawn from the true joint distribution. Project website: https://boyuan.space/diffusion-forcing/
Empower Your Model with Longer and Better Context Comprehension
Recently, with the emergence of numerous Large Language Models (LLMs), the implementation of AI has entered a new era. Irrespective of these models' own capacity and structure, there is a growing demand for LLMs to possess enhanced comprehension of longer and more complex contexts with relatively smaller sizes. Models often encounter an upper limit when processing sequences of sentences that extend beyond their comprehension capacity and result in off-topic or even chaotic responses. While several recent works attempt to address this issue in various ways, they rarely focus on "why models are unable to compensate or strengthen their capabilities on their own". In this paper, we thoroughly investigate the nature of information transfer within LLMs and propose a novel technique called Attention Transition. This technique empowers models to achieve longer and better context comprehension with minimal additional training or impact on generation fluency. Our experiments are conducted on the challenging XSum dataset using LLaMa-7b model with context token length ranging from 800 to 1900. Results demonstrate that we achieve substantial improvements compared with the original generation results evaluated by GPT4.
Generative AI as a metacognitive agent: A comparative mixed-method study with human participants on ICF-mimicking exam performance
This study investigates the metacognitive capabilities of Large Language Models relative to human metacognition in the context of the International Coaching Federation ICF mimicking exam, a situational judgment test related to coaching competencies. Using a mixed method approach, we assessed the metacognitive performance, including sensitivity, accuracy in probabilistic predictions, and bias, of human participants and five advanced LLMs (GPT-4, Claude-3-Opus 3, Mistral Large, Llama 3, and Gemini 1.5 Pro). The results indicate that LLMs outperformed humans across all metacognitive metrics, particularly in terms of reduced overconfidence, compared to humans. However, both LLMs and humans showed less adaptability in ambiguous scenarios, adhering closely to predefined decision frameworks. The study suggests that Generative AI can effectively engage in human-like metacognitive processing without conscious awareness. Implications of the study are discussed in relation to development of AI simulators that scaffold cognitive and metacognitive aspects of mastering coaching competencies. More broadly, implications of these results are discussed in relation to development of metacognitive modules that lead towards more autonomous and intuitive AI systems.
Generative Cross-Modal Retrieval: Memorizing Images in Multimodal Language Models for Retrieval and Beyond
The recent advancements in generative language models have demonstrated their ability to memorize knowledge from documents and recall knowledge to respond to user queries effectively. Building upon this capability, we propose to enable multimodal large language models (MLLMs) to memorize and recall images within their parameters. Given a user query for visual content, the MLLM is anticipated to "recall" the relevant image from its parameters as the response. Achieving this target presents notable challenges, including inbuilt visual memory and visual recall schemes within MLLMs. To address these challenges, we introduce a generative cross-modal retrieval framework, which assigns unique identifier strings to represent images and involves two training steps: learning to memorize and learning to retrieve. The first step focuses on training the MLLM to memorize the association between images and their respective identifiers. The latter step teaches the MLLM to generate the corresponding identifier of the target image, given the textual query input. By memorizing images in MLLMs, we introduce a new paradigm to cross-modal retrieval, distinct from previous discriminative approaches. The experiments demonstrate that the generative paradigm performs effectively and efficiently even with large-scale image candidate sets.
Set-Based Prompting: Provably Solving the Language Model Order Dependency Problem
The development of generative language models that can create long and coherent textual outputs via autoregression has lead to a proliferation of uses and a corresponding sweep of analyses as researches work to determine the limitations of this new paradigm. Unlike humans, these 'Large Language Models' (LLMs) are highly sensitive to small changes in their inputs, leading to unwanted inconsistency in their behavior. One problematic inconsistency when LLMs are used to answer multiple-choice questions or analyze multiple inputs is order dependency: the output of an LLM can (and often does) change significantly when sub-sequences are swapped, despite both orderings being semantically identical. In this paper we present , a technique that guarantees the output of an LLM will not have order dependence on a specified set of sub-sequences. We show that this method provably eliminates order dependency, and that it can be applied to any transformer-based LLM to enable text generation that is unaffected by re-orderings. Delving into the implications of our method, we show that, despite our inputs being out of distribution, the impact on expected accuracy is small, where the expectation is over the order of uniformly chosen shuffling of the candidate responses, and usually significantly less in practice. Thus, can be used as a 'dropped-in' method on fully trained models. Finally, we discuss how our method's success suggests that other strong guarantees can be obtained on LLM performance via modifying the input representations.
Unified Generative and Discriminative Training for Multi-modal Large Language Models
In recent times, Vision-Language Models (VLMs) have been trained under two predominant paradigms. Generative training has enabled Multimodal Large Language Models (MLLMs) to tackle various complex tasks, yet issues such as hallucinations and weak object discrimination persist. Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval, yet struggles with complex scenarios requiring fine-grained semantic differentiation. This paper addresses these challenges by proposing a unified approach that integrates the strengths of both paradigms. Considering interleaved image-text sequences as the general format of input samples, we introduce a structure-induced training strategy that imposes semantic relationships between input samples and the MLLM's hidden state. This approach enhances the MLLM's ability to capture global semantics and distinguish fine-grained semantics. By leveraging dynamic sequence alignment within the Dynamic Time Warping framework and integrating a novel kernel for fine-grained semantic differentiation, our method effectively balances generative and discriminative tasks. Extensive experiments demonstrate the effectiveness of our approach, achieving state-of-the-art results in multiple generative tasks, especially those requiring cognitive and discrimination abilities. Additionally, our method surpasses discriminative benchmarks in interleaved and fine-grained retrieval tasks. By employing a retrieval-augmented generation strategy, our approach further enhances performance in some generative tasks within one model, offering a promising direction for future research in vision-language modeling.
Exploring EFL students' prompt engineering in human-AI story writing: an Activity Theory perspective
This study applies Activity Theory to investigate how English as a foreign language (EFL) students prompt generative artificial intelligence (AI) tools during short story writing. Sixty-seven Hong Kong secondary school students created generative-AI tools using open-source language models and wrote short stories with them. The study collected and analyzed the students' generative-AI tools, short stories, and written reflections on their conditions or purposes for prompting. The research identified three main themes regarding the purposes for which students prompt generative-AI tools during short story writing: a lack of awareness of purposes, overcoming writer's block, and developing, expanding, and improving the story. The study also identified common characteristics of students' activity systems, including the sophistication of their generative-AI tools, the quality of their stories, and their school's overall academic achievement level, for their prompting of generative-AI tools for the three purposes during short story writing. The study's findings suggest that teachers should be aware of students' purposes for prompting generative-AI tools to provide tailored instructions and scaffolded guidance. The findings may also help designers provide differentiated instructions for users at various levels of story development when using a generative-AI tool.
Characterizing and Efficiently Accelerating Multimodal Generation Model Inference
Generative artificial intelligence (AI) technology is revolutionizing the computing industry. Not only its applications have broadened to various sectors but also poses new system design and optimization opportunities. The technology is capable of understanding and responding in multiple modalities. However, the advanced capability currently comes with significant system resource demands. To sustainably scale generative AI capabilities to billions of users in the world, inference must be fast and efficient. This paper pinpoints key system design and optimization opportunities by characterizing a family of emerging multi-modal generation models on real systems. Auto-regressive token generation is a critical latency performance bottleneck, typically dominated by GPU idle time. In addition to memory-intensive attention across the generative AI models, linear operations constitute significant inference latency due to the feed forward networks in Transformer-based models. We demonstrate that state-of-the-art optimization levers, spanning from applications to system software and hardware, set a 3.88x better baseline.
Adaptive Inference-Time Compute: LLMs Can Predict if They Can Do Better, Even Mid-Generation
Inference-time computation is a powerful paradigm to enhance the performance of large language models (LLMs), with Best-of-N sampling being a widely used technique. However, this method is computationally expensive, requiring both (1) an external reward model and (2) the generation of multiple samples. In this work, we introduce a new generative self-evaluation scheme designed to adaptively reduce the number of generated samples while maintaining or even improving performance. We use a generative reward model formulation, allowing the LLM to predict mid-generation the probability that restarting the generation will yield a better response. These predictions are obtained without an external reward model and can be used to decide whether or not to generate more samples, prune unpromising samples early on, or to pick the best sample. This capability is very inexpensive as it involves generating a single predefined token. Trained using a dataset constructed with real unfiltered LMSYS user prompts, Llama 3.1 8B's win rate against GPT-4 on AlpacaEval increases from 21% to 34% with 16 samples and math performance on GSM8K improves from 84% to 91%. By sampling only when the LLM determines that it is beneficial to do so and adaptively adjusting temperature annealing, we demonstrate that 74% of the improvement from using 16 samples can be achieved with only 1.2 samples on average. We further demonstrate that 50-75% of samples can be pruned early in generation with minimal degradation in performance. Overall, our methods enable more efficient and scalable compute utilization during inference for LLMs.
On the Stability of Iterative Retraining of Generative Models on their own Data
Deep generative models have made tremendous progress in modeling complex data, often exhibiting generation quality that surpasses a typical human's ability to discern the authenticity of samples. Undeniably, a key driver of this success is enabled by the massive amounts of web-scale data consumed by these models. Due to these models' striking performance and ease of availability, the web will inevitably be increasingly populated with synthetic content. Such a fact directly implies that future iterations of generative models must contend with the reality that their training is curated from both clean data and artificially generated data from past models. In this paper, we develop a framework to rigorously study the impact of training generative models on mixed datasets (of real and synthetic data) on their stability. We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough and the proportion of clean training data (w.r.t. synthetic data) is large enough. We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models on CIFAR10 and FFHQ.
Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits
Probabilistic Circuits (PCs) are a general and unified computational framework for tractable probabilistic models that support efficient computation of various inference tasks (e.g., computing marginal probabilities). Towards enabling such reasoning capabilities in complex real-world tasks, Liu et al. (2022) propose to distill knowledge (through latent variable assignments) from less tractable but more expressive deep generative models. However, it is still unclear what factors make this distillation work well. In this paper, we theoretically and empirically discover that the performance of a PC can exceed that of its teacher model. Therefore, instead of performing distillation from the most expressive deep generative model, we study what properties the teacher model and the PC should have in order to achieve good distillation performance. This leads to a generic algorithmic improvement as well as other data-type-specific ones over the existing latent variable distillation pipeline. Empirically, we outperform SoTA TPMs by a large margin on challenging image modeling benchmarks. In particular, on ImageNet32, PCs achieve 4.06 bits-per-dimension, which is only 0.34 behind variational diffusion models (Kingma et al., 2021).
GenHancer: Imperfect Generative Models are Secretly Strong Vision-Centric Enhancers
The synergy between generative and discriminative models receives growing attention. While discriminative Contrastive Language-Image Pre-Training (CLIP) excels in high-level semantics, it struggles with perceiving fine-grained visual details. Generally, to enhance representations, generative models take CLIP's visual features as conditions for reconstruction. However, the underlying principle remains underexplored. In this work, we empirically found that visually perfect generations are not always optimal for representation enhancement. The essence lies in effectively extracting fine-grained knowledge from generative models while mitigating irrelevant information. To explore critical factors, we delve into three aspects: (1) Conditioning mechanisms: We found that even a small number of local tokens can drastically reduce the difficulty of reconstruction, leading to collapsed training. We thus conclude that utilizing only global visual tokens as conditions is the most effective strategy. (2) Denoising configurations: We observed that end-to-end training introduces extraneous information. To address this, we propose a two-stage training strategy to prioritize learning useful visual knowledge. Additionally, we demonstrate that lightweight denoisers can yield remarkable improvements. (3) Generation paradigms: We explore both continuous and discrete denoisers with desirable outcomes, validating the versatility of our method. Through our in-depth explorations, we have finally arrived at an effective method, namely GenHancer, which consistently outperforms prior arts on the MMVP-VLM benchmark, e.g., 6.0% on OpenAICLIP. The enhanced CLIP can be further plugged into multimodal large language models for better vision-centric performance. All the models and codes are made publicly available.
Emergence of Hidden Capabilities: Exploring Learning Dynamics in Concept Space
Modern generative models demonstrate impressive capabilities, likely stemming from an ability to identify and manipulate abstract concepts underlying their training data. However, fundamental questions remain: what determines the concepts a model learns, the order in which it learns them, and its ability to manipulate those concepts? To address these questions, we propose analyzing a model's learning dynamics via a framework we call the concept space, where each axis represents an independent concept underlying the data generating process. By characterizing learning dynamics in this space, we identify how the speed at which a concept is learned, and hence the order of concept learning, is controlled by properties of the data we term concept signal. Further, we observe moments of sudden turns in the direction of a model's learning dynamics in concept space. Surprisingly, these points precisely correspond to the emergence of hidden capabilities, i.e., where latent interventions show the model possesses the capability to manipulate a concept, but these capabilities cannot yet be elicited via naive input prompting. While our results focus on synthetically defined toy datasets, we hypothesize a general claim on emergence of hidden capabilities may hold: generative models possess latent capabilities that emerge suddenly and consistently during training, though a model might not exhibit these capabilities under naive input prompting.
