Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMapAnything: Universal Feed-Forward Metric 3D Reconstruction
We introduce MapAnything, a unified transformer-based feed-forward model that ingests one or more images along with optional geometric inputs such as camera intrinsics, poses, depth, or partial reconstructions, and then directly regresses the metric 3D scene geometry and cameras. MapAnything leverages a factored representation of multi-view scene geometry, i.e., a collection of depth maps, local ray maps, camera poses, and a metric scale factor that effectively upgrades local reconstructions into a globally consistent metric frame. Standardizing the supervision and training across diverse datasets, along with flexible input augmentation, enables MapAnything to address a broad range of 3D vision tasks in a single feed-forward pass, including uncalibrated structure-from-motion, calibrated multi-view stereo, monocular depth estimation, camera localization, depth completion, and more. We provide extensive experimental analyses and model ablations demonstrating that MapAnything outperforms or matches specialist feed-forward models while offering more efficient joint training behavior, thus paving the way toward a universal 3D reconstruction backbone.
Self-Guided Masked Autoencoders for Domain-Agnostic Self-Supervised Learning
Self-supervised learning excels in learning representations from large amounts of unlabeled data, demonstrating success across multiple data modalities. Yet, extending self-supervised learning to new modalities is non-trivial because the specifics of existing methods are tailored to each domain, such as domain-specific augmentations which reflect the invariances in the target task. While masked modeling is promising as a domain-agnostic framework for self-supervised learning because it does not rely on input augmentations, its mask sampling procedure remains domain-specific. We present Self-guided Masked Autoencoders (SMA), a fully domain-agnostic masked modeling method. SMA trains an attention based model using a masked modeling objective, by learning masks to sample without any domain-specific assumptions. We evaluate SMA on three self-supervised learning benchmarks in protein biology, chemical property prediction, and particle physics. We find SMA is capable of learning representations without domain-specific knowledge and achieves state-of-the-art performance on these three benchmarks.
Structuring Representation Geometry with Rotationally Equivariant Contrastive Learning
Self-supervised learning converts raw perceptual data such as images to a compact space where simple Euclidean distances measure meaningful variations in data. In this paper, we extend this formulation by adding additional geometric structure to the embedding space by enforcing transformations of input space to correspond to simple (i.e., linear) transformations of embedding space. Specifically, in the contrastive learning setting, we introduce an equivariance objective and theoretically prove that its minima forces augmentations on input space to correspond to rotations on the spherical embedding space. We show that merely combining our equivariant loss with a non-collapse term results in non-trivial representations, without requiring invariance to data augmentations. Optimal performance is achieved by also encouraging approximate invariance, where input augmentations correspond to small rotations. Our method, CARE: Contrastive Augmentation-induced Rotational Equivariance, leads to improved performance on downstream tasks, and ensures sensitivity in embedding space to important variations in data (e.g., color) that standard contrastive methods do not achieve. Code is available at https://github.com/Sharut/CARE.
A Primer on Contrastive Pretraining in Language Processing: Methods, Lessons Learned and Perspectives
Modern natural language processing (NLP) methods employ self-supervised pretraining objectives such as masked language modeling to boost the performance of various application tasks. These pretraining methods are frequently extended with recurrence, adversarial or linguistic property masking, and more recently with contrastive learning objectives. Contrastive self-supervised training objectives enabled recent successes in image representation pretraining by learning to contrast input-input pairs of augmented images as either similar or dissimilar. However, in NLP, automated creation of text input augmentations is still very challenging because a single token can invert the meaning of a sentence. For this reason, some contrastive NLP pretraining methods contrast over input-label pairs, rather than over input-input pairs, using methods from Metric Learning and Energy Based Models. In this survey, we summarize recent self-supervised and supervised contrastive NLP pretraining methods and describe where they are used to improve language modeling, few or zero-shot learning, pretraining data-efficiency and specific NLP end-tasks. We introduce key contrastive learning concepts with lessons learned from prior research and structure works by applications and cross-field relations. Finally, we point to open challenges and future directions for contrastive NLP to encourage bringing contrastive NLP pretraining closer to recent successes in image representation pretraining.
Enhancing Large Language Models' Situated Faithfulness to External Contexts
Large Language Models (LLMs) are often augmented with external information as contexts, but this external information can sometimes be inaccurate or even intentionally misleading. We argue that robust LLMs should demonstrate situated faithfulness, dynamically calibrating their trust in external information based on their confidence in the internal knowledge and the external context. To benchmark this capability, we evaluate LLMs across several QA datasets, including a newly created dataset called RedditQA featuring in-the-wild incorrect contexts sourced from Reddit posts. We show that when provided with both correct and incorrect contexts, both open-source and proprietary models tend to overly rely on external information, regardless of its factual accuracy. To enhance situated faithfulness, we propose two approaches: Self-Guided Confidence Reasoning (SCR) and Rule-Based Confidence Reasoning (RCR). SCR enables models to self-access the confidence of external information relative to their own internal knowledge to produce the most accurate answer. RCR, in contrast, extracts explicit confidence signals from the LLM and determines the final answer using predefined rules. Our results show that for LLMs with strong reasoning capabilities, such as GPT-4o and GPT-4o mini, SCR outperforms RCR, achieving improvements of up to 24.2% over a direct input augmentation baseline. Conversely, for a smaller model like Llama-3-8B, RCR outperforms SCR. Fine-tuning SCR with our proposed Confidence Reasoning Direct Preference Optimization (CR-DPO) method improves performance on both seen and unseen datasets, yielding an average improvement of 8.9% on Llama-3-8B. In addition to quantitative results, we offer insights into the relative strengths of SCR and RCR. Our findings highlight promising avenues for improving situated faithfulness in LLMs. The data and code are released.
DisCo: Distilled Student Models Co-training for Semi-supervised Text Mining
Many text mining models are constructed by fine-tuning a large deep pre-trained language model (PLM) in downstream tasks. However, a significant challenge is maintaining performance when we use a lightweight model with limited labeled samples. We present DisCo, a semi-supervised learning (SSL) framework for fine-tuning a cohort of small student models generated from a large PLM using knowledge distillation. Our key insight is to share complementary knowledge among distilled student cohorts to promote their SSL effectiveness. DisCo employs a novel co-training technique to optimize multiple small student models by promoting knowledge sharing among students under diversified views: model views produced by different distillation strategies and data views produced by various input augmentations. We evaluate DisCo on both semi-supervised text classification and extractive summarization tasks. Experimental results show that DisCo can produce student models that are 7.6 times smaller and 4.8 times faster in inference than the baseline PLMs while maintaining comparable performance. We also show that DisCo-generated student models outperform the similar-sized models elaborately tuned in distinct tasks.
Learning Instance-Specific Augmentations by Capturing Local Invariances
We introduce InstaAug, a method for automatically learning input-specific augmentations from data. Previous methods for learning augmentations have typically assumed independence between the original input and the transformation applied to that input. This can be highly restrictive, as the invariances we hope our augmentation will capture are themselves often highly input dependent. InstaAug instead introduces a learnable invariance module that maps from inputs to tailored transformation parameters, allowing local invariances to be captured. This can be simultaneously trained alongside the downstream model in a fully end-to-end manner, or separately learned for a pre-trained model. We empirically demonstrate that InstaAug learns meaningful input-dependent augmentations for a wide range of transformation classes, which in turn provides better performance on both supervised and self-supervised tasks.
Self-supervised Label Augmentation via Input Transformations
Self-supervised learning, which learns by constructing artificial labels given only the input signals, has recently gained considerable attention for learning representations with unlabeled datasets, i.e., learning without any human-annotated supervision. In this paper, we show that such a technique can be used to significantly improve the model accuracy even under fully-labeled datasets. Our scheme trains the model to learn both original and self-supervised tasks, but is different from conventional multi-task learning frameworks that optimize the summation of their corresponding losses. Our main idea is to learn a single unified task with respect to the joint distribution of the original and self-supervised labels, i.e., we augment original labels via self-supervision of input transformation. This simple, yet effective approach allows to train models easier by relaxing a certain invariant constraint during learning the original and self-supervised tasks simultaneously. It also enables an aggregated inference which combines the predictions from different augmentations to improve the prediction accuracy. Furthermore, we propose a novel knowledge transfer technique, which we refer to as self-distillation, that has the effect of the aggregated inference in a single (faster) inference. We demonstrate the large accuracy improvement and wide applicability of our framework on various fully-supervised settings, e.g., the few-shot and imbalanced classification scenarios.
PSA-SSL: Pose and Size-aware Self-Supervised Learning on LiDAR Point Clouds
Self-supervised learning (SSL) on 3D point clouds has the potential to learn feature representations that can transfer to diverse sensors and multiple downstream perception tasks. However, recent SSL approaches fail to define pretext tasks that retain geometric information such as object pose and scale, which can be detrimental to the performance of downstream localization and geometry-sensitive 3D scene understanding tasks, such as 3D semantic segmentation and 3D object detection. We propose PSA-SSL, a novel extension to point cloud SSL that learns object pose and size-aware (PSA) features. Our approach defines a self-supervised bounding box regression pretext task, which retains object pose and size information. Furthermore, we incorporate LiDAR beam pattern augmentation on input point clouds, which encourages learning sensor-agnostic features. Our experiments demonstrate that with a single pretrained model, our light-weight yet effective extensions achieve significant improvements on 3D semantic segmentation with limited labels across popular autonomous driving datasets (Waymo, nuScenes, SemanticKITTI). Moreover, our approach outperforms other state-of-the-art SSL methods on 3D semantic segmentation (using up to 10 times less labels), as well as on 3D object detection. Our code will be released on https://github.com/TRAILab/PSA-SSL.
Scalable Diffusion Models with State Space Backbone
This paper presents a new exploration into a category of diffusion models built upon state space architecture. We endeavor to train diffusion models for image data, wherein the traditional U-Net backbone is supplanted by a state space backbone, functioning on raw patches or latent space. Given its notable efficacy in accommodating long-range dependencies, Diffusion State Space Models (DiS) are distinguished by treating all inputs including time, condition, and noisy image patches as tokens. Our assessment of DiS encompasses both unconditional and class-conditional image generation scenarios, revealing that DiS exhibits comparable, if not superior, performance to CNN-based or Transformer-based U-Net architectures of commensurate size. Furthermore, we analyze the scalability of DiS, gauged by the forward pass complexity quantified in Gflops. DiS models with higher Gflops, achieved through augmentation of depth/width or augmentation of input tokens, consistently demonstrate lower FID. In addition to demonstrating commendable scalability characteristics, DiS-H/2 models in latent space achieve performance levels akin to prior diffusion models on class-conditional ImageNet benchmarks at the resolution of 256times256 and 512times512, while significantly reducing the computational burden. The code and models are available at: https://github.com/feizc/DiS.
Investigating the Benefits of Projection Head for Representation Learning
An effective technique for obtaining high-quality representations is adding a projection head on top of the encoder during training, then discarding it and using the pre-projection representations. Despite its proven practical effectiveness, the reason behind the success of this technique is poorly understood. The pre-projection representations are not directly optimized by the loss function, raising the question: what makes them better? In this work, we provide a rigorous theoretical answer to this question. We start by examining linear models trained with self-supervised contrastive loss. We reveal that the implicit bias of training algorithms leads to layer-wise progressive feature weighting, where features become increasingly unequal as we go deeper into the layers. Consequently, lower layers tend to have more normalized and less specialized representations. We theoretically characterize scenarios where such representations are more beneficial, highlighting the intricate interplay between data augmentation and input features. Additionally, we demonstrate that introducing non-linearity into the network allows lower layers to learn features that are completely absent in higher layers. Finally, we show how this mechanism improves the robustness in supervised contrastive learning and supervised learning. We empirically validate our results through various experiments on CIFAR-10/100, UrbanCars and shifted versions of ImageNet. We also introduce a potential alternative to projection head, which offers a more interpretable and controllable design.
Labels or Input? Rethinking Augmentation in Multimodal Hate Detection
The modern web is saturated with multimodal content, intensifying the challenge of detecting hateful memes, where harmful intent is often conveyed through subtle interactions between text and image under the guise of humor or satire. While recent advances in Vision-Language Models (VLMs) show promise, these models lack support for fine-grained supervision and remain susceptible to implicit hate speech. In this paper, we present a dual-pronged approach to improve multimodal hate detection. First, we propose a prompt optimization framework that systematically varies prompt structure, supervision granularity, and training modality. We show that prompt design and label scaling both influence performance, with structured prompts improving robustness even in small models, and InternVL2 achieving the best F1-scores across binary and scaled settings. Second, we introduce a multimodal data augmentation pipeline that generates 2,479 counterfactually neutral memes by isolating and rewriting the hateful modality. This pipeline, powered by a multi-agent LLM-VLM setup, successfully reduces spurious correlations and improves classifier generalization. Our approaches inspire new directions for building synthetic data to train robust and fair vision-language models. Our findings demonstrate that prompt structure and data composition are as critical as model size, and that targeted augmentation can support more trustworthy and context-sensitive hate detection.
ColBERT's [MASK]-based Query Augmentation: Effects of Quadrupling the Query Input Length
A unique aspect of ColBERT is its use of [MASK] tokens in queries to score documents (query augmentation). Prior work shows [MASK] tokens weighting non-[MASK] query terms, emphasizing certain tokens over others , rather than introducing whole new terms as initially proposed. We begin by demonstrating that a term weighting behavior previously reported for [MASK] tokens in ColBERTv1 holds for ColBERTv2. We then examine the effect of changing the number of [MASK] tokens from zero to up to four times past the query input length used in training, both for first stage retrieval, and for scoring candidates, observing an initial decrease in performance with few [MASK]s, a large increase when enough [MASK]s are added to pad queries to an average length of 32, then a plateau in performance afterwards. Additionally, we compare baseline performance to performance when the query length is extended to 128 tokens, and find that differences are small (e.g., within 1% on various metrics) and generally statistically insignificant, indicating performance does not collapse if ColBERT is presented with more [MASK] tokens than expected.
Image Augmentation Is All You Need: Regularizing Deep Reinforcement Learning from Pixels
We propose a simple data augmentation technique that can be applied to standard model-free reinforcement learning algorithms, enabling robust learning directly from pixels without the need for auxiliary losses or pre-training. The approach leverages input perturbations commonly used in computer vision tasks to regularize the value function. Existing model-free approaches, such as Soft Actor-Critic (SAC), are not able to train deep networks effectively from image pixels. However, the addition of our augmentation method dramatically improves SAC's performance, enabling it to reach state-of-the-art performance on the DeepMind control suite, surpassing model-based (Dreamer, PlaNet, and SLAC) methods and recently proposed contrastive learning (CURL). Our approach can be combined with any model-free reinforcement learning algorithm, requiring only minor modifications. An implementation can be found at https://sites.google.com/view/data-regularized-q.
CST5: Data Augmentation for Code-Switched Semantic Parsing
Extending semantic parsers to code-switched input has been a challenging problem, primarily due to a lack of supervised training data. In this work, we introduce CST5, a new data augmentation technique that finetunes a T5 model using a small seed set (approx100 utterances) to generate code-switched utterances from English utterances. We show that CST5 generates high quality code-switched data, both intrinsically (per human evaluation) and extrinsically by comparing baseline models which are trained without data augmentation to models which are trained with augmented data. Empirically we observe that using CST5, one can achieve the same semantic parsing performance by using up to 20x less labeled data. To aid further research in this area, we are also releasing (a) Hinglish-TOP, the largest human annotated code-switched semantic parsing dataset to date, containing 10k human annotated Hindi-English (Hinglish) code-switched utterances, and (b) Over 170K CST5 generated code-switched utterances from the TOPv2 dataset. Human evaluation shows that both the human annotated data as well as the CST5 generated data is of good quality.
BLISS: Robust Sequence-to-Sequence Learning via Self-Supervised Input Representation
Data augmentations (DA) are the cores to achieving robust sequence-to-sequence learning on various natural language processing (NLP) tasks. However, most of the DA approaches force the decoder to make predictions conditioned on the perturbed input representation, underutilizing supervised information provided by perturbed input. In this work, we propose a framework-level robust sequence-to-sequence learning approach, named BLISS, via self-supervised input representation, which has the great potential to complement the data-level augmentation approaches. The key idea is to supervise the sequence-to-sequence framework with both the supervised ("inputrightarrowoutput") and self-supervised ("perturbed inputrightarrowinput") information. We conduct comprehensive experiments to validate the effectiveness of BLISS on various tasks, including machine translation, grammatical error correction, and text summarization. The results show that BLISS outperforms significantly the vanilla Transformer and consistently works well across tasks than the other five contrastive baselines. Extensive analyses reveal that BLISS learns robust representations and rich linguistic knowledge, confirming our claim. Source code will be released upon publication.
ZEBRA: Zero-Shot Example-Based Retrieval Augmentation for Commonsense Question Answering
Current Large Language Models (LLMs) have shown strong reasoning capabilities in commonsense question answering benchmarks, but the process underlying their success remains largely opaque. As a consequence, recent approaches have equipped LLMs with mechanisms for knowledge retrieval, reasoning and introspection, not only to improve their capabilities but also to enhance the interpretability of their outputs. However, these methods require additional training, hand-crafted templates or human-written explanations. To address these issues, we introduce ZEBRA, a zero-shot question answering framework that combines retrieval, case-based reasoning and introspection and dispenses with the need for additional training of the LLM. Given an input question, ZEBRA retrieves relevant question-knowledge pairs from a knowledge base and generates new knowledge by reasoning over the relationships in these pairs. This generated knowledge is then used to answer the input question, improving the model's performance and interpretability. We evaluate our approach across 8 well-established commonsense reasoning benchmarks, demonstrating that ZEBRA consistently outperforms strong LLMs and previous knowledge integration approaches, achieving an average accuracy improvement of up to 4.5 points.
Local Augmentation for Graph Neural Networks
Graph Neural Networks (GNNs) have achieved remarkable performance on graph-based tasks. The key idea for GNNs is to obtain informative representation through aggregating information from local neighborhoods. However, it remains an open question whether the neighborhood information is adequately aggregated for learning representations of nodes with few neighbors. To address this, we propose a simple and efficient data augmentation strategy, local augmentation, to learn the distribution of the node features of the neighbors conditioned on the central node's feature and enhance GNN's expressive power with generated features. Local augmentation is a general framework that can be applied to any GNN model in a plug-and-play manner. It samples feature vectors associated with each node from the learned conditional distribution as additional input for the backbone model at each training iteration. Extensive experiments and analyses show that local augmentation consistently yields performance improvement when applied to various GNN architectures across a diverse set of benchmarks. For example, experiments show that plugging in local augmentation to GCN and GAT improves by an average of 3.4\% and 1.6\% in terms of test accuracy on Cora, Citeseer, and Pubmed. Besides, our experimental results on large graphs (OGB) show that our model consistently improves performance over backbones. Code is available at https://github.com/SongtaoLiu0823/LAGNN.
GenMix: Effective Data Augmentation with Generative Diffusion Model Image Editing
Data augmentation is widely used to enhance generalization in visual classification tasks. However, traditional methods struggle when source and target domains differ, as in domain adaptation, due to their inability to address domain gaps. This paper introduces GenMix, a generalizable prompt-guided generative data augmentation approach that enhances both in-domain and cross-domain image classification. Our technique leverages image editing to generate augmented images based on custom conditional prompts, designed specifically for each problem type. By blending portions of the input image with its edited generative counterpart and incorporating fractal patterns, our approach mitigates unrealistic images and label ambiguity, improving the performance and adversarial robustness of the resulting models. Efficacy of our method is established with extensive experiments on eight public datasets for general and fine-grained classification, in both in-domain and cross-domain settings. Additionally, we demonstrate performance improvements for self-supervised learning, learning with data scarcity, and adversarial robustness. As compared to the existing state-of-the-art methods, our technique achieves stronger performance across the board.
Investigating LLMs as Voting Assistants via Contextual Augmentation: A Case Study on the European Parliament Elections 2024
Instruction-finetuned Large Language Models exhibit unprecedented Natural Language Understanding capabilities. Recent work has been exploring political biases and political reasoning capabilities in LLMs, mainly scoped in the US context. In light of the recent 2024 European Parliament elections, we are investigating if LLMs can be used as Voting Advice Applications (VAAs). We audit MISTRAL and MIXTRAL models and evaluate their accuracy in predicting the stance of political parties based on the latest "EU and I" voting assistance questionnaire. Furthermore, we explore alternatives to improve models' performance by augmenting the input context via Retrieval-Augmented Generation (RAG) relying on web search, and Self-Reflection using staged conversations that aim to re-collect relevant content from the model's internal memory. We find that MIXTRAL is highly accurate with an 82% accuracy on average. Augmenting the input context with expert-curated information can lead to a significant boost of approx. 9%, which remains an open challenge for automated approaches.
Impact of Data Augmentation on QCNNs
In recent years, Classical Convolutional Neural Networks (CNNs) have been applied for image recognition successfully. Quantum Convolutional Neural Networks (QCNNs) are proposed as a novel generalization to CNNs by using quantum mechanisms. The quantum mechanisms lead to an efficient training process in QCNNs by reducing the size of input from N to log_2N. This paper implements and compares both CNNs and QCNNs by testing losses and prediction accuracy on three commonly used datasets. The datasets include the MNIST hand-written digits, Fashion MNIST and cat/dog face images. Additionally, data augmentation (DA), a technique commonly used in CNNs to improve the performance of classification by generating similar images based on original inputs, is also implemented in QCNNs. Surprisingly, the results showed that data augmentation didn't improve QCNNs performance. The reasons and logic behind this result are discussed, hoping to expand our understanding of Quantum machine learning theory.
General Covariance Data Augmentation for Neural PDE Solvers
The growing body of research shows how to replace classical partial differential equation (PDE) integrators with neural networks. The popular strategy is to generate the input-output pairs with a PDE solver, train the neural network in the regression setting, and use the trained model as a cheap surrogate for the solver. The bottleneck in this scheme is the number of expensive queries of a PDE solver needed to generate the dataset. To alleviate the problem, we propose a computationally cheap augmentation strategy based on general covariance and simple random coordinate transformations. Our approach relies on the fact that physical laws are independent of the coordinate choice, so the change in the coordinate system preserves the type of a parametric PDE and only changes PDE's data (e.g., initial conditions, diffusion coefficient). For tried neural networks and partial differential equations, proposed augmentation improves test error by 23% on average. The worst observed result is a 17% increase in test error for multilayer perceptron, and the best case is a 80% decrease for dilated residual network.
Augmentation Invariant Discrete Representation for Generative Spoken Language Modeling
Generative Spoken Language Modeling research focuses on optimizing speech Language Models (LMs) using raw audio recordings without accessing any textual supervision. Such speech LMs usually operate over discrete units obtained from quantizing internal representations of self-supervised models. Although such units show impressive modeling results, their robustness capabilities have not been extensively investigated. This work focuses on improving the robustness of discrete input representations for generative spoken language modeling. First, we formally define how to measure the robustness of such representations to various signal variations that do not alter the spoken information (e.g., time-stretch). Next, we empirically demonstrate how current state-of-the-art representation models lack robustness to such variations. To overcome this, we propose an effective and efficient method to learn robust discrete speech representation for generative spoken language modeling. The proposed approach is based on applying a set of signal transformations to the speech signal and optimizing the model using an iterative pseudo-labeling scheme. Our method significantly improves over the evaluated baselines when considering encoding and modeling metrics. We additionally evaluate our method on the speech-to-speech translation task, considering Spanish-English and French-English translations, and show the proposed approach outperforms the evaluated baselines.
MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning
Large-scale pretraining is fast becoming the norm in Vision-Language (VL) modeling. However, prevailing VL approaches are limited by the requirement for labeled data and the use of complex multi-step pretraining objectives. We present MAGMA - a simple method for augmenting generative language models with additional modalities using adapter-based finetuning. Building on Frozen, we train a series of VL models that autoregressively generate text from arbitrary combinations of visual and textual input. The pretraining is entirely end-to-end using a single language modeling objective, simplifying optimization compared to previous approaches. Importantly, the language model weights remain unchanged during training, allowing for transfer of encyclopedic knowledge and in-context learning abilities from language pretraining. MAGMA outperforms Frozen on open-ended generative tasks, achieving state of the art results on the OKVQA benchmark and competitive results on a range of other popular VL benchmarks, while pretraining on 0.2% of the number of samples used to train SimVLM.
Syntax-aware Data Augmentation for Neural Machine Translation
Data augmentation is an effective performance enhancement in neural machine translation (NMT) by generating additional bilingual data. In this paper, we propose a novel data augmentation enhancement strategy for neural machine translation. Different from existing data augmentation methods which simply choose words with the same probability across different sentences for modification, we set sentence-specific probability for word selection by considering their roles in sentence. We use dependency parse tree of input sentence as an effective clue to determine selecting probability for every words in each sentence. Our proposed method is evaluated on WMT14 English-to-German dataset and IWSLT14 German-to-English dataset. The result of extensive experiments show our proposed syntax-aware data augmentation method may effectively boost existing sentence-independent methods for significant translation performance improvement.
GridMask Data Augmentation
We propose a novel data augmentation method `GridMask' in this paper. It utilizes information removal to achieve state-of-the-art results in a variety of computer vision tasks. We analyze the requirement of information dropping. Then we show limitation of existing information dropping algorithms and propose our structured method, which is simple and yet very effective. It is based on the deletion of regions of the input image. Our extensive experiments show that our method outperforms the latest AutoAugment, which is way more computationally expensive due to the use of reinforcement learning to find the best policies. On the ImageNet dataset for recognition, COCO2017 object detection, and on Cityscapes dataset for semantic segmentation, our method all notably improves performance over baselines. The extensive experiments manifest the effectiveness and generality of the new method.
Graph Rationalization with Environment-based Augmentations
Rationale is defined as a subset of input features that best explains or supports the prediction by machine learning models. Rationale identification has improved the generalizability and interpretability of neural networks on vision and language data. In graph applications such as molecule and polymer property prediction, identifying representative subgraph structures named as graph rationales plays an essential role in the performance of graph neural networks. Existing graph pooling and/or distribution intervention methods suffer from lack of examples to learn to identify optimal graph rationales. In this work, we introduce a new augmentation operation called environment replacement that automatically creates virtual data examples to improve rationale identification. We propose an efficient framework that performs rationale-environment separation and representation learning on the real and augmented examples in latent spaces to avoid the high complexity of explicit graph decoding and encoding. Comparing against recent techniques, experiments on seven molecular and four polymer real datasets demonstrate the effectiveness and efficiency of the proposed augmentation-based graph rationalization framework.
