- Skill Transformer: A Monolithic Policy for Mobile Manipulation We present Skill Transformer, an approach for solving long-horizon robotic tasks by combining conditional sequence modeling and skill modularity. Conditioned on egocentric and proprioceptive observations of a robot, Skill Transformer is trained end-to-end to predict both a high-level skill (e.g., navigation, picking, placing), and a whole-body low-level action (e.g., base and arm motion), using a transformer architecture and demonstration trajectories that solve the full task. It retains the composability and modularity of the overall task through a skill predictor module while reasoning about low-level actions and avoiding hand-off errors, common in modular approaches. We test Skill Transformer on an embodied rearrangement benchmark and find it performs robust task planning and low-level control in new scenarios, achieving a 2.5x higher success rate than baselines in hard rearrangement problems. 4 authors · Aug 18, 2023
- Performance evaluation of conditional handover in 5G systems under fading scenario To enhance the handover performance in fifth generation (5G) cellular systems, conditional handover (CHO) has been evolved as a promising solution. Unlike A3 based handover where handover execution is certain after receiving handover command from the serving access network, in CHO, handover execution is conditional on the RSRP measurements from both current and target access networks, as well as on mobility parameters such as preparation and execution offsets. Analytic evaluation of conditional handover performance is unprecedented in literature. In this work, handover performance of CHO has been carried out in terms of handover latency, handover packet loss and handover failure probability. A Markov model accounting the effect of different mobility parameters (e.g., execution offset, preparation offset, time-to-preparation and time-to-execution), UE velocity and channel fading characteristics; has been proposed to characterize handover failure. Results obtained from the analytic model has been validated against extensive simulation results. Our study reveal that optimal configuration of O_{exec}, O_{prep}, T_{exec} and T_{prep} is actually conditional on underlying UE velocity and fading characteristics. This study will be helpful for the mobile operators to choose appropriate thresholds of the mobility parameters under different channel condition and UE velocities. 6 authors · Mar 7, 2024