Diversity-Rewarded CFG Distillation
Generative models are transforming creative domains such as music generation, with inference-time strategies like Classifier-Free Guidance (CFG) playing a crucial role. However, CFG doubles inference cost while limiting originality and diversity across generated contents. In this paper, we introduce diversity-rewarded CFG distillation, a novel finetuning procedure that distills the strengths of CFG while addressing its limitations. Our approach optimises two training objectives: (1) a distillation objective, encouraging the model alone (without CFG) to imitate the CFG-augmented predictions, and (2) an RL objective with a diversity reward, promoting the generation of diverse outputs for a given prompt. By finetuning, we learn model weights with the ability to generate high-quality and diverse outputs, without any inference overhead. This also unlocks the potential of weight-based model merging strategies: by interpolating between the weights of two models (the first focusing on quality, the second on diversity), we can control the quality-diversity trade-off at deployment time, and even further boost performance. We conduct extensive experiments on the MusicLM (Agostinelli et al., 2023) text-to-music generative model, where our approach surpasses CFG in terms of quality-diversity Pareto optimality. According to human evaluators, our finetuned-then-merged model generates samples with higher quality-diversity than the base model augmented with CFG. Explore our generations at https://google-research.github.io/seanet/musiclm/diverse_music/.
The Impact of AI on Developer Productivity: Evidence from GitHub Copilot
Generative AI tools hold promise to increase human productivity. This paper presents results from a controlled experiment with GitHub Copilot, an AI pair programmer. Recruited software developers were asked to implement an HTTP server in JavaScript as quickly as possible. The treatment group, with access to the AI pair programmer, completed the task 55.8% faster than the control group. Observed heterogenous effects show promise for AI pair programmers to help people transition into software development careers.
Quantum Generative Modeling of Sequential Data with Trainable Token Embedding
Generative models are a class of machine learning models that aim to learn the underlying probability distribution of data. Unlike discriminative models, generative models focus on capturing the data's inherent structure, allowing them to generate new samples that resemble the original data. To fully exploit the potential of modeling probability distributions using quantum physics, a quantum-inspired generative model known as the Born machines have shown great advancements in learning classical and quantum data over matrix product state(MPS) framework. The Born machines support tractable log-likelihood, autoregressive and mask sampling, and have shown outstanding performance in various unsupervised learning tasks. However, much of the current research has been centered on improving the expressive power of MPS, predominantly embedding each token directly by a corresponding tensor index. In this study, we generalize the embedding method into trainable quantum measurement operators that can be simultaneously honed with MPS. Our study indicated that combined with trainable embedding, Born machines can exhibit better performance and learn deeper correlations from the dataset.
RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment
Generative foundation models are susceptible to implicit biases that can arise from extensive unsupervised training data. Such biases can produce suboptimal samples, skewed outcomes, and unfairness, with potentially significant repercussions. Consequently, aligning these models with human ethics and preferences is an essential step toward ensuring their responsible and effective deployment in real-world applications. Prior research has primarily employed Reinforcement Learning from Human Feedback (RLHF) as a means of addressing this problem, wherein generative models are fine-tuned using RL algorithms guided by a human-feedback-informed reward model. However, the inefficiencies and instabilities associated with RL algorithms frequently present substantial obstacles to the successful alignment of generative models, necessitating the development of a more robust and streamlined approach. To this end, we introduce a new framework, Reward rAnked FineTuning (RAFT), designed to align generative models more effectively. Utilizing a reward model and a sufficient number of samples, our approach selects the high-quality samples, discarding those that exhibit undesired behavior, and subsequently assembles a streaming dataset. This dataset serves as the basis for aligning the generative model and can be employed under both offline and online settings. Notably, the sample generation process within RAFT is gradient-free, rendering it compatible with black-box generators. Through extensive experiments, we demonstrate that our proposed algorithm exhibits strong performance in the context of both large language models and diffusion models.
Small Language Model Can Self-correct
Generative Language Models (LMs) such as ChatGPT have exhibited remarkable performance across various downstream tasks. Nevertheless, one of their most prominent drawbacks is generating inaccurate or false information with a confident tone. Previous studies have devised sophisticated pipelines and prompts to induce large LMs to exhibit the capability for self-correction. However, large LMs are explicitly prompted to verify and modify its answers separately rather than completing all steps spontaneously like humans. Moreover, these complex prompts are extremely challenging for small LMs to follow. In this paper, we introduce the Intrinsic Self-Correction (ISC) in generative language models, aiming to correct the initial output of LMs in a self-triggered manner, even for those small LMs with 6 billion parameters. Specifically, we devise a pipeline for constructing self-correction data and propose Partial Answer Masking (PAM), aiming to endow the model with the capability for intrinsic self-correction through fine-tuning. We conduct experiments using LMs with parameters sizes ranging from 6 billion to 13 billion in two tasks, including commonsense reasoning and factual knowledge reasoning. Our experiments demonstrate that the outputs generated using ISC outperform those generated without self-correction. We believe that the output quality of even small LMs can be further improved by empowering them with the ability to intrinsic self-correct.
Generative AI
The term "generative AI" refers to computational techniques that are capable of generating seemingly new, meaningful content such as text, images, or audio from training data. The widespread diffusion of this technology with examples such as Dall-E 2, GPT-4, and Copilot is currently revolutionizing the way we work and communicate with each other. In this article, we provide a conceptualization of generative AI as an entity in socio-technical systems and provide examples of models, systems, and applications. Based on that, we introduce limitations of current generative AI and provide an agenda for Business & Information Systems Engineering (BISE) research. Different from previous works, we focus on generative AI in the context of information systems, and, to this end, we discuss several opportunities and challenges that are unique to the BISE community and make suggestions for impactful directions for BISE research.
Deciphering the Interplay of Parametric and Non-parametric Memory in Retrieval-augmented Language Models
Generative language models often struggle with specialized or less-discussed knowledge. A potential solution is found in Retrieval-Augmented Generation (RAG) models which act like retrieving information before generating responses. In this study, we explore how the Atlas approach, a RAG model, decides between what it already knows (parametric) and what it retrieves (non-parametric). We use causal mediation analysis and controlled experiments to examine how internal representations influence information processing. Our findings disentangle the effects of parametric knowledge and the retrieved context. They indicate that in cases where the model can choose between both types of information (parametric and non-parametric), it relies more on the context than the parametric knowledge. Furthermore, the analysis investigates the computations involved in how the model uses the information from the context. We find that multiple mechanisms are active within the model and can be detected with mediation analysis: first, the decision of whether the context is relevant, and second, how the encoder computes output representations to support copying when relevant.
MORE: Multi-mOdal REtrieval Augmented Generative Commonsense Reasoning
Since commonsense information has been recorded significantly less frequently than its existence, language models pre-trained by text generation have difficulty to learn sufficient commonsense knowledge. Several studies have leveraged text retrieval to augment the models' commonsense ability. Unlike text, images capture commonsense information inherently but little effort has been paid to effectively utilize them. In this work, we propose a novel Multi-mOdal REtrieval (MORE) augmentation framework, to leverage both text and images to enhance the commonsense ability of language models. Extensive experiments on the Common-Gen task have demonstrated the efficacy of MORE based on the pre-trained models of both single and multiple modalities.
Diffusion Beats Autoregressive: An Evaluation of Compositional Generation in Text-to-Image Models
Text-to-image (T2I) generative models, such as Stable Diffusion and DALL-E, have shown remarkable proficiency in producing high-quality, realistic, and natural images from textual descriptions. However, these models sometimes fail to accurately capture all the details specified in the input prompts, particularly concerning entities, attributes, and spatial relationships. This issue becomes more pronounced when the prompt contains novel or complex compositions, leading to what are known as compositional generation failure modes. Recently, a new open-source diffusion-based T2I model, FLUX, has been introduced, demonstrating strong performance in high-quality image generation. Additionally, autoregressive T2I models like LlamaGen have claimed competitive visual quality performance compared to diffusion-based models. In this study, we evaluate the compositional generation capabilities of these newly introduced models against established models using the T2I-CompBench benchmark. Our findings reveal that LlamaGen, as a vanilla autoregressive model, is not yet on par with state-of-the-art diffusion models for compositional generation tasks under the same criteria, such as model size and inference time. On the other hand, the open-source diffusion-based model FLUX exhibits compositional generation capabilities comparable to the state-of-the-art closed-source model DALL-E3.
Scaling Image and Video Generation via Test-Time Evolutionary Search
As the marginal cost of scaling computation (data and parameters) during model pre-training continues to increase substantially, test-time scaling (TTS) has emerged as a promising direction for improving generative model performance by allocating additional computation at inference time. While TTS has demonstrated significant success across multiple language tasks, there remains a notable gap in understanding the test-time scaling behaviors of image and video generative models (diffusion-based or flow-based models). Although recent works have initiated exploration into inference-time strategies for vision tasks, these approaches face critical limitations: being constrained to task-specific domains, exhibiting poor scalability, or falling into reward over-optimization that sacrifices sample diversity. In this paper, we propose Evolutionary Search (EvoSearch), a novel, generalist, and efficient TTS method that effectively enhances the scalability of both image and video generation across diffusion and flow models, without requiring additional training or model expansion. EvoSearch reformulates test-time scaling for diffusion and flow models as an evolutionary search problem, leveraging principles from biological evolution to efficiently explore and refine the denoising trajectory. By incorporating carefully designed selection and mutation mechanisms tailored to the stochastic differential equation denoising process, EvoSearch iteratively generates higher-quality offspring while preserving population diversity. Through extensive evaluation across both diffusion and flow architectures for image and video generation tasks, we demonstrate that our method consistently outperforms existing approaches, achieves higher diversity, and shows strong generalizability to unseen evaluation metrics. Our project is available at the website https://tinnerhrhe.github.io/evosearch.
NoiseCLR: A Contrastive Learning Approach for Unsupervised Discovery of Interpretable Directions in Diffusion Models
Generative models have been very popular in the recent years for their image generation capabilities. GAN-based models are highly regarded for their disentangled latent space, which is a key feature contributing to their success in controlled image editing. On the other hand, diffusion models have emerged as powerful tools for generating high-quality images. However, the latent space of diffusion models is not as thoroughly explored or understood. Existing methods that aim to explore the latent space of diffusion models usually relies on text prompts to pinpoint specific semantics. However, this approach may be restrictive in areas such as art, fashion, or specialized fields like medicine, where suitable text prompts might not be available or easy to conceive thus limiting the scope of existing work. In this paper, we propose an unsupervised method to discover latent semantics in text-to-image diffusion models without relying on text prompts. Our method takes a small set of unlabeled images from specific domains, such as faces or cats, and a pre-trained diffusion model, and discovers diverse semantics in unsupervised fashion using a contrastive learning objective. Moreover, the learned directions can be applied simultaneously, either within the same domain (such as various types of facial edits) or across different domains (such as applying cat and face edits within the same image) without interfering with each other. Our extensive experiments show that our method achieves highly disentangled edits, outperforming existing approaches in both diffusion-based and GAN-based latent space editing methods.
A Generative Modeling Approach Using Quantum Gates
In recent years, quantum computing has emerged as a promising technology for solving complex computational problems. Generative modeling is a technique that allows us to learn and generate new data samples similar to the original dataset. In this paper, we propose a generative modeling approach using quantum gates to generate new samples from a given dataset. We start with a brief introduction to quantum computing and generative modeling. Then, we describe our proposed approach, which involves encoding the dataset into quantum states and using quantum gates to manipulate these states to generate new samples. We also provide mathematical details of our approach and demonstrate its effectiveness through experimental results on various datasets.
Beyond [CLS] through Ranking by Generation
Generative models for Information Retrieval, where ranking of documents is viewed as the task of generating a query from a document's language model, were very successful in various IR tasks in the past. However, with the advent of modern deep neural networks, attention has shifted to discriminative ranking functions that model the semantic similarity of documents and queries instead. Recently, deep generative models such as GPT2 and BART have been shown to be excellent text generators, but their effectiveness as rankers have not been demonstrated yet. In this work, we revisit the generative framework for information retrieval and show that our generative approaches are as effective as state-of-the-art semantic similarity-based discriminative models for the answer selection task. Additionally, we demonstrate the effectiveness of unlikelihood losses for IR.