Revisit Input Perturbation Problems for LLMs: A Unified Robustness Evaluation Framework for Noisy Slot Filling Task
With the increasing capabilities of large language models (LLMs), these high-performance models have achieved state-of-the-art results on a wide range of natural language processing (NLP) tasks. However, the models' performance on commonly-used benchmark datasets often fails to accurately reflect their reliability and robustness when applied to real-world noisy data. To address these challenges, we propose a unified robustness evaluation framework based on the slot-filling task to systematically evaluate the dialogue understanding capability of LLMs in diverse input perturbation scenarios. Specifically, we construct a input perturbation evaluation dataset, Noise-LLM, which contains five types of single perturbation and four types of mixed perturbation data. Furthermore, we utilize a multi-level data augmentation method (character, word, and sentence levels) to construct a candidate data pool, and carefully design two ways of automatic task demonstration construction strategies (instance-level and entity-level) with various prompt templates. Our aim is to assess how well various robustness methods of LLMs perform in real-world noisy scenarios. The experiments have demonstrated that the current open-source LLMs generally achieve limited perturbation robustness performance. Based on these experimental observations, we make some forward-looking suggestions to fuel the research in this direction.
UniRAG: Universal Retrieval Augmentation for Multi-Modal Large Language Models
Recently, Multi-Modal(MM) Large Language Models(LLMs) have unlocked many complex use-cases that require MM understanding (e.g., image captioning or visual question answering) and MM generation (e.g., text-guided image generation or editing) capabilities. To further improve the output fidelity of MM-LLMs we introduce the model-agnostic UniRAG technique that adds relevant retrieved information to prompts as few-shot examples during inference. Unlike the common belief that Retrieval Augmentation (RA) mainly improves generation or understanding of uncommon entities, our evaluation results on the MSCOCO dataset with common entities show that both proprietary models like GPT4 and Gemini-Pro and smaller open-source models like Llava, LaVIT, and Emu2 significantly enhance their generation quality when their input prompts are augmented with relevant information retrieved by MM retrievers like UniIR models.
Towards Efficiently Diversifying Dialogue Generation via Embedding Augmentation
Dialogue generation models face the challenge of producing generic and repetitive responses. Unlike previous augmentation methods that mostly focus on token manipulation and ignore the essential variety within a single sample using hard labels, we propose to promote the generation diversity of the neural dialogue models via soft embedding augmentation along with soft labels in this paper. Particularly, we select some key input tokens and fuse their embeddings together with embeddings from their semantic-neighbor tokens. The new embeddings serve as the input of the model to replace the original one. Besides, soft labels are used in loss calculation, resulting in multi-target supervision for a given input. Our experimental results on two datasets illustrate that our proposed method is capable of generating more diverse responses than raw models while remains a similar n-gram accuracy that ensures the quality of generated responses.
LexSemBridge: Fine-Grained Dense Representation Enhancement through Token-Aware Embedding Augmentation
As queries in retrieval-augmented generation (RAG) pipelines powered by large language models (LLMs) become increasingly complex and diverse, dense retrieval models have demonstrated strong performance in semantic matching. Nevertheless, they often struggle with fine-grained retrieval tasks, where precise keyword alignment and span-level localization are required, even in cases with high lexical overlap that would intuitively suggest easier retrieval. To systematically evaluate this limitation, we introduce two targeted tasks, keyword retrieval and part-of-passage retrieval, designed to simulate practical fine-grained scenarios. Motivated by these observations, we propose LexSemBridge, a unified framework that enhances dense query representations through fine-grained, input-aware vector modulation. LexSemBridge constructs latent enhancement vectors from input tokens using three paradigms: Statistical (SLR), Learned (LLR), and Contextual (CLR), and integrates them with dense embeddings via element-wise interaction. Theoretically, we show that this modulation preserves the semantic direction while selectively amplifying discriminative dimensions. LexSemBridge operates as a plug-in without modifying the backbone encoder and naturally extends to both text and vision modalities. Extensive experiments across semantic and fine-grained retrieval tasks validate the effectiveness and generality of our approach. All code and models are publicly available at https://github.com/Jasaxion/LexSemBridge/
Fiducial Focus Augmentation for Facial Landmark Detection
Deep learning methods have led to significant improvements in the performance on the facial landmark detection (FLD) task. However, detecting landmarks in challenging settings, such as head pose changes, exaggerated expressions, or uneven illumination, continue to remain a challenge due to high variability and insufficient samples. This inadequacy can be attributed to the model's inability to effectively acquire appropriate facial structure information from the input images. To address this, we propose a novel image augmentation technique specifically designed for the FLD task to enhance the model's understanding of facial structures. To effectively utilize the newly proposed augmentation technique, we employ a Siamese architecture-based training mechanism with a Deep Canonical Correlation Analysis (DCCA)-based loss to achieve collective learning of high-level feature representations from two different views of the input images. Furthermore, we employ a Transformer + CNN-based network with a custom hourglass module as the robust backbone for the Siamese framework. Extensive experiments show that our approach outperforms multiple state-of-the-art approaches across various benchmark datasets.
Multimodal Music Generation with Explicit Bridges and Retrieval Augmentation
Multimodal music generation aims to produce music from diverse input modalities, including text, videos, and images. Existing methods use a common embedding space for multimodal fusion. Despite their effectiveness in other modalities, their application in multimodal music generation faces challenges of data scarcity, weak cross-modal alignment, and limited controllability. This paper addresses these issues by using explicit bridges of text and music for multimodal alignment. We introduce a novel method named Visuals Music Bridge (VMB). Specifically, a Multimodal Music Description Model converts visual inputs into detailed textual descriptions to provide the text bridge; a Dual-track Music Retrieval module that combines broad and targeted retrieval strategies to provide the music bridge and enable user control. Finally, we design an Explicitly Conditioned Music Generation framework to generate music based on the two bridges. We conduct experiments on video-to-music, image-to-music, text-to-music, and controllable music generation tasks, along with experiments on controllability. The results demonstrate that VMB significantly enhances music quality, modality, and customization alignment compared to previous methods. VMB sets a new standard for interpretable and expressive multimodal music generation with applications in various multimedia fields. Demos and code are available at https://github.com/wbs2788/VMB.
Continuous Autoregressive Models with Noise Augmentation Avoid Error Accumulation
Autoregressive models are typically applied to sequences of discrete tokens, but recent research indicates that generating sequences of continuous embeddings in an autoregressive manner is also feasible. However, such Continuous Autoregressive Models (CAMs) can suffer from a decline in generation quality over extended sequences due to error accumulation during inference. We introduce a novel method to address this issue by injecting random noise into the input embeddings during training. This procedure makes the model robust against varying error levels at inference. We further reduce error accumulation through an inference procedure that introduces low-level noise. Experiments on musical audio generation show that CAM substantially outperforms existing autoregressive and non-autoregressive approaches while preserving audio quality over extended sequences. This work paves the way for generating continuous embeddings in a purely autoregressive setting, opening new possibilities for real-time and interactive generative applications.
Towards Improved Input Masking for Convolutional Neural Networks
The ability to remove features from the input of machine learning models is very important to understand and interpret model predictions. However, this is non-trivial for vision models since masking out parts of the input image typically causes large distribution shifts. This is because the baseline color used for masking (typically grey or black) is out of distribution. Furthermore, the shape of the mask itself can contain unwanted signals which can be used by the model for its predictions. Recently, there has been some progress in mitigating this issue (called missingness bias) in image masking for vision transformers. In this work, we propose a new masking method for CNNs we call layer masking in which the missingness bias caused by masking is reduced to a large extent. Intuitively, layer masking applies a mask to intermediate activation maps so that the model only processes the unmasked input. We show that our method (i) is able to eliminate or minimize the influence of the mask shape or color on the output of the model, and (ii) is much better than replacing the masked region by black or grey for input perturbation based interpretability techniques like LIME. Thus, layer masking is much less affected by missingness bias than other masking strategies. We also demonstrate how the shape of the mask may leak information about the class, thus affecting estimates of model reliance on class-relevant features derived from input masking. Furthermore, we discuss the role of data augmentation techniques for tackling this problem, and argue that they are not sufficient for preventing model reliance on mask shape. The code for this project is publicly available at https://github.com/SriramB-98/layer_masking
SLAM-AAC: Enhancing Audio Captioning with Paraphrasing Augmentation and CLAP-Refine through LLMs
Automated Audio Captioning (AAC) aims to generate natural textual descriptions for input audio signals. Recent progress in audio pre-trained models and large language models (LLMs) has significantly enhanced audio understanding and textual reasoning capabilities, making improvements in AAC possible. In this paper, we propose SLAM-AAC to further enhance AAC with paraphrasing augmentation and CLAP-Refine through LLMs. Our approach uses the self-supervised EAT model to extract fine-grained audio representations, which are then aligned with textual embeddings via lightweight linear layers. The caption generation LLM is efficiently fine-tuned using the LoRA adapter. Drawing inspiration from the back-translation method in machine translation, we implement paraphrasing augmentation to expand the Clotho dataset during pre-training. This strategy helps alleviate the limitation of scarce audio-text pairs and generates more diverse captions from a small set of audio clips. During inference, we introduce the plug-and-play CLAP-Refine strategy to fully exploit multiple decoding outputs, akin to the n-best rescoring strategy in speech recognition. Using the CLAP model for audio-text similarity calculation, we could select the textual descriptions generated by multiple searching beams that best match the input audio. Experimental results show that SLAM-AAC achieves state-of-the-art performance on Clotho V2 and AudioCaps, surpassing previous mainstream models.
Comparing Retrieval-Augmentation and Parameter-Efficient Fine-Tuning for Privacy-Preserving Personalization of Large Language Models
Privacy-preserving methods for personalizing large language models (LLMs) are relatively under-explored. There are two schools of thought on this topic: (1) generating personalized outputs by personalizing the input prompt through retrieval augmentation from the user's personal information (RAG-based methods), and (2) parameter-efficient fine-tuning of LLMs per user that considers efficiency and space limitations (PEFT-based methods). This paper presents the first systematic comparison between two approaches on a wide range of personalization tasks using seven diverse datasets. Our results indicate that RAG-based and PEFT-based personalization methods on average yield 14.92% and 1.07% improvements over the non-personalized LLM, respectively. We find that combining RAG with PEFT elevates these improvements to 15.98%. Additionally, we identify a positive correlation between the amount of user data and PEFT's effectiveness, indicating that RAG is a better choice for cold-start users (i.e., user's with limited personal data).
Learning Expressive Disentangled Speech Representations with Soft Speech Units and Adversarial Style Augmentation
Voice conversion is the task to transform voice characteristics of source speech while preserving content information. Nowadays, self-supervised representation learning models are increasingly utilized in content extraction. However, in these representations, a lot of hidden speaker information leads to timbre leakage while the prosodic information of hidden units lacks use. To address these issues, we propose a novel framework for expressive voice conversion called "SAVC" based on soft speech units from HuBert-soft. Taking soft speech units as input, we design an attribute encoder to extract content and prosody features respectively. Specifically, we first introduce statistic perturbation imposed by adversarial style augmentation to eliminate speaker information. Then the prosody is implicitly modeled on soft speech units with knowledge distillation. Experiment results show that the intelligibility and naturalness of converted speech outperform previous work.
When to Learn What: Model-Adaptive Data Augmentation Curriculum
Data augmentation (DA) is widely used to improve the generalization of neural networks by enforcing the invariances and symmetries to pre-defined transformations applied to input data. However, a fixed augmentation policy may have different effects on each sample in different training stages but existing approaches cannot adjust the policy to be adaptive to each sample and the training model. In this paper, we propose Model Adaptive Data Augmentation (MADAug) that jointly trains an augmentation policy network to teach the model when to learn what. Unlike previous work, MADAug selects augmentation operators for each input image by a model-adaptive policy varying between training stages, producing a data augmentation curriculum optimized for better generalization. In MADAug, we train the policy through a bi-level optimization scheme, which aims to minimize a validation-set loss of a model trained using the policy-produced data augmentations. We conduct an extensive evaluation of MADAug on multiple image classification tasks and network architectures with thorough comparisons to existing DA approaches. MADAug outperforms or is on par with other baselines and exhibits better fairness: it brings improvement to all classes and more to the difficult ones. Moreover, MADAug learned policy shows better performance when transferred to fine-grained datasets. In addition, the auto-optimized policy in MADAug gradually introduces increasing perturbations and naturally forms an easy-to-hard curriculum.
Automatic Data Augmentation via Invariance-Constrained Learning
Underlying data structures, such as symmetries or invariances to transformations, are often exploited to improve the solution of learning tasks. However, embedding these properties in models or learning algorithms can be challenging and computationally intensive. Data augmentation, on the other hand, induces these symmetries during training by applying multiple transformations to the input data. Despite its ubiquity, its effectiveness depends on the choices of which transformations to apply, when to do so, and how often. In fact, there is both empirical and theoretical evidence that the indiscriminate use of data augmentation can introduce biases that outweigh its benefits. This work tackles these issues by automatically adapting the data augmentation while solving the learning task. To do so, it formulates data augmentation as an invariance-constrained learning problem and leverages Monte Carlo Markov Chain (MCMC) sampling to solve it. The result is a practical algorithm that not only does away with a priori searches for augmentation distributions, but also dynamically controls if and when data augmentation is applied. Our experiments illustrate the performance of this method, which achieves state-of-the-art results in automatic data augmentation benchmarks for CIFAR datasets. Furthermore, this approach can be used to gather insights on the actual symmetries underlying a learning task.
Data Augmentations in Deep Weight Spaces
Learning in weight spaces, where neural networks process the weights of other deep neural networks, has emerged as a promising research direction with applications in various fields, from analyzing and editing neural fields and implicit neural representations, to network pruning and quantization. Recent works designed architectures for effective learning in that space, which takes into account its unique, permutation-equivariant, structure. Unfortunately, so far these architectures suffer from severe overfitting and were shown to benefit from large datasets. This poses a significant challenge because generating data for this learning setup is laborious and time-consuming since each data sample is a full set of network weights that has to be trained. In this paper, we address this difficulty by investigating data augmentations for weight spaces, a set of techniques that enable generating new data examples on the fly without having to train additional input weight space elements. We first review several recently proposed data augmentation schemes %that were proposed recently and divide them into categories. We then introduce a novel augmentation scheme based on the Mixup method. We evaluate the performance of these techniques on existing benchmarks as well as new benchmarks we generate, which can be valuable for future studies.
MixPro: Simple yet Effective Data Augmentation for Prompt-based Learning
Prompt-based learning has shown considerable promise in reformulating various downstream tasks as cloze problems by combining original input with a predetermined template. This approach demonstrates its effectiveness, especially in few-shot learning scenarios, where the model is trained on a scarce amount of data. Despite its successes, the limited templates and text in few-shot prompt-based learning scenarios leave significant room for performance improvement. Moreover, existing methods sometimes resort to model ensembles, which, while effective, could potentially hamper model efficiency due to increased computational demands. To address these issues, we introduce MixPro, an augmentation method designed to augment both the vanilla input text and the templates. We implement this through the token-level, the sentence-level, and the template-level Mixup strategies. The experimental results on five few-shot datasets show that MixPro outperforms other augmentation baselines, improving model performance by an average of 5.08% compared to before augmentation.
EDADepth: Enhanced Data Augmentation for Monocular Depth Estimation
Due to their text-to-image synthesis feature, diffusion models have recently seen a rise in visual perception tasks, such as depth estimation. The lack of good-quality datasets makes the extraction of a fine-grain semantic context challenging for the diffusion models. The semantic context with fewer details further worsens the process of creating effective text embeddings that will be used as input for diffusion models. In this paper, we propose a novel EDADepth, an enhanced data augmentation method to estimate monocular depth without using additional training data. We use Swin2SR, a super-resolution model, to enhance the quality of input images. We employ the BEiT pre-trained semantic segmentation model for better extraction of text embeddings. We use BLIP-2 tokenizer to generate tokens from these text embeddings. The novelty of our approach is the introduction of Swin2SR, the BEiT model, and the BLIP-2 tokenizer in the diffusion-based pipeline for the monocular depth estimation. Our model achieves state-of-the-art results (SOTA) on the delta3 metric on NYUv2 and KITTI datasets. It also achieves results comparable to those of the SOTA models in the RMSE and REL metrics. Finally, we also show improvements in the visualization of the estimated depth compared to the SOTA diffusion-based monocular depth estimation models. Code: https://github.com/edadepthmde/EDADepth_ICMLA.
SimPSI: A Simple Strategy to Preserve Spectral Information in Time Series Data Augmentation
Data augmentation is a crucial component in training neural networks to overcome the limitation imposed by data size, and several techniques have been studied for time series. Although these techniques are effective in certain tasks, they have yet to be generalized to time series benchmarks. We find that current data augmentation techniques ruin the core information contained within the frequency domain. To address this issue, we propose a simple strategy to preserve spectral information (SimPSI) in time series data augmentation. SimPSI preserves the spectral information by mixing the original and augmented input spectrum weighted by a preservation map, which indicates the importance score of each frequency. Specifically, our experimental contributions are to build three distinct preservation maps: magnitude spectrum, saliency map, and spectrum-preservative map. We apply SimPSI to various time series data augmentations and evaluate its effectiveness across a wide range of time series benchmarks. Our experimental results support that SimPSI considerably enhances the performance of time series data augmentations by preserving core spectral information. The source code used in the paper is available at https://github.com/Hyun-Ryu/simpsi.
Sample-adaptive Augmentation for Point Cloud Recognition Against Real-world Corruptions
Robust 3D perception under corruption has become an essential task for the realm of 3D vision. While current data augmentation techniques usually perform random transformations on all point cloud objects in an offline way and ignore the structure of the samples, resulting in over-or-under enhancement. In this work, we propose an alternative to make sample-adaptive transformations based on the structure of the sample to cope with potential corruption via an auto-augmentation framework, named as AdaptPoint. Specially, we leverage a imitator, consisting of a Deformation Controller and a Mask Controller, respectively in charge of predicting deformation parameters and producing a per-point mask, based on the intrinsic structural information of the input point cloud, and then conduct corruption simulations on top. Then a discriminator is utilized to prevent the generation of excessive corruption that deviates from the original data distribution. In addition, a perception-guidance feedback mechanism is incorporated to guide the generation of samples with appropriate difficulty level. Furthermore, to address the paucity of real-world corrupted point cloud, we also introduce a new dataset ScanObjectNN-C, that exhibits greater similarity to actual data in real-world environments, especially when contrasted with preceding CAD datasets. Experiments show that our method achieves state-of-the-art results on multiple corruption benchmarks, including ModelNet-C, our ScanObjectNN-C, and ShapeNet-C.
Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks
There are two approaches for pairwise sentence scoring: Cross-encoders, which perform full-attention over the input pair, and Bi-encoders, which map each input independently to a dense vector space. While cross-encoders often achieve higher performance, they are too slow for many practical use cases. Bi-encoders, on the other hand, require substantial training data and fine-tuning over the target task to achieve competitive performance. We present a simple yet efficient data augmentation strategy called Augmented SBERT, where we use the cross-encoder to label a larger set of input pairs to augment the training data for the bi-encoder. We show that, in this process, selecting the sentence pairs is non-trivial and crucial for the success of the method. We evaluate our approach on multiple tasks (in-domain) as well as on a domain adaptation task. Augmented SBERT achieves an improvement of up to 6 points for in-domain and of up to 37 points for domain adaptation tasks compared to the original bi-encoder performance.
Unsupervised Data Augmentation for Consistency Training
Semi-supervised learning lately has shown much promise in improving deep learning models when labeled data is scarce. Common among recent approaches is the use of consistency training on a large amount of unlabeled data to constrain model predictions to be invariant to input noise. In this work, we present a new perspective on how to effectively noise unlabeled examples and argue that the quality of noising, specifically those produced by advanced data augmentation methods, plays a crucial role in semi-supervised learning. By substituting simple noising operations with advanced data augmentation methods such as RandAugment and back-translation, our method brings substantial improvements across six language and three vision tasks under the same consistency training framework. On the IMDb text classification dataset, with only 20 labeled examples, our method achieves an error rate of 4.20, outperforming the state-of-the-art model trained on 25,000 labeled examples. On a standard semi-supervised learning benchmark, CIFAR-10, our method outperforms all previous approaches and achieves an error rate of 5.43 with only 250 examples. Our method also combines well with transfer learning, e.g., when finetuning from BERT, and yields improvements in high-data regime, such as ImageNet, whether when there is only 10% labeled data or when a full labeled set with 1.3M extra unlabeled examples is used. Code is available at https://github.com/google-research/uda.
Plug-In Inversion: Model-Agnostic Inversion for Vision with Data Augmentations
Existing techniques for model inversion typically rely on hard-to-tune regularizers, such as total variation or feature regularization, which must be individually calibrated for each network in order to produce adequate images. In this work, we introduce Plug-In Inversion, which relies on a simple set of augmentations and does not require excessive hyper-parameter tuning. Under our proposed augmentation-based scheme, the same set of augmentation hyper-parameters can be used for inverting a wide range of image classification models, regardless of input dimensions or the architecture. We illustrate the practicality of our approach by inverting Vision Transformers (ViTs) and Multi-Layer Perceptrons (MLPs) trained on the ImageNet dataset, tasks which to the best of our knowledge have not been successfully accomplished by any previous works.
Mix3D: Out-of-Context Data Augmentation for 3D Scenes
We present Mix3D, a data augmentation technique for segmenting large-scale 3D scenes. Since scene context helps reasoning about object semantics, current works focus on models with large capacity and receptive fields that can fully capture the global context of an input 3D scene. However, strong contextual priors can have detrimental implications like mistaking a pedestrian crossing the street for a car. In this work, we focus on the importance of balancing global scene context and local geometry, with the goal of generalizing beyond the contextual priors in the training set. In particular, we propose a "mixing" technique which creates new training samples by combining two augmented scenes. By doing so, object instances are implicitly placed into novel out-of-context environments and therefore making it harder for models to rely on scene context alone, and instead infer semantics from local structure as well. We perform detailed analysis to understand the importance of global context, local structures and the effect of mixing scenes. In experiments, we show that models trained with Mix3D profit from a significant performance boost on indoor (ScanNet, S3DIS) and outdoor datasets (SemanticKITTI). Mix3D can be trivially used with any existing method, e.g., trained with Mix3D, MinkowskiNet outperforms all prior state-of-the-art methods by a significant margin on the ScanNet test benchmark 78.1 mIoU. Code is available at: https://nekrasov.dev/mix3d/
What Makes a "Good" Data Augmentation in Knowledge Distillation -- A Statistical Perspective
Knowledge distillation (KD) is a general neural network training approach that uses a teacher model to guide the student model. Existing works mainly study KD from the network output side (e.g., trying to design a better KD loss function), while few have attempted to understand it from the input side. Especially, its interplay with data augmentation (DA) has not been well understood. In this paper, we ask: Why do some DA schemes (e.g., CutMix) inherently perform much better than others in KD? What makes a "good" DA in KD? Our investigation from a statistical perspective suggests that a good DA scheme should reduce the covariance of the teacher-student cross-entropy. A practical metric, the stddev of teacher's mean probability (T. stddev), is further presented and well justified empirically. Besides the theoretical understanding, we also introduce a new entropy-based data-mixing DA scheme, CutMixPick, to further enhance CutMix. Extensive empirical studies support our claims and demonstrate how we can harvest considerable performance gains simply by using a better DA scheme in knowledge distillation.
RTLRepoCoder: Repository-Level RTL Code Completion through the Combination of Fine-Tuning and Retrieval Augmentation
As an essential part of modern hardware design, manually writing Register Transfer Level (RTL) code such as Verilog is often labor-intensive. Following the tremendous success of large language models (LLMs), researchers have begun to explore utilizing LLMs for generating RTL code. However, current studies primarily focus on generating simple single modules, which can not meet the demands in real world. In fact, due to challenges in managing long-context RTL code and complex cross-file dependencies, existing solutions cannot handle large-scale Verilog repositories in practical hardware development. As the first endeavor to exclusively adapt LLMs for large-scale RTL development, we propose RTLRepoCoder, a groundbreaking solution that incorporates specific fine-tuning and Retrieval-Augmented Generation (RAG) for repository-level Verilog code completion. Open-source Verilog repositories from the real world, along with an extended context size, are used for domain-specific fine-tuning. The optimized RAG system improves the information density of the input context by retrieving relevant code snippets. Tailored optimizations for RAG are carried out, including the embedding model, the cross-file context splitting strategy, and the chunk size. Our solution achieves state-of-the-art performance on public benchmark, significantly surpassing GPT-4 and advanced domain-specific LLMs on Edit Similarity and Exact Match rate. Comprehensive experiments demonstrate the remarkable effectiveness of our approach and offer insights for future work.
Missing Data as Augmentation in the Earth Observation Domain: A Multi-View Learning Approach
Multi-view learning (MVL) leverages multiple sources or views of data to enhance machine learning model performance and robustness. This approach has been successfully used in the Earth Observation (EO) domain, where views have a heterogeneous nature and can be affected by missing data. Despite the negative effect that missing data has on model predictions, the ML literature has used it as an augmentation technique to improve model generalization, like masking the input data. Inspired by this, we introduce novel methods for EO applications tailored to MVL with missing views. Our methods integrate the combination of a set to simulate all combinations of missing views as different training samples. Instead of replacing missing data with a numerical value, we use dynamic merge functions, like average, and more complex ones like Transformer. This allows the MVL model to entirely ignore the missing views, enhancing its predictive robustness. We experiment on four EO datasets with temporal and static views, including state-of-the-art methods from the EO domain. The results indicate that our methods improve model robustness under conditions of moderate missingness, and improve the predictive performance when all views are present. The proposed methods offer a single adaptive solution to operate effectively with any combination of available views.
SeA: Semantic Adversarial Augmentation for Last Layer Features from Unsupervised Representation Learning
Deep features extracted from certain layers of a pre-trained deep model show superior performance over the conventional hand-crafted features. Compared with fine-tuning or linear probing that can explore diverse augmentations, \eg, random crop/flipping, in the original input space, the appropriate augmentations for learning with fixed deep features are more challenging and have been less investigated, which degenerates the performance. To unleash the potential of fixed deep features, we propose a novel semantic adversarial augmentation (SeA) in the feature space for optimization. Concretely, the adversarial direction implied by the gradient will be projected to a subspace spanned by other examples to preserve the semantic information. Then, deep features will be perturbed with the semantic direction, and augmented features will be applied to learn the classifier. Experiments are conducted on 11 benchmark downstream classification tasks with 4 popular pre-trained models. Our method is 2% better than the deep features without SeA on average. Moreover, compared to the expensive fine-tuning that is expected to give good performance, SeA shows a comparable performance on 6 out of 11 tasks, demonstrating the effectiveness of our proposal in addition to its efficiency. Code is available at https://github.com/idstcv/SeA.