Digits that are not: Generating new types through deep neural nets
For an artificial creative agent, an essential driver of the search for novelty is a value function which is often provided by the system designer or users. We argue that an important barrier for progress in creativity research is the inability of these systems to develop their own notion of value for novelty. We propose a notion of knowledge-driven creativity that circumvent the need for an externally imposed value function, allowing the system to explore based on what it has learned from a set of referential objects. The concept is illustrated by a specific knowledge model provided by a deep generative autoencoder. Using the described system, we train a knowledge model on a set of digit images and we use the same model to build coherent sets of new digits that do not belong to known digit types.
Generative Visual Prompt: Unifying Distributional Control of Pre-Trained Generative Models
Generative models (e.g., GANs, diffusion models) learn the underlying data distribution in an unsupervised manner. However, many applications of interest require sampling from a particular region of the output space or sampling evenly over a range of characteristics. For efficient sampling in these scenarios, we propose Generative Visual Prompt (PromptGen), a framework for distributional control over pre-trained generative models by incorporating knowledge of other off-the-shelf models. PromptGen defines control as energy-based models (EBMs) and samples images in a feed-forward manner by approximating the EBM with invertible neural networks, avoiding optimization at inference. Our experiments demonstrate how PromptGen can efficiently sample from several unconditional generative models (e.g., StyleGAN2, StyleNeRF, diffusion autoencoder, NVAE) in a controlled or/and de-biased manner using various off-the-shelf models: (1) with the CLIP model as control, PromptGen can sample images guided by text, (2) with image classifiers as control, PromptGen can de-bias generative models across a set of attributes or attribute combinations, and (3) with inverse graphics models as control, PromptGen can sample images of the same identity in different poses. (4) Finally, PromptGen reveals that the CLIP model shows a "reporting bias" when used as control, and PromptGen can further de-bias this controlled distribution in an iterative manner. The code is available at https://github.com/ChenWu98/Generative-Visual-Prompt.
Generative Interfaces for Language Models
Large language models (LLMs) are increasingly seen as assistants, copilots, and consultants, capable of supporting a wide range of tasks through natural conversation. However, most systems remain constrained by a linear request-response format that often makes interactions inefficient in multi-turn, information-dense, and exploratory tasks. To address these limitations, we propose Generative Interfaces for Language Models, a paradigm in which LLMs respond to user queries by proactively generating user interfaces (UIs) that enable more adaptive and interactive engagement. Our framework leverages structured interface-specific representations and iterative refinements to translate user queries into task-specific UIs. For systematic evaluation, we introduce a multidimensional assessment framework that compares generative interfaces with traditional chat-based ones across diverse tasks, interaction patterns, and query types, capturing functional, interactive, and emotional aspects of user experience. Results show that generative interfaces consistently outperform conversational ones, with humans preferring them in over 70% of cases. These findings clarify when and why users favor generative interfaces, paving the way for future advancements in human-AI interaction.
From Data to Rewards: a Bilevel Optimization Perspective on Maximum Likelihood Estimation
Generative models form the backbone of modern machine learning, underpinning state-of-the-art systems in text, vision, and multimodal applications. While Maximum Likelihood Estimation has traditionally served as the dominant training paradigm, recent work have highlighted its limitations, particularly in generalization and susceptibility to catastrophic forgetting compared to Reinforcement Learning techniques, such as Policy Gradient methods. However, these approaches depend on explicit reward signals, which are often unavailable in practice, leaving open the fundamental problem of how to align generative models when only high-quality datasets are accessible. In this work, we address this challenge via a Bilevel Optimization framework, where the reward function is treated as the optimization variable of an outer-level problem, while a policy gradient objective defines the inner-level. We then conduct a theoretical analysis of this optimization problem in a tractable setting and extract insights that, as we demonstrate, generalize to applications such as tabular classification and model-based reinforcement learning. We release the code at https://github.com/abenechehab/nll_to_po .
Long-form music generation with latent diffusion
Audio-based generative models for music have seen great strides recently, but so far have not managed to produce full-length music tracks with coherent musical structure. We show that by training a generative model on long temporal contexts it is possible to produce long-form music of up to 4m45s. Our model consists of a diffusion-transformer operating on a highly downsampled continuous latent representation (latent rate of 21.5Hz). It obtains state-of-the-art generations according to metrics on audio quality and prompt alignment, and subjective tests reveal that it produces full-length music with coherent structure.
NLEBench+NorGLM: A Comprehensive Empirical Analysis and Benchmark Dataset for Generative Language Models in Norwegian
Recent advancements in Generative Language Models (GLMs) have transformed Natural Language Processing (NLP) by showcasing the effectiveness of the "pre-train, prompt, and predict" paradigm in utilizing pre-trained GLM knowledge for diverse applications. Despite their potential, these capabilities lack adequate quantitative characterization due to the absence of comprehensive benchmarks, particularly for low-resource languages. Existing low-resource benchmarks focus on discriminative language models like BERT, neglecting the evaluation of generative language models. Moreover, current benchmarks often overlook measuring generalization performance across multiple tasks, a crucial metric for GLMs. To bridge these gaps, we introduce NLEBench, a comprehensive benchmark tailored for evaluating natural language generation capabilities in Norwegian, a low-resource language. We use Norwegian as a case study to explore whether current GLMs and benchmarks in mainstream languages like English can reveal the unique characteristics of underrepresented languages. NLEBench encompasses a suite of real-world NLP tasks ranging from news storytelling, summarization, open-domain conversation, natural language understanding, instruction fine-tuning, toxicity and bias evaluation, to self-curated Chain-of-Thought investigation. It features two high-quality, human-annotated datasets: an instruction dataset covering traditional Norwegian cultures, idioms, slang, and special expressions, and a document-grounded multi-label dataset for topic classification, question answering, and summarization. This paper also introduces foundational Norwegian Generative Language Models (NorGLMs) developed with diverse parameter scales and Transformer-based architectures. Systematic evaluations on the proposed benchmark suite provide insights into the capabilities and scalability of NorGLMs across various downstream tasks.
Benchmarking Mental State Representations in Language Models
While numerous works have assessed the generative performance of language models (LMs) on tasks requiring Theory of Mind reasoning, research into the models' internal representation of mental states remains limited. Recent work has used probing to demonstrate that LMs can represent beliefs of themselves and others. However, these claims are accompanied by limited evaluation, making it difficult to assess how mental state representations are affected by model design and training choices. We report an extensive benchmark with various LM types with different model sizes, fine-tuning approaches, and prompt designs to study the robustness of mental state representations and memorisation issues within the probes. Our results show that the quality of models' internal representations of the beliefs of others increases with model size and, more crucially, with fine-tuning. We are the first to study how prompt variations impact probing performance on theory of mind tasks. We demonstrate that models' representations are sensitive to prompt variations, even when such variations should be beneficial. Finally, we complement previous activation editing experiments on Theory of Mind tasks and show that it is possible to improve models' reasoning performance by steering their activations without the need to train any probe.
Ideas in Inference-time Scaling can Benefit Generative Pre-training Algorithms
Recent years have seen significant advancements in foundation models through generative pre-training, yet algorithmic innovation in this space has largely stagnated around autoregressive models for discrete signals and diffusion models for continuous signals. This stagnation creates a bottleneck that prevents us from fully unlocking the potential of rich multi-modal data, which in turn limits the progress on multimodal intelligence. We argue that an inference-first perspective, which prioritizes scaling efficiency during inference time across sequence length and refinement steps, can inspire novel generative pre-training algorithms. Using Inductive Moment Matching (IMM) as a concrete example, we demonstrate how addressing limitations in diffusion models' inference process through targeted modifications yields a stable, single-stage algorithm that achieves superior sample quality with over an order of magnitude greater inference efficiency.
Reducing hallucination in structured outputs via Retrieval-Augmented Generation
A common and fundamental limitation of Generative AI (GenAI) is its propensity to hallucinate. While large language models (LLM) have taken the world by storm, without eliminating or at least reducing hallucinations, real-world GenAI systems may face challenges in user adoption. In the process of deploying an enterprise application that produces workflows based on natural language requirements, we devised a system leveraging Retrieval Augmented Generation (RAG) to greatly improve the quality of the structured output that represents such workflows. Thanks to our implementation of RAG, our proposed system significantly reduces hallucinations in the output and improves the generalization of our LLM in out-of-domain settings. In addition, we show that using a small, well-trained retriever encoder can reduce the size of the accompanying LLM, thereby making deployments of LLM-based systems less resource-intensive.
Knowledge Infused Decoding
Pre-trained language models (LMs) have been shown to memorize a substantial amount of knowledge from the pre-training corpora; however, they are still limited in recalling factually correct knowledge given a certain context. Hence, they tend to suffer from counterfactual or hallucinatory generation when used in knowledge-intensive natural language generation (NLG) tasks. Recent remedies to this problem focus on modifying either the pre-training or task fine-tuning objectives to incorporate knowledge, which normally require additional costly training or architecture modification of LMs for practical applications. We present Knowledge Infused Decoding (KID) -- a novel decoding algorithm for generative LMs, which dynamically infuses external knowledge into each step of the LM decoding. Specifically, we maintain a local knowledge memory based on the current context, interacting with a dynamically created external knowledge trie, and continuously update the local memory as a knowledge-aware constraint to guide decoding via reinforcement learning. On six diverse knowledge-intensive NLG tasks, task-agnostic LMs (e.g., GPT-2 and BART) armed with KID outperform many task-optimized state-of-the-art models, and show particularly strong performance in few-shot scenarios over seven related knowledge-infusion techniques. Human evaluation confirms KID's ability to generate more relevant and factual language for the input context when compared with multiple baselines. Finally, KID also alleviates exposure bias and provides stable generation quality when generating longer sequences. Code for KID is available at https://github.com/microsoft/KID.
Automating Human Tutor-Style Programming Feedback: Leveraging GPT-4 Tutor Model for Hint Generation and GPT-3.5 Student Model for Hint Validation
Generative AI and large language models hold great promise in enhancing programming education by automatically generating individualized feedback for students. We investigate the role of generative AI models in providing human tutor-style programming hints to help students resolve errors in their buggy programs. Recent works have benchmarked state-of-the-art models for various feedback generation scenarios; however, their overall quality is still inferior to human tutors and not yet ready for real-world deployment. In this paper, we seek to push the limits of generative AI models toward providing high-quality programming hints and develop a novel technique, GPT4Hints-GPT3.5Val. As a first step, our technique leverages GPT-4 as a ``tutor'' model to generate hints -- it boosts the generative quality by using symbolic information of failing test cases and fixes in prompts. As a next step, our technique leverages GPT-3.5, a weaker model, as a ``student'' model to further validate the hint quality -- it performs an automatic quality validation by simulating the potential utility of providing this feedback. We show the efficacy of our technique via extensive evaluation using three real-world datasets of Python programs covering a variety of concepts ranging from basic algorithms to regular expressions and data analysis using pandas library.
Prompting Forgetting: Unlearning in GANs via Textual Guidance
State-of-the-art generative models exhibit powerful image-generation capabilities, introducing various ethical and legal challenges to service providers hosting these models. Consequently, Content Removal Techniques (CRTs) have emerged as a growing area of research to control outputs without full-scale retraining. Recent work has explored the use of Machine Unlearning in generative models to address content removal. However, the focus of such research has been on diffusion models, and unlearning in Generative Adversarial Networks (GANs) has remained largely unexplored. We address this gap by proposing Text-to-Unlearn, a novel framework that selectively unlearns concepts from pre-trained GANs using only text prompts, enabling feature unlearning, identity unlearning, and fine-grained tasks like expression and multi-attribute removal in models trained on human faces. Leveraging natural language descriptions, our approach guides the unlearning process without requiring additional datasets or supervised fine-tuning, offering a scalable and efficient solution. To evaluate its effectiveness, we introduce an automatic unlearning assessment method adapted from state-of-the-art image-text alignment metrics, providing a comprehensive analysis of the unlearning methodology. To our knowledge, Text-to-Unlearn is the first cross-modal unlearning framework for GANs, representing a flexible and efficient advancement in managing generative model behavior.