Retrieval-Augmented Data Augmentation for Low-Resource Domain Tasks
Despite large successes of recent language models on diverse tasks, they suffer from severe performance degeneration in low-resource settings with limited training data available. Many existing works tackle this problem by generating synthetic data from the training data and then training models on them, recently using Large Language Models (LLMs). However, in low-resource settings, the amount of seed data samples to use for data augmentation is very small, which makes generated samples suboptimal and less diverse. To tackle this challenge, we propose a novel method that augments training data by incorporating a wealth of examples from other datasets, along with the given training data. Specifically, we first retrieve the relevant instances from other datasets, such as their input-output pairs or contexts, based on their similarities with the given seed data, and then prompt LLMs to generate new samples with the contextual information within and across the original and retrieved samples. This approach can ensure that the generated data is not only relevant but also more diverse than what could be achieved using the limited seed data alone. We validate our proposed Retrieval-Augmented Data Augmentation (RADA) framework on multiple datasets under low-resource settings of training and test-time data augmentation scenarios, on which it outperforms existing LLM-powered data augmentation baselines.
Adapting Document-Grounded Dialog Systems to Spoken Conversations using Data Augmentation and a Noisy Channel Model
This paper summarizes our submission to Task 2 of the second track of the 10th Dialog System Technology Challenge (DSTC10) "Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations". Similar to the previous year's iteration, the task consists of three subtasks: detecting whether a turn is knowledge seeking, selecting the relevant knowledge document and finally generating a grounded response. This year, the focus lies on adapting the system to noisy ASR transcripts. We explore different approaches to make the models more robust to this type of input and to adapt the generated responses to the style of spoken conversations. For the latter, we get the best results with a noisy channel model that additionally reduces the number of short and generic responses. Our best system achieved the 1st rank in the automatic and the 3rd rank in the human evaluation of the challenge.
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus
Contextual word embedding models, such as BioBERT and Bio_ClinicalBERT, have achieved state-of-the-art results in biomedical natural language processing tasks by focusing their pre-training process on domain-specific corpora. However, such models do not take into consideration expert domain knowledge. In this work, we introduced UmlsBERT, a contextual embedding model that integrates domain knowledge during the pre-training process via a novel knowledge augmentation strategy. More specifically, the augmentation on UmlsBERT with the Unified Medical Language System (UMLS) Metathesaurus was performed in two ways: i) connecting words that have the same underlying `concept' in UMLS, and ii) leveraging semantic group knowledge in UMLS to create clinically meaningful input embeddings. By applying these two strategies, UmlsBERT can encode clinical domain knowledge into word embeddings and outperform existing domain-specific models on common named-entity recognition (NER) and clinical natural language inference clinical NLP tasks.
The Effectiveness of Data Augmentation in Image Classification using Deep Learning
In this paper, we explore and compare multiple solutions to the problem of data augmentation in image classification. Previous work has demonstrated the effectiveness of data augmentation through simple techniques, such as cropping, rotating, and flipping input images. We artificially constrain our access to data to a small subset of the ImageNet dataset, and compare each data augmentation technique in turn. One of the more successful data augmentations strategies is the traditional transformations mentioned above. We also experiment with GANs to generate images of different styles. Finally, we propose a method to allow a neural net to learn augmentations that best improve the classifier, which we call neural augmentation. We discuss the successes and shortcomings of this method on various datasets.
RECOMP: Improving Retrieval-Augmented LMs with Compression and Selective Augmentation
Retrieving documents and prepending them in-context at inference time improves performance of language model (LMs) on a wide range of tasks. However, these documents, often spanning hundreds of words, make inference substantially more expensive. We propose compressing the retrieved documents into textual summaries prior to in-context integration. This not only reduces the computational costs but also relieves the burden of LMs to identify relevant information in long retrieved documents. We present two compressors -- an extractive compressor which selects useful sentences from retrieved documents and an abstractive compressor which generates summaries by synthesizing information from multiple documents. Both compressors are trained to improve LMs' performance on end tasks when the generated summaries are prepended to the LMs' input, while keeping the summary concise.If the retrieved documents are irrelevant to the input or offer no additional information to LM, our compressor can return an empty string, implementing selective augmentation.We evaluate our approach on language modeling task and open domain question answering task. We achieve a compression rate of as low as 6% with minimal loss in performance for both tasks, significantly outperforming the off-the-shelf summarization models. We show that our compressors trained for one LM can transfer to other LMs on the language modeling task and provide summaries largely faithful to the retrieved documents.
ViLTA: Enhancing Vision-Language Pre-training through Textual Augmentation
Vision-language pre-training (VLP) methods are blossoming recently, and its crucial goal is to jointly learn visual and textual features via a transformer-based architecture, demonstrating promising improvements on a variety of vision-language tasks. Prior arts usually focus on how to align visual and textual features, but strategies for improving the robustness of model and speeding up model convergence are left insufficiently explored. In this paper, we propose a novel method ViLTA, comprising of two components to further facilitate the model to learn fine-grained representations among image-text pairs. For Masked Language Modeling (MLM), we propose a cross-distillation method to generate soft labels to enhance the robustness of model, which alleviates the problem of treating synonyms of masked words as negative samples in one-hot labels. For Image-Text Matching (ITM), we leverage the current language encoder to synthesize hard negatives based on the context of language input, encouraging the model to learn high-quality representations by increasing the difficulty of the ITM task. By leveraging the above techniques, our ViLTA can achieve better performance on various vision-language tasks. Extensive experiments on benchmark datasets demonstrate that the effectiveness of ViLTA and its promising potential for vision-language pre-training.
CoLLAP: Contrastive Long-form Language-Audio Pretraining with Musical Temporal Structure Augmentation
Modeling temporal characteristics plays a significant role in the representation learning of audio waveform. We propose Contrastive Long-form Language-Audio Pretraining (CoLLAP) to significantly extend the perception window for both the input audio (up to 5 minutes) and the language descriptions (exceeding 250 words), while enabling contrastive learning across modalities and temporal dynamics. Leveraging recent Music-LLMs to generate long-form music captions for full-length songs, augmented with musical temporal structures, we collect 51.3K audio-text pairs derived from the large-scale AudioSet training dataset, where the average audio length reaches 288 seconds. We propose a novel contrastive learning architecture that fuses language representations with structured audio representations by segmenting each song into clips and extracting their embeddings. With an attention mechanism, we capture multimodal temporal correlations, allowing the model to automatically weigh and enhance the final fusion score for improved contrastive alignment. Finally, we develop two variants of the CoLLAP model with different types of backbone language models. Through comprehensive experiments on multiple long-form music-text retrieval datasets, we demonstrate consistent performance improvement in retrieval accuracy compared with baselines. We also show the pretrained CoLLAP models can be transferred to various music information retrieval tasks, with heterogeneous long-form multimodal contexts.
S$^3$-TTA: Scale-Style Selection for Test-Time Augmentation in Biomedical Image Segmentation
Deep-learning models have been successful in biomedical image segmentation. To generalize for real-world deployment, test-time augmentation (TTA) methods are often used to transform the test image into different versions that are hopefully closer to the training domain. Unfortunately, due to the vast diversity of instance scale and image styles, many augmented test images produce undesirable results, thus lowering the overall performance. This work proposes a new TTA framework, S^3-TTA, which selects the suitable image scale and style for each test image based on a transformation consistency metric. In addition, S^3-TTA constructs an end-to-end augmentation-segmentation joint-training pipeline to ensure a task-oriented augmentation. On public benchmarks for cell and lung segmentation, S^3-TTA demonstrates improvements over the prior art by 3.4% and 1.3%, respectively, by simply augmenting the input data in testing phase.
GENIUS: Sketch-based Language Model Pre-training via Extreme and Selective Masking for Text Generation and Augmentation
We introduce GENIUS: a conditional text generation model using sketches as input, which can fill in the missing contexts for a given sketch (key information consisting of textual spans, phrases, or words, concatenated by mask tokens). GENIUS is pre-trained on a large-scale textual corpus with a novel reconstruction from sketch objective using an extreme and selective masking strategy, enabling it to generate diverse and high-quality texts given sketches. Comparison with other competitive conditional language models (CLMs) reveals the superiority of GENIUS's text generation quality. We further show that GENIUS can be used as a strong and ready-to-use data augmentation tool for various natural language processing (NLP) tasks. Most existing textual data augmentation methods are either too conservative, by making small changes to the original text, or too aggressive, by creating entirely new samples. With GENIUS, we propose GeniusAug, which first extracts the target-aware sketches from the original training set and then generates new samples based on the sketches. Empirical experiments on 6 text classification datasets show that GeniusAug significantly improves the models' performance in both in-distribution (ID) and out-of-distribution (OOD) settings. We also demonstrate the effectiveness of GeniusAug on named entity recognition (NER) and machine reading comprehension (MRC) tasks. (Code and models are publicly available at https://github.com/microsoft/SCGLab and https://github.com/beyondguo/genius)
Failing Forward: Improving Generative Error Correction for ASR with Synthetic Data and Retrieval Augmentation
Generative Error Correction (GEC) has emerged as a powerful post-processing method to enhance the performance of Automatic Speech Recognition (ASR) systems. However, we show that GEC models struggle to generalize beyond the specific types of errors encountered during training, limiting their ability to correct new, unseen errors at test time, particularly in out-of-domain (OOD) scenarios. This phenomenon amplifies with named entities (NEs), where, in addition to insufficient contextual information or knowledge about the NEs, novel NEs keep emerging. To address these issues, we propose DARAG (Data- and Retrieval-Augmented Generative Error Correction), a novel approach designed to improve GEC for ASR in in-domain (ID) and OOD scenarios. We augment the GEC training dataset with synthetic data generated by prompting LLMs and text-to-speech models, thereby simulating additional errors from which the model can learn. For OOD scenarios, we simulate test-time errors from new domains similarly and in an unsupervised fashion. Additionally, to better handle named entities, we introduce retrieval-augmented correction by augmenting the input with entities retrieved from a database. Our approach is simple, scalable, and both domain- and language-agnostic. We experiment on multiple datasets and settings, showing that DARAG outperforms all our baselines, achieving 8\% -- 30\% relative WER improvements in ID and 10\% -- 33\% improvements in OOD settings.
ICON: Improving Inter-Report Consistency of Radiology Report Generation via Lesion-aware Mix-up Augmentation
Previous research on radiology report generation has made significant progress in terms of increasing the clinical accuracy of generated reports. In this paper, we emphasize another crucial quality that it should possess, i.e., inter-report consistency, which refers to the capability of generating consistent reports for semantically equivalent radiographs. This quality is even of greater significance than the overall report accuracy in terms of ensuring the system's credibility, as a system prone to providing conflicting results would severely erode users' trust. Regrettably, existing approaches struggle to maintain inter-report consistency, exhibiting biases towards common patterns and susceptibility to lesion variants. To address this issue, we propose ICON, which improves the inter-report consistency of radiology report generation. Aiming at enhancing the system's ability to capture the similarities in semantically equivalent lesions, our approach involves first extracting lesions from input images and examining their characteristics. Then, we introduce a lesion-aware mix-up augmentation technique to ensure that the representations of the semantically equivalent lesions align with the same attributes, by linearly interpolating them during the training phase. Extensive experiments on three publicly available chest X-ray datasets verify the effectiveness of our approach, both in terms of improving the consistency and accuracy of the generated reports.
Pre-computed memory or on-the-fly encoding? A hybrid approach to retrieval augmentation makes the most of your compute
Retrieval-augmented language models such as Fusion-in-Decoder are powerful, setting the state of the art on a variety of knowledge-intensive tasks. However, they are also expensive, due to the need to encode a large number of retrieved passages. Some work avoids this cost by pre-encoding a text corpus into a memory and retrieving dense representations directly. However, pre-encoding memory incurs a severe quality penalty as the memory representations are not conditioned on the current input. We propose LUMEN, a hybrid between these two extremes, pre-computing the majority of the retrieval representation and completing the encoding on the fly using a live encoder that is conditioned on the question and fine-tuned for the task. We show that LUMEN significantly outperforms pure memory on multiple question-answering tasks while being much cheaper than FiD, and outperforms both for any given compute budget. Moreover, the advantage of LUMEN over FiD increases with model size.
Exploring Data Augmentation for Code Generation Tasks
Advances in natural language processing, such as transfer learning from pre-trained language models, have impacted how models are trained for programming language tasks too. Previous research primarily explored code pre-training and expanded it through multi-modality and multi-tasking, yet the data for downstream tasks remain modest in size. Focusing on data utilization for downstream tasks, we propose and adapt augmentation methods that yield consistent improvements in code translation and summarization by up to 6.9% and 7.5% respectively. Further analysis suggests that our methods work orthogonally and show benefits in output code style and numeric consistency. We also discuss test data imperfections.
Policy Gradient-Driven Noise Mask
Deep learning classifiers face significant challenges when dealing with heterogeneous multi-modal and multi-organ biomedical datasets. The low-level feature distinguishability limited to imaging-modality hinders the classifiers' ability to learn high-level semantic relationships, resulting in sub-optimal performance. To address this issue, image augmentation strategies are employed as regularization techniques. While additive noise input during network training is a well-established augmentation as regularization method, modern pipelines often favor more robust techniques such as dropout and weight decay. This preference stems from the observation that combining these established techniques with noise input can adversely affect model performance. In this study, we propose a novel pretraining pipeline that learns to generate conditional noise mask specifically tailored to improve performance on multi-modal and multi-organ datasets. As a reinforcement learning algorithm, our approach employs a dual-component system comprising a very light-weight policy network that learns to sample conditional noise using a differentiable beta distribution as well as a classifier network. The policy network is trained using the reinforce algorithm to generate image-specific noise masks that regularize the classifier during pretraining. A key aspect is that the policy network's role is limited to obtaining an intermediate (or heated) model before fine-tuning. During inference, the policy network is omitted, allowing direct comparison between the baseline and noise-regularized models. We conducted experiments and related analyses on RadImageNet datasets. Results demonstrate that fine-tuning the intermediate models consistently outperforms conventional training algorithms on both classification and generalization to unseen concept tasks.
Continuous, Subject-Specific Attribute Control in T2I Models by Identifying Semantic Directions
Recent advances in text-to-image (T2I) diffusion models have significantly improved the quality of generated images. However, providing efficient control over individual subjects, particularly the attributes characterizing them, remains a key challenge. While existing methods have introduced mechanisms to modulate attribute expression, they typically provide either detailed, object-specific localization of such a modification or full-scale fine-grained, nuanced control of attributes. No current approach offers both simultaneously, resulting in a gap when trying to achieve precise continuous and subject-specific attribute modulation in image generation. In this work, we demonstrate that token-level directions exist within commonly used CLIP text embeddings that enable fine-grained, subject-specific control of high-level attributes in T2I models. We introduce two methods to identify these directions: a simple, optimization-free technique and a learning-based approach that utilizes the T2I model to characterize semantic concepts more specifically. Our methods allow the augmentation of the prompt text input, enabling fine-grained control over multiple attributes of individual subjects simultaneously, without requiring any modifications to the diffusion model itself. This approach offers a unified solution that fills the gap between global and localized control, providing competitive flexibility and precision in text-guided image generation. Project page: https://compvis.github.io/attribute-control. Code is available at https://github.com/CompVis/attribute-control.
AlignMixup: Improving Representations By Interpolating Aligned Features
Mixup is a powerful data augmentation method that interpolates between two or more examples in the input or feature space and between the corresponding target labels. Many recent mixup methods focus on cutting and pasting two or more objects into one image, which is more about efficient processing than interpolation. However, how to best interpolate images is not well defined. In this sense, mixup has been connected to autoencoders, because often autoencoders "interpolate well", for instance generating an image that continuously deforms into another. In this work, we revisit mixup from the interpolation perspective and introduce AlignMix, where we geometrically align two images in the feature space. The correspondences allow us to interpolate between two sets of features, while keeping the locations of one set. Interestingly, this gives rise to a situation where mixup retains mostly the geometry or pose of one image and the texture of the other, connecting it to style transfer. More than that, we show that an autoencoder can still improve representation learning under mixup, without the classifier ever seeing decoded images. AlignMix outperforms state-of-the-art mixup methods on five different benchmarks.
HoloDetect: Few-Shot Learning for Error Detection
We introduce a few-shot learning framework for error detection. We show that data augmentation (a form of weak supervision) is key to training high-quality, ML-based error detection models that require minimal human involvement. Our framework consists of two parts: (1) an expressive model to learn rich representations that capture the inherent syntactic and semantic heterogeneity of errors; and (2) a data augmentation model that, given a small seed of clean records, uses dataset-specific transformations to automatically generate additional training data. Our key insight is to learn data augmentation policies from the noisy input dataset in a weakly supervised manner. We show that our framework detects errors with an average precision of ~94% and an average recall of ~93% across a diverse array of datasets that exhibit different types and amounts of errors. We compare our approach to a comprehensive collection of error detection methods, ranging from traditional rule-based methods to ensemble-based and active learning approaches. We show that data augmentation yields an average improvement of 20 F1 points while it requires access to 3x fewer labeled examples compared to other ML approaches.
Self-Adapting Language Models
Large language models (LLMs) are powerful but static; they lack mechanisms to adapt their weights in response to new tasks, knowledge, or examples. We introduce Self-Adapting LLMs (SEAL), a framework that enables LLMs to self-adapt by generating their own finetuning data and update directives. Given a new input, the model produces a self-edit-a generation that may restructure the information in different ways, specify optimization hyperparameters, or invoke tools for data augmentation and gradient-based updates. Through supervised finetuning (SFT), these self-edits result in persistent weight updates, enabling lasting adaptation. To train the model to produce effective self-edits, we use a reinforcement learning loop with the downstream performance of the updated model as the reward signal. Unlike prior approaches that rely on separate adaptation modules or auxiliary networks, SEAL directly uses the model's own generation to control its adaptation process. Experiments on knowledge incorporation and few-shot generalization show that SEAL is a promising step toward language models capable of self-directed adaptation. Our website and code is available at https://jyopari.github.io/posts/seal.
QASem Parsing: Text-to-text Modeling of QA-based Semantics
Several recent works have suggested to represent semantic relations with questions and answers, decomposing textual information into separate interrogative natural language statements. In this paper, we consider three QA-based semantic tasks - namely, QA-SRL, QANom and QADiscourse, each targeting a certain type of predication - and propose to regard them as jointly providing a comprehensive representation of textual information. To promote this goal, we investigate how to best utilize the power of sequence-to-sequence (seq2seq) pre-trained language models, within the unique setup of semi-structured outputs, consisting of an unordered set of question-answer pairs. We examine different input and output linearization strategies, and assess the effect of multitask learning and of simple data augmentation techniques in the setting of imbalanced training data. Consequently, we release the first unified QASem parsing tool, practical for downstream applications who can benefit from an explicit, QA-based account of information units in a text.
ESimCSE: Enhanced Sample Building Method for Contrastive Learning of Unsupervised Sentence Embedding
Contrastive learning has been attracting much attention for learning unsupervised sentence embeddings. The current state-of-the-art unsupervised method is the unsupervised SimCSE (unsup-SimCSE). Unsup-SimCSE takes dropout as a minimal data augmentation method, and passes the same input sentence to a pre-trained Transformer encoder (with dropout turned on) twice to obtain the two corresponding embeddings to build a positive pair. As the length information of a sentence will generally be encoded into the sentence embeddings due to the usage of position embedding in Transformer, each positive pair in unsup-SimCSE actually contains the same length information. And thus unsup-SimCSE trained with these positive pairs is probably biased, which would tend to consider that sentences of the same or similar length are more similar in semantics. Through statistical observations, we find that unsup-SimCSE does have such a problem. To alleviate it, we apply a simple repetition operation to modify the input sentence, and then pass the input sentence and its modified counterpart to the pre-trained Transformer encoder, respectively, to get the positive pair. Additionally, we draw inspiration from the community of computer vision and introduce a momentum contrast, enlarging the number of negative pairs without additional calculations. The proposed two modifications are applied on positive and negative pairs separately, and build a new sentence embedding method, termed Enhanced Unsup-SimCSE (ESimCSE). We evaluate the proposed ESimCSE on several benchmark datasets w.r.t the semantic text similarity (STS) task. Experimental results show that ESimCSE outperforms the state-of-the-art unsup-SimCSE by an average Spearman correlation of 2.02% on BERT-base.
Data Augmentation for Text Generation Without Any Augmented Data
Data augmentation is an effective way to improve the performance of many neural text generation models. However, current data augmentation methods need to define or choose proper data mapping functions that map the original samples into the augmented samples. In this work, we derive an objective to formulate the problem of data augmentation on text generation tasks without any use of augmented data constructed by specific mapping functions. Our proposed objective can be efficiently optimized and applied to popular loss functions on text generation tasks with a convergence rate guarantee. Experiments on five datasets of two text generation tasks show that our approach can approximate or even surpass popular data augmentation methods.
CoCoSoDa: Effective Contrastive Learning for Code Search
Code search aims to retrieve semantically relevant code snippets for a given natural language query. Recently, many approaches employing contrastive learning have shown promising results on code representation learning and greatly improved the performance of code search. However, there is still a lot of room for improvement in using contrastive learning for code search. In this paper, we propose CoCoSoDa to effectively utilize contrastive learning for code search via two key factors in contrastive learning: data augmentation and negative samples. Specifically, soft data augmentation is to dynamically masking or replacing some tokens with their types for input sequences to generate positive samples. Momentum mechanism is used to generate large and consistent representations of negative samples in a mini-batch through maintaining a queue and a momentum encoder. In addition, multimodal contrastive learning is used to pull together representations of code-query pairs and push apart the unpaired code snippets and queries. We conduct extensive experiments to evaluate the effectiveness of our approach on a large-scale dataset with six programming languages. Experimental results show that: (1) CoCoSoDa outperforms 14 baselines and especially exceeds CodeBERT, GraphCodeBERT, and UniXcoder by 13.3%, 10.5%, and 5.9% on average MRR scores, respectively. (2) The ablation studies show the effectiveness of each component of our approach. (3) We adapt our techniques to several different pre-trained models such as RoBERTa, CodeBERT, and GraphCodeBERT and observe a significant boost in their performance in code search. (4) Our model performs robustly under different hyper-parameters. Furthermore, we perform qualitative and quantitative analyses to explore reasons behind the good performance of our model.
Co-Mixup: Saliency Guided Joint Mixup with Supermodular Diversity
While deep neural networks show great performance on fitting to the training distribution, improving the networks' generalization performance to the test distribution and robustness to the sensitivity to input perturbations still remain as a challenge. Although a number of mixup based augmentation strategies have been proposed to partially address them, it remains unclear as to how to best utilize the supervisory signal within each input data for mixup from the optimization perspective. We propose a new perspective on batch mixup and formulate the optimal construction of a batch of mixup data maximizing the data saliency measure of each individual mixup data and encouraging the supermodular diversity among the constructed mixup data. This leads to a novel discrete optimization problem minimizing the difference between submodular functions. We also propose an efficient modular approximation based iterative submodular minimization algorithm for efficient mixup computation per each minibatch suitable for minibatch based neural network training. Our experiments show the proposed method achieves the state of the art generalization, calibration, and weakly supervised localization results compared to other mixup methods. The source code is available at https://github.com/snu-mllab/Co-Mixup.
Overview and Evaluation of Sound Event Localization and Detection in DCASE 2019
Sound event localization and detection is a novel area of research that emerged from the combined interest of analyzing the acoustic scene in terms of the spatial and temporal activity of sounds of interest. This paper presents an overview of the first international evaluation on sound event localization and detection, organized as a task of the DCASE 2019 Challenge. A large-scale realistic dataset of spatialized sound events was generated for the challenge, to be used for training of learning-based approaches, and for evaluation of the submissions in an unlabeled subset. The overview presents in detail how the systems were evaluated and ranked and the characteristics of the best-performing systems. Common strategies in terms of input features, model architectures, training approaches, exploitation of prior knowledge, and data augmentation are discussed. Since ranking in the challenge was based on individually evaluating localization and event classification performance, part of the overview focuses on presenting metrics for the joint measurement of the two, together with a reevaluation of submissions using these new metrics. The new analysis reveals submissions that performed better on the joint task of detecting the correct type of event close to its original location than some of the submissions that were ranked higher in the challenge. Consequently, ranking of submissions which performed strongly when evaluated separately on detection or localization, but not jointly on both, was affected negatively.
Towards Ball Spin and Trajectory Analysis in Table Tennis Broadcast Videos via Physically Grounded Synthetic-to-Real Transfer
Analyzing a player's technique in table tennis requires knowledge of the ball's 3D trajectory and spin. While, the spin is not directly observable in standard broadcasting videos, we show that it can be inferred from the ball's trajectory in the video. We present a novel method to infer the initial spin and 3D trajectory from the corresponding 2D trajectory in a video. Without ground truth labels for broadcast videos, we train a neural network solely on synthetic data. Due to the choice of our input data representation, physically correct synthetic training data, and using targeted augmentations, the network naturally generalizes to real data. Notably, these simple techniques are sufficient to achieve generalization. No real data at all is required for training. To the best of our knowledge, we are the first to present a method for spin and trajectory prediction in simple monocular broadcast videos, achieving an accuracy of 92.0% in spin classification and a 2D reprojection error of 0.19% of the image diagonal.
ContriMix: Unsupervised disentanglement of content and attribute for domain generalization in microscopy image analysis
Domain generalization is critical for real-world applications of machine learning to microscopy images, including histopathology and fluorescence imaging. Artifacts in these modalities arise through a complex combination of factors relating to tissue collection and laboratory processing, as well as factors intrinsic to patient samples. In fluorescence imaging, these artifacts stem from variations across experimental batches. The complexity and subtlety of these artifacts make the enumeration of data domains intractable. Therefore, augmentation-based methods of domain generalization that require domain identifiers and manual fine-tuning are inadequate in this setting. To overcome this challenge, we introduce ContriMix, a domain generalization technique that learns to generate synthetic images by disentangling and permuting the biological content ("content") and technical variations ("attributes") in microscopy images. ContriMix does not rely on domain identifiers or handcrafted augmentations and makes no assumptions about the input characteristics of images. We assess the performance of ContriMix on two pathology datasets dealing with patch classification and Whole Slide Image label prediction tasks respectively (Camelyon17-WILDS and RCC subtyping), and one fluorescence microscopy dataset (RxRx1-WILDS). Without any access to domain identifiers at train or test time, ContriMix performs similar or better than current state-of-the-art methods in all these datasets, motivating its usage for microscopy image analysis in real-world settings where domain information is hard to come by. The code for ContriMix can be found at https://gitlab.com/huutan86/contrimix
Improving satellite imagery segmentation using multiple Sentinel-2 revisits
In recent years, analysis of remote sensing data has benefited immensely from borrowing techniques from the broader field of computer vision, such as the use of shared models pre-trained on large and diverse datasets. However, satellite imagery has unique features that are not accounted for in traditional computer vision, such as the existence of multiple revisits of the same location. Here, we explore the best way to use revisits in the framework of fine-tuning pre-trained remote sensing models. We focus on an applied research question of relevance to climate change mitigation -- power substation segmentation -- that is representative of applied uses of pre-trained models more generally. Through extensive tests of different multi-temporal input schemes across diverse model architectures, we find that fusing representations from multiple revisits in the model latent space is superior to other methods of using revisits, including as a form of data augmentation. We also find that a SWIN Transformer-based architecture performs better than U-nets and ViT-based models. We verify the generality of our results on a separate building density estimation task.
An Analysis of Temporal Dropout in Earth Observation Time Series for Regression Tasks
Missing instances in time series data impose a significant challenge to deep learning models, particularly in regression tasks. In the Earth Observation field, satellite failure or cloud occlusion frequently results in missing time-steps, introducing uncertainties in the predicted output and causing a decline in predictive performance. While many studies address missing time-steps through data augmentation to improve model robustness, the uncertainty arising at the input level is commonly overlooked. To address this gap, we introduce Monte Carlo Temporal Dropout (MC-TD), a method that explicitly accounts for input-level uncertainty by randomly dropping time-steps during inference using a predefined dropout ratio, thereby simulating the effect of missing data. To bypass the need for costly searches for the optimal dropout ratio, we extend this approach with Monte Carlo Concrete Temporal Dropout (MC-ConcTD), a method that learns the optimal dropout distribution directly. Both MC-TD and MC-ConcTD are applied during inference, leveraging Monte Carlo sampling for uncertainty quantification. Experiments on three EO time-series datasets demonstrate that MC-ConcTD improves predictive performance and uncertainty calibration compared to existing approaches. Additionally, we highlight the advantages of adaptive dropout tuning over manual selection, making uncertainty quantification more robust and accessible for EO applications.
Language Models are Graph Learners
Language Models (LMs) are increasingly challenging the dominance of domain-specific models, including Graph Neural Networks (GNNs) and Graph Transformers (GTs), in graph learning tasks. Following this trend, we propose a novel approach that empowers off-the-shelf LMs to achieve performance comparable to state-of-the-art GNNs on node classification tasks, without requiring any architectural modification. By preserving the LM's original architecture, our approach retains a key benefit of LM instruction tuning: the ability to jointly train on diverse datasets, fostering greater flexibility and efficiency. To achieve this, we introduce two key augmentation strategies: (1) Enriching LMs' input using topological and semantic retrieval methods, which provide richer contextual information, and (2) guiding the LMs' classification process through a lightweight GNN classifier that effectively prunes class candidates. Our experiments on real-world datasets show that backbone Flan-T5 models equipped with these augmentation strategies outperform state-of-the-art text-output node classifiers and are comparable to top-performing vector-output node classifiers. By bridging the gap between specialized task-specific node classifiers and general LMs, this work paves the way for more versatile and widely applicable graph learning models. We will open-source the code upon publication.
Robust Training Using Natural Transformation
Previous robustness approaches for deep learning models such as data augmentation techniques via data transformation or adversarial training cannot capture real-world variations that preserve the semantics of the input, such as a change in lighting conditions. To bridge this gap, we present NaTra, an adversarial training scheme that is designed to improve the robustness of image classification algorithms. We target attributes of the input images that are independent of the class identification, and manipulate those attributes to mimic real-world natural transformations (NaTra) of the inputs, which are then used to augment the training dataset of the image classifier. Specifically, we apply Batch Inverse Encoding and Shifting to map a batch of given images to corresponding disentangled latent codes of well-trained generative models. Latent Codes Expansion is used to boost image reconstruction quality through the incorporation of extended feature maps. Unsupervised Attribute Directing and Manipulation enables identification of the latent directions that correspond to specific attribute changes, and then produce interpretable manipulations of those attributes, thereby generating natural transformations to the input data. We demonstrate the efficacy of our scheme by utilizing the disentangled latent representations derived from well-trained GANs to mimic transformations of an image that are similar to real-world natural variations (such as lighting conditions or hairstyle), and train models to be invariant to these natural transformations. Extensive experiments show that our method improves generalization of classification models and increases its robustness to various real-world distortions
Bringing Masked Autoencoders Explicit Contrastive Properties for Point Cloud Self-Supervised Learning
Contrastive learning (CL) for Vision Transformers (ViTs) in image domains has achieved performance comparable to CL for traditional convolutional backbones. However, in 3D point cloud pretraining with ViTs, masked autoencoder (MAE) modeling remains dominant. This raises the question: Can we take the best of both worlds? To answer this question, we first empirically validate that integrating MAE-based point cloud pre-training with the standard contrastive learning paradigm, even with meticulous design, can lead to a decrease in performance. To address this limitation, we reintroduce CL into the MAE-based point cloud pre-training paradigm by leveraging the inherent contrastive properties of MAE. Specifically, rather than relying on extensive data augmentation as commonly used in the image domain, we randomly mask the input tokens twice to generate contrastive input pairs. Subsequently, a weight-sharing encoder and two identically structured decoders are utilized to perform masked token reconstruction. Additionally, we propose that for an input token masked by both masks simultaneously, the reconstructed features should be as similar as possible. This naturally establishes an explicit contrastive constraint within the generative MAE-based pre-training paradigm, resulting in our proposed method, Point-CMAE. Consequently, Point-CMAE effectively enhances the representation quality and transfer performance compared to its MAE counterpart. Experimental evaluations across various downstream applications, including classification, part segmentation, and few-shot learning, demonstrate the efficacy of our framework in surpassing state-of-the-art techniques under standard ViTs and single-modal settings. The source code and trained models are available at: https://github.com/Amazingren/Point-CMAE.
Self-Supervised Pre-Training with Joint-Embedding Predictive Architecture Boosts ECG Classification Performance
Accurate diagnosis of heart arrhythmias requires the interpretation of electrocardiograms (ECG), which capture the electrical activity of the heart. Automating this process through machine learning is challenging due to the need for large annotated datasets, which are difficult and costly to collect. To address this issue, transfer learning is often employed, where models are pre-trained on large datasets and fine-tuned for specific ECG classification tasks with limited labeled data. Self-supervised learning has become a widely adopted pre-training method, enabling models to learn meaningful representations from unlabeled datasets. In this work, we explore the joint-embedding predictive architecture (JEPA) for self-supervised learning from ECG data. Unlike invariance-based methods, JEPA does not rely on hand-crafted data augmentations, and unlike generative methods, it predicts latent features rather than reconstructing input data. We create a large unsupervised pre-training dataset by combining ten public ECG databases, amounting to over one million records. We pre-train Vision Transformers using JEPA on this dataset and fine-tune them on various PTB-XL benchmarks. Our results show that JEPA outperforms existing invariance-based and generative approaches, achieving an AUC of 0.945 on the PTB-XL all statements task. JEPA consistently learns the highest quality representations, as demonstrated in linear evaluations, and proves advantageous for pre-training even in the absence of additional data.
Diffusion Language Models are Super Data Learners
Under strictly controlled pre-training settings, we observe a Crossover: when unique data is limited, diffusion language models (DLMs) consistently surpass autoregressive (AR) models by training for more epochs. The crossover shifts later with more or higher-quality data, earlier with larger models, and persists across dense and sparse architectures. We attribute the gains to three compounding factors: (1) any-order modeling, (2) super-dense compute from iterative bidirectional denoising, and (3) built-in Monte Carlo augmentation; input or parameter noise improves AR under data constraint but cannot close the gap. At scale, a 1.7B DLM trained with a ~1.5T-token compute budget on 10B unique Python tokens overtakes an AR coder trained with strictly matched settings. In addition, a 1B-parameter DLM achieves > 56% accuracy on HellaSwag and > 33% on MMLU using only 1B tokens, without any special tricks, just by repeating standard pre-training data. We also show that rising validation cross-entropy does not imply degraded downstream performance in this regime.
Logic-of-Thought: Injecting Logic into Contexts for Full Reasoning in Large Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks but their performance in complex logical reasoning tasks remains unsatisfactory. Although some prompting methods, such as Chain-of-Thought, can improve the reasoning ability of LLMs to some extent, they suffer from an unfaithful issue where derived conclusions may not align with the generated reasoning chain. To address this issue, some studies employ the approach of propositional logic to further enhance logical reasoning abilities of LLMs. However, the potential omissions in the extraction of logical expressions in these methods can cause information loss in the logical reasoning process, thereby generating incorrect results. To this end, we propose Logic-of-Thought (LoT) prompting which employs propositional logic to generate expanded logical information from input context, and utilizes the generated logical information as an additional augmentation to the input prompts, thereby enhancing the capability of logical reasoning. The LoT is orthogonal to existing prompting methods and can be seamlessly integrated with them. Extensive experiments demonstrate that LoT boosts the performance of various prompting methods with a striking margin across five logical reasoning tasks. In particular, the LoT enhances Chain-of-Thought's performance on the ReClor dataset by +4.35%; moreover, it improves Chain-of-Thought with Self-Consistency's performance on LogiQA by +5%; additionally, it boosts performance of Tree-of-Thoughts on ProofWriter dataset by +8%.
Position-Aware Parameter Efficient Fine-Tuning Approach for Reducing Positional Bias in LLMs
Recent advances in large language models (LLMs) have enhanced their ability to process long input contexts. This development is particularly crucial for tasks that involve retrieving knowledge from an external datastore, which can result in long inputs. However, recent studies show a positional bias in LLMs, demonstrating varying performance depending on the location of useful information within the input sequence. In this study, we conduct extensive experiments to investigate the root causes of positional bias. Our findings indicate that the primary contributor to LLM positional bias stems from the inherent positional preferences of different models. We demonstrate that merely employing prompt-based solutions is inadequate for overcoming the positional preferences. To address this positional bias issue of a pre-trained LLM, we developed a Position-Aware Parameter Efficient Fine-Tuning (PAPEFT) approach which is composed of a data augmentation technique and a parameter efficient adapter, enhancing a uniform attention distribution across the input context. Our experiments demonstrate that the proposed approach effectively reduces positional bias, improving LLMs' effectiveness in handling long context sequences for various tasks that require externally retrieved knowledge.
Knowledge-enhanced Agents for Interactive Text Games
Communication via natural language is a crucial aspect of intelligence, and it requires computational models to learn and reason about world concepts, with varying levels of supervision. While there has been significant progress made on fully-supervised non-interactive tasks, such as question-answering and procedural text understanding, much of the community has turned to various sequential interactive tasks, as in semi-Markov text-based games, which have revealed limitations of existing approaches in terms of coherence, contextual awareness, and their ability to learn effectively from the environment. In this paper, we propose a framework for enabling improved functional grounding of agents in text-based games. Specifically, we consider two forms of domain knowledge that we inject into learning-based agents: memory of previous correct actions and affordances of relevant objects in the environment. Our framework supports three representative model classes: `pure' reinforcement learning (RL) agents, RL agents enhanced with knowledge graphs, and agents equipped with language models. Furthermore, we devise multiple injection strategies for the above domain knowledge types and agent architectures, including injection via knowledge graphs and augmentation of the existing input encoding strategies. We perform all experiments on the ScienceWorld text-based game environment, to illustrate the performance of various model configurations in challenging science-related instruction-following tasks. Our findings provide crucial insights on the development of effective natural language processing systems for interactive contexts.
TITAN: T Cell Receptor Specificity Prediction with Bimodal Attention Networks
Motivation: The activity of the adaptive immune system is governed by T-cells and their specific T-cell receptors (TCR), which selectively recognize foreign antigens. Recent advances in experimental techniques have enabled sequencing of TCRs and their antigenic targets (epitopes), allowing to research the missing link between TCR sequence and epitope binding specificity. Scarcity of data and a large sequence space make this task challenging, and to date only models limited to a small set of epitopes have achieved good performance. Here, we establish a k-nearest-neighbor (K-NN) classifier as a strong baseline and then propose TITAN (Tcr epITope bimodal Attention Networks), a bimodal neural network that explicitly encodes both TCR sequences and epitopes to enable the independent study of generalization capabilities to unseen TCRs and/or epitopes. Results: By encoding epitopes at the atomic level with SMILES sequences, we leverage transfer learning and data augmentation to enrich the input data space and boost performance. TITAN achieves high performance in the prediction of specificity of unseen TCRs (ROC-AUC 0.87 in 10-fold CV) and surpasses the results of the current state-of-the-art (ImRex) by a large margin. Notably, our Levenshtein-distance-based K-NN classifier also exhibits competitive performance on unseen TCRs. While the generalization to unseen epitopes remains challenging, we report two major breakthroughs. First, by dissecting the attention heatmaps, we demonstrate that the sparsity of available epitope data favors an implicit treatment of epitopes as classes. This may be a general problem that limits unseen epitope performance for sufficiently complex models. Second, we show that TITAN nevertheless exhibits significantly improved performance on unseen epitopes and is capable of focusing attention on chemically meaningful molecular structures.
Phidias: A Generative Model for Creating 3D Content from Text, Image, and 3D Conditions with Reference-Augmented Diffusion
In 3D modeling, designers often use an existing 3D model as a reference to create new ones. This practice has inspired the development of Phidias, a novel generative model that uses diffusion for reference-augmented 3D generation. Given an image, our method leverages a retrieved or user-provided 3D reference model to guide the generation process, thereby enhancing the generation quality, generalization ability, and controllability. Our model integrates three key components: 1) meta-ControlNet that dynamically modulates the conditioning strength, 2) dynamic reference routing that mitigates misalignment between the input image and 3D reference, and 3) self-reference augmentations that enable self-supervised training with a progressive curriculum. Collectively, these designs result in a clear improvement over existing methods. Phidias establishes a unified framework for 3D generation using text, image, and 3D conditions with versatile applications.
ITACLIP: Boosting Training-Free Semantic Segmentation with Image, Text, and Architectural Enhancements
Recent advances in foundational Vision Language Models (VLMs) have reshaped the evaluation paradigm in computer vision tasks. These foundational models, especially CLIP, have accelerated research in open-vocabulary computer vision tasks, including Open-Vocabulary Semantic Segmentation (OVSS). Although the initial results are promising, the dense prediction capabilities of VLMs still require further improvement. In this study, we enhance the semantic segmentation performance of CLIP by introducing new modules and modifications: 1) architectural changes in the last layer of ViT and the incorporation of attention maps from the middle layers with the last layer, 2) Image Engineering: applying data augmentations to enrich input image representations, and 3) using Large Language Models (LLMs) to generate definitions and synonyms for each class name to leverage CLIP's open-vocabulary capabilities. Our training-free method, ITACLIP, outperforms current state-of-the-art approaches on segmentation benchmarks such as COCO-Stuff, COCO-Object, Pascal Context, and Pascal VOC. Our code is available at https://github.com/m-arda-aydn/ITACLIP.
Diverse Cotraining Makes Strong Semi-Supervised Segmentor
Deep co-training has been introduced to semi-supervised segmentation and achieves impressive results, yet few studies have explored the working mechanism behind it. In this work, we revisit the core assumption that supports co-training: multiple compatible and conditionally independent views. By theoretically deriving the generalization upper bound, we prove the prediction similarity between two models negatively impacts the model's generalization ability. However, most current co-training models are tightly coupled together and violate this assumption. Such coupling leads to the homogenization of networks and confirmation bias which consequently limits the performance. To this end, we explore different dimensions of co-training and systematically increase the diversity from the aspects of input domains, different augmentations and model architectures to counteract homogenization. Our Diverse Co-training outperforms the state-of-the-art (SOTA) methods by a large margin across different evaluation protocols on the Pascal and Cityscapes. For example. we achieve the best mIoU of 76.2%, 77.7% and 80.2% on Pascal with only 92, 183 and 366 labeled images, surpassing the previous best results by more than 5%.
Augmentation with Projection: Towards an Effective and Efficient Data Augmentation Paradigm for Distillation
Knowledge distillation is one of the primary methods of transferring knowledge from large to small models. However, it requires massive task-specific data, which may not be plausible in many real-world applications. Data augmentation methods such as representation interpolation, token replacement, or augmentation with models are applied to tackle this problem. However, these data augmentation methods either potentially cause shifts in decision boundaries (representation interpolation), are not expressive enough (token replacement), or introduce too much computational overhead (augmentation with models). To this end, we propose AugPro (Augmentation with Projection), an effective and efficient data augmentation method for distillation. Our method builds on top of representation interpolation augmentation methods to maintain the diversity of expressions and converts the augmented data to tokens to avoid shifting decision boundaries. It uses simple operations that come with little computational overhead. The results on multiple GLUE tasks show that our methods can improve distillation performance by a large margin at a low time cost. Codes are available at https://github.com/google-research/google-research/tree/master/augpro.
Iterative Mask Filling: An Effective Text Augmentation Method Using Masked Language Modeling
Data augmentation is an effective technique for improving the performance of machine learning models. However, it has not been explored as extensively in natural language processing (NLP) as it has in computer vision. In this paper, we propose a novel text augmentation method that leverages the Fill-Mask feature of the transformer-based BERT model. Our method involves iteratively masking words in a sentence and replacing them with language model predictions. We have tested our proposed method on various NLP tasks and found it to be effective in many cases. Our results are presented along with a comparison to existing augmentation methods. Experimental results show that our proposed method significantly improves performance, especially on topic classification datasets.
Raw Data Matters: Enhancing Prompt Tuning by Internal Augmentation on Vision-Language Models
For CLIP-based prompt tuning, introducing more data as additional knowledge for enhancing fine-tuning process is proved to be an effective approach. Existing data amplification strategies for prompt tuning typically rely on external knowledge (e.g., large language models or pre-structured knowledge bases), resulting in higher costs for data collection and processing, while generally ignoring further utilization of features in image modality. To address this, we propose Augmentation-driven Prompt Tuning (AugPT), a self-contained distillation-based prompt tuning approach using only internal augmentation on raw dataset to better exploit known features. Specifically, AugPT employs self-supervised augmentation on unlabeled images in the training set, and introduces a novel gating mechanism based on consensus test, reusing the pre-trained prompt tuning backbone model to spontaneously filter noisy samples, further enhancing the quality of augmented views. Extensive experiments validate that AugPT simultaneously enhances model performance and generalization capability without using appended external knowledge. The code of AugPT is available at: https://github.com/JREion/AugPT .
BootAug: Boosting Text Augmentation via Hybrid Instance Filtering Framework
Text augmentation is an effective technique for addressing the problem of insufficient data in natural language processing. However, existing text augmentation methods tend to focus on few-shot scenarios and usually perform poorly on large public datasets. Our research indicates that existing augmentation methods often generate instances with shifted feature spaces, which leads to a drop in performance on the augmented data (for example, EDA generally loses approx 2% in aspect-based sentiment classification). To address this problem, we propose a hybrid instance-filtering framework (BootAug) based on pre-trained language models that can maintain a similar feature space with natural datasets. BootAug is transferable to existing text augmentation methods (such as synonym substitution and back translation) and significantly improves the augmentation performance by approx 2-3% in classification accuracy. Our experimental results on three classification tasks and nine public datasets show that BootAug addresses the performance drop problem and outperforms state-of-the-art text augmentation methods. Additionally, we release the code to help improve existing augmentation methods on large datasets.
Effective Data Augmentation With Diffusion Models
Data augmentation is one of the most prevalent tools in deep learning, underpinning many recent advances, including those from classification, generative models, and representation learning. The standard approach to data augmentation combines simple transformations like rotations and flips to generate new images from existing ones. However, these new images lack diversity along key semantic axes present in the data. Current augmentations cannot alter the high-level semantic attributes, such as animal species present in a scene, to enhance the diversity of data. We address the lack of diversity in data augmentation with image-to-image transformations parameterized by pre-trained text-to-image diffusion models. Our method edits images to change their semantics using an off-the-shelf diffusion model, and generalizes to novel visual concepts from a few labelled examples. We evaluate our approach on few-shot image classification tasks, and on a real-world weed recognition task, and observe an improvement in accuracy in tested domains.
Distributional Data Augmentation Methods for Low Resource Language
Text augmentation is a technique for constructing synthetic data from an under-resourced corpus to improve predictive performance. Synthetic data generation is common in numerous domains. However, recently text augmentation has emerged in natural language processing (NLP) to improve downstream tasks. One of the current state-of-the-art text augmentation techniques is easy data augmentation (EDA), which augments the training data by injecting and replacing synonyms and randomly permuting sentences. One major obstacle with EDA is the need for versatile and complete synonym dictionaries, which cannot be easily found in low-resource languages. To improve the utility of EDA, we propose two extensions, easy distributional data augmentation (EDDA) and type specific similar word replacement (TSSR), which uses semantic word context information and part-of-speech tags for word replacement and augmentation. In an extensive empirical evaluation, we show the utility of the proposed methods, measured by F1 score, on two representative datasets in Swedish as an example of a low-resource language. With the proposed methods, we show that augmented data improve classification performances in low-resource settings.
Improving Black-box Robustness with In-Context Rewriting
Machine learning models often excel on in-distribution (ID) data but struggle with unseen out-of-distribution (OOD) inputs. Most techniques for improving OOD robustness are not applicable to settings where the model is effectively a black box, such as when the weights are frozen, retraining is costly, or the model is leveraged via an API. Test-time augmentation (TTA) is a simple post-hoc technique for improving robustness that sidesteps black-box constraints by aggregating predictions across multiple augmentations of the test input. TTA has seen limited use in NLP due to the challenge of generating effective natural language augmentations. In this work, we propose LLM-TTA, which uses LLM-generated augmentations as TTA's augmentation function. LLM-TTA outperforms conventional augmentation functions across sentiment, toxicity, and news classification tasks for BERT and T5 models, with BERT's OOD robustness improving by an average of 4.30 percentage points without regressing average ID performance. We explore selectively augmenting inputs based on prediction entropy to reduce the rate of expensive LLM augmentations, allowing us to maintain performance gains while reducing the average number of generated augmentations by 57.76%. LLM-TTA is agnostic to the task model architecture, does not require OOD labels, and is effective across low and high-resource settings. We share our data, models, and code for reproducibility.
Syntax-driven Data Augmentation for Named Entity Recognition
In low resource settings, data augmentation strategies are commonly leveraged to improve performance. Numerous approaches have attempted document-level augmentation (e.g., text classification), but few studies have explored token-level augmentation. Performed naively, data augmentation can produce semantically incongruent and ungrammatical examples. In this work, we compare simple masked language model replacement and an augmentation method using constituency tree mutations to improve the performance of named entity recognition in low-resource settings with the aim of preserving linguistic cohesion of the augmented sentences.
Are VQA Systems RAD? Measuring Robustness to Augmented Data with Focused Interventions
Deep learning algorithms have shown promising results in visual question answering (VQA) tasks, but a more careful look reveals that they often do not understand the rich signal they are being fed with. To understand and better measure the generalization capabilities of VQA systems, we look at their robustness to counterfactually augmented data. Our proposed augmentations are designed to make a focused intervention on a specific property of the question such that the answer changes. Using these augmentations, we propose a new robustness measure, Robustness to Augmented Data (RAD), which measures the consistency of model predictions between original and augmented examples. Through extensive experimentation, we show that RAD, unlike classical accuracy measures, can quantify when state-of-the-art systems are not robust to counterfactuals. We find substantial failure cases which reveal that current VQA systems are still brittle. Finally, we connect between robustness and generalization, demonstrating the predictive power of RAD for performance on unseen augmentations.
Data-Efficient Augmentation for Training Neural Networks
Data augmentation is essential to achieve state-of-the-art performance in many deep learning applications. However, the most effective augmentation techniques become computationally prohibitive for even medium-sized datasets. To address this, we propose a rigorous technique to select subsets of data points that when augmented, closely capture the training dynamics of full data augmentation. We first show that data augmentation, modeled as additive perturbations, improves learning and generalization by relatively enlarging and perturbing the smaller singular values of the network Jacobian, while preserving its prominent directions. This prevents overfitting and enhances learning the harder to learn information. Then, we propose a framework to iteratively extract small subsets of training data that when augmented, closely capture the alignment of the fully augmented Jacobian with labels/residuals. We prove that stochastic gradient descent applied to the augmented subsets found by our approach has similar training dynamics to that of fully augmented data. Our experiments demonstrate that our method achieves 6.3x speedup on CIFAR10 and 2.2x speedup on SVHN, and outperforms the baselines by up to 10% across various subset sizes. Similarly, on TinyImageNet and ImageNet, our method beats the baselines by up to 8%, while achieving up to 3.3x speedup across various subset sizes. Finally, training on and augmenting 50% subsets using our method on a version of CIFAR10 corrupted with label noise even outperforms using the full dataset. Our code is available at: https://github.com/tianyu139/data-efficient-augmentation
Text Data Augmentation for Large Language Models: A Comprehensive Survey of Methods, Challenges, and Opportunities
The increasing size and complexity of pre-trained language models have demonstrated superior performance in many applications, but they usually require large training datasets to be adequately trained. Insufficient training sets could unexpectedly make the model overfit and fail to cope with complex tasks. Large language models (LLMs) trained on extensive corpora have prominent text generation capabilities, which improve the quality and quantity of data and play a crucial role in data augmentation. Specifically, distinctive prompt templates are given in personalised tasks to guide LLMs in generating the required content. Recent promising retrieval-based techniques further improve the expressive performance of LLMs in data augmentation by introducing external knowledge to enable them to produce more grounded-truth data. This survey provides an in-depth analysis of data augmentation in LLMs, classifying the techniques into Simple Augmentation, Prompt-based Augmentation, Retrieval-based Augmentation and Hybrid Augmentation. We summarise the post-processing approaches in data augmentation, which contributes significantly to refining the augmented data and enabling the model to filter out unfaithful content. Then, we provide the common tasks and evaluation metrics. Finally, we introduce existing challenges and future opportunities that could bring further improvement to data augmentation.
HARD: Hard Augmentations for Robust Distillation
Knowledge distillation (KD) is a simple and successful method to transfer knowledge from a teacher to a student model solely based on functional activity. However, current KD has a few shortcomings: it has recently been shown that this method is unsuitable to transfer simple inductive biases like shift equivariance, struggles to transfer out of domain generalization, and optimization time is magnitudes longer compared to default non-KD model training. To improve these aspects of KD, we propose Hard Augmentations for Robust Distillation (HARD), a generally applicable data augmentation framework, that generates synthetic data points for which the teacher and the student disagree. We show in a simple toy example that our augmentation framework solves the problem of transferring simple equivariances with KD. We then apply our framework in real-world tasks for a variety of augmentation models, ranging from simple spatial transformations to unconstrained image manipulations with a pretrained variational autoencoder. We find that our learned augmentations significantly improve KD performance on in-domain and out-of-domain evaluation. Moreover, our method outperforms even state-of-the-art data augmentations and since the augmented training inputs can be visualized, they offer a qualitative insight into the properties that are transferred from the teacher to the student. Thus HARD represents a generally applicable, dynamically optimized data augmentation technique tailored to improve the generalization and convergence speed of models trained with KD.