Investigating the Efficacy of Large Language Models for Code Clone Detection
Large Language Models (LLMs) have demonstrated remarkable success in various natural language processing and software engineering tasks, such as code generation. The LLMs are mainly utilized in the prompt-based zero/few-shot paradigm to guide the model in accomplishing the task. GPT-based models are one of the popular ones studied for tasks such as code comment generation or test generation. These tasks are `generative' tasks. However, there is limited research on the usage of LLMs for `non-generative' tasks such as classification using the prompt-based paradigm. In this preliminary exploratory study, we investigated the applicability of LLMs for Code Clone Detection (CCD), a non-generative task. By building a mono-lingual and cross-lingual CCD dataset derived from CodeNet, we first investigated two different prompts using ChatGPT to detect Type-4 code clones in Java-Java and Java-Ruby pairs in a zero-shot setting. We then conducted an analysis to understand the strengths and weaknesses of ChatGPT in CCD. ChatGPT surpasses the baselines in cross-language CCD attaining an F1-score of 0.877 and achieves comparable performance to fully fine-tuned models for mono-lingual CCD, with an F1-score of 0.878. Also, the prompt and the difficulty level of the problems has an impact on the performance of ChatGPT. Finally we provide insights and future directions based on our initial analysis
Are GANs Created Equal? A Large-Scale Study
Generative adversarial networks (GAN) are a powerful subclass of generative models. Despite a very rich research activity leading to numerous interesting GAN algorithms, it is still very hard to assess which algorithm(s) perform better than others. We conduct a neutral, multi-faceted large-scale empirical study on state-of-the art models and evaluation measures. We find that most models can reach similar scores with enough hyperparameter optimization and random restarts. This suggests that improvements can arise from a higher computational budget and tuning more than fundamental algorithmic changes. To overcome some limitations of the current metrics, we also propose several data sets on which precision and recall can be computed. Our experimental results suggest that future GAN research should be based on more systematic and objective evaluation procedures. Finally, we did not find evidence that any of the tested algorithms consistently outperforms the non-saturating GAN introduced in goodfellow2014generative.
Investigating Training Objectives for Generative Speech Enhancement
Generative speech enhancement has recently shown promising advancements in improving speech quality in noisy environments. Multiple diffusion-based frameworks exist, each employing distinct training objectives and learning techniques. This paper aims at explaining the differences between these frameworks by focusing our investigation on score-based generative models and Schr\"odinger bridge. We conduct a series of comprehensive experiments to compare their performance and highlight differing training behaviors. Furthermore, we propose a novel perceptual loss function tailored for the Schr\"odinger bridge framework, demonstrating enhanced performance and improved perceptual quality of the enhanced speech signals. All experimental code and pre-trained models are publicly available to facilitate further research and development in this.
Diffusion Guided Language Modeling
Current language models demonstrate remarkable proficiency in text generation. However, for many applications it is desirable to control attributes, such as sentiment, or toxicity, of the generated language -- ideally tailored towards each specific use case and target audience. For auto-regressive language models, existing guidance methods are prone to decoding errors that cascade during generation and degrade performance. In contrast, text diffusion models can easily be guided with, for example, a simple linear sentiment classifier -- however they do suffer from significantly higher perplexity than auto-regressive alternatives. In this paper we use a guided diffusion model to produce a latent proposal that steers an auto-regressive language model to generate text with desired properties. Our model inherits the unmatched fluency of the auto-regressive approach and the plug-and-play flexibility of diffusion. We show that it outperforms previous plug-and-play guidance methods across a wide range of benchmark data sets. Further, controlling a new attribute in our framework is reduced to training a single logistic regression classifier.
Diffusion Meets Few-shot Class Incremental Learning
Few-shot class-incremental learning (FSCIL) is challenging due to extremely limited training data; while aiming to reduce catastrophic forgetting and learn new information. We propose Diffusion-FSCIL, a novel approach that employs a text-to-image diffusion model as a frozen backbone. Our conjecture is that FSCIL can be tackled using a large generative model's capabilities benefiting from 1) generation ability via large-scale pre-training; 2) multi-scale representation; 3) representational flexibility through the text encoder. To maximize the representation capability, we propose to extract multiple complementary diffusion features to play roles as latent replay with slight support from feature distillation for preventing generative biases. Our framework realizes efficiency through 1) using a frozen backbone; 2) minimal trainable components; 3) batch processing of multiple feature extractions. Extensive experiments on CUB-200, miniImageNet, and CIFAR-100 show that Diffusion-FSCIL surpasses state-of-the-art methods, preserving performance on previously learned classes and adapting effectively to new ones.
Unsupervised Compositional Concepts Discovery with Text-to-Image Generative Models
Text-to-image generative models have enabled high-resolution image synthesis across different domains, but require users to specify the content they wish to generate. In this paper, we consider the inverse problem -- given a collection of different images, can we discover the generative concepts that represent each image? We present an unsupervised approach to discover generative concepts from a collection of images, disentangling different art styles in paintings, objects, and lighting from kitchen scenes, and discovering image classes given ImageNet images. We show how such generative concepts can accurately represent the content of images, be recombined and composed to generate new artistic and hybrid images, and be further used as a representation for downstream classification tasks.
Semi-Parametric Neural Image Synthesis
Novel architectures have recently improved generative image synthesis leading to excellent visual quality in various tasks. Much of this success is due to the scalability of these architectures and hence caused by a dramatic increase in model complexity and in the computational resources invested in training these models. Our work questions the underlying paradigm of compressing large training data into ever growing parametric representations. We rather present an orthogonal, semi-parametric approach. We complement comparably small diffusion or autoregressive models with a separate image database and a retrieval strategy. During training we retrieve a set of nearest neighbors from this external database for each training instance and condition the generative model on these informative samples. While the retrieval approach is providing the (local) content, the model is focusing on learning the composition of scenes based on this content. As demonstrated by our experiments, simply swapping the database for one with different contents transfers a trained model post-hoc to a novel domain. The evaluation shows competitive performance on tasks which the generative model has not been trained on, such as class-conditional synthesis, zero-shot stylization or text-to-image synthesis without requiring paired text-image data. With negligible memory and computational overhead for the external database and retrieval we can significantly reduce the parameter count of the generative model and still outperform the state-of-the-art.
Mechanistic Behavior Editing of Language Models
Large Language Models trained on web-scale text acquire language generation abilities that can solve a wide range of tasks, particularly when task knowledge is refined into the generative prior using in-context examples. However, spurious features learned from noisy data hinder their generalizability. Supervised finetuning can introduce task specificity, but introduce data inefficiency. Prior studies indicate that (i) noisy neural circuitries coexist with generalizable ones within LLMs, and (ii) finetuning typically enhances (or suppresses) existing abilities without introducing newer ones. Building upon these, we propose TaRot, a novel method for task adaptation. TaRot intervenes in the neural circuitries using learnable rotation matrices that are optimized using Bayesian Optimization, on labelled samples in the order of standard few-shot prompting examples. Experiments on multiple classification and generation tasks using LLMs of varying sizes reveal the efficacy of TaRot, improving upon both zero- as well as few-shot performance, with average improvements (across models and tasks) of 23.81% and 11.15%, respectively. The source code is available at https://github.com/joykirat18/TaRot
GPT4Video: A Unified Multimodal Large Language Model for lnstruction-Followed Understanding and Safety-Aware Generation
While the recent advances in Multimodal Large Language Models (MLLMs) constitute a significant leap forward in the field, these models are predominantly confined to the realm of input-side multimodal comprehension, lacking the capacity for multimodal content generation. To fill this gap, we present GPT4Video, a unified multi-model framework that empowers Large Language Models (LLMs) with the capability of both video understanding and generation. Specifically, we develop an instruction-following-based approach integrated with the stable diffusion generative model, which has demonstrated to effectively and securely handle video generation scenarios. GPT4Video offers the following benefits: 1) It exhibits impressive capabilities in both video understanding and generation scenarios. For example, GPT4Video outperforms Valley by 11.8\% on the Video Question Answering task, and surpasses NExt-GPT by 2.3\% on the Text to Video generation task. 2) it endows the LLM/MLLM with video generation capabilities without requiring additional training parameters and can flexibly interface with a wide range of models to perform video generation. 3) it maintains a safe and healthy conversation not only in output-side but also the input side in an end-to-end manner. Qualitative and qualitative experiments demonstrate that GPT4Video holds the potential to function as a effective, safe and Humanoid-like video assistant that can handle both video understanding and generation scenarios.
Diffusion Transformers with Representation Autoencoders
Latent generative modeling, where a pretrained autoencoder maps pixels into a latent space for the diffusion process, has become the standard strategy for Diffusion Transformers (DiT); however, the autoencoder component has barely evolved. Most DiTs continue to rely on the original VAE encoder, which introduces several limitations: outdated backbones that compromise architectural simplicity, low-dimensional latent spaces that restrict information capacity, and weak representations that result from purely reconstruction-based training and ultimately limit generative quality. In this work, we explore replacing the VAE with pretrained representation encoders (e.g., DINO, SigLIP, MAE) paired with trained decoders, forming what we term Representation Autoencoders (RAEs). These models provide both high-quality reconstructions and semantically rich latent spaces, while allowing for a scalable transformer-based architecture. Since these latent spaces are typically high-dimensional, a key challenge is enabling diffusion transformers to operate effectively within them. We analyze the sources of this difficulty, propose theoretically motivated solutions, and validate them empirically. Our approach achieves faster convergence without auxiliary representation alignment losses. Using a DiT variant equipped with a lightweight, wide DDT head, we achieve strong image generation results on ImageNet: 1.51 FID at 256x256 (no guidance) and 1.13 at both 256x256 and 512x512 (with guidance). RAE offers clear advantages and should be the new default for diffusion transformer training.
Discrete Latent Graph Generative Modeling with Diffusion Bridges
Learning graph generative models over latent spaces has received less attention compared to models that operate on the original data space and has so far demonstrated lacklustre performance. We present GLAD a latent space graph generative model. Unlike most previous latent space graph generative models, GLAD operates on a discrete latent space that preserves to a significant extent the discrete nature of the graph structures making no unnatural assumptions such as latent space continuity. We learn the prior of our discrete latent space by adapting diffusion bridges to its structure. By operating over an appropriately constructed latent space we avoid relying on decompositions that are often used in models that operate in the original data space. We present experiments on a series of graph benchmark datasets which clearly show the superiority of the discrete latent space and obtain state of the art graph generative performance, making GLAD the first latent space graph generative model with competitive performance. Our source code is published at: https://github.com/v18nguye/GLAD.
Generating Images from Captions with Attention
Motivated by the recent progress in generative models, we introduce a model that generates images from natural language descriptions. The proposed model iteratively draws patches on a canvas, while attending to the relevant words in the description. After training on Microsoft COCO, we compare our model with several baseline generative models on image generation and retrieval tasks. We demonstrate that our model produces higher quality samples than other approaches and generates images with novel scene compositions corresponding to previously unseen captions in the dataset.
InfGen: A Resolution-Agnostic Paradigm for Scalable Image Synthesis
Arbitrary resolution image generation provides a consistent visual experience across devices, having extensive applications for producers and consumers. Current diffusion models increase computational demand quadratically with resolution, causing 4K image generation delays over 100 seconds. To solve this, we explore the second generation upon the latent diffusion models, where the fixed latent generated by diffusion models is regarded as the content representation and we propose to decode arbitrary resolution images with a compact generated latent using a one-step generator. Thus, we present the InfGen, replacing the VAE decoder with the new generator, for generating images at any resolution from a fixed-size latent without retraining the diffusion models, which simplifies the process, reducing computational complexity and can be applied to any model using the same latent space. Experiments show InfGen is capable of improving many models into the arbitrary high-resolution era while cutting 4K image generation time to under 10 seconds.
ArtifactGen: Benchmarking WGAN-GP vs Diffusion for Label-Aware EEG Artifact Synthesis
Artifacts in electroencephalography (EEG) -- muscle, eye movement, electrode, chewing, and shiver -- confound automated analysis yet are costly to label at scale. We study whether modern generative models can synthesize realistic, label-aware artifact segments suitable for augmentation and stress-testing. Using the TUH EEG Artifact (TUAR) corpus, we curate subject-wise splits and fixed-length multi-channel windows (e.g., 250 samples) with preprocessing tailored to each model (per-window min--max for adversarial training; per-recording/channel z-score for diffusion). We compare a conditional WGAN-GP with a projection discriminator to a 1D denoising diffusion model with classifier-free guidance, and evaluate along three axes: (i) fidelity via Welch band-power deltas (Deltadelta, Deltatheta, Deltaalpha, Deltabeta), channel-covariance Frobenius distance, autocorrelation L_2, and distributional metrics (MMD/PRD); (ii) specificity via class-conditional recovery with lightweight kNN/classifiers; and (iii) utility via augmentation effects on artifact recognition. In our setting, WGAN-GP achieves closer spectral alignment and lower MMD to real data, while both models exhibit weak class-conditional recovery, limiting immediate augmentation gains and revealing opportunities for stronger conditioning and coverage. We release a reproducible pipeline -- data manifests, training configurations, and evaluation scripts -- to establish a baseline for EEG artifact synthesis and to surface actionable failure modes for future work.