Guiding Generative Language Models for Data Augmentation in Few-Shot Text Classification
Data augmentation techniques are widely used for enhancing the performance of machine learning models by tackling class imbalance issues and data sparsity. State-of-the-art generative language models have been shown to provide significant gains across different NLP tasks. However, their applicability to data augmentation for text classification tasks in few-shot settings have not been fully explored, especially for specialised domains. In this paper, we leverage GPT-2 (Radford A et al, 2019) for generating artificial training instances in order to improve classification performance. Our aim is to analyse the impact the selection process of seed training examples have over the quality of GPT-generated samples and consequently the classifier performance. We perform experiments with several seed selection strategies that, among others, exploit class hierarchical structures and domain expert selection. Our results show that fine-tuning GPT-2 in a handful of label instances leads to consistent classification improvements and outperform competitive baselines. Finally, we show that guiding this process through domain expert selection can lead to further improvements, which opens up interesting research avenues for combining generative models and active learning.
Data Augmentation Approaches in Natural Language Processing: A Survey
As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges. Some helpful resources are provided in the appendix.
Looped Transformers as Programmable Computers
We present a framework for using transformer networks as universal computers by programming them with specific weights and placing them in a loop. Our input sequence acts as a punchcard, consisting of instructions and memory for data read/writes. We demonstrate that a constant number of encoder layers can emulate basic computing blocks, including embedding edit operations, non-linear functions, function calls, program counters, and conditional branches. Using these building blocks, we emulate a small instruction-set computer. This allows us to map iterative algorithms to programs that can be executed by a looped, 13-layer transformer. We show how this transformer, instructed by its input, can emulate a basic calculator, a basic linear algebra library, and in-context learning algorithms that employ backpropagation. Our work highlights the versatility of the attention mechanism, and demonstrates that even shallow transformers can execute full-fledged, general-purpose programs.
Is linguistically-motivated data augmentation worth it?
Data augmentation, a widely-employed technique for addressing data scarcity, involves generating synthetic data examples which are then used to augment available training data. Researchers have seen surprising success from simple methods, such as random perturbations from natural examples, where models seem to benefit even from data with nonsense words, or data that doesn't conform to the rules of the language. A second line of research produces synthetic data that does in fact follow all linguistic constraints; these methods require some linguistic expertise and are generally more challenging to implement. No previous work has done a systematic, empirical comparison of both linguistically-naive and linguistically-motivated data augmentation strategies, leaving uncertainty about whether the additional time and effort of linguistically-motivated data augmentation work in fact yields better downstream performance. In this work, we conduct a careful and comprehensive comparison of augmentation strategies (both linguistically-naive and linguistically-motivated) for two low-resource languages with different morphological properties, Uspanteko and Arapaho. We evaluate the effectiveness of many different strategies and their combinations across two important sequence-to-sequence tasks for low-resource languages: machine translation and interlinear glossing. We find that linguistically-motivated strategies can have benefits over naive approaches, but only when the new examples they produce are not significantly unlike the training data distribution.
Self-Augmented Visual Contrastive Decoding
Large Vision-Language Models (LVLMs) have demonstrated remarkable multimodal capabilities, but they inherit the tendency to hallucinate from their underlying language models. While visual contrastive decoding has been proposed to mitigate this issue, existing methods often apply generic visual augmentations that disregard the specific context provided by the text query, limiting their effectiveness. This study introduces a novel training-free decoding strategy that addresses these limitations, featuring two key contributions. First, a self-augmentation prompting strategy that leverages the intrinsic knowledge of the model to dynamically align semantics between the query and the visual augmentation. Second, an adaptive thresholding algorithm that adaptively adjusts next token candidate size based on the output sparsity, utilizing full information from the logit distribution. Extensive experiments across four LVLMs and seven benchmarks demonstrate that the proposed decoding significantly enhances factual consistency compared to state-of-the-art decoding methods. This work highlights the importance of integrating query-dependent augmentation and entropy-aware decoding for improving effective generation of LVLMs.
AutoAugment: Learning Augmentation Policies from Data
Data augmentation is an effective technique for improving the accuracy of modern image classifiers. However, current data augmentation implementations are manually designed. In this paper, we describe a simple procedure called AutoAugment to automatically search for improved data augmentation policies. In our implementation, we have designed a search space where a policy consists of many sub-policies, one of which is randomly chosen for each image in each mini-batch. A sub-policy consists of two operations, each operation being an image processing function such as translation, rotation, or shearing, and the probabilities and magnitudes with which the functions are applied. We use a search algorithm to find the best policy such that the neural network yields the highest validation accuracy on a target dataset. Our method achieves state-of-the-art accuracy on CIFAR-10, CIFAR-100, SVHN, and ImageNet (without additional data). On ImageNet, we attain a Top-1 accuracy of 83.5% which is 0.4% better than the previous record of 83.1%. On CIFAR-10, we achieve an error rate of 1.5%, which is 0.6% better than the previous state-of-the-art. Augmentation policies we find are transferable between datasets. The policy learned on ImageNet transfers well to achieve significant improvements on other datasets, such as Oxford Flowers, Caltech-101, Oxford-IIT Pets, FGVC Aircraft, and Stanford Cars.
AugGPT: Leveraging ChatGPT for Text Data Augmentation
Text data augmentation is an effective strategy for overcoming the challenge of limited sample sizes in many natural language processing (NLP) tasks. This challenge is especially prominent in the few-shot learning scenario, where the data in the target domain is generally much scarcer and of lowered quality. A natural and widely-used strategy to mitigate such challenges is to perform data augmentation to better capture the data invariance and increase the sample size. However, current text data augmentation methods either can't ensure the correct labeling of the generated data (lacking faithfulness) or can't ensure sufficient diversity in the generated data (lacking compactness), or both. Inspired by the recent success of large language models, especially the development of ChatGPT, which demonstrated improved language comprehension abilities, in this work, we propose a text data augmentation approach based on ChatGPT (named AugGPT). AugGPT rephrases each sentence in the training samples into multiple conceptually similar but semantically different samples. The augmented samples can then be used in downstream model training. Experiment results on few-shot learning text classification tasks show the superior performance of the proposed AugGPT approach over state-of-the-art text data augmentation methods in terms of testing accuracy and distribution of the augmented samples.
An Empirical Survey of Data Augmentation for Limited Data Learning in NLP
NLP has achieved great progress in the past decade through the use of neural models and large labeled datasets. The dependence on abundant data prevents NLP models from being applied to low-resource settings or novel tasks where significant time, money, or expertise is required to label massive amounts of textual data. Recently, data augmentation methods have been explored as a means of improving data efficiency in NLP. To date, there has been no systematic empirical overview of data augmentation for NLP in the limited labeled data setting, making it difficult to understand which methods work in which settings. In this paper, we provide an empirical survey of recent progress on data augmentation for NLP in the limited labeled data setting, summarizing the landscape of methods (including token-level augmentations, sentence-level augmentations, adversarial augmentations, and hidden-space augmentations) and carrying out experiments on 11 datasets covering topics/news classification, inference tasks, paraphrasing tasks, and single-sentence tasks. Based on the results, we draw several conclusions to help practitioners choose appropriate augmentations in different settings and discuss the current challenges and future directions for limited data learning in NLP.
MUFFIN: Curating Multi-Faceted Instructions for Improving Instruction-Following
In the realm of large language models (LLMs), enhancing instruction-following capability often involves curating expansive training data. This is achieved through two primary schemes: i) Scaling-Inputs: Amplifying (input, output) pairs per task instruction, aiming for better instruction adherence. ii) Scaling Input-Free Tasks: Enlarging tasks, each composed of an (instruction, output) pair (without requiring a separate input anymore). However, LLMs under Scaling-Inputs tend to be overly sensitive to inputs, leading to misinterpretation or non-compliance with instructions. Conversely, Scaling Input-Free Tasks demands a substantial number of tasks but is less effective in instruction following when dealing with instances in Scaling-Inputs. This work introduces MUFFIN, a new scheme of instruction-following dataset curation. Specifically, we automatically Scale Tasks per Input by diversifying these tasks with various input facets. Experimental results across four zero-shot benchmarks, spanning both Scaling-Inputs and Scaling Input-Free Tasks schemes, reveal that LLMs, at various scales, trained on MUFFIN generally demonstrate superior instruction-following capabilities compared to those trained on the two aforementioned schemes.
Activation Addition: Steering Language Models Without Optimization
Reliably controlling the behavior of large language models is a pressing open problem. Existing methods include supervised finetuning, reinforcement learning from human feedback, prompt engineering and guided decoding. We instead investigate activation engineering: modifying activations at inference-time to predictably alter model behavior. We bias the forward pass with a 'steering vector' implicitly specified through natural language. Past work learned these steering vectors; our Activation Addition (ActAdd) method instead computes them by taking the activation differences which result from pairs of prompts. We demonstrate ActAdd on GPT-2 on OpenWebText and ConceptNet, and replicate the effect on Llama-13B and GPT-J-6B. Our approach yields inference-time control over high-level properties of output & preserves performance on off-target topics. The method requires far less compute and implementation effort than finetuning and RLHF, allows for natural language specification by users, and its overhead scales naturally with model size.
Understanding Augmentation-based Self-Supervised Representation Learning via RKHS Approximation and Regression
Data augmentation is critical to the empirical success of modern self-supervised representation learning, such as contrastive learning and masked language modeling. However, a theoretical understanding of the exact role of augmentation remains limited. Recent work has built the connection between self-supervised learning and the approximation of the top eigenspace of a graph Laplacian operator, suggesting that learning a linear probe atop such representation can be connected to RKHS regression. Building on this insight, this work delves into a statistical analysis of augmentation-based pretraining. Starting from the isometry property, a geometric characterization of the target function given by the augmentation, we disentangle the effects of the model and the augmentation, and prove two generalization bounds that are free of model complexity. Our first bound works for an arbitrary encoder, where the prediction error is decomposed as the sum of an estimation error incurred by fitting a linear probe with RKHS regression, and an approximation error entailed by RKHS approximation. Our second bound specifically addresses the case where the encoder is near-optimal, that is it approximates the top-d eigenspace of the RKHS induced by the augmentation. A key ingredient in our analysis is the augmentation complexity, which we use to quantitatively compare different augmentations and analyze their impact on downstream performance.
Improved baselines for vision-language pre-training
Contrastive learning has emerged as an efficient framework to learn multimodal representations. CLIP, a seminal work in this area, achieved impressive results by training on paired image-text data using the contrastive loss. Recent work claims improvements over CLIP using additional non-contrastive losses inspired from self-supervised learning. However, it is sometimes hard to disentangle the contribution of these additional losses from other implementation details, e.g., data augmentation or regularization techniques, used to train the model. To shed light on this matter, in this paper, we first propose, implement and evaluate several baselines obtained by combining contrastive learning with recent advances in self-supervised learning. In particular, we use the loss functions that were proven successful for visual self-supervised learning to align image and text modalities. We find that these baselines outperform a basic implementation of CLIP. However, when a stronger training recipe is employed, the advantage disappears. Indeed, we find that a simple CLIP baseline can also be improved substantially, up to a 25% relative improvement on downstream zero-shot tasks, by using well-known training techniques that are popular in other subfields. Moreover, we discover that it is enough to apply image and text augmentations to make up for most of the improvement attained by prior works. With our improved training recipe for CLIP, we obtain state-of-the-art performance on four standard datasets, and consistently outperform prior work (up to +4% on the largest dataset), while being substantially simpler.
Empowering Large Language Models for Textual Data Augmentation
With the capabilities of understanding and executing natural language instructions, Large language models (LLMs) can potentially act as a powerful tool for textual data augmentation. However, the quality of augmented data depends heavily on the augmentation instructions provided, and the effectiveness can fluctuate across different downstream tasks. While manually crafting and selecting instructions can offer some improvement, this approach faces scalability and consistency issues in practice due to the diversity of downstream tasks. In this work, we address these limitations by proposing a new solution, which can automatically generate a large pool of augmentation instructions and select the most suitable task-informed instructions, thereby empowering LLMs to create high-quality augmented data for different downstream tasks. Empirically, the proposed approach consistently generates augmented data with better quality compared to non-LLM and LLM-based data augmentation methods, leading to the best performance on 26 few-shot learning tasks sourced from a wide range of application domains.
Masked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models
In reasoning tasks, even a minor error can cascade into inaccurate results, leading to suboptimal performance of large language models in such domains. Earlier fine-tuning approaches sought to mitigate this by leveraging more precise supervisory signals from human labeling, larger models, or self-sampling, although at a high cost. Conversely, we develop a method that avoids external resources, relying instead on introducing perturbations to the input. Our training approach randomly masks certain tokens within the chain of thought, a technique we found to be particularly effective for reasoning tasks. When applied to fine-tuning with GSM8K, this method achieved a 5% improvement in accuracy over standard supervised fine-tuning with a few codes modified and no additional labeling effort. Furthermore, it is complementary to existing methods. When integrated with related data augmentation methods, it leads to an average improvement of 3% improvement in GSM8K accuracy and 1% improvement in MATH accuracy across five datasets of various quality and size, as well as two base models. We further investigate the mechanisms behind this improvement through case studies and quantitative analysis, suggesting that our approach may provide superior support for the model in capturing long-distance dependencies, especially those related to questions. This enhancement could deepen understanding of premises in questions and prior steps. Our code is available at Github.
Data Augmentation for Automated Essay Scoring using Transformer Models
Automated essay scoring is one of the most important problem in Natural Language Processing. It has been explored for a number of years, and it remains partially solved. In addition to its economic and educational usefulness, it presents research problems. Transfer learning has proved to be beneficial in NLP. Data augmentation techniques have also helped build state-of-the-art models for automated essay scoring. Many works in the past have attempted to solve this problem by using RNNs, LSTMs, etc. This work examines the transformer models like BERT, RoBERTa, etc. We empirically demonstrate the effectiveness of transformer models and data augmentation for automated essay grading across many topics using a single model.
Effectiveness of Data Augmentation for Parameter Efficient Tuning with Limited Data
Recent work has demonstrated that using parameter efficient tuning techniques such as prefix tuning (or P-tuning) on pretrained language models can yield performance that is comparable or superior to fine-tuning while dramatically reducing trainable parameters. Nevertheless, the effectiveness of such methods under the context of data augmentation, a common strategy to improve learning under low data regimes, has not been fully explored. In this paper, we examine the effectiveness of several popular task-agnostic data augmentation techniques, i.e., EDA, Back Translation, and Mixup, when using two general parameter efficient tuning methods, P-tuning v2 and LoRA, under data scarcity. We show that data augmentation can be used to boost the performance of P-tuning and LoRA models, but the effectiveness of each technique varies and certain methods can lead to a notable degradation in performance, particularly when using larger models and on harder tasks. We further analyze the sentence representations of P-tuning compared to fine-tuning to help understand the above behaviour, and reveal how P-tuning generally presents a more limited ability to separate the sentence embeddings from different classes of augmented data. In addition, it displays poorer performance on heavily altered data. However, we demonstrate that by adding a simple contrastive loss function it can help mitigate such issues for prefix tuning, resulting in sizable improvements to augmented data performance.
Adaptive Computation with Elastic Input Sequence
Humans have the ability to adapt the type of information they use, the procedure they employ, and the amount of time they spend when solving problems. However, most standard neural networks have a fixed function type and computation budget regardless of the sample's nature or difficulty. Adaptivity is a powerful paradigm as it not only imbues practitioners with flexibility pertaining to the downstream usage of these models but can also serve as a powerful inductive bias for solving certain challenging classes of problems. In this work, we introduce a new approach called AdaTape, which allows for dynamic computation in neural networks through adaptive tape tokens. AdaTape utilizes an elastic input sequence by equipping an architecture with a dynamic read-and-write tape. Specifically, we adaptively generate input sequences using tape tokens obtained from a tape bank which can be either trainable or derived from input data. We examine the challenges and requirements to obtain dynamic sequence content and length, and propose the Adaptive Tape Reading (ATR) algorithm to achieve both goals. Through extensive experiments on image recognition tasks, we show that AdaTape can achieve better performance while maintaining the computational cost. To facilitate further research, we have released code at https://github.com/google-research/scenic.
Evaluating the Effectiveness and Scalability of LLM-Based Data Augmentation for Retrieval
Compact dual-encoder models are widely used for retrieval owing to their efficiency and scalability. However, such models often underperform compared to their Large Language Model (LLM)-based retrieval counterparts, likely due to their limited world knowledge. While LLM-based data augmentation has been proposed as a strategy to bridge this performance gap, there is insufficient understanding of its effectiveness and scalability to real-world retrieval problems. Existing research does not systematically explore key factors such as the optimal augmentation scale, the necessity of using large augmentation models, and whether diverse augmentations improve generalization, particularly in out-of-distribution (OOD) settings. This work presents a comprehensive study of the effectiveness of LLM augmentation for retrieval, comprising over 100 distinct experimental settings of retrieval models, augmentation models and augmentation strategies. We find that, while augmentation enhances retrieval performance, its benefits diminish beyond a certain augmentation scale, even with diverse augmentation strategies. Surprisingly, we observe that augmentation with smaller LLMs can achieve performance competitive with larger augmentation models. Moreover, we examine how augmentation effectiveness varies with retrieval model pre-training, revealing that augmentation provides the most benefit to models which are not well pre-trained. Our insights pave the way for more judicious and efficient augmentation strategies, thus enabling informed decisions and maximizing retrieval performance while being more cost-effective. Code and augmented datasets accompanying this work are publicly available at https://aka.ms/DAGR.
TrivialAugment: Tuning-free Yet State-of-the-Art Data Augmentation
Automatic augmentation methods have recently become a crucial pillar for strong model performance in vision tasks. While existing automatic augmentation methods need to trade off simplicity, cost and performance, we present a most simple baseline, TrivialAugment, that outperforms previous methods for almost free. TrivialAugment is parameter-free and only applies a single augmentation to each image. Thus, TrivialAugment's effectiveness is very unexpected to us and we performed very thorough experiments to study its performance. First, we compare TrivialAugment to previous state-of-the-art methods in a variety of image classification scenarios. Then, we perform multiple ablation studies with different augmentation spaces, augmentation methods and setups to understand the crucial requirements for its performance. Additionally, we provide a simple interface to facilitate the widespread adoption of automatic augmentation methods, as well as our full code base for reproducibility. Since our work reveals a stagnation in many parts of automatic augmentation research, we end with a short proposal of best practices for sustained future progress in automatic augmentation methods.
Multimodal Large Language Models for Image, Text, and Speech Data Augmentation: A Survey
In the past five years, research has shifted from traditional Machine Learning (ML) and Deep Learning (DL) approaches to leveraging Large Language Models (LLMs) , including multimodality, for data augmentation to enhance generalization, and combat overfitting in training deep convolutional neural networks. However, while existing surveys predominantly focus on ML and DL techniques or limited modalities (text or images), a gap remains in addressing the latest advancements and multi-modal applications of LLM-based methods. This survey fills that gap by exploring recent literature utilizing multimodal LLMs to augment image, text, and audio data, offering a comprehensive understanding of these processes. We outlined various methods employed in the LLM-based image, text and speech augmentation, and discussed the limitations identified in current approaches. Additionally, we identified potential solutions to these limitations from the literature to enhance the efficacy of data augmentation practices using multimodal LLMs. This survey serves as a foundation for future research, aiming to refine and expand the use of multimodal LLMs in enhancing dataset quality and diversity for deep learning applications. (Surveyed Paper GitHub Repo: https://github.com/WSUAgRobotics/data-aug-multi-modal-llm. Keywords: LLM data augmentation, Grok text data augmentation, DeepSeek image data augmentation, Grok speech data augmentation, GPT audio augmentation, voice augmentation, DeepSeek for data augmentation, DeepSeek R1 text data augmentation, DeepSeek R1 image augmentation, Image Augmentation using LLM, Text Augmentation using LLM, LLM data augmentation for deep learning applications)
Rethink the Effectiveness of Text Data Augmentation: An Empirical Analysis
In recent years, language models (LMs) have made remarkable progress in advancing the field of natural language processing (NLP). However, the impact of data augmentation (DA) techniques on the fine-tuning (FT) performance of these LMs has been a topic of ongoing debate. In this study, we evaluate the effectiveness of three different FT methods in conjugation with back-translation across an array of 7 diverse NLP tasks, including classification and regression types, covering single-sentence and sentence-pair tasks. Contrary to prior assumptions that DA does not contribute to the enhancement of LMs' FT performance, our findings reveal that continued pre-training on augmented data can effectively improve the FT performance of the downstream tasks. In the most favourable case, continued pre-training improves the performance of FT by more than 10% in the few-shot learning setting. Our finding highlights the potential of DA as a powerful tool for bolstering LMs' performance.
Advancing NLP Models with Strategic Text Augmentation: A Comprehensive Study of Augmentation Methods and Curriculum Strategies
This study conducts a thorough evaluation of text augmentation techniques across a variety of datasets and natural language processing (NLP) tasks to address the lack of reliable, generalized evidence for these methods. It examines the effectiveness of these techniques in augmenting training sets to improve performance in tasks such as topic classification, sentiment analysis, and offensive language detection. The research emphasizes not only the augmentation methods, but also the strategic order in which real and augmented instances are introduced during training. A major contribution is the development and evaluation of Modified Cyclical Curriculum Learning (MCCL) for augmented datasets, which represents a novel approach in the field. Results show that specific augmentation methods, especially when integrated with MCCL, significantly outperform traditional training approaches in NLP model performance. These results underscore the need for careful selection of augmentation techniques and sequencing strategies to optimize the balance between speed and quality improvement in various NLP tasks. The study concludes that the use of augmentation methods, especially in conjunction with MCCL, leads to improved results in various classification tasks, providing a foundation for future advances in text augmentation strategies in NLP.
Retrieve Anything To Augment Large Language Models
Large language models (LLMs) face significant challenges stemming from the inherent limitations in knowledge, memory, alignment, and action. These challenges cannot be addressed by LLMs alone, but should rely on assistance from the external world, such as knowledge base, memory store, demonstration examples, and tools. Retrieval augmentation stands as a vital mechanism for bridging the gap between LLMs and the external assistance. However, conventional methods encounter two pressing issues. On one hand, the general-purpose retrievers are not properly optimized for the retrieval augmentation of LLMs. On the other hand, the task-specific retrievers lack the required versatility, hindering their performance across the diverse retrieval augmentation scenarios. In this work, we present a novel approach, the LLM Embedder, which comprehensively support the diverse needs of LLMs' retrieval augmentation with one unified embedding model. Training such an unified model is non-trivial, as various retrieval tasks aim to capture distinct semantic relationships, often subject to mutual interference. To address this challenge, we systematically optimize our training methodology. This includes reward formulation based on LLMs' feedback, the stabilization of knowledge distillation, multi-task fine-tuning with explicit instructions, and the use of homogeneous in-batch negative sampling. These optimization strategies contribute to the outstanding empirical performance of the LLM-Embedder. Notably, it yields remarkable enhancements in retrieval augmentation for LLMs, surpassing both general-purpose and task-specific retrievers in various evaluation scenarios. This project is made publicly available at https://github.com/FlagOpen/FlagEmbedding.
PromptMix: A Class Boundary Augmentation Method for Large Language Model Distillation
Data augmentation is a widely used technique to address the problem of text classification when there is a limited amount of training data. Recent work often tackles this problem using large language models (LLMs) like GPT3 that can generate new examples given already available ones. In this work, we propose a method to generate more helpful augmented data by utilizing the LLM's abilities to follow instructions and perform few-shot classifications. Our specific PromptMix method consists of two steps: 1) generate challenging text augmentations near class boundaries; however, generating borderline examples increases the risk of false positives in the dataset, so we 2) relabel the text augmentations using a prompting-based LLM classifier to enhance the correctness of labels in the generated data. We evaluate the proposed method in challenging 2-shot and zero-shot settings on four text classification datasets: Banking77, TREC6, Subjectivity (SUBJ), and Twitter Complaints. Our experiments show that generating and, crucially, relabeling borderline examples facilitates the transfer of knowledge of a massive LLM like GPT3.5-turbo into smaller and cheaper classifiers like DistilBERT_{base} and BERT_{base}. Furthermore, 2-shot PromptMix outperforms multiple 5-shot data augmentation methods on the four datasets. Our code is available at https://github.com/ServiceNow/PromptMix-EMNLP-2023.
NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation
Data augmentation is an important component in the robustness evaluation of models in natural language processing (NLP) and in enhancing the diversity of the data they are trained on. In this paper, we present NL-Augmenter, a new participatory Python-based natural language augmentation framework which supports the creation of both transformations (modifications to the data) and filters (data splits according to specific features). We describe the framework and an initial set of 117 transformations and 23 filters for a variety of natural language tasks. We demonstrate the efficacy of NL-Augmenter by using several of its transformations to analyze the robustness of popular natural language models. The infrastructure, datacards and robustness analysis results are available publicly on the NL-Augmenter repository (https://github.com/GEM-benchmark/NL-Augmenter).
Language hooks: a modular framework for augmenting LLM reasoning that decouples tool usage from the model and its prompt
Prompting and fine-tuning have emerged as two competing paradigms for augmenting language models with new capabilities, such as the use of tools. Prompting approaches are quick to set up but rely on providing explicit demonstrations of each tool's usage in the model's prompt, thus coupling tool use to the task at hand and limiting generalisation. Fine-tuning removes the need for task-specific demonstrations of tool usage at runtime; however, this ties new capabilities to a single model, thus making already-heavier setup costs a recurring expense. In this paper, we introduce language hooks, a novel framework for augmenting language models with new capabilities that is decoupled both from the model's task-specific prompt and from the model itself. The language hook algorithm interleaves text generation by the base model with the execution of modular programs that trigger conditionally based on the existing text and the available capabilities. Upon triggering, programs may call external tools, auxiliary language models (e.g. using tool specific prompts), and modify the existing context. We benchmark our method against state-of-the-art baselines, find that it outperforms task-aware approaches, and demonstrate its ability to generalise to novel tasks.
Analysis of Data Augmentation Methods for Low-Resource Maltese ASR
Recent years have seen an increased interest in the computational speech processing of Maltese, but resources remain sparse. In this paper, we consider data augmentation techniques for improving speech recognition for low-resource languages, focusing on Maltese as a test case. We consider three different types of data augmentation: unsupervised training, multilingual training and the use of synthesized speech as training data. The goal is to determine which of these techniques, or combination of them, is the most effective to improve speech recognition for languages where the starting point is a small corpus of approximately 7 hours of transcribed speech. Our results show that combining the data augmentation techniques studied here lead us to an absolute WER improvement of 15% without the use of a language model.