Opportunities and Challenges in Neural Dialog Tutoring
Designing dialog tutors has been challenging as it involves modeling the diverse and complex pedagogical strategies employed by human tutors. Although there have been significant recent advances in neural conversational systems using large language models (LLMs) and growth in available dialog corpora, dialog tutoring has largely remained unaffected by these advances. In this paper, we rigorously analyze various generative language models on two dialog tutoring datasets for language learning using automatic and human evaluations to understand the new opportunities brought by these advances as well as the challenges we must overcome to build models that would be usable in real educational settings. We find that although current approaches can model tutoring in constrained learning scenarios when the number of concepts to be taught and possible teacher strategies are small, they perform poorly in less constrained scenarios. Our human quality evaluation shows that both models and ground-truth annotations exhibit low performance in terms of equitable tutoring, which measures learning opportunities for students and how engaging the dialog is. To understand the behavior of our models in a real tutoring setting, we conduct a user study using expert annotators and find a significantly large number of model reasoning errors in 45% of conversations. Finally, we connect our findings to outline future work.
Data Redaction from Conditional Generative Models
Deep generative models are known to produce undesirable samples such as harmful content. Traditional mitigation methods include re-training from scratch, filtering, or editing; however, these are either computationally expensive or can be circumvented by third parties. In this paper, we take a different approach and study how to post-edit an already-trained conditional generative model so that it redacts certain conditionals that will, with high probability, lead to undesirable content. This is done by distilling the conditioning network in the models, giving a solution that is effective, efficient, controllable, and universal for a class of deep generative models. We conduct experiments on redacting prompts in text-to-image models and redacting voices in text-to-speech models. Our method is computationally light, leads to better redaction quality and robustness than baseline methods while still retaining high generation quality.
Score Forgetting Distillation: A Swift, Data-Free Method for Machine Unlearning in Diffusion Models
The machine learning community is increasingly recognizing the importance of fostering trust and safety in modern generative AI (GenAI) models. We posit machine unlearning (MU) as a crucial foundation for developing safe, secure, and trustworthy GenAI models. Traditional MU methods often rely on stringent assumptions and require access to real data. This paper introduces Score Forgetting Distillation (SFD), an innovative MU approach that promotes the forgetting of undesirable information in diffusion models by aligning the conditional scores of "unsafe" classes or concepts with those of "safe" ones. To eliminate the need for real data, our SFD framework incorporates a score-based MU loss into the score distillation objective of a pretrained diffusion model. This serves as a regularization term that preserves desired generation capabilities while enabling the production of synthetic data through a one-step generator. Our experiments on pretrained label-conditional and text-to-image diffusion models demonstrate that our method effectively accelerates the forgetting of target classes or concepts during generation, while preserving the quality of other classes or concepts. This unlearned and distilled diffusion not only pioneers a novel concept in MU but also accelerates the generation speed of diffusion models. Our experiments and studies on a range of diffusion models and datasets confirm that our approach is generalizable, effective, and advantageous for MU in diffusion models. (Warning: This paper contains sexually explicit imagery, discussions of pornography, racially-charged terminology, and other content that some readers may find disturbing, distressing, and/or offensive.)
ViPer: Visual Personalization of Generative Models via Individual Preference Learning
Different users find different images generated for the same prompt desirable. This gives rise to personalized image generation which involves creating images aligned with an individual's visual preference. Current generative models are, however, unpersonalized, as they are tuned to produce outputs that appeal to a broad audience. Using them to generate images aligned with individual users relies on iterative manual prompt engineering by the user which is inefficient and undesirable. We propose to personalize the image generation process by first capturing the generic preferences of the user in a one-time process by inviting them to comment on a small selection of images, explaining why they like or dislike each. Based on these comments, we infer a user's structured liked and disliked visual attributes, i.e., their visual preference, using a large language model. These attributes are used to guide a text-to-image model toward producing images that are tuned towards the individual user's visual preference. Through a series of user studies and large language model guided evaluations, we demonstrate that the proposed method results in generations that are well aligned with individual users' visual preferences.
Instruct-Imagen: Image Generation with Multi-modal Instruction
This paper presents instruct-imagen, a model that tackles heterogeneous image generation tasks and generalizes across unseen tasks. We introduce *multi-modal instruction* for image generation, a task representation articulating a range of generation intents with precision. It uses natural language to amalgamate disparate modalities (e.g., text, edge, style, subject, etc.), such that abundant generation intents can be standardized in a uniform format. We then build instruct-imagen by fine-tuning a pre-trained text-to-image diffusion model with a two-stage framework. First, we adapt the model using the retrieval-augmented training, to enhance model's capabilities to ground its generation on external multimodal context. Subsequently, we fine-tune the adapted model on diverse image generation tasks that requires vision-language understanding (e.g., subject-driven generation, etc.), each paired with a multi-modal instruction encapsulating the task's essence. Human evaluation on various image generation datasets reveals that instruct-imagen matches or surpasses prior task-specific models in-domain and demonstrates promising generalization to unseen and more complex tasks.
Detecting Overfitting of Deep Generative Networks via Latent Recovery
State of the art deep generative networks are capable of producing images with such incredible realism that they can be suspected of memorizing training images. It is why it is not uncommon to include visualizations of training set nearest neighbors, to suggest generated images are not simply memorized. We demonstrate this is not sufficient and motivates the need to study memorization/overfitting of deep generators with more scrutiny. This paper addresses this question by i) showing how simple losses are highly effective at reconstructing images for deep generators ii) analyzing the statistics of reconstruction errors when reconstructing training and validation images, which is the standard way to analyze overfitting in machine learning. Using this methodology, this paper shows that overfitting is not detectable in the pure GAN models proposed in the literature, in contrast with those using hybrid adversarial losses, which are amongst the most widely applied generative methods. The paper also shows that standard GAN evaluation metrics fail to capture memorization for some deep generators. Finally, the paper also shows how off-the-shelf GAN generators can be successfully applied to face inpainting and face super-resolution using the proposed reconstruction method, without hybrid adversarial losses.
"Sorry, Come Again?" Prompting -- Enhancing Comprehension and Diminishing Hallucination with [PAUSE]-injected Optimal Paraphrasing
Hallucination has emerged as the most vulnerable aspect of contemporary Large Language Models (LLMs). In this paper, we introduce the Sorry, Come Again (SCA) prompting, aimed to avoid LLM hallucinations by enhancing comprehension through: (i) optimal paraphrasing and (ii) injecting [PAUSE] tokens to delay LLM generation. First, we provide an in-depth analysis of linguistic nuances: formality, readability, and concreteness of prompts for 21 LLMs, and elucidate how these nuances contribute to hallucinated generation. Prompts with lower readability, formality, or concreteness pose comprehension challenges for LLMs, similar to those faced by humans. In such scenarios, an LLM tends to speculate and generate content based on its imagination (associative memory) to fill these information gaps. Although these speculations may occasionally align with factual information, their accuracy is not assured, often resulting in hallucination. Recent studies reveal that an LLM often neglects the middle sections of extended prompts, a phenomenon termed as lost in the middle. While a specific paraphrase may suit one LLM, the same paraphrased version may elicit a different response from another LLM. Therefore, we propose an optimal paraphrasing technique to identify the most comprehensible paraphrase of a given prompt, evaluated using Integrated Gradient (and its variations) to guarantee that the LLM accurately processes all words. While reading lengthy sentences, humans often pause at various points to better comprehend the meaning read thus far. We have fine-tuned an LLM with injected [PAUSE] tokens, allowing the LLM to pause while reading lengthier prompts. This has brought several key contributions: (i) determining the optimal position to inject [PAUSE], (ii) determining the number of [PAUSE] tokens to be inserted, and (iii) introducing reverse proxy tuning to fine-tune the LLM for [PAUSE] insertion.
HoLLMwood: Unleashing the Creativity of Large Language Models in Screenwriting via Role Playing
Generative AI has demonstrated unprecedented creativity in the field of computer vision, yet such phenomena have not been observed in natural language processing. In particular, large language models (LLMs) can hardly produce written works at the level of human experts due to the extremely high complexity of literature writing. In this paper, we present HoLLMwood, an automated framework for unleashing the creativity of LLMs and exploring their potential in screenwriting, which is a highly demanding task. Mimicking the human creative process, we assign LLMs to different roles involved in the real-world scenario. In addition to the common practice of treating LLMs as {Writer}, we also apply LLMs as {Editor}, who is responsible for providing feedback and revision advice to {Writer}. Besides, to enrich the characters and deepen the plots, we introduce a role-playing mechanism and adopt LLMs as {Actors} that can communicate and interact with each other. Evaluations on automatically generated screenplays show that HoLLMwood substantially outperforms strong baselines in terms of coherence, relevance, interestingness and overall quality.
EQ-VAE: Equivariance Regularized Latent Space for Improved Generative Image Modeling
Latent generative models have emerged as a leading approach for high-quality image synthesis. These models rely on an autoencoder to compress images into a latent space, followed by a generative model to learn the latent distribution. We identify that existing autoencoders lack equivariance to semantic-preserving transformations like scaling and rotation, resulting in complex latent spaces that hinder generative performance. To address this, we propose EQ-VAE, a simple regularization approach that enforces equivariance in the latent space, reducing its complexity without degrading reconstruction quality. By finetuning pre-trained autoencoders with EQ-VAE, we enhance the performance of several state-of-the-art generative models, including DiT, SiT, REPA and MaskGIT, achieving a 7 speedup on DiT-XL/2 with only five epochs of SD-VAE fine-tuning. EQ-VAE is compatible with both continuous and discrete autoencoders, thus offering a versatile enhancement for a wide range of latent generative models. Project page and code: https://eq-vae.github.io/.
Better speech synthesis through scaling
In recent years, the field of image generation has been revolutionized by the application of autoregressive transformers and DDPMs. These approaches model the process of image generation as a step-wise probabilistic processes and leverage large amounts of compute and data to learn the image distribution. This methodology of improving performance need not be confined to images. This paper describes a way to apply advances in the image generative domain to speech synthesis. The result is TorToise -- an expressive, multi-voice text-to-speech system. All model code and trained weights have been open-sourced at https://github.com/neonbjb/tortoise-tts.
Conditional LoRA Parameter Generation
Generative models have achieved remarkable success in image, video, and text domains. Inspired by this, researchers have explored utilizing generative models to generate neural network parameters. However, these efforts have been limited by the parameter size and the practicality of generating high-performance parameters. In this paper, we propose COND P-DIFF, a novel approach that demonstrates the feasibility of controllable high-performance parameter generation, particularly for LoRA (Low-Rank Adaptation) weights, during the fine-tuning process. Specifically, we employ an autoencoder to extract efficient latent representations for parameters. We then train a conditional latent diffusion model to synthesize high-performing model parameters from random noise based on specific task conditions. Experimental results in both computer vision and natural language processing domains consistently demonstrate that COND P-DIFF can generate high-performance parameters conditioned on the given task. Moreover, we observe that the parameter distribution generated by COND P-DIFF exhibits differences compared to the distribution obtained through normal optimization methods, indicating a certain level of generalization capability. Our work paves the way for further exploration of condition-driven parameter generation, offering a promising direction for task-specific adaptation of neural networks.
Generative AI for Programming Education: Benchmarking ChatGPT, GPT-4, and Human Tutors
Generative AI and large language models hold great promise in enhancing computing education by powering next-generation educational technologies for introductory programming. Recent works have studied these models for different scenarios relevant to programming education; however, these works are limited for several reasons, as they typically consider already outdated models or only specific scenario(s). Consequently, there is a lack of a systematic study that benchmarks state-of-the-art models for a comprehensive set of programming education scenarios. In our work, we systematically evaluate two models, ChatGPT (based on GPT-3.5) and GPT-4, and compare their performance with human tutors for a variety of scenarios. We evaluate using five introductory Python programming problems and real-world buggy programs from an online platform, and assess performance using expert-based annotations. Our results show that GPT-4 drastically outperforms ChatGPT (based on GPT-3.5) and comes close to human tutors' performance for several scenarios. These results also highlight settings where GPT-4 still struggles, providing exciting future directions on developing techniques to improve the performance of these models.
Can Pre-Trained Text-to-Image Models Generate Visual Goals for Reinforcement Learning?