Reduce, Reuse, Recycle: Is Perturbed Data better than Other Language augmentation for Low Resource Self-Supervised Speech Models
Self-supervised representation learning (SSRL) has demonstrated superior performance than supervised models for tasks including phoneme recognition. Training SSRL models poses a challenge for low-resource languages where sufficient pre-training data may not be available. A common approach is cross-lingual pre-training. Instead, we propose to use audio augmentation techniques, namely: pitch variation, noise addition, accented target language and other language speech to pre-train SSRL models in a low resource condition and evaluate phoneme recognition. Our comparisons found that a combined synthetic augmentations (noise/pitch) strategy outperformed accent and language knowledge transfer. Furthermore, we examined the scaling factor of augmented data to achieve equivalent performance to model pre-trained with target domain speech. Our findings suggest that for resource-constrained languages, combined augmentations can be a viable option than other augmentations.
GLIMMER: generalized late-interaction memory reranker
Memory-augmentation is a powerful approach for efficiently incorporating external information into language models, but leads to reduced performance relative to retrieving text. Recent work introduced LUMEN, a memory-retrieval hybrid that partially pre-computes memory and updates memory representations on the fly with a smaller live encoder. We propose GLIMMER, which improves on this approach through 1) exploiting free access to the powerful memory representations by applying a shallow reranker on top of memory to drastically improve retrieval quality at low cost, and 2) incorporating multi-task training to learn a general and higher quality memory and live encoder. GLIMMER achieves strong gains in performance at faster speeds compared to LUMEN and FiD on the KILT benchmark of knowledge-intensive tasks.
How Effective is Task-Agnostic Data Augmentation for Pretrained Transformers?
Task-agnostic forms of data augmentation have proven widely effective in computer vision, even on pretrained models. In NLP similar results are reported most commonly for low data regimes, non-pretrained models, or situationally for pretrained models. In this paper we ask how effective these techniques really are when applied to pretrained transformers. Using two popular varieties of task-agnostic data augmentation (not tailored to any particular task), Easy Data Augmentation (Wei and Zou, 2019) and Back-Translation (Sennrichet al., 2015), we conduct a systematic examination of their effects across 5 classification tasks, 6 datasets, and 3 variants of modern pretrained transformers, including BERT, XLNet, and RoBERTa. We observe a negative result, finding that techniques which previously reported strong improvements for non-pretrained models fail to consistently improve performance for pretrained transformers, even when training data is limited. We hope this empirical analysis helps inform practitioners where data augmentation techniques may confer improvements.
Learn Beyond The Answer: Training Language Models with Reflection for Mathematical Reasoning
Supervised fine-tuning enhances the problem-solving abilities of language models across various mathematical reasoning tasks. To maximize such benefits, existing research focuses on broadening the training set with various data augmentation techniques, which is effective for standard single-round question-answering settings. Our work introduces a novel technique aimed at cultivating a deeper understanding of the training problems at hand, enhancing performance not only in standard settings but also in more complex scenarios that require reflective thinking. Specifically, we propose reflective augmentation, a method that embeds problem reflection into each training instance. It trains the model to consider alternative perspectives and engage with abstractions and analogies, thereby fostering a thorough comprehension through reflective reasoning. Extensive experiments validate the achievement of our aim, underscoring the unique advantages of our method and its complementary nature relative to existing augmentation techniques.
Network Augmentation for Tiny Deep Learning
We introduce Network Augmentation (NetAug), a new training method for improving the performance of tiny neural networks. Existing regularization techniques (e.g., data augmentation, dropout) have shown much success on large neural networks by adding noise to overcome over-fitting. However, we found these techniques hurt the performance of tiny neural networks. We argue that training tiny models are different from large models: rather than augmenting the data, we should augment the model, since tiny models tend to suffer from under-fitting rather than over-fitting due to limited capacity. To alleviate this issue, NetAug augments the network (reverse dropout) instead of inserting noise into the dataset or the network. It puts the tiny model into larger models and encourages it to work as a sub-model of larger models to get extra supervision, in addition to functioning as an independent model. At test time, only the tiny model is used for inference, incurring zero inference overhead. We demonstrate the effectiveness of NetAug on image classification and object detection. NetAug consistently improves the performance of tiny models, achieving up to 2.2% accuracy improvement on ImageNet. On object detection, achieving the same level of performance, NetAug requires 41% fewer MACs on Pascal VOC and 38% fewer MACs on COCO than the baseline.
SemAug: Semantically Meaningful Image Augmentations for Object Detection Through Language Grounding
Data augmentation is an essential technique in improving the generalization of deep neural networks. The majority of existing image-domain augmentations either rely on geometric and structural transformations, or apply different kinds of photometric distortions. In this paper, we propose an effective technique for image augmentation by injecting contextually meaningful knowledge into the scenes. Our method of semantically meaningful image augmentation for object detection via language grounding, SemAug, starts by calculating semantically appropriate new objects that can be placed into relevant locations in the image (the what and where problems). Then it embeds these objects into their relevant target locations, thereby promoting diversity of object instance distribution. Our method allows for introducing new object instances and categories that may not even exist in the training set. Furthermore, it does not require the additional overhead of training a context network, so it can be easily added to existing architectures. Our comprehensive set of evaluations showed that the proposed method is very effective in improving the generalization, while the overhead is negligible. In particular, for a wide range of model architectures, our method achieved ~2-4% and ~1-2% mAP improvements for the task of object detection on the Pascal VOC and COCO datasets, respectively.
LM-CPPF: Paraphrasing-Guided Data Augmentation for Contrastive Prompt-Based Few-Shot Fine-Tuning
In recent years, there has been significant progress in developing pre-trained language models for NLP. However, these models often struggle when fine-tuned on small datasets. To address this issue, researchers have proposed various adaptation approaches. Prompt-based tuning is arguably the most common way, especially for larger models. Previous research shows that adding contrastive learning to prompt-based fine-tuning is effective as it helps the model generate embeddings that are more distinguishable between classes, and it can also be more sample-efficient as the model learns from positive and negative examples simultaneously. One of the most important components of contrastive learning is data augmentation, but unlike computer vision, effective data augmentation for NLP is still challenging. This paper proposes LM-CPPF, Contrastive Paraphrasing-guided Prompt-based Fine-tuning of Language Models, which leverages prompt-based few-shot paraphrasing using generative language models, especially large language models such as GPT-3 and OPT-175B, for data augmentation. Our experiments on multiple text classification benchmarks show that this augmentation method outperforms other methods, such as easy data augmentation, back translation, and multiple templates.
Augmentation-Aware Self-Supervision for Data-Efficient GAN Training
Training generative adversarial networks (GANs) with limited data is challenging because the discriminator is prone to overfitting. Previously proposed differentiable augmentation demonstrates improved data efficiency of training GANs. However, the augmentation implicitly introduces undesired invariance to augmentation for the discriminator since it ignores the change of semantics in the label space caused by data transformation, which may limit the representation learning ability of the discriminator and ultimately affect the generative modeling performance of the generator. To mitigate the negative impact of invariance while inheriting the benefits of data augmentation, we propose a novel augmentation-aware self-supervised discriminator that predicts the augmentation parameter of the augmented data. Particularly, the prediction targets of real data and generated data are required to be distinguished since they are different during training. We further encourage the generator to adversarially learn from the self-supervised discriminator by generating augmentation-predictable real and not fake data. This formulation connects the learning objective of the generator and the arithmetic - harmonic mean divergence under certain assumptions. We compare our method with state-of-the-art (SOTA) methods using the class-conditional BigGAN and unconditional StyleGAN2 architectures on data-limited CIFAR-10, CIFAR-100, FFHQ, LSUN-Cat, and five low-shot datasets. Experimental results demonstrate significant improvements of our method over SOTA methods in training data-efficient GANs.
Colorful Cutout: Enhancing Image Data Augmentation with Curriculum Learning
Data augmentation is one of the regularization strategies for the training of deep learning models, which enhances generalizability and prevents overfitting, leading to performance improvement. Although researchers have proposed various data augmentation techniques, they often lack consideration for the difficulty of augmented data. Recently, another line of research suggests incorporating the concept of curriculum learning with data augmentation in the field of natural language processing. In this study, we adopt curriculum data augmentation for image data augmentation and propose colorful cutout, which gradually increases the noise and difficulty introduced in the augmented image. Our experimental results highlight the possibility of curriculum data augmentation for image data. We publicly released our source code to improve the reproducibility of our study.
Transformers Can Do Arithmetic with the Right Embeddings
The poor performance of transformers on arithmetic tasks seems to stem in large part from their inability to keep track of the exact position of each digit inside of a large span of digits. We mend this problem by adding an embedding to each digit that encodes its position relative to the start of the number. In addition to the boost these embeddings provide on their own, we show that this fix enables architectural modifications such as input injection and recurrent layers to improve performance even further. With positions resolved, we can study the logical extrapolation ability of transformers. Can they solve arithmetic problems that are larger and more complex than those in their training data? We find that training on only 20 digit numbers with a single GPU for one day, we can reach state-of-the-art performance, achieving up to 99% accuracy on 100 digit addition problems. Finally, we show that these gains in numeracy also unlock improvements on other multi-step reasoning tasks including sorting and multiplication.
Thinking Augmented Pre-training
This paper introduces a simple and scalable approach to improve the data efficiency of large language model (LLM) training by augmenting existing text data with thinking trajectories. The compute for pre-training LLMs has been growing at an unprecedented rate, while the availability of high-quality data remains limited. Consequently, maximizing the utility of available data constitutes a significant research challenge. A primary impediment is that certain high-quality tokens are difficult to learn given a fixed model capacity, as the underlying rationale for a single token can be exceptionally complex and deep. To address this issue, we propose Thinking augmented Pre-Training (TPT), a universal methodology that augments text with automatically generated thinking trajectories. Such augmentation effectively increases the volume of the training data and makes high-quality tokens more learnable through step-by-step reasoning and decomposition. We apply TPT across diverse training configurations up to 100B tokens, encompassing pre-training with both constrained and abundant data, as well as mid-training from strong open-source checkpoints. Experimental results indicate that our method substantially improves the performance of LLMs across various model sizes and families. Notably, TPT enhances the data efficiency of LLM pre-training by a factor of 3. For a 3B parameter model, it improves the post-training performance by over 10% on several challenging reasoning benchmarks.
ResizeMix: Mixing Data with Preserved Object Information and True Labels
Data augmentation is a powerful technique to increase the diversity of data, which can effectively improve the generalization ability of neural networks in image recognition tasks. Recent data mixing based augmentation strategies have achieved great success. Especially, CutMix uses a simple but effective method to improve the classifiers by randomly cropping a patch from one image and pasting it on another image. To further promote the performance of CutMix, a series of works explore to use the saliency information of the image to guide the mixing. We systematically study the importance of the saliency information for mixing data, and find that the saliency information is not so necessary for promoting the augmentation performance. Furthermore, we find that the cutting based data mixing methods carry two problems of label misallocation and object information missing, which cannot be resolved simultaneously. We propose a more effective but very easily implemented method, namely ResizeMix. We mix the data by directly resizing the source image to a small patch and paste it on another image. The obtained patch preserves more substantial object information compared with conventional cut-based methods. ResizeMix shows evident advantages over CutMix and the saliency-guided methods on both image classification and object detection tasks without additional computation cost, which even outperforms most costly search-based automatic augmentation methods.
Augmentation-Adapted Retriever Improves Generalization of Language Models as Generic Plug-In
Retrieval augmentation can aid language models (LMs) in knowledge-intensive tasks by supplying them with external information. Prior works on retrieval augmentation usually jointly fine-tune the retriever and the LM, making them closely coupled. In this paper, we explore the scheme of generic retrieval plug-in: the retriever is to assist target LMs that may not be known beforehand or are unable to be fine-tuned together. To retrieve useful documents for unseen target LMs, we propose augmentation-adapted retriever (AAR), which learns LM's preferences obtained from a known source LM. Experiments on the MMLU and PopQA datasets demonstrate that our AAR trained with a small source LM is able to significantly improve the zero-shot generalization of larger target LMs ranging from 250M Flan-T5 to 175B InstructGPT. Further analysis indicates that the preferences of different LMs overlap, enabling AAR trained with a single source LM to serve as a generic plug-in for various target LMs. Our code is open-sourced at https://github.com/OpenMatch/Augmentation-Adapted-Retriever.
Improving CLIP Training with Language Rewrites
Contrastive Language-Image Pre-training (CLIP) stands as one of the most effective and scalable methods for training transferable vision models using paired image and text data. CLIP models are trained using contrastive loss, which typically relies on data augmentations to prevent overfitting and shortcuts. However, in the CLIP training paradigm, data augmentations are exclusively applied to image inputs, while language inputs remain unchanged throughout the entire training process, limiting the exposure of diverse texts to the same image. In this paper, we introduce Language augmented CLIP (LaCLIP), a simple yet highly effective approach to enhance CLIP training through language rewrites. Leveraging the in-context learning capability of large language models, we rewrite the text descriptions associated with each image. These rewritten texts exhibit diversity in sentence structure and vocabulary while preserving the original key concepts and meanings. During training, LaCLIP randomly selects either the original texts or the rewritten versions as text augmentations for each image. Extensive experiments on CC3M, CC12M, RedCaps and LAION-400M datasets show that CLIP pre-training with language rewrites significantly improves the transfer performance without computation or memory overhead during training. Specifically for ImageNet zero-shot accuracy, LaCLIP outperforms CLIP by 8.2% on CC12M and 2.4% on LAION-400M. Code is available at https://github.com/LijieFan/LaCLIP.
Enhancing Effectiveness and Robustness in a Low-Resource Regime via Decision-Boundary-aware Data Augmentation
Efforts to leverage deep learning models in low-resource regimes have led to numerous augmentation studies. However, the direct application of methods such as mixup and cutout to text data, is limited due to their discrete characteristics. While methods using pretrained language models have exhibited efficiency, they require additional considerations for robustness. Inspired by recent studies on decision boundaries, this paper proposes a decision-boundary-aware data augmentation strategy to enhance robustness using pretrained language models. The proposed technique first focuses on shifting the latent features closer to the decision boundary, followed by reconstruction to generate an ambiguous version with a soft label. Additionally, mid-K sampling is suggested to enhance the diversity of the generated sentences. This paper demonstrates the performance of the proposed augmentation strategy compared to other methods through extensive experiments. Furthermore, the ablation study reveals the effect of soft labels and mid-K sampling and the extensibility of the method with curriculum data augmentation.
BrightCookies at SemEval-2025 Task 9: Exploring Data Augmentation for Food Hazard Classification
This paper presents our system developed for the SemEval-2025 Task 9: The Food Hazard Detection Challenge. The shared task's objective is to evaluate explainable classification systems for classifying hazards and products in two levels of granularity from food recall incident reports. In this work, we propose text augmentation techniques as a way to improve poor performance on minority classes and compare their effect for each category on various transformer and machine learning models. We explore three word-level data augmentation techniques, namely synonym replacement, random word swapping, and contextual word insertion. The results show that transformer models tend to have a better overall performance. None of the three augmentation techniques consistently improved overall performance for classifying hazards and products. We observed a statistically significant improvement (P < 0.05) in the fine-grained categories when using the BERT model to compare the baseline with each augmented model. Compared to the baseline, the contextual words insertion augmentation improved the accuracy of predictions for the minority hazard classes by 6%. This suggests that targeted augmentation of minority classes can improve the performance of transformer models.
Recoding latent sentence representations -- Dynamic gradient-based activation modification in RNNs
In Recurrent Neural Networks (RNNs), encoding information in a suboptimal or erroneous way can impact the quality of representations based on later elements in the sequence and subsequently lead to wrong predictions and a worse model performance. In humans, challenging cases like garden path sentences (an instance of this being the infamous "The horse raced past the barn fell") can lead their language understanding astray. However, they are still able to correct their representation accordingly and recover when new information is encountered. Inspired by this, I propose an augmentation to standard RNNs in form of a gradient-based correction mechanism: This way I hope to enable such models to dynamically adapt their inner representation of a sentence, adding a way to correct deviations as soon as they occur. This could therefore lead to more robust models using more flexible representations, even during inference time. I conduct different experiments in the context of language modeling, where the impact of using such a mechanism is examined in detail. To this end, I look at modifications based on different kinds of time-dependent error signals and how they influence the model performance. Furthermore, this work contains a study of the model's confidence in its predictions during training and for challenging test samples and the effect of the manipulation thereof. Lastly, I also study the difference in behavior of these novel models compared to a standard LSTM baseline and investigate error cases in detail to identify points of future research. I show that while the proposed approach comes with promising theoretical guarantees and an appealing intuition, it is only able to produce minor improvements over the baseline due to challenges in its practical application and the efficacy of the tested model variants.
TTIDA: Controllable Generative Data Augmentation via Text-to-Text and Text-to-Image Models
Data augmentation has been established as an efficacious approach to supplement useful information for low-resource datasets. Traditional augmentation techniques such as noise injection and image transformations have been widely used. In addition, generative data augmentation (GDA) has been shown to produce more diverse and flexible data. While generative adversarial networks (GANs) have been frequently used for GDA, they lack diversity and controllability compared to text-to-image diffusion models. In this paper, we propose TTIDA (Text-to-Text-to-Image Data Augmentation) to leverage the capabilities of large-scale pre-trained Text-to-Text (T2T) and Text-to-Image (T2I) generative models for data augmentation. By conditioning the T2I model on detailed descriptions produced by T2T models, we are able to generate photo-realistic labeled images in a flexible and controllable manner. Experiments on in-domain classification, cross-domain classification, and image captioning tasks show consistent improvements over other data augmentation baselines. Analytical studies in varied settings, including few-shot, long-tail, and adversarial, further reinforce the effectiveness of TTIDA in enhancing performance and increasing robustness.
Parametric Augmentation for Time Series Contrastive Learning
Modern techniques like contrastive learning have been effectively used in many areas, including computer vision, natural language processing, and graph-structured data. Creating positive examples that assist the model in learning robust and discriminative representations is a crucial stage in contrastive learning approaches. Usually, preset human intuition directs the selection of relevant data augmentations. Due to patterns that are easily recognized by humans, this rule of thumb works well in the vision and language domains. However, it is impractical to visually inspect the temporal structures in time series. The diversity of time series augmentations at both the dataset and instance levels makes it difficult to choose meaningful augmentations on the fly. In this study, we address this gap by analyzing time series data augmentation using information theory and summarizing the most commonly adopted augmentations in a unified format. We then propose a contrastive learning framework with parametric augmentation, AutoTCL, which can be adaptively employed to support time series representation learning. The proposed approach is encoder-agnostic, allowing it to be seamlessly integrated with different backbone encoders. Experiments on univariate forecasting tasks demonstrate the highly competitive results of our method, with an average 6.5\% reduction in MSE and 4.7\% in MAE over the leading baselines. In classification tasks, AutoTCL achieves a 1.2% increase in average accuracy.
Text Injection for Capitalization and Turn-Taking Prediction in Speech Models
Text injection for automatic speech recognition (ASR), wherein unpaired text-only data is used to supplement paired audio-text data, has shown promising improvements for word error rate. This study examines the use of text injection for auxiliary tasks, which are the non-ASR tasks often performed by an E2E model. In this work, we use joint end-to-end and internal language model training (JEIT) as our text injection algorithm to train an ASR model which performs two auxiliary tasks. The first is capitalization, which is a de-normalization task. The second is turn-taking prediction, which attempts to identify whether a user has completed their conversation turn in a digital assistant interaction. We show results demonstrating that our text injection method boosts capitalization performance for long-tail data, and improves turn-taking detection recall.
RegMix: Data Mixing Augmentation for Regression
Data augmentation is becoming essential for improving regression performance in critical applications including manufacturing, climate prediction, and finance. Existing techniques for data augmentation largely focus on classification tasks and do not readily apply to regression tasks. In particular, the recent Mixup techniques for classification have succeeded in improving the model performance, which is reasonable due to the characteristics of the classification task, but has limitations in regression. We show that mixing examples that have large data distances using linear interpolations may have increasingly-negative effects on model performance. Our key idea is thus to limit the distances between examples that are mixed. We propose RegMix, a data augmentation framework for regression that learns for each example how many nearest neighbors it should be mixed with for the best model performance using a validation set. Our experiments conducted both on synthetic and real datasets show that RegMix outperforms state-of-the-art data augmentation baselines applicable to regression.
EventRPG: Event Data Augmentation with Relevance Propagation Guidance
Event camera, a novel bio-inspired vision sensor, has drawn a lot of attention for its low latency, low power consumption, and high dynamic range. Currently, overfitting remains a critical problem in event-based classification tasks for Spiking Neural Network (SNN) due to its relatively weak spatial representation capability. Data augmentation is a simple but efficient method to alleviate overfitting and improve the generalization ability of neural networks, and saliency-based augmentation methods are proven to be effective in the image processing field. However, there is no approach available for extracting saliency maps from SNNs. Therefore, for the first time, we present Spiking Layer-Time-wise Relevance Propagation rule (SLTRP) and Spiking Layer-wise Relevance Propagation rule (SLRP) in order for SNN to generate stable and accurate CAMs and saliency maps. Based on this, we propose EventRPG, which leverages relevance propagation on the spiking neural network for more efficient augmentation. Our proposed method has been evaluated on several SNN structures, achieving state-of-the-art performance in object recognition tasks including N-Caltech101, CIFAR10-DVS, with accuracies of 85.62% and 85.55%, as well as action recognition task SL-Animals with an accuracy of 91.59%. Our code is available at https://github.com/myuansun/EventRPG.
GPT3Mix: Leveraging Large-scale Language Models for Text Augmentation
Large-scale language models such as GPT-3 are excellent few-shot learners, allowing them to be controlled via natural text prompts. Recent studies report that prompt-based direct classification eliminates the need for fine-tuning but lacks data and inference scalability. This paper proposes a novel data augmentation technique that leverages large-scale language models to generate realistic text samples from a mixture of real samples. We also propose utilizing soft-labels predicted by the language models, effectively distilling knowledge from the large-scale language models and creating textual perturbations simultaneously. We perform data augmentation experiments on diverse classification tasks and show that our method hugely outperforms existing text augmentation methods. Ablation studies and a qualitative analysis provide more insights into our approach.
MatchboxNet: 1D Time-Channel Separable Convolutional Neural Network Architecture for Speech Commands Recognition
We present an MatchboxNet - an end-to-end neural network for speech command recognition. MatchboxNet is a deep residual network composed from blocks of 1D time-channel separable convolution, batch-normalization, ReLU and dropout layers. MatchboxNet reaches state-of-the-art accuracy on the Google Speech Commands dataset while having significantly fewer parameters than similar models. The small footprint of MatchboxNet makes it an attractive candidate for devices with limited computational resources. The model is highly scalable, so model accuracy can be improved with modest additional memory and compute. Finally, we show how intensive data augmentation using an auxiliary noise dataset improves robustness in the presence of background noise.
Using Large Language Models to Accelerate Communication for Users with Severe Motor Impairments
Finding ways to accelerate text input for individuals with profound motor impairments has been a long-standing area of research. Closing the speed gap for augmentative and alternative communication (AAC) devices such as eye-tracking keyboards is important for improving the quality of life for such individuals. Recent advances in neural networks of natural language pose new opportunities for re-thinking strategies and user interfaces for enhanced text-entry for AAC users. In this paper, we present SpeakFaster, consisting of large language models (LLMs) and a co-designed user interface for text entry in a highly-abbreviated form, allowing saving 57% more motor actions than traditional predictive keyboards in offline simulation. A pilot study with 19 non-AAC participants typing on a mobile device by hand demonstrated gains in motor savings in line with the offline simulation, while introducing relatively small effects on overall typing speed. Lab and field testing on two eye-gaze typing users with amyotrophic lateral sclerosis (ALS) demonstrated text-entry rates 29-60% faster than traditional baselines, due to significant saving of expensive keystrokes achieved through phrase and word predictions from context-aware LLMs. These findings provide a strong foundation for further exploration of substantially-accelerated text communication for motor-impaired users and demonstrate a direction for applying LLMs to text-based user interfaces.
Steering Llama 2 via Contrastive Activation Addition
We introduce Contrastive Activation Addition (CAA), an innovative method for steering language models by modifying activations during their forward passes. CAA computes ``steering vectors'' by averaging the difference in residual stream activations between pairs of positive and negative examples of a particular behavior such as factual versus hallucinatory responses. During inference, these steering vectors are added at all token positions after the user's prompt with either a positive or negative coefficient, allowing precise control over the degree of the targeted behavior. We evaluate CAA's effectiveness on Llama 2 Chat using both multiple-choice behavioral question datasets and open-ended generation tasks. We demonstrate that CAA significantly alters model behavior, outperforms traditional methods like finetuning and few-shot prompting, and minimally reduces capabilities. Moreover, by employing various activation space interpretation methods, we gain deeper insights into CAA's mechanisms. CAA both accurately steers model outputs and also sheds light on how high-level concepts are represented in Large Language Models (LLMs).
RandAugment: Practical automated data augmentation with a reduced search space
Recent work has shown that data augmentation has the potential to significantly improve the generalization of deep learning models. Recently, automated augmentation strategies have led to state-of-the-art results in image classification and object detection. While these strategies were optimized for improving validation accuracy, they also led to state-of-the-art results in semi-supervised learning and improved robustness to common corruptions of images. An obstacle to a large-scale adoption of these methods is a separate search phase which increases the training complexity and may substantially increase the computational cost. Additionally, due to the separate search phase, these approaches are unable to adjust the regularization strength based on model or dataset size. Automated augmentation policies are often found by training small models on small datasets and subsequently applied to train larger models. In this work, we remove both of these obstacles. RandAugment has a significantly reduced search space which allows it to be trained on the target task with no need for a separate proxy task. Furthermore, due to the parameterization, the regularization strength may be tailored to different model and dataset sizes. RandAugment can be used uniformly across different tasks and datasets and works out of the box, matching or surpassing all previous automated augmentation approaches on CIFAR-10/100, SVHN, and ImageNet. On the ImageNet dataset we achieve 85.0% accuracy, a 0.6% increase over the previous state-of-the-art and 1.0% increase over baseline augmentation. On object detection, RandAugment leads to 1.0-1.3% improvement over baseline augmentation, and is within 0.3% mAP of AutoAugment on COCO. Finally, due to its interpretable hyperparameter, RandAugment may be used to investigate the role of data augmentation with varying model and dataset size. Code is available online.
Portuguese FAQ for Financial Services
Scarcity of domain-specific data in the Portuguese financial domain has disfavored the development of Natural Language Processing (NLP) applications. To address this limitation, the present study advocates for the utilization of synthetic data generated through data augmentation techniques. The investigation focuses on the augmentation of a dataset sourced from the Central Bank of Brazil FAQ, employing techniques that vary in semantic similarity. Supervised and unsupervised tasks are conducted to evaluate the impact of augmented data on both low and high semantic similarity scenarios. Additionally, the resultant dataset will be publicly disseminated on the Hugging Face Datasets platform, thereby enhancing accessibility and fostering broader engagement within the NLP research community.