Pre-trained text-to-image generative models can produce diverse, semantically rich, and realistic images from natural language descriptions. Compared with language, images usually convey information with more details and less ambiguity. In this study, we propose Learning from the Void (LfVoid), a method that leverages the power of pre-trained text-to-image models and advanced image editing techniques to guide robot learning. Given natural language instructions, LfVoid can edit the original observations to obtain goal images, such as "wiping" a stain off a table. Subsequently, LfVoid trains an ensembled goal discriminator on the generated image to provide reward signals for a reinforcement learning agent, guiding it to achieve the goal. The ability of LfVoid to learn with zero in-domain training on expert demonstrations or true goal observations (the void) is attributed to the utilization of knowledge from web-scale generative models. We evaluate LfVoid across three simulated tasks and validate its feasibility in the corresponding real-world scenarios. In addition, we offer insights into the key considerations for the effective integration of visual generative models into robot learning workflows. We posit that our work represents an initial step towards the broader application of pre-trained visual generative models in the robotics field. Our project page: https://lfvoid-rl.github.io/.
Flow Matching in Latent Space
Flow matching is a recent framework to train generative models that exhibits impressive empirical performance while being relatively easier to train compared with diffusion-based models. Despite its advantageous properties, prior methods still face the challenges of expensive computing and a large number of function evaluations of off-the-shelf solvers in the pixel space. Furthermore, although latent-based generative methods have shown great success in recent years, this particular model type remains underexplored in this area. In this work, we propose to apply flow matching in the latent spaces of pretrained autoencoders, which offers improved computational efficiency and scalability for high-resolution image synthesis. This enables flow-matching training on constrained computational resources while maintaining their quality and flexibility. Additionally, our work stands as a pioneering contribution in the integration of various conditions into flow matching for conditional generation tasks, including label-conditioned image generation, image inpainting, and semantic-to-image generation. Through extensive experiments, our approach demonstrates its effectiveness in both quantitative and qualitative results on various datasets, such as CelebA-HQ, FFHQ, LSUN Church & Bedroom, and ImageNet. We also provide a theoretical control of the Wasserstein-2 distance between the reconstructed latent flow distribution and true data distribution, showing it is upper-bounded by the latent flow matching objective. Our code will be available at https://github.com/VinAIResearch/LFM.git.
Learning Interpretable Representations Leads to Semantically Faithful EEG-to-Text Generation
Pretrained generative models have opened new frontiers in brain decoding by enabling the synthesis of realistic texts and images from non-invasive brain recordings. However, the reliability of such outputs remains questionable--whether they truly reflect semantic activation in the brain, or are merely hallucinated by the powerful generative models. In this paper, we focus on EEG-to-text decoding and address its hallucination issue through the lens of posterior collapse. Acknowledging the underlying mismatch in information capacity between EEG and text, we reframe the decoding task as semantic summarization of core meanings rather than previously verbatim reconstruction of stimulus texts. To this end, we propose the Generative Language Inspection Model (GLIM), which emphasizes learning informative and interpretable EEG representations to improve semantic grounding under heterogeneous and small-scale data conditions. Experiments on the public ZuCo dataset demonstrate that GLIM consistently generates fluent, EEG-grounded sentences without teacher forcing. Moreover, it supports more robust evaluation beyond text similarity, through EEG-text retrieval and zero-shot semantic classification across sentiment categories, relation types, and corpus topics. Together, our architecture and evaluation protocols lay the foundation for reliable and scalable benchmarking in generative brain decoding.
Towards Practical Plug-and-Play Diffusion Models
Diffusion-based generative models have achieved remarkable success in image generation. Their guidance formulation allows an external model to plug-and-play control the generation process for various tasks without finetuning the diffusion model. However, the direct use of publicly available off-the-shelf models for guidance fails due to their poor performance on noisy inputs. For that, the existing practice is to fine-tune the guidance models with labeled data corrupted with noises. In this paper, we argue that this practice has limitations in two aspects: (1) performing on inputs with extremely various noises is too hard for a single guidance model; (2) collecting labeled datasets hinders scaling up for various tasks. To tackle the limitations, we propose a novel strategy that leverages multiple experts where each expert is specialized in a particular noise range and guides the reverse process of the diffusion at its corresponding timesteps. However, as it is infeasible to manage multiple networks and utilize labeled data, we present a practical guidance framework termed Practical Plug-And-Play (PPAP), which leverages parameter-efficient fine-tuning and data-free knowledge transfer. We exhaustively conduct ImageNet class conditional generation experiments to show that our method can successfully guide diffusion with small trainable parameters and no labeled data. Finally, we show that image classifiers, depth estimators, and semantic segmentation models can guide publicly available GLIDE through our framework in a plug-and-play manner. Our code is available at https://github.com/riiid/PPAP.
REPA Works Until It Doesn't: Early-Stopped, Holistic Alignment Supercharges Diffusion Training
Diffusion Transformers (DiTs) deliver state-of-the-art image quality, yet their training remains notoriously slow. A recent remedy -- representation alignment (REPA) that matches DiT hidden features to those of a non-generative teacher (e.g. DINO) -- dramatically accelerates the early epochs but plateaus or even degrades performance later. We trace this failure to a capacity mismatch: once the generative student begins modelling the joint data distribution, the teacher's lower-dimensional embeddings and attention patterns become a straitjacket rather than a guide. We then introduce HASTE (Holistic Alignment with Stage-wise Termination for Efficient training), a two-phase schedule that keeps the help and drops the hindrance. Phase I applies a holistic alignment loss that simultaneously distills attention maps (relational priors) and feature projections (semantic anchors) from the teacher into mid-level layers of the DiT, yielding rapid convergence. Phase II then performs one-shot termination that deactivates the alignment loss, once a simple trigger such as a fixed iteration is hit, freeing the DiT to focus on denoising and exploit its generative capacity. HASTE speeds up training of diverse DiTs without architecture changes. On ImageNet 256X256, it reaches the vanilla SiT-XL/2 baseline FID in 50 epochs and matches REPA's best FID in 500 epochs, amounting to a 28X reduction in optimization steps. HASTE also improves text-to-image DiTs on MS-COCO, demonstrating to be a simple yet principled recipe for efficient diffusion training across various tasks. Our code is available at https://github.com/NUS-HPC-AI-Lab/HASTE .
Bridging Generative Networks with the Common Model of Cognition
This article presents a theoretical framework for adapting the Common Model of Cognition to large generative network models within the field of artificial intelligence. This can be accomplished by restructuring modules within the Common Model into shadow production systems that are peripheral to a central production system, which handles higher-level reasoning based on the shadow productions' output. Implementing this novel structure within the Common Model allows for a seamless connection between cognitive architectures and generative neural networks.
TextGAIL: Generative Adversarial Imitation Learning for Text Generation
Generative Adversarial Networks (GANs) for text generation have recently received many criticisms, as they perform worse than their MLE counterparts. We suspect previous text GANs' inferior performance is due to the lack of a reliable guiding signal in their discriminators. To address this problem, we propose a generative adversarial imitation learning framework for text generation that uses large pre-trained language models to provide more reliable reward guidance. Our approach uses contrastive discriminator, and proximal policy optimization (PPO) to stabilize and improve text generation performance. For evaluation, we conduct experiments on a diverse set of unconditional and conditional text generation tasks. Experimental results show that TextGAIL achieves better performance in terms of both quality and diversity than the MLE baseline. We also validate our intuition that TextGAIL's discriminator demonstrates the capability of providing reasonable rewards with an additional task.
Query-Kontext: An Unified Multimodal Model for Image Generation and Editing
Unified Multimodal Models (UMMs) have demonstrated remarkable performance in text-to-image generation (T2I) and editing (TI2I), whether instantiated as assembled unified frameworks which couple powerful vision-language model (VLM) with diffusion-based generator, or as naive Unified Multimodal Models with an early fusion of understanding and generation modalities. We contend that in current unified frameworks, the crucial capability of multimodal generative reasoning which encompasses instruction understanding, grounding, and image referring for identity preservation and faithful reconstruction, is intrinsically entangled with high-fidelity synthesis. In this work, we introduce Query-Kontext, a novel approach that bridges the VLM and diffusion model via a multimodal ``kontext'' composed of semantic cues and coarse-grained image conditions encoded from multimodal inputs. This design delegates the complex ability of multimodal generative reasoning to powerful VLM while reserving diffusion model's role for high-quality visual synthesis. To achieve this, we propose a three-stage progressive training strategy. First, we connect the VLM to a lightweight diffusion head via multimodal kontext tokens to unleash the VLM's generative reasoning ability. Second, we scale this head to a large, pre-trained diffusion model to enhance visual detail and realism. Finally, we introduce a low-level image encoder to improve image fidelity and perform instruction tuning on downstream tasks. Furthermore, we build a comprehensive data pipeline integrating real, synthetic, and open-source datasets, covering diverse multimodal reference-to-image scenarios, including image generation, instruction-driven editing, customized generation, and multi-subject composition. Experiments show that our approach matches strong unified baselines and even outperforms task-specific state-of-the-art methods in several cases.
Improved Techniques for Training GANs
We present a variety of new architectural features and training procedures that we apply to the generative adversarial networks (GANs) framework. We focus on two applications of GANs: semi-supervised learning, and the generation of images that humans find visually realistic. Unlike most work on generative models, our primary goal is not to train a model that assigns high likelihood to test data, nor do we require the model to be able to learn well without using any labels. Using our new techniques, we achieve state-of-the-art results in semi-supervised classification on MNIST, CIFAR-10 and SVHN. The generated images are of high quality as confirmed by a visual Turing test: our model generates MNIST samples that humans cannot distinguish from real data, and CIFAR-10 samples that yield a human error rate of 21.3%. We also present ImageNet samples with unprecedented resolution and show that our methods enable the model to learn recognizable features of ImageNet classes.
Generating novel experimental hypotheses from language models: A case study on cross-dative generalization
Neural network language models (LMs) have been shown to successfully capture complex linguistic knowledge. However, their utility for understanding language acquisition is still debated. We contribute to this debate by presenting a case study where we use LMs as simulated learners to derive novel experimental hypotheses to be tested with humans. We apply this paradigm to study cross-dative generalization (CDG): productive generalization of novel verbs across dative constructions (she pilked me the ball/she pilked the ball to me) -- acquisition of which is known to involve a large space of contextual features -- using LMs trained on child-directed speech. We specifically ask: "what properties of the training exposure facilitate a novel verb's generalization to the (unmodeled) alternate construction?" To answer this, we systematically vary the exposure context in which a novel dative verb occurs in terms of the properties of the theme and recipient, and then analyze the LMs' usage of the novel verb in the unmodeled dative construction. We find LMs to replicate known patterns of children's CDG, as a precondition to exploring novel hypotheses. Subsequent simulations reveal a nuanced role of the features of the novel verbs' exposure context on the LMs' CDG. We find CDG to be facilitated when the first postverbal argument of the exposure context is pronominal, definite, short, and conforms to the prototypical animacy expectations of the exposure dative. These patterns are characteristic of harmonic alignment in datives, where the argument with features ranking higher on the discourse prominence scale tends to precede the other. This gives rise to a novel hypothesis that CDG is facilitated insofar as the features of the exposure context -- in particular, its first postverbal argument -- are harmonically aligned. We conclude by proposing future experiments that can test this hypothesis in children.
Forcing Diffuse Distributions out of Language Models
Despite being trained specifically to follow user instructions, today's instructiontuned language models perform poorly when instructed to produce random outputs. For example, when prompted to pick a number uniformly between one and ten Llama-2-13B-chat disproportionately favors the number five, and when tasked with picking a first name at random, Mistral-7B-Instruct chooses Avery 40 times more often than we would expect based on the U.S. population. When these language models are used for real-world tasks where diversity of outputs is crucial, such as language model assisted dataset construction, their inability to produce diffuse distributions over valid choices is a major hurdle. In this work, we propose a fine-tuning method that encourages language models to output distributions that are diffuse over valid outcomes. The methods we introduce generalize across a variety of tasks and distributions and make large language models practical for synthetic dataset generation with little human intervention.
Towards Generative Class Prompt Learning for Fine-grained Visual Recognition
Although foundational vision-language models (VLMs) have proven to be very successful for various semantic discrimination tasks, they still struggle to perform faithfully for fine-grained categorization. Moreover, foundational models trained on one domain do not generalize well on a different domain without fine-tuning. We attribute these to the limitations of the VLM's semantic representations and attempt to improve their fine-grained visual awareness using generative modeling. Specifically, we propose two novel methods: Generative Class Prompt Learning (GCPL) and Contrastive Multi-class Prompt Learning (CoMPLe). Utilizing text-to-image diffusion models, GCPL significantly improves the visio-linguistic synergy in class embeddings by conditioning on few-shot exemplars with learnable class prompts. CoMPLe builds on this foundation by introducing a contrastive learning component that encourages inter-class separation during the generative optimization process. Our empirical results demonstrate that such a generative class prompt learning approach substantially outperform existing methods, offering a better alternative to few shot image recognition challenges. The source code will be made available at: https://github.com/soumitri2001/GCPL.
Unifying Self-Supervised Clustering and Energy-Based Models
Self-supervised learning excels at learning representations from large amounts of data. At the same time, generative models offer the complementary property of learning information about the underlying data generation process. In this study, we aim at establishing a principled connection between these two paradigms and highlight the benefits of their complementarity. In particular, we perform an analysis of self-supervised learning objectives, elucidating the underlying probabilistic graphical models and presenting a standardized methodology for their derivation from first principles. The analysis suggests a natural means of integrating self-supervised learning with likelihood-based generative models. We instantiate this concept within the realm of cluster-based self-supervised learning and energy models, introducing a lower bound proven to reliably penalize the most important failure modes and unlocking full unification. Our theoretical findings are substantiated through experiments on synthetic and real-world data, including SVHN, CIFAR10, and CIFAR100, demonstrating that our objective function allows to jointly train a backbone network in a discriminative and generative fashion, consequently outperforming existing self-supervised learning strategies in terms of clustering, generation and out-of-distribution detection performance by a wide margin. We also demonstrate that the solution can be integrated into a neuro-symbolic framework to tackle a simple yet non-trivial instantiation of the symbol grounding problem. The code is publicly available at https://github.com/emsansone/GEDI.
Learning the Latent Rules of a Game from Data: A Chess Story
We demonstrate that small pretrained foundational generative language models with millions of parameters can learn the latent rules of a process from data associated with the process. Inspired by Stefan Zweig's novella "Schachnovelle," also known as "The Royal Game" in English, we show that 28M and 125M parameter pretrained foundational small language models (SLMs) can be instruction fine-tuned with 1,000-to-1,000,000 examples to learn the rules of chess, propose legal moves, and accurately solve chess problems. We also explore the impact of successive language model fine-tuning epochs on improved outcomes and demonstrate reductions in model hallucinations by increasing the number of instruction fine-tuning examples.
MiniGPT-5: Interleaved Vision-and-Language Generation via Generative Vokens
Large Language Models (LLMs) have garnered significant attention for their advancements in natural language processing, demonstrating unparalleled prowess in text comprehension and generation. Yet, the simultaneous generation of images with coherent textual narratives remains an evolving frontier. In response, we introduce an innovative interleaved vision-and-language generation technique anchored by the concept of "generative vokens," acting as the bridge for harmonized image-text outputs. Our approach is characterized by a distinctive two-staged training strategy focusing on description-free multimodal generation, where the training requires no comprehensive descriptions of images. To bolster model integrity, classifier-free guidance is incorporated, enhancing the effectiveness of vokens on image generation. Our model, MiniGPT-5, exhibits substantial improvement over the baseline Divter model on the MMDialog dataset and consistently delivers superior or comparable multimodal outputs in human evaluations on the VIST dataset, highlighting its efficacy across diverse benchmarks.
Video Generation From Text
Generating videos from text has proven to be a significant challenge for existing generative models. We tackle this problem by training a conditional generative model to extract both static and dynamic information from text. This is manifested in a hybrid framework, employing a Variational Autoencoder (VAE) and a Generative Adversarial Network (GAN). The static features, called "gist," are used to sketch text-conditioned background color and object layout structure. Dynamic features are considered by transforming input text into an image filter. To obtain a large amount of data for training the deep-learning model, we develop a method to automatically create a matched text-video corpus from publicly available online videos. Experimental results show that the proposed framework generates plausible and diverse videos, while accurately reflecting the input text information. It significantly outperforms baseline models that directly adapt text-to-image generation procedures to produce videos. Performance is evaluated both visually and by adapting the inception score used to evaluate image generation in GANs.
Enhancing Pre-Trained Generative Language Models with Question Attended Span Extraction on Machine Reading Comprehension
Machine Reading Comprehension (MRC) poses a significant challenge in the field of Natural Language Processing (NLP). While mainstream MRC methods predominantly leverage extractive strategies using encoder-only models such as BERT, generative approaches face the issue of out-of-control generation -- a critical problem where answers generated are often incorrect, irrelevant, or unfaithful to the source text. To address these limitations in generative models for MRC, we introduce the Question-Attended Span Extraction (QASE) module. Integrated during the fine-tuning phase of pre-trained generative language models (PLMs), QASE significantly enhances their performance, allowing them to surpass the extractive capabilities of advanced Large Language Models (LLMs) such as GPT-4. Notably, these gains in performance do not come with an increase in computational demands. The efficacy of the QASE module has been rigorously tested across various datasets, consistently achieving or even surpassing state-of-the-art (SOTA) results.
Scaling Laws for Generative Mixed-Modal Language Models
Generative language models define distributions over sequences of tokens that can represent essentially any combination of data modalities (e.g., any permutation of image tokens from VQ-VAEs, speech tokens from HuBERT, BPE tokens for language or code, and so on). To better understand the scaling properties of such mixed-modal models, we conducted over 250 experiments using seven different modalities and model sizes ranging from 8 million to 30 billion, trained on 5-100 billion tokens. We report new mixed-modal scaling laws that unify the contributions of individual modalities and the interactions between them. Specifically, we explicitly model the optimal synergy and competition due to data and model size as an additive term to previous uni-modal scaling laws. We also find four empirical phenomena observed during the training, such as emergent coordinate-ascent style training that naturally alternates between modalities, guidelines for selecting critical hyper-parameters, and connections between mixed-modal competition and training stability. Finally, we test our scaling law by training a 30B speech-text model, which significantly outperforms the corresponding unimodal models. Overall, our research provides valuable insights into the design and training of mixed-modal generative models, an important new class of unified models that have unique distributional properties.
Diffuse and Disperse: Image Generation with Representation Regularization
The development of diffusion-based generative models over the past decade has largely proceeded independently of progress in representation learning. These diffusion models typically rely on regression-based objectives and generally lack explicit regularization. In this work, we propose Dispersive Loss, a simple plug-and-play regularizer that effectively improves diffusion-based generative models. Our loss function encourages internal representations to disperse in the hidden space, analogous to contrastive self-supervised learning, with the key distinction that it requires no positive sample pairs and therefore does not interfere with the sampling process used for regression. Compared to the recent method of representation alignment (REPA), our approach is self-contained and minimalist, requiring no pre-training, no additional parameters, and no external data. We evaluate Dispersive Loss on the ImageNet dataset across a range of models and report consistent improvements over widely used and strong baselines. We hope our work will help bridge the gap between generative modeling and representation learning.
Diffusion Model is an Effective Planner and Data Synthesizer for Multi-Task Reinforcement Learning
Diffusion models have demonstrated highly-expressive generative capabilities in vision and NLP. Recent studies in reinforcement learning (RL) have shown that diffusion models are also powerful in modeling complex policies or trajectories in offline datasets. However, these works have been limited to single-task settings where a generalist agent capable of addressing multi-task predicaments is absent. In this paper, we aim to investigate the effectiveness of a single diffusion model in modeling large-scale multi-task offline data, which can be challenging due to diverse and multimodal data distribution. Specifically, we propose Multi-Task Diffusion Model (MTDiff), a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis in multi-task offline settings. MTDiff leverages vast amounts of knowledge available in multi-task data and performs implicit knowledge sharing among tasks. For generative planning, we find MTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D. For data synthesis, MTDiff generates high-quality data for testing tasks given a single demonstration as a prompt, which enhances the low-quality datasets for even unseen tasks.
Diffusion Self-Distillation for Zero-Shot Customized Image Generation
Text-to-image diffusion models produce impressive results but are frustrating tools for artists who desire fine-grained control. For example, a common use case is to create images of a specific instance in novel contexts, i.e., "identity-preserving generation". This setting, along with many other tasks (e.g., relighting), is a natural fit for image+text-conditional generative models. However, there is insufficient high-quality paired data to train such a model directly. We propose Diffusion Self-Distillation, a method for using a pre-trained text-to-image model to generate its own dataset for text-conditioned image-to-image tasks. We first leverage a text-to-image diffusion model's in-context generation ability to create grids of images and curate a large paired dataset with the help of a Visual-Language Model. We then fine-tune the text-to-image model into a text+image-to-image model using the curated paired dataset. We demonstrate that Diffusion Self-Distillation outperforms existing zero-shot methods and is competitive with per-instance tuning techniques on a wide range of identity-preservation generation tasks, without requiring test-time optimization.
LucidDreaming: Controllable Object-Centric 3D Generation
With the recent development of generative models, Text-to-3D generations have also seen significant growth. Nonetheless, achieving precise control over 3D generation continues to be an arduous task, as using text to control often leads to missing objects and imprecise locations. Contemporary strategies for enhancing controllability in 3D generation often entail the introduction of additional parameters, such as customized diffusion models. This often induces hardness in adapting to different diffusion models or creating distinct objects. In this paper, we present LucidDreaming as an effective pipeline capable of fine-grained control over 3D generation. It requires only minimal input of 3D bounding boxes, which can be deduced from a simple text prompt using a Large Language Model. Specifically, we propose clipped ray sampling to separately render and optimize objects with user specifications. We also introduce object-centric density blob bias, fostering the separation of generated objects. With individual rendering and optimizing of objects, our method excels not only in controlled content generation from scratch but also within the pre-trained NeRF scenes. In such scenarios, existing generative approaches often disrupt the integrity of the original scene, and current editing methods struggle to synthesize new content in empty spaces. We show that our method exhibits remarkable adaptability across a spectrum of mainstream Score Distillation Sampling-based 3D generation frameworks, and achieves superior alignment of 3D content when compared to baseline approaches. We also provide a dataset of prompts with 3D bounding boxes, benchmarking 3D spatial controllability.
Is ChatGPT a Good Teacher Coach? Measuring Zero-Shot Performance For Scoring and Providing Actionable Insights on Classroom Instruction
Coaching, which involves classroom observation and expert feedback, is a widespread and fundamental part of teacher training. However, the majority of teachers do not have access to consistent, high quality coaching due to limited resources and access to expertise. We explore whether generative AI could become a cost-effective complement to expert feedback by serving as an automated teacher coach. In doing so, we propose three teacher coaching tasks for generative AI: (A) scoring transcript segments based on classroom observation instruments, (B) identifying highlights and missed opportunities for good instructional strategies, and (C) providing actionable suggestions for eliciting more student reasoning. We recruit expert math teachers to evaluate the zero-shot performance of ChatGPT on each of these tasks for elementary math classroom transcripts. Our results reveal that ChatGPT generates responses that are relevant to improving instruction, but they are often not novel or insightful. For example, 82% of the model's suggestions point to places in the transcript where the teacher is already implementing that suggestion. Our work highlights the challenges of producing insightful, novel and truthful feedback for teachers while paving the way for future research to address these obstacles and improve the capacity of generative AI to coach teachers.
TPTU: Task Planning and Tool Usage of Large Language Model-based AI Agents
With recent advancements in natural language processing, Large Language Models (LLMs) have emerged as powerful tools for various real-world applications. Despite their prowess, the intrinsic generative abilities of LLMs may prove insufficient for handling complex tasks which necessitate a combination of task planning and the usage of external tools. In this paper, we first propose a structured framework tailored for LLM-based AI Agents and discuss the crucial capabilities necessary for tackling intricate problems. Within this framework, we design two distinct types of agents (i.e., one-step agent and sequential agent) to execute the inference process. Subsequently, we instantiate the framework using various LLMs and evaluate their Task Planning and Tool Usage (TPTU) abilities on typical tasks. By highlighting key findings and challenges, our goal is to provide a helpful resource for researchers and practitioners to leverage the power of LLMs in their AI applications. Our study emphasizes the substantial potential of these models, while also identifying areas that need more investigation and improvement.
Fake Artificial Intelligence Generated Contents (FAIGC): A Survey of Theories, Detection Methods, and Opportunities
In recent years, generative artificial intelligence models, represented by Large Language Models (LLMs) and Diffusion Models (DMs), have revolutionized content production methods. These artificial intelligence-generated content (AIGC) have become deeply embedded in various aspects of daily life and work. However, these technologies have also led to the emergence of Fake Artificial Intelligence Generated Content (FAIGC), posing new challenges in distinguishing genuine information. It is crucial to recognize that AIGC technology is akin to a double-edged sword; its potent generative capabilities, while beneficial, also pose risks for the creation and dissemination of FAIGC. In this survey, We propose a new taxonomy that provides a more comprehensive breakdown of the space of FAIGC methods today. Next, we explore the modalities and generative technologies of FAIGC. We introduce FAIGC detection methods and summarize the related benchmark from various perspectives. Finally, we discuss outstanding challenges and promising areas for future research.