DIAGen: Diverse Image Augmentation with Generative Models
Simple data augmentation techniques, such as rotations and flips, are widely used to enhance the generalization power of computer vision models. However, these techniques often fail to modify high-level semantic attributes of a class. To address this limitation, researchers have explored generative augmentation methods like the recently proposed DA-Fusion. Despite some progress, the variations are still largely limited to textural changes, thus falling short on aspects like varied viewpoints, environment, weather conditions, or even class-level semantic attributes (eg, variations in a dog's breed). To overcome this challenge, we propose DIAGen, building upon DA-Fusion. First, we apply Gaussian noise to the embeddings of an object learned with Textual Inversion to diversify generations using a pre-trained diffusion model's knowledge. Second, we exploit the general knowledge of a text-to-text generative model to guide the image generation of the diffusion model with varied class-specific prompts. Finally, we introduce a weighting mechanism to mitigate the impact of poorly generated samples. Experimental results across various datasets show that DIAGen not only enhances semantic diversity but also improves the performance of subsequent classifiers. The advantages of DIAGen over standard augmentations and the DA-Fusion baseline are particularly pronounced with out-of-distribution samples.
Randomized Quantization: A Generic Augmentation for Data Agnostic Self-supervised Learning
Self-supervised representation learning follows a paradigm of withholding some part of the data and tasking the network to predict it from the remaining part. Among many techniques, data augmentation lies at the core for creating the information gap. Towards this end, masking has emerged as a generic and powerful tool where content is withheld along the sequential dimension, e.g., spatial in images, temporal in audio, and syntactic in language. In this paper, we explore the orthogonal channel dimension for generic data augmentation by exploiting precision redundancy. The data for each channel is quantized through a non-uniform quantizer, with the quantized value sampled randomly within randomly sampled quantization bins. From another perspective, quantization is analogous to channel-wise masking, as it removes the information within each bin, but preserves the information across bins. Our approach significantly surpasses existing generic data augmentation methods, while showing on par performance against modality-specific augmentations. We comprehensively evaluate our approach on vision, audio, 3D point clouds, as well as the DABS benchmark which is comprised of various data modalities. The code is available at https: //github.com/microsoft/random_quantize.
ALP: Data Augmentation using Lexicalized PCFGs for Few-Shot Text Classification
Data augmentation has been an important ingredient for boosting performances of learned models. Prior data augmentation methods for few-shot text classification have led to great performance boosts. However, they have not been designed to capture the intricate compositional structure of natural language. As a result, they fail to generate samples with plausible and diverse sentence structures. Motivated by this, we present the data Augmentation using Lexicalized Probabilistic context-free grammars (ALP) that generates augmented samples with diverse syntactic structures with plausible grammar. The lexicalized PCFG parse trees consider both the constituents and dependencies to produce a syntactic frame that maximizes a variety of word choices in a syntactically preservable manner without specific domain experts. Experiments on few-shot text classification tasks demonstrate that ALP enhances many state-of-the-art classification methods. As a second contribution, we delve into the train-val splitting methodologies when a data augmentation method comes into play. We argue empirically that the traditional splitting of training and validation sets is sub-optimal compared to our novel augmentation-based splitting strategies that further expand the training split with the same number of labeled data. Taken together, our contributions on the data augmentation strategies yield a strong training recipe for few-shot text classification tasks.
Is a prompt and a few samples all you need? Using GPT-4 for data augmentation in low-resource classification tasks
Obtaining and annotating data can be expensive and time-consuming, especially in complex, low-resource domains. We use GPT-4 and ChatGPT to augment small labeled datasets with synthetic data via simple prompts, in three different classification tasks with varying complexity. For each task, we randomly select a base sample of 500 texts to generate 5,000 new synthetic samples. We explore two augmentation strategies: one that preserves original label distribution and another that balances the distribution. Using a progressively larger training sample size, we train and evaluate a 110M parameter multilingual language model on the real and synthetic data separately. We also test GPT-4 and ChatGPT in a zero-shot setting on the test sets. We observe that GPT-4 and ChatGPT have strong zero-shot performance across all tasks. We find that data augmented with synthetic samples yields a good downstream performance, and particularly aids in low-resource settings, such as in identifying rare classes. Human-annotated data exhibits a strong predictive power, overtaking synthetic data in two out of the three tasks. This finding highlights the need for more complex prompts for synthetic datasets to consistently surpass human-generated ones.
MALM: Mixing Augmented Language Modeling for Zero-Shot Machine Translation
Large pre-trained language models have brought remarkable progress in NLP. Pre-training and Fine-tuning have given state-of-art performance across tasks in text processing. Data Augmentation techniques have also helped build state-of-art models on low or zero resource tasks. Many works in the past have attempted at learning a single massively-multilingual machine translation model for zero-shot translation. Although those translation models are producing correct translations, the main challenge is those models are producing the wrong languages for zero-shot translation. This work and its results indicate that prompt conditioned large models do not suffer from off-target language errors i.e. errors arising due to translation to wrong languages. We empirically demonstrate the effectiveness of self-supervised pre-training and data augmentation for zero-shot multi-lingual machine translation.
AimBot: A Simple Auxiliary Visual Cue to Enhance Spatial Awareness of Visuomotor Policies
In this paper, we propose AimBot, a lightweight visual augmentation technique that provides explicit spatial cues to improve visuomotor policy learning in robotic manipulation. AimBot overlays shooting lines and scope reticles onto multi-view RGB images, offering auxiliary visual guidance that encodes the end-effector's state. The overlays are computed from depth images, camera extrinsics, and the current end-effector pose, explicitly conveying spatial relationships between the gripper and objects in the scene. AimBot incurs minimal computational overhead (less than 1 ms) and requires no changes to model architectures, as it simply replaces original RGB images with augmented counterparts. Despite its simplicity, our results show that AimBot consistently improves the performance of various visuomotor policies in both simulation and real-world settings, highlighting the benefits of spatially grounded visual feedback.
ZeroShotDataAug: Generating and Augmenting Training Data with ChatGPT
In this paper, we investigate the use of data obtained from prompting a large generative language model, ChatGPT, to generate synthetic training data with the aim of augmenting data in low resource scenarios. We show that with appropriate task-specific ChatGPT prompts, we outperform the most popular existing approaches for such data augmentation. Furthermore, we investigate methodologies for evaluating the similarity of the augmented data generated from ChatGPT with the aim of validating and assessing the quality of the data generated.
Model-tuning Via Prompts Makes NLP Models Adversarially Robust
In recent years, NLP practitioners have converged on the following practice: (i) import an off-the-shelf pretrained (masked) language model; (ii) append a multilayer perceptron atop the CLS token's hidden representation (with randomly initialized weights); and (iii) fine-tune the entire model on a downstream task (MLP-FT). This procedure has produced massive gains on standard NLP benchmarks, but these models remain brittle, even to mild adversarial perturbations. In this work, we demonstrate surprising gains in adversarial robustness enjoyed by Model-tuning Via Prompts (MVP), an alternative method of adapting to downstream tasks. Rather than appending an MLP head to make output prediction, MVP appends a prompt template to the input, and makes prediction via text infilling/completion. Across 5 NLP datasets, 4 adversarial attacks, and 3 different models, MVP improves performance against adversarial substitutions by an average of 8% over standard methods and even outperforms adversarial training-based state-of-art defenses by 3.5%. By combining MVP with adversarial training, we achieve further improvements in adversarial robustness while maintaining performance on unperturbed examples. Finally, we conduct ablations to investigate the mechanism underlying these gains. Notably, we find that the main causes of vulnerability of MLP-FT can be attributed to the misalignment between pre-training and fine-tuning tasks, and the randomly initialized MLP parameters.
Online Gesture Recognition using Transformer and Natural Language Processing
The Transformer architecture is shown to provide a powerful machine transduction framework for online handwritten gestures corresponding to glyph strokes of natural language sentences. The attention mechanism is successfully used to create latent representations of an end-to-end encoder-decoder model, solving multi-level segmentation while also learning some language features and syntax rules. The additional use of a large decoding space with some learned Byte-Pair-Encoding (BPE) is shown to provide robustness to ablated inputs and syntax rules. The encoder stack was directly fed with spatio-temporal data tokens potentially forming an infinitely large input vocabulary, an approach that finds applications beyond that of this work. Encoder transfer learning capabilities is also demonstrated on several languages resulting in faster optimisation and shared parameters. A new supervised dataset of online handwriting gestures suitable for generic handwriting recognition tasks was used to successfully train a small transformer model to an average normalised Levenshtein accuracy of 96% on English or German sentences and 94% in French.
A Survey of Data Augmentation Approaches for NLP
Data augmentation has recently seen increased interest in NLP due to more work in low-resource domains, new tasks, and the popularity of large-scale neural networks that require large amounts of training data. Despite this recent upsurge, this area is still relatively underexplored, perhaps due to the challenges posed by the discrete nature of language data. In this paper, we present a comprehensive and unifying survey of data augmentation for NLP by summarizing the literature in a structured manner. We first introduce and motivate data augmentation for NLP, and then discuss major methodologically representative approaches. Next, we highlight techniques that are used for popular NLP applications and tasks. We conclude by outlining current challenges and directions for future research. Overall, our paper aims to clarify the landscape of existing literature in data augmentation for NLP and motivate additional work in this area. We also present a GitHub repository with a paper list that will be continuously updated at https://github.com/styfeng/DataAug4NLP
H2R: A Human-to-Robot Data Augmentation for Robot Pre-training from Videos
Large-scale pre-training using videos has proven effective for robot learning. However, the models pre-trained on such data can be suboptimal for robot learning due to the significant visual gap between human hands and those of different robots. To remedy this, we propose H2R, a simple data augmentation technique that detects human hand keypoints, synthesizes robot motions in simulation, and composites rendered robots into egocentric videos. This process explicitly bridges the visual gap between human and robot embodiments during pre-training. We apply H2R to augment large-scale egocentric human video datasets such as Ego4D and SSv2, replacing human hands with simulated robotic arms to generate robot-centric training data. Based on this, we construct and release a family of 1M-scale datasets covering multiple robot embodiments (UR5 with gripper/Leaphand, Franka) and data sources (SSv2, Ego4D). To verify the effectiveness of the augmentation pipeline, we introduce a CLIP-based image-text similarity metric that quantitatively evaluates the semantic fidelity of robot-rendered frames to the original human actions. We validate H2R across three simulation benchmarks: Robomimic, RLBench and PushT and real-world manipulation tasks with a UR5 robot equipped with Gripper and Leaphand end-effectors. H2R consistently improves downstream success rates, yielding gains of 5.0%-10.2% in simulation and 6.7%-23.3% in real-world tasks across various visual encoders and policy learning methods. These results indicate that H2R improves the generalization ability of robotic policies by mitigating the visual discrepancies between human and robot domains.
Cross-Modal Attribute Insertions for Assessing the Robustness of Vision-and-Language Learning
The robustness of multimodal deep learning models to realistic changes in the input text is critical for their applicability to important tasks such as text-to-image retrieval and cross-modal entailment. To measure robustness, several existing approaches edit the text data, but do so without leveraging the cross-modal information present in multimodal data. Information from the visual modality, such as color, size, and shape, provide additional attributes that users can include in their inputs. Thus, we propose cross-modal attribute insertions as a realistic perturbation strategy for vision-and-language data that inserts visual attributes of the objects in the image into the corresponding text (e.g., "girl on a chair" to "little girl on a wooden chair"). Our proposed approach for cross-modal attribute insertions is modular, controllable, and task-agnostic. We find that augmenting input text using cross-modal insertions causes state-of-the-art approaches for text-to-image retrieval and cross-modal entailment to perform poorly, resulting in relative drops of 15% in MRR and 20% in F_1 score, respectively. Crowd-sourced annotations demonstrate that cross-modal insertions lead to higher quality augmentations for multimodal data than augmentations using text-only data, and are equivalent in quality to original examples. We release the code to encourage robustness evaluations of deep vision-and-language models: https://github.com/claws-lab/multimodal-robustness-xmai.
Code Needs Comments: Enhancing Code LLMs with Comment Augmentation
The programming skill is one crucial ability for Large Language Models (LLMs), necessitating a deep understanding of programming languages (PLs) and their correlation with natural languages (NLs). We examine the impact of pre-training data on code-focused LLMs' performance by assessing the comment density as a measure of PL-NL alignment. Given the scarcity of code-comment aligned data in pre-training corpora, we introduce a novel data augmentation method that generates comments for existing code, coupled with a data filtering strategy that filters out code data poorly correlated with natural language. We conducted experiments on three code-focused LLMs and observed consistent improvements in performance on two widely-used programming skill benchmarks. Notably, the model trained on the augmented data outperformed both the model used for generating comments and the model further trained on the data without augmentation.
Proactive Assistant Dialogue Generation from Streaming Egocentric Videos
Recent advances in conversational AI have been substantial, but developing real-time systems for perceptual task guidance remains challenging. These systems must provide interactive, proactive assistance based on streaming visual inputs, yet their development is constrained by the costly and labor-intensive process of data collection and system evaluation. To address these limitations, we present a comprehensive framework with three key contributions. First, we introduce a novel data curation pipeline that synthesizes dialogues from annotated egocentric videos, resulting in \dataset, a large-scale synthetic dialogue dataset spanning multiple domains. Second, we develop a suite of automatic evaluation metrics, validated through extensive human studies. Third, we propose an end-to-end model that processes streaming video inputs to generate contextually appropriate responses, incorporating novel techniques for handling data imbalance and long-duration videos. This work lays the foundation for developing real-time, proactive AI assistants capable of guiding users through diverse tasks. Project page: https://pro-assist.github.io/
Injecting Numerical Reasoning Skills into Language Models
Large pre-trained language models (LMs) are known to encode substantial amounts of linguistic information. However, high-level reasoning skills, such as numerical reasoning, are difficult to learn from a language-modeling objective only. Consequently, existing models for numerical reasoning have used specialized architectures with limited flexibility. In this work, we show that numerical reasoning is amenable to automatic data generation, and thus one can inject this skill into pre-trained LMs, by generating large amounts of data, and training in a multi-task setup. We show that pre-training our model, GenBERT, on this data, dramatically improves performance on DROP (49.3 rightarrow 72.3 F1), reaching performance that matches state-of-the-art models of comparable size, while using a simple and general-purpose encoder-decoder architecture. Moreover, GenBERT generalizes well to math word problem datasets, while maintaining high performance on standard RC tasks. Our approach provides a general recipe for injecting skills into large pre-trained LMs, whenever the skill is amenable to automatic data augmentation.
Frustratingly Easy Data Augmentation for Low-Resource ASR
This paper introduces three self-contained data augmentation methods for low-resource Automatic Speech Recognition (ASR). Our techniques first generate novel text--using gloss-based replacement, random replacement, or an LLM-based approach--and then apply Text-to-Speech (TTS) to produce synthetic audio. We apply these methods, which leverage only the original annotated data, to four languages with extremely limited resources (Vatlongos, Nashta, Shinekhen Buryat, and Kakabe). Fine-tuning a pretrained Wav2Vec2-XLSR-53 model on a combination of the original audio and generated synthetic data yields significant performance gains, including a 14.3% absolute WER reduction for Nashta. The methods prove effective across all four low-resource languages and also show utility for high-resource languages like English, demonstrating their broad applicability.
Extending Input Contexts of Language Models through Training on Segmented Sequences
Effectively training language models on long inputs poses many technical challenges. As a cost consideration, languages models are pretrained on a fixed sequence length before being adapted to longer sequences. We explore various methods for adapting models to longer inputs by training on segmented sequences and an interpolation-based method for extending absolute positional embeddings. We develop a training procedure to extend the input context size of pretrained models with no architectural changes and no additional memory costs than training on the original input lengths. By sub-sampling segments from long inputs while maintaining their original position the model is able to learn new positional interactions. Our method benefits both models trained with absolute positional embeddings, by extending their input contexts, as well as popular relative positional embedding methods showing a reduced perplexity on sequences longer than they were trained on. We demonstrate our method can extend input contexts by a factor of 4x while improving perplexity.
Show Your Work: Scratchpads for Intermediate Computation with Language Models
Large pre-trained language models perform remarkably well on tasks that can be done "in one pass", such as generating realistic text or synthesizing computer programs. However, they struggle with tasks that require unbounded multi-step computation, such as adding integers or executing programs. Surprisingly, we find that these same models are able to perform complex multi-step computations -- even in the few-shot regime -- when asked to perform the operation "step by step", showing the results of intermediate computations. In particular, we train transformers to perform multi-step computations by asking them to emit intermediate computation steps into a "scratchpad". On a series of increasingly complex tasks ranging from long addition to the execution of arbitrary programs, we show that scratchpads dramatically improve the ability of language models to perform multi-step computations.
Table Meets LLM: Can Large Language Models Understand Structured Table Data? A Benchmark and Empirical Study
Large language models (LLMs) are becoming attractive as few-shot reasoners to solve Natural Language (NL)-related tasks. However, the understanding of their capability to process structured data like tables remains an under-explored area. While tables can be serialized as input for LLMs, there is a lack of comprehensive studies on whether LLMs genuinely comprehend this data. In this paper, we try to understand this by designing a benchmark to evaluate the structural understanding capabilities of LLMs through seven distinct tasks, e.g., cell lookup, row retrieval and size detection. Specially, we perform a series of evaluations on the recent most advanced LLM models, GPT-3.5 and GPT-4 and observe that performance varied with different input choices, including table input format, content order, role prompting, and partition marks. Drawing from the insights gained through the benchmark evaluations, we propose self-augmentation for effective structural prompting, such as critical value / range identification using internal knowledge of LLMs. When combined with carefully chosen input choices, these structural prompting methods lead to promising improvements in LLM performance on a variety of tabular tasks, e.g., TabFact(uparrow2.31%), HybridQA(uparrow2.13%), SQA(uparrow2.72%), Feverous(uparrow0.84%), and ToTTo(uparrow5.68%). We believe that our open source benchmark and proposed prompting methods can serve as a simple yet generic selection for future research. The code and data of this paper will be temporality released at https://anonymous.4open.science/r/StructuredLLM-76F3/README.md and will be replaced with an official one at https://github.com/microsoft/TableProvider later.
Fine-tuning Image Transformers using Learnable Memory
In this paper we propose augmenting Vision Transformer models with learnable memory tokens. Our approach allows the model to adapt to new tasks, using few parameters, while optionally preserving its capabilities on previously learned tasks. At each layer we introduce a set of learnable embedding vectors that provide contextual information useful for specific datasets. We call these "memory tokens". We show that augmenting a model with just a handful of such tokens per layer significantly improves accuracy when compared to conventional head-only fine-tuning, and performs only slightly below the significantly more expensive full fine-tuning. We then propose an attention-masking approach that enables extension to new downstream tasks, with a computation reuse. In this setup in addition to being parameters efficient, models can execute both old and new tasks as a part of single inference at a small incremental cost.
WARP: Word-level Adversarial ReProgramming
Transfer learning from pretrained language models recently became the dominant approach for solving many NLP tasks. A common approach to transfer learning for multiple tasks that maximize parameter sharing trains one or more task-specific layers on top of the language model. In this paper, we present an alternative approach based on adversarial reprogramming, which extends earlier work on automatic prompt generation. Adversarial reprogramming attempts to learn task-specific word embeddings that, when concatenated to the input text, instruct the language model to solve the specified task. Using up to 25K trainable parameters per task, this approach outperforms all existing methods with up to 25M trainable parameters on the public leaderboard of the GLUE benchmark. Our method, initialized with task-specific human-readable prompts, also works in a few-shot setting, outperforming GPT-3 on two SuperGLUE tasks with just 32 training samples.
CLEAR: Contrastive Learning for Sentence Representation
Pre-trained language models have proven their unique powers in capturing implicit language features. However, most pre-training approaches focus on the word-level training objective, while sentence-level objectives are rarely studied. In this paper, we propose Contrastive LEArning for sentence Representation (CLEAR), which employs multiple sentence-level augmentation strategies in order to learn a noise-invariant sentence representation. These augmentations include word and span deletion, reordering, and substitution. Furthermore, we investigate the key reasons that make contrastive learning effective through numerous experiments. We observe that different sentence augmentations during pre-training lead to different performance improvements on various downstream tasks. Our approach is shown to outperform multiple existing methods on both SentEval and GLUE benchmarks.
Augmenty: A Python Library for Structured Text Augmentation
Augmnety is a Python library for structured text augmentation. It is built on top of spaCy and allows for augmentation of both the text and its annotations. Augmenty provides a wide range of augmenters which can be combined in a flexible manner to create complex augmentation pipelines. It also includes a set of primitives that can be used to create custom augmenters such as word replacement augmenters. This functionality allows for augmentations within a range of applications such as named entity recognition (NER), part-of-speech tagging, and dependency parsing.
Check Your Facts and Try Again: Improving Large Language Models with External Knowledge and Automated Feedback
Large language models (LLMs), such as ChatGPT, are able to generate human-like, fluent responses for many downstream tasks, e.g., task-oriented dialog and question answering. However, applying LLMs to real-world, mission-critical applications remains challenging mainly due to their tendency to generate hallucinations and their inability to use external knowledge. This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules. Our system makes the LLM generate responses grounded in external knowledge, e.g., stored in task-specific databases. It also iteratively revises LLM prompts to improve model responses using feedback generated by utility functions, e.g., the factuality score of a LLM-generated response. The effectiveness of LLM-Augmenter is empirically validated on two types of scenarios, task-oriented dialog and open-domain question answering. LLM-Augmenter significantly reduces ChatGPT's hallucinations without sacrificing the fluency and informativeness of its responses. We make the source code and models publicly available.
Not Enough Data? Deep Learning to the Rescue!
Based on recent advances in natural language modeling and those in text generation capabilities, we propose a novel data augmentation method for text classification tasks. We use a powerful pre-trained neural network model to artificially synthesize new labeled data for supervised learning. We mainly focus on cases with scarce labeled data. Our method, referred to as language-model-based data augmentation (LAMBADA), involves fine-tuning a state-of-the-art language generator to a specific task through an initial training phase on the existing (usually small) labeled data. Using the fine-tuned model and given a class label, new sentences for the class are generated. Our process then filters these new sentences by using a classifier trained on the original data. In a series of experiments, we show that LAMBADA improves classifiers' performance on a variety of datasets. Moreover, LAMBADA significantly improves upon the state-of-the-art techniques for data augmentation, specifically those applicable to text classification tasks with little data.
A Recipe For Arbitrary Text Style Transfer with Large Language Models
In this paper, we leverage large language models (LMs) to perform zero-shot text style transfer. We present a prompting method that we call augmented zero-shot learning, which frames style transfer as a sentence rewriting task and requires only a natural language instruction, without model fine-tuning or exemplars in the target style. Augmented zero-shot learning is simple and demonstrates promising results not just on standard style transfer tasks such as sentiment, but also on arbitrary transformations such as "make this melodramatic" or "insert a metaphor."
Data Augmentation using LLMs: Data Perspectives, Learning Paradigms and Challenges
In the rapidly evolving field of machine learning (ML), data augmentation (DA) has emerged as a pivotal technique for enhancing model performance by diversifying training examples without the need for additional data collection. This survey explores the transformative impact of Large Language Models (LLMs) on DA, particularly addressing the unique challenges and opportunities they present in the context of natural language processing (NLP) and beyond. From a data perspective and a learning perspective, we examine various strategies that utilize Large Language Models for data augmentation, including a novel exploration of learning paradigms where LLM-generated data is used for further training. Additionally, this paper delineates the primary challenges faced in this domain, ranging from controllable data augmentation to multi modal data augmentation. This survey highlights the paradigm shift introduced by LLMs in DA, aims to serve as a foundational guide for researchers and practitioners in this field.
TextManiA: Enriching Visual Feature by Text-driven Manifold Augmentation
Recent label mix-based augmentation methods have shown their effectiveness in generalization despite their simplicity, and their favorable effects are often attributed to semantic-level augmentation. However, we found that they are vulnerable to highly skewed class distribution, because scarce data classes are rarely sampled for inter-class perturbation. We propose TextManiA, a text-driven manifold augmentation method that semantically enriches visual feature spaces, regardless of data distribution. TextManiA augments visual data with intra-class semantic perturbation by exploiting easy-to-understand visually mimetic words, i.e., attributes. To this end, we bridge between the text representation and a target visual feature space, and propose an efficient vector augmentation. To empirically support the validity of our design, we devise two visualization-based analyses and show the plausibility of the bridge between two different modality spaces. Our experiments demonstrate that TextManiA is powerful in scarce samples with class imbalance as well as even distribution. We also show compatibility with the label mix-based approaches in evenly distributed scarce data.
Automatic speaker verification spoofing and deepfake detection using wav2vec 2.0 and data augmentation
The performance of spoofing countermeasure systems depends fundamentally upon the use of sufficiently representative training data. With this usually being limited, current solutions typically lack generalisation to attacks encountered in the wild. Strategies to improve reliability in the face of uncontrolled, unpredictable attacks are hence needed. We report in this paper our efforts to use self-supervised learning in the form of a wav2vec 2.0 front-end with fine tuning. Despite initial base representations being learned using only bona fide data and no spoofed data, we obtain the lowest equal error rates reported in the literature for both the ASVspoof 2021 Logical Access and Deepfake databases. When combined with data augmentation,these results correspond to an improvement of almost 90% relative to our baseline system.
Augmented Language Models: a Survey
This survey reviews works in which language models (LMs) are augmented with reasoning skills and the ability to use tools. The former is defined as decomposing a potentially complex task into simpler subtasks while the latter consists in calling external modules such as a code interpreter. LMs can leverage these augmentations separately or in combination via heuristics, or learn to do so from demonstrations. While adhering to a standard missing tokens prediction objective, such augmented LMs can use various, possibly non-parametric external modules to expand their context processing ability, thus departing from the pure language modeling paradigm. We therefore refer to them as Augmented Language Models (ALMs). The missing token objective allows ALMs to learn to reason, use tools, and even act, while still performing standard natural language tasks and even outperforming most regular LMs on several benchmarks. In this work, after reviewing current advance in ALMs, we conclude that this new research direction has the potential to address common limitations of traditional LMs such as interpretability, consistency, and scalability issues.
InSerter: Speech Instruction Following with Unsupervised Interleaved Pre-training
Recent advancements in speech large language models (SpeechLLMs) have attracted considerable attention. Nonetheless, current methods exhibit suboptimal performance in adhering to speech instructions. Notably, the intelligence of models significantly diminishes when processing speech-form input as compared to direct text-form input. Prior work has attempted to mitigate this semantic inconsistency between speech and text representations through techniques such as representation and behavior alignment, which involve the meticulous design of data pairs during the post-training phase. In this paper, we introduce a simple and scalable training method called InSerter, which stands for Interleaved Speech-Text Representation Pre-training. InSerter is designed to pre-train large-scale unsupervised speech-text sequences, where the speech is synthesized from randomly selected segments of an extensive text corpus using text-to-speech conversion. Consequently, the model acquires the ability to generate textual continuations corresponding to the provided speech segments, obviating the need for intensive data design endeavors. To systematically evaluate speech instruction-following capabilities, we introduce SpeechInstructBench, the first comprehensive benchmark specifically designed for speech-oriented instruction-following tasks. Our proposed InSerter achieves SOTA performance in SpeechInstructBench and demonstrates superior or competitive results across diverse speech processing tasks.