GePpeTto Carves Italian into a Language Model
In the last few years, pre-trained neural architectures have provided impressive improvements across several NLP tasks. Still, generative language models are available mainly for English. We develop GePpeTto, the first generative language model for Italian, built using the GPT-2 architecture. We provide a thorough analysis of GePpeTto's quality by means of both an automatic and a human-based evaluation. The automatic assessment consists in (i) calculating perplexity across different genres and (ii) a profiling analysis over GePpeTto's writing characteristics. We find that GePpeTto's production is a sort of bonsai version of human production, with shorter but yet complex sentences. Human evaluation is performed over a sentence completion task, where GePpeTto's output is judged as natural more often than not, and much closer to the original human texts than to a simpler language model which we take as baseline.
Generating Continuations in Multilingual Idiomatic Contexts
The ability to process idiomatic or literal multiword expressions is a crucial aspect of understanding and generating any language. The task of generating contextually relevant continuations for narratives containing idiomatic (or literal) expressions can allow us to test the ability of generative language models (LMs) in understanding nuanced language containing non-compositional figurative text. We conduct a series of experiments using datasets in two distinct languages (English and Portuguese) under three different training settings (zero-shot, few-shot, and fine-tuned). Our results suggest that the models are only slightly better at generating continuations for literal contexts than idiomatic contexts, with exceedingly small margins. Furthermore, the models studied in this work perform equally well across both languages, indicating the robustness of generative models in performing this task.
Generative AI for Synthetic Data Generation: Methods, Challenges and the Future
The recent surge in research focused on generating synthetic data from large language models (LLMs), especially for scenarios with limited data availability, marks a notable shift in Generative Artificial Intelligence (AI). Their ability to perform comparably to real-world data positions this approach as a compelling solution to low-resource challenges. This paper delves into advanced technologies that leverage these gigantic LLMs for the generation of task-specific training data. We outline methodologies, evaluation techniques, and practical applications, discuss the current limitations, and suggest potential pathways for future research.
Progressive Distillation for Fast Sampling of Diffusion Models
Diffusion models have recently shown great promise for generative modeling, outperforming GANs on perceptual quality and autoregressive models at density estimation. A remaining downside is their slow sampling time: generating high quality samples takes many hundreds or thousands of model evaluations. Here we make two contributions to help eliminate this downside: First, we present new parameterizations of diffusion models that provide increased stability when using few sampling steps. Second, we present a method to distill a trained deterministic diffusion sampler, using many steps, into a new diffusion model that takes half as many sampling steps. We then keep progressively applying this distillation procedure to our model, halving the number of required sampling steps each time. On standard image generation benchmarks like CIFAR-10, ImageNet, and LSUN, we start out with state-of-the-art samplers taking as many as 8192 steps, and are able to distill down to models taking as few as 4 steps without losing much perceptual quality; achieving, for example, a FID of 3.0 on CIFAR-10 in 4 steps. Finally, we show that the full progressive distillation procedure does not take more time than it takes to train the original model, thus representing an efficient solution for generative modeling using diffusion at both train and test time.
MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large Language Models
The recent GPT-4 has demonstrated extraordinary multi-modal abilities, such as directly generating websites from handwritten text and identifying humorous elements within images. These features are rarely observed in previous vision-language models. We believe the primary reason for GPT-4's advanced multi-modal generation capabilities lies in the utilization of a more advanced large language model (LLM). To examine this phenomenon, we present MiniGPT-4, which aligns a frozen visual encoder with a frozen LLM, Vicuna, using just one projection layer. Our findings reveal that MiniGPT-4 possesses many capabilities similar to those exhibited by GPT-4 like detailed image description generation and website creation from hand-written drafts. Furthermore, we also observe other emerging capabilities in MiniGPT-4, including writing stories and poems inspired by given images, providing solutions to problems shown in images, teaching users how to cook based on food photos, etc. In our experiment, we found that only performing the pretraining on raw image-text pairs could produce unnatural language outputs that lack coherency including repetition and fragmented sentences. To address this problem, we curate a high-quality, well-aligned dataset in the second stage to finetune our model using a conversational template. This step proved crucial for augmenting the model's generation reliability and overall usability. Notably, our model is highly computationally efficient, as we only train a projection layer utilizing approximately 5 million aligned image-text pairs. Our code, pre-trained model, and collected dataset are available at https://minigpt-4.github.io/.
Bridging Text and Video Generation: A Survey
Text-to-video (T2V) generation technology holds potential to transform multiple domains such as education, marketing, entertainment, and assistive technologies for individuals with visual or reading comprehension challenges, by creating coherent visual content from natural language prompts. From its inception, the field has advanced from adversarial models to diffusion-based models, yielding higher-fidelity, temporally consistent outputs. Yet challenges persist, such as alignment, long-range coherence, and computational efficiency. Addressing this evolving landscape, we present a comprehensive survey of text-to-video generative models, tracing their development from early GANs and VAEs to hybrid Diffusion-Transformer (DiT) architectures, detailing how these models work, what limitations they addressed in their predecessors, and why shifts toward new architectural paradigms were necessary to overcome challenges in quality, coherence, and control. We provide a systematic account of the datasets, which the surveyed text-to-video models were trained and evaluated on, and, to support reproducibility and assess the accessibility of training such models, we detail their training configurations, including their hardware specifications, GPU counts, batch sizes, learning rates, optimizers, epochs, and other key hyperparameters. Further, we outline the evaluation metrics commonly used for evaluating such models and present their performance across standard benchmarks, while also discussing the limitations of these metrics and the emerging shift toward more holistic, perception-aligned evaluation strategies. Finally, drawing from our analysis, we outline the current open challenges and propose a few promising future directions, laying out a perspective for future researchers to explore and build upon in advancing T2V research and applications.
A survey of Generative AI Applications
Generative AI has experienced remarkable growth in recent years, leading to a wide array of applications across diverse domains. In this paper, we present a comprehensive survey of more than 350 generative AI applications, providing a structured taxonomy and concise descriptions of various unimodal and even multimodal generative AIs. The survey is organized into sections, covering a wide range of unimodal generative AI applications such as text, images, video, gaming and brain information. Our survey aims to serve as a valuable resource for researchers and practitioners to navigate the rapidly expanding landscape of generative AI, facilitating a better understanding of the current state-of-the-art and fostering further innovation in the field.
LogiGAN: Learning Logical Reasoning via Adversarial Pre-training
We present LogiGAN, an unsupervised adversarial pre-training framework for improving logical reasoning abilities of language models. Upon automatic identifying logical reasoning phenomena in massive text corpus via detection heuristics, we train language models to predict the masked-out logical statements. Inspired by the facilitation effect of reflective thinking in human learning, we analogically simulate the learning-thinking process with an adversarial Generator-Verifier architecture to assist logic learning. LogiGAN implements a novel sequential GAN approach that (a) circumvents the non-differentiable challenge of the sequential GAN by leveraging the Generator as a sentence-level generative likelihood scorer with a learning objective of reaching scoring consensus with the Verifier; (b) is computationally feasible for large-scale pre-training with arbitrary target length. Both base and large size language models pre-trained with LogiGAN demonstrate obvious performance improvement on 12 datasets requiring general reasoning abilities, revealing the fundamental role of logic in broad reasoning, as well as the effectiveness of LogiGAN. Ablation studies on LogiGAN components reveal the relative orthogonality between linguistic and logic abilities and suggest that reflective thinking's facilitation effect might also generalize to machine learning.
Voicebox: Text-Guided Multilingual Universal Speech Generation at Scale
Large-scale generative models such as GPT and DALL-E have revolutionized the research community. These models not only generate high fidelity outputs, but are also generalists which can solve tasks not explicitly taught. In contrast, speech generative models are still primitive in terms of scale and task generalization. In this paper, we present Voicebox, the most versatile text-guided generative model for speech at scale. Voicebox is a non-autoregressive flow-matching model trained to infill speech, given audio context and text, trained on over 50K hours of speech that are not filtered or enhanced. Similar to GPT, Voicebox can perform many different tasks through in-context learning, but is more flexible as it can also condition on future context. Voicebox can be used for mono or cross-lingual zero-shot text-to-speech synthesis, noise removal, content editing, style conversion, and diverse sample generation. In particular, Voicebox outperforms the state-of-the-art zero-shot TTS model VALL-E on both intelligibility (5.9% vs 1.9% word error rates) and audio similarity (0.580 vs 0.681) while being up to 20 times faster. Audio samples can be found in https://voicebox.metademolab.com.
Fine-Tuning Visual Autoregressive Models for Subject-Driven Generation
Recent advances in text-to-image generative models have enabled numerous practical applications, including subject-driven generation, which fine-tunes pretrained models to capture subject semantics from only a few examples. While diffusion-based models produce high-quality images, their extensive denoising steps result in significant computational overhead, limiting real-world applicability. Visual autoregressive~(VAR) models, which predict next-scale tokens rather than spatially adjacent ones, offer significantly faster inference suitable for practical deployment. In this paper, we propose the first VAR-based approach for subject-driven generation. However, na\"{\i}ve fine-tuning VAR leads to computational overhead, language drift, and reduced diversity. To address these challenges, we introduce selective layer tuning to reduce complexity and prior distillation to mitigate language drift. Additionally, we found that the early stages have a greater influence on the generation of subject than the latter stages, which merely synthesize local details. Based on this finding, we propose scale-wise weighted tuning, which prioritizes coarser resolutions for promoting the model to focus on the subject-relevant information instead of local details. Extensive experiments validate that our method significantly outperforms diffusion-based baselines across various metrics and demonstrates its practical usage.
Prevailing Research Areas for Music AI in the Era of Foundation Models
In tandem with the recent advancements in foundation model research, there has been a surge of generative music AI applications within the past few years. As the idea of AI-generated or AI-augmented music becomes more mainstream, many researchers in the music AI community may be wondering what avenues of research are left. With regards to music generative models, we outline the current areas of research with significant room for exploration. Firstly, we pose the question of foundational representation of these generative models and investigate approaches towards explainability. Next, we discuss the current state of music datasets and their limitations. We then overview different generative models, forms of evaluating these models, and their computational constraints/limitations. Subsequently, we highlight applications of these generative models towards extensions to multiple modalities and integration with artists' workflow as well as music education systems. Finally, we survey the potential copyright implications of generative music and discuss strategies for protecting the rights of musicians. While it is not meant to be exhaustive, our survey calls to attention a variety of research directions enabled by music foundation models.
Reasoning Beyond Limits: Advances and Open Problems for LLMs
Recent generative reasoning breakthroughs have transformed how large language models (LLMs) tackle complex problems by dynamically retrieving and refining information while generating coherent, multi-step thought processes. Techniques such as inference-time scaling, reinforcement learning, supervised fine-tuning, and distillation have been successfully applied to models like DeepSeek-R1, OpenAI's o1 & o3, GPT-4o, Qwen-32B, and various Llama variants, resulting in enhanced reasoning capabilities. In this paper, we provide a comprehensive analysis of the top 27 LLM models released between 2023 and 2025 (including models such as Mistral AI Small 3 24B, DeepSeek-R1, Search-o1, QwQ-32B, and phi-4). Then, we present an extensive overview of training methodologies that spans general training approaches, mixture-of-experts (MoE) and architectural innovations, retrieval-augmented generation (RAG), chain-of-thought and self-improvement techniques, as well as test-time compute scaling, distillation, and reinforcement learning (RL) methods. Finally, we discuss the key challenges in advancing LLM capabilities, including improving multi-step reasoning without human supervision, overcoming limitations in chained tasks, balancing structured prompts with flexibility, and enhancing long-context retrieval and external tool integration.
Masked Autoencoders Are Effective Tokenizers for Diffusion Models
Recent advances in latent diffusion models have demonstrated their effectiveness for high-resolution image synthesis. However, the properties of the latent space from tokenizer for better learning and generation of diffusion models remain under-explored. Theoretically and empirically, we find that improved generation quality is closely tied to the latent distributions with better structure, such as the ones with fewer Gaussian Mixture modes and more discriminative features. Motivated by these insights, we propose MAETok, an autoencoder (AE) leveraging mask modeling to learn semantically rich latent space while maintaining reconstruction fidelity. Extensive experiments validate our analysis, demonstrating that the variational form of autoencoders is not necessary, and a discriminative latent space from AE alone enables state-of-the-art performance on ImageNet generation using only 128 tokens. MAETok achieves significant practical improvements, enabling a gFID of 1.69 with 76x faster training and 31x higher inference throughput for 512x512 generation. Our findings show that the structure of the latent space, rather than variational constraints, is crucial for effective diffusion models. Code and trained models are released.