CoDa: Constrained Generation based Data Augmentation for Low-Resource NLP
We present CoDa (Constrained Generation based Data Augmentation), a controllable, effective, and training-free data augmentation technique for low-resource (data-scarce) NLP. Our approach is based on prompting off-the-shelf instruction-following Large Language Models (LLMs) for generating text that satisfies a set of constraints. Precisely, we extract a set of simple constraints from every instance in the low-resource dataset and verbalize them to prompt an LLM to generate novel and diverse training instances. Our findings reveal that synthetic data that follows simple constraints in the downstream dataset act as highly effective augmentations, and CoDa can achieve this without intricate decoding-time constrained generation techniques or fine-tuning with complex algorithms that eventually make the model biased toward the small number of training instances. Additionally, CoDa is the first framework that provides users explicit control over the augmentation generation process, thereby also allowing easy adaptation to several domains. We demonstrate the effectiveness of CoDa across 11 datasets spanning 3 tasks and 3 low-resource settings. CoDa outperforms all our baselines, qualitatively and quantitatively, with improvements of 0.12%-7.19%. Code is available here: https://github.com/Sreyan88/CoDa
Data Augmentation in Natural Language Processing: A Novel Text Generation Approach for Long and Short Text Classifiers
In many cases of machine learning, research suggests that the development of training data might have a higher relevance than the choice and modelling of classifiers themselves. Thus, data augmentation methods have been developed to improve classifiers by artificially created training data. In NLP, there is the challenge of establishing universal rules for text transformations which provide new linguistic patterns. In this paper, we present and evaluate a text generation method suitable to increase the performance of classifiers for long and short texts. We achieved promising improvements when evaluating short as well as long text tasks with the enhancement by our text generation method. Especially with regard to small data analytics, additive accuracy gains of up to 15.53% and 3.56% are achieved within a constructed low data regime, compared to the no augmentation baseline and another data augmentation technique. As the current track of these constructed regimes is not universally applicable, we also show major improvements in several real world low data tasks (up to +4.84 F1-score). Since we are evaluating the method from many perspectives (in total 11 datasets), we also observe situations where the method might not be suitable. We discuss implications and patterns for the successful application of our approach on different types of datasets.
TransMix: Attend to Mix for Vision Transformers
Mixup-based augmentation has been found to be effective for generalizing models during training, especially for Vision Transformers (ViTs) since they can easily overfit. However, previous mixup-based methods have an underlying prior knowledge that the linearly interpolated ratio of targets should be kept the same as the ratio proposed in input interpolation. This may lead to a strange phenomenon that sometimes there is no valid object in the mixed image due to the random process in augmentation but there is still response in the label space. To bridge such gap between the input and label spaces, we propose TransMix, which mixes labels based on the attention maps of Vision Transformers. The confidence of the label will be larger if the corresponding input image is weighted higher by the attention map. TransMix is embarrassingly simple and can be implemented in just a few lines of code without introducing any extra parameters and FLOPs to ViT-based models. Experimental results show that our method can consistently improve various ViT-based models at scales on ImageNet classification. After pre-trained with TransMix on ImageNet, the ViT-based models also demonstrate better transferability to semantic segmentation, object detection and instance segmentation. TransMix also exhibits to be more robust when evaluating on 4 different benchmarks. Code will be made publicly available at https://github.com/Beckschen/TransMix.
Semantically Controllable Augmentations for Generalizable Robot Learning
Generalization to unseen real-world scenarios for robot manipulation requires exposure to diverse datasets during training. However, collecting large real-world datasets is intractable due to high operational costs. For robot learning to generalize despite these challenges, it is essential to leverage sources of data or priors beyond the robot's direct experience. In this work, we posit that image-text generative models, which are pre-trained on large corpora of web-scraped data, can serve as such a data source. These generative models encompass a broad range of real-world scenarios beyond a robot's direct experience and can synthesize novel synthetic experiences that expose robotic agents to additional world priors aiding real-world generalization at no extra cost. In particular, our approach leverages pre-trained generative models as an effective tool for data augmentation. We propose a generative augmentation framework for semantically controllable augmentations and rapidly multiplying robot datasets while inducing rich variations that enable real-world generalization. Based on diverse augmentations of robot data, we show how scalable robot manipulation policies can be trained and deployed both in simulation and in unseen real-world environments such as kitchens and table-tops. By demonstrating the effectiveness of image-text generative models in diverse real-world robotic applications, our generative augmentation framework provides a scalable and efficient path for boosting generalization in robot learning at no extra human cost.
The NPU-ASLP System Description for Visual Speech Recognition in CNVSRC 2024
This paper delineates the visual speech recognition (VSR) system introduced by the NPU-ASLP (Team 237) in the second Chinese Continuous Visual Speech Recognition Challenge (CNVSRC 2024), engaging in all four tracks, including the fixed and open tracks of Single-Speaker VSR Task and Multi-Speaker VSR Task. In terms of data processing, we leverage the lip motion extractor from the baseline1 to produce multiscale video data. Besides, various augmentation techniques are applied during training, encompassing speed perturbation, random rotation, horizontal flipping, and color transformation. The VSR model adopts an end-to-end architecture with joint CTC/attention loss, introducing Enhanced ResNet3D visual frontend, E-Branchformer encoder, and Bi-directional Transformer decoder. Our approach yields a 30.47% CER for the Single-Speaker Task and 34.30% CER for the Multi-Speaker Task, securing second place in the open track of the Single-Speaker Task and first place in the other three tracks.
Memory Augmented Large Language Models are Computationally Universal
We show that transformer-based large language models are computationally universal when augmented with an external memory. Any deterministic language model that conditions on strings of bounded length is equivalent to a finite automaton, hence computationally limited. However, augmenting such models with a read-write memory creates the possibility of processing arbitrarily large inputs and, potentially, simulating any algorithm. We establish that an existing large language model, Flan-U-PaLM 540B, can be combined with an associative read-write memory to exactly simulate the execution of a universal Turing machine, U_{15,2}. A key aspect of the finding is that it does not require any modification of the language model weights. Instead, the construction relies solely on designing a form of stored instruction computer that can subsequently be programmed with a specific set of prompts.
People Make Better Edits: Measuring the Efficacy of LLM-Generated Counterfactually Augmented Data for Harmful Language Detection
NLP models are used in a variety of critical social computing tasks, such as detecting sexist, racist, or otherwise hateful content. Therefore, it is imperative that these models are robust to spurious features. Past work has attempted to tackle such spurious features using training data augmentation, including Counterfactually Augmented Data (CADs). CADs introduce minimal changes to existing training data points and flip their labels; training on them may reduce model dependency on spurious features. However, manually generating CADs can be time-consuming and expensive. Hence in this work, we assess if this task can be automated using generative NLP models. We automatically generate CADs using Polyjuice, ChatGPT, and Flan-T5, and evaluate their usefulness in improving model robustness compared to manually-generated CADs. By testing both model performance on multiple out-of-domain test sets and individual data point efficacy, our results show that while manual CADs are still the most effective, CADs generated by ChatGPT come a close second. One key reason for the lower performance of automated methods is that the changes they introduce are often insufficient to flip the original label.
AI capabilities can be significantly improved without expensive retraining
State-of-the-art AI systems can be significantly improved without expensive retraining via "post-training enhancements"-techniques applied after initial training like fine-tuning the system to use a web browser. We review recent post-training enhancements, categorizing them into five types: tool-use, prompting methods, scaffolding, solution selection, and data generation. Different enhancements improve performance on different tasks, making it hard to compare their significance. So we translate improvements from different enhancements into a common currency, the compute-equivalent gain: how much additional training compute would be needed to improve performance by the same amount as the enhancement. Our non-experimental work shows that post-training enhancements have significant benefits: most surveyed enhancements improve benchmark performance by more than a 5x increase in training compute, some by more than 20x. Post-training enhancements are relatively cheap to develop: fine-tuning costs are typically <1% of the original training cost. Governing the development of capable post-training enhancements may be challenging because frontier models could be enhanced by a wide range of actors.
Editing Models with Task Arithmetic
Changing how pre-trained models behave -- e.g., improving their performance on a downstream task or mitigating biases learned during pre-training -- is a common practice when developing machine learning systems. In this work, we propose a new paradigm for steering the behavior of neural networks, centered around task vectors. A task vector specifies a direction in the weight space of a pre-trained model, such that movement in that direction improves performance on the task. We build task vectors by subtracting the weights of a pre-trained model from the weights of the same model after fine-tuning on a task. We show that these task vectors can be modified and combined together through arithmetic operations such as negation and addition, and the behavior of the resulting model is steered accordingly. Negating a task vector decreases performance on the target task, with little change in model behavior on control tasks. Moreover, adding task vectors together can improve performance on multiple tasks at once. Finally, when tasks are linked by an analogy relationship of the form ``A is to B as C is to D", combining task vectors from three of the tasks can improve performance on the fourth, even when no data from the fourth task is used for training. Overall, our experiments with several models, modalities and tasks show that task arithmetic is a simple, efficient and effective way of editing models.
Revisiting Data Augmentation in Deep Reinforcement Learning
Various data augmentation techniques have been recently proposed in image-based deep reinforcement learning (DRL). Although they empirically demonstrate the effectiveness of data augmentation for improving sample efficiency or generalization, which technique should be preferred is not always clear. To tackle this question, we analyze existing methods to better understand them and to uncover how they are connected. Notably, by expressing the variance of the Q-targets and that of the empirical actor/critic losses of these methods, we can analyze the effects of their different components and compare them. We furthermore formulate an explanation about how these methods may be affected by choosing different data augmentation transformations in calculating the target Q-values. This analysis suggests recommendations on how to exploit data augmentation in a more principled way. In addition, we include a regularization term called tangent prop, previously proposed in computer vision, but whose adaptation to DRL is novel to the best of our knowledge. We evaluate our proposition and validate our analysis in several domains. Compared to different relevant baselines, we demonstrate that it achieves state-of-the-art performance in most environments and shows higher sample efficiency and better generalization ability in some complex environments.
TreeMix: Compositional Constituency-based Data Augmentation for Natural Language Understanding
Data augmentation is an effective approach to tackle over-fitting. Many previous works have proposed different data augmentations strategies for NLP, such as noise injection, word replacement, back-translation etc. Though effective, they missed one important characteristic of language--compositionality, meaning of a complex expression is built from its sub-parts. Motivated by this, we propose a compositional data augmentation approach for natural language understanding called TreeMix. Specifically, TreeMix leverages constituency parsing tree to decompose sentences into constituent sub-structures and the Mixup data augmentation technique to recombine them to generate new sentences. Compared with previous approaches, TreeMix introduces greater diversity to the samples generated and encourages models to learn compositionality of NLP data. Extensive experiments on text classification and SCAN demonstrate that TreeMix outperforms current state-of-the-art data augmentation methods.
Efficient Task-Oriented Dialogue Systems with Response Selection as an Auxiliary Task
The adoption of pre-trained language models in task-oriented dialogue systems has resulted in significant enhancements of their text generation abilities. However, these architectures are slow to use because of the large number of trainable parameters and can sometimes fail to generate diverse responses. To address these limitations, we propose two models with auxiliary tasks for response selection - (1) distinguishing distractors from ground truth responses and (2) distinguishing synthetic responses from ground truth labels. They achieve state-of-the-art results on the MultiWOZ 2.1 dataset with combined scores of 107.5 and 108.3 and outperform a baseline with three times more parameters. We publish reproducible code and checkpoints and discuss the effects of applying auxiliary tasks to T5-based architectures.
A General Language Assistant as a Laboratory for Alignment
Given the broad capabilities of large language models, it should be possible to work towards a general-purpose, text-based assistant that is aligned with human values, meaning that it is helpful, honest, and harmless. As an initial foray in this direction we study simple baseline techniques and evaluations, such as prompting. We find that the benefits from modest interventions increase with model size, generalize to a variety of alignment evaluations, and do not compromise the performance of large models. Next we investigate scaling trends for several training objectives relevant to alignment, comparing imitation learning, binary discrimination, and ranked preference modeling. We find that ranked preference modeling performs much better than imitation learning, and often scales more favorably with model size. In contrast, binary discrimination typically performs and scales very similarly to imitation learning. Finally we study a `preference model pre-training' stage of training, with the goal of improving sample efficiency when finetuning on human preferences.
DALDA: Data Augmentation Leveraging Diffusion Model and LLM with Adaptive Guidance Scaling
In this paper, we present an effective data augmentation framework leveraging the Large Language Model (LLM) and Diffusion Model (DM) to tackle the challenges inherent in data-scarce scenarios. Recently, DMs have opened up the possibility of generating synthetic images to complement a few training images. However, increasing the diversity of synthetic images also raises the risk of generating samples outside the target distribution. Our approach addresses this issue by embedding novel semantic information into text prompts via LLM and utilizing real images as visual prompts, thus generating semantically rich images. To ensure that the generated images remain within the target distribution, we dynamically adjust the guidance weight based on each image's CLIPScore to control the diversity. Experimental results show that our method produces synthetic images with enhanced diversity while maintaining adherence to the target distribution. Consequently, our approach proves to be more efficient in the few-shot setting on several benchmarks. Our code is available at https://github.com/kkyuhun94/dalda .
Decoupled Data Augmentation for Improving Image Classification
Recent advancements in image mixing and generative data augmentation have shown promise in enhancing image classification. However, these techniques face the challenge of balancing semantic fidelity with diversity. Specifically, image mixing involves interpolating two images to create a new one, but this pixel-level interpolation can compromise fidelity. Generative augmentation uses text-to-image generative models to synthesize or modify images, often limiting diversity to avoid generating out-of-distribution data that potentially affects accuracy. We propose that this fidelity-diversity dilemma partially stems from the whole-image paradigm of existing methods. Since an image comprises the class-dependent part (CDP) and the class-independent part (CIP), where each part has fundamentally different impacts on the image's fidelity, treating different parts uniformly can therefore be misleading. To address this fidelity-diversity dilemma, we introduce Decoupled Data Augmentation (De-DA), which resolves the dilemma by separating images into CDPs and CIPs and handling them adaptively. To maintain fidelity, we use generative models to modify real CDPs under controlled conditions, preserving semantic consistency. To enhance diversity, we replace the image's CIP with inter-class variants, creating diverse CDP-CIP combinations. Additionally, we implement an online randomized combination strategy during training to generate numerous distinct CDP-CIP combinations cost-effectively. Comprehensive empirical evaluations validate the effectiveness of our method.
EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks
We present EDA: easy data augmentation techniques for boosting performance on text classification tasks. EDA consists of four simple but powerful operations: synonym replacement, random insertion, random swap, and random deletion. On five text classification tasks, we show that EDA improves performance for both convolutional and recurrent neural networks. EDA demonstrates particularly strong results for smaller datasets; on average, across five datasets, training with EDA while using only 50% of the available training set achieved the same accuracy as normal training with all available data. We also performed extensive ablation studies and suggest parameters for practical use.
From Tokens to Words: On the Inner Lexicon of LLMs
Natural language is composed of words, but modern large language models (LLMs) process sub-words as input. A natural question raised by this discrepancy is whether LLMs encode words internally, and if so how. We present evidence that LLMs engage in an intrinsic detokenization process, where sub-word sequences are combined into coherent whole-word representations at their last token. Our experiments show that this process primarily takes place within the early and middle layers of the model. We further demonstrate its robustness to arbitrary splits (e.g., "cats" to "ca" and "ts"), typos, and importantly-to out-of-vocabulary words: when feeding the last token internal representations of such words to the model as input, it can "understand" them as the complete word despite never seeing such representations as input during training. Our findings suggest that LLMs maintain a latent vocabulary beyond the tokenizer's scope. These insights provide a practical, finetuning-free application for expanding the vocabulary of pre-trained models. By enabling the addition of new vocabulary words, we reduce input length and inference iterations, which reduces both space and model latency, with little to no loss in model accuracy.
A Statistical Theory of Contrastive Learning via Approximate Sufficient Statistics
Contrastive learning -- a modern approach to extract useful representations from unlabeled data by training models to distinguish similar samples from dissimilar ones -- has driven significant progress in foundation models. In this work, we develop a new theoretical framework for analyzing data augmentation-based contrastive learning, with a focus on SimCLR as a representative example. Our approach is based on the concept of approximate sufficient statistics, which we extend beyond its original definition in oko2025statistical for contrastive language-image pretraining (CLIP) using KL-divergence. We generalize it to equivalent forms and general f-divergences, and show that minimizing SimCLR and other contrastive losses yields encoders that are approximately sufficient. Furthermore, we demonstrate that these near-sufficient encoders can be effectively adapted to downstream regression and classification tasks, with performance depending on their sufficiency and the error induced by data augmentation in contrastive learning. Concrete examples in linear regression and topic classification are provided to illustrate the broad applicability of our results.
Selective In-Context Data Augmentation for Intent Detection using Pointwise V-Information
This work focuses on in-context data augmentation for intent detection. Having found that augmentation via in-context prompting of large pre-trained language models (PLMs) alone does not improve performance, we introduce a novel approach based on PLMs and pointwise V-information (PVI), a metric that can measure the usefulness of a datapoint for training a model. Our method first fine-tunes a PLM on a small seed of training data and then synthesizes new datapoints - utterances that correspond to given intents. It then employs intent-aware filtering, based on PVI, to remove datapoints that are not helpful to the downstream intent classifier. Our method is thus able to leverage the expressive power of large language models to produce diverse training data. Empirical results demonstrate that our method can produce synthetic training data that achieve state-of-the-art performance on three challenging intent detection datasets under few-shot settings (1.28% absolute improvement in 5-shot and 1.18% absolute in 10-shot, on average) and perform on par with the state-of-the-art in full-shot settings (within 0.01% absolute, on average).
Task-oriented Document-Grounded Dialog Systems by HLTPR@RWTH for DSTC9 and DSTC10
This paper summarizes our contributions to the document-grounded dialog tasks at the 9th and 10th Dialog System Technology Challenges (DSTC9 and DSTC10). In both iterations the task consists of three subtasks: first detect whether the current turn is knowledge seeking, second select a relevant knowledge document, and third generate a response grounded on the selected document. For DSTC9 we proposed different approaches to make the selection task more efficient. The best method, Hierarchical Selection, actually improves the results compared to the original baseline and gives a speedup of 24x. In the DSTC10 iteration of the task, the challenge was to adapt systems trained on written dialogs to perform well on noisy automatic speech recognition transcripts. Therefore, we proposed data augmentation techniques to increase the robustness of the models as well as methods to adapt the style of generated responses to fit well into the proceeding dialog. Additionally, we proposed a noisy channel model that allows for increasing the factuality of the generated responses. In addition to summarizing our previous contributions, in this work, we also report on a few small improvements and reconsider the automatic evaluation metrics for the generation task which have shown a low correlation to human judgments.
Black Box Adversarial Prompting for Foundation Models
Prompting interfaces allow users to quickly adjust the output of generative models in both vision and language. However, small changes and design choices in the prompt can lead to significant differences in the output. In this work, we develop a black-box framework for generating adversarial prompts for unstructured image and text generation. These prompts, which can be standalone or prepended to benign prompts, induce specific behaviors into the generative process, such as generating images of a particular object or generating high perplexity text.
VILA^2: VILA Augmented VILA
Visual language models (VLMs) have rapidly progressed, driven by the success of large language models (LLMs). While model architectures and training infrastructures advance rapidly, data curation remains under-explored. When data quantity and quality become a bottleneck, existing work either directly crawls more raw data from the Internet that does not have a guarantee of data quality or distills from black-box commercial models (e.g., GPT-4V / Gemini) causing the performance upper bounded by that model. In this work, we introduce a novel approach that includes a self-augment step and a specialist-augment step to iteratively improve data quality and model performance. In the self-augment step, a VLM recaptions its own pretraining data to enhance data quality, and then retrains from scratch using this refined dataset to improve model performance. This process can iterate for several rounds. Once self-augmentation saturates, we employ several specialist VLMs finetuned from the self-augmented VLM with domain-specific expertise, to further infuse specialist knowledge into the generalist VLM through task-oriented recaptioning and retraining. With the combined self-augmented and specialist-augmented training, we introduce VILA^2 (VILA-augmented-VILA), a VLM family that consistently improves the accuracy on a wide range of tasks over prior art, and achieves new state-of-the-art results on MMMU leaderboard among open-sourced models.
Toward Understanding Generative Data Augmentation
Generative data augmentation, which scales datasets by obtaining fake labeled examples from a trained conditional generative model, boosts classification performance in various learning tasks including (semi-)supervised learning, few-shot learning, and adversarially robust learning. However, little work has theoretically investigated the effect of generative data augmentation. To fill this gap, we establish a general stability bound in this not independently and identically distributed (non-i.i.d.) setting, where the learned distribution is dependent on the original train set and generally not the same as the true distribution. Our theoretical result includes the divergence between the learned distribution and the true distribution. It shows that generative data augmentation can enjoy a faster learning rate when the order of divergence term is o(maxleft( log(m)beta_m, 1 / m)right), where m is the train set size and beta_m is the corresponding stability constant. We further specify the learning setup to the Gaussian mixture model and generative adversarial nets. We prove that in both cases, though generative data augmentation does not enjoy a faster learning rate, it can improve the learning guarantees at a constant level when the train set is small, which is significant when the awful overfitting occurs. Simulation results on the Gaussian mixture model and empirical results on generative adversarial nets support our theoretical conclusions. Our code is available at https://github.com/ML-GSAI/Understanding-GDA.
The NPU-ASLP-LiAuto System Description for Visual Speech Recognition in CNVSRC 2023
This paper delineates the visual speech recognition (VSR) system introduced by the NPU-ASLP-LiAuto (Team 237) in the first Chinese Continuous Visual Speech Recognition Challenge (CNVSRC) 2023, engaging in the fixed and open tracks of Single-Speaker VSR Task, and the open track of Multi-Speaker VSR Task. In terms of data processing, we leverage the lip motion extractor from the baseline1 to produce multi-scale video data. Besides, various augmentation techniques are applied during training, encompassing speed perturbation, random rotation, horizontal flipping, and color transformation. The VSR model adopts an end-to-end architecture with joint CTC/attention loss, comprising a ResNet3D visual frontend, an E-Branchformer encoder, and a Transformer decoder. Experiments show that our system achieves 34.76% CER for the Single-Speaker Task and 41.06% CER for the Multi-Speaker Task after multi-system fusion, ranking first place in all three tracks we participate.
KAUCUS: Knowledge Augmented User Simulators for Training Language Model Assistants
An effective multi-turn instruction-following assistant can be developed by creating a simulator that can generate useful interaction data. Apart from relying on its intrinsic weights, an ideal user simulator should also be able to bootstrap external knowledge rapidly in its raw form to simulate the multifarious diversity of text available over the internet. Previous user simulators generally lacked diversity, were mostly closed domain, and necessitated rigid schema making them inefficient to rapidly scale to incorporate external knowledge. In this regard, we introduce, Kaucus, a Knowledge-Augmented User Simulator framework, to outline a process of creating diverse user simulators, that can seamlessly exploit external knowledge as well as benefit downstream assistant model training. Through two GPT-J based simulators viz., a Retrieval Augmented Simulator and a Summary Controlled Simulator we generate diverse simulator-assistant interactions. Through reward and preference model-based evaluations, we find that these interactions serve as useful training data and create more helpful downstream assistants. We also find that incorporating knowledge through retrieval augmentation or summary control helps create better assistants.
Scaling (Down) CLIP: A Comprehensive Analysis of Data, Architecture, and Training Strategies
This paper investigates the performance of the Contrastive Language-Image Pre-training (CLIP) when scaled down to limited computation budgets. We explore CLIP along three dimensions: data, architecture, and training strategies. With regards to data, we demonstrate the significance of high-quality training data and show that a smaller dataset of high-quality data can outperform a larger dataset with lower quality. We also examine how model performance varies with different dataset sizes, suggesting that smaller ViT models are better suited for smaller datasets, while larger models perform better on larger datasets with fixed compute. Additionally, we provide guidance on when to choose a CNN-based architecture or a ViT-based architecture for CLIP training. We compare four CLIP training strategies - SLIP, FLIP, CLIP, and CLIP+Data Augmentation - and show that the choice of training strategy depends on the available compute resource. Our analysis reveals that CLIP+Data Augmentation can achieve comparable performance to CLIP using only half of the training data. This work provides practical insights into how to effectively train and deploy CLIP models, making them more accessible and affordable for practical use in various applications.
Random Field Augmentations for Self-Supervised Representation Learning
Self-supervised representation learning is heavily dependent on data augmentations to specify the invariances encoded in representations. Previous work has shown that applying diverse data augmentations is crucial to downstream performance, but augmentation techniques remain under-explored. In this work, we propose a new family of local transformations based on Gaussian random fields to generate image augmentations for self-supervised representation learning. These transformations generalize the well-established affine and color transformations (translation, rotation, color jitter, etc.) and greatly increase the space of augmentations by allowing transformation parameter values to vary from pixel to pixel. The parameters are treated as continuous functions of spatial coordinates, and modeled as independent Gaussian random fields. Empirical results show the effectiveness of the new transformations for self-supervised representation learning. Specifically, we achieve a 1.7% top-1 accuracy improvement over baseline on ImageNet downstream classification, and a 3.6% improvement on out-of-distribution iNaturalist downstream classification. However, due to the flexibility of the new transformations, learned representations are sensitive to hyperparameters. While mild transformations improve representations, we observe that strong transformations can degrade the structure of an image, indicating that balancing the diversity and strength of augmentations is important for improving generalization of learned representations.
Learning to Imagine: Visually-Augmented Natural Language Generation
People often imagine relevant scenes to aid in the writing process. In this work, we aim to utilize visual information for composition in the same manner as humans. We propose a method, LIVE, that makes pre-trained language models (PLMs) Learn to Imagine for Visuallyaugmented natural language gEneration. First, we imagine the scene based on the text: we use a diffusion model to synthesize high-quality images conditioned on the input texts. Second, we use CLIP to determine whether the text can evoke the imagination in a posterior way. Finally, our imagination is dynamic, and we conduct synthesis for each sentence rather than generate only one image for an entire paragraph. Technically, we propose a novel plug-and-play fusion layer to obtain visually-augmented representations for each text. Our vision-text fusion layer is compatible with Transformerbased architecture. We have conducted extensive experiments on four generation tasks using BART and T5, and the automatic results and human evaluation demonstrate the effectiveness of our proposed method. We will release the code, model, and data at the link: https://github.com/RUCAIBox/LIVE.
