Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFrozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval
Our objective in this work is video-text retrieval - in particular a joint embedding that enables efficient text-to-video retrieval. The challenges in this area include the design of the visual architecture and the nature of the training data, in that the available large scale video-text training datasets, such as HowTo100M, are noisy and hence competitive performance is achieved only at scale through large amounts of compute. We address both these challenges in this paper. We propose an end-to-end trainable model that is designed to take advantage of both large-scale image and video captioning datasets. Our model is an adaptation and extension of the recent ViT and Timesformer architectures, and consists of attention in both space and time. The model is flexible and can be trained on both image and video text datasets, either independently or in conjunction. It is trained with a curriculum learning schedule that begins by treating images as 'frozen' snapshots of video, and then gradually learns to attend to increasing temporal context when trained on video datasets. We also provide a new video-text pretraining dataset WebVid-2M, comprised of over two million videos with weak captions scraped from the internet. Despite training on datasets that are an order of magnitude smaller, we show that this approach yields state-of-the-art results on standard downstream video-retrieval benchmarks including MSR-VTT, MSVD, DiDeMo and LSMDC.
VideoXum: Cross-modal Visual and Textural Summarization of Videos
Video summarization aims to distill the most important information from a source video to produce either an abridged clip or a textual narrative. Traditionally, different methods have been proposed depending on whether the output is a video or text, thus ignoring the correlation between the two semantically related tasks of visual summarization and textual summarization. We propose a new joint video and text summarization task. The goal is to generate both a shortened video clip along with the corresponding textual summary from a long video, collectively referred to as a cross-modal summary. The generated shortened video clip and text narratives should be semantically well aligned. To this end, we first build a large-scale human-annotated dataset -- VideoXum (X refers to different modalities). The dataset is reannotated based on ActivityNet. After we filter out the videos that do not meet the length requirements, 14,001 long videos remain in our new dataset. Each video in our reannotated dataset has human-annotated video summaries and the corresponding narrative summaries. We then design a novel end-to-end model -- VTSUM-BILP to address the challenges of our proposed task. Moreover, we propose a new metric called VT-CLIPScore to help evaluate the semantic consistency of cross-modality summary. The proposed model achieves promising performance on this new task and establishes a benchmark for future research.
VideoLights: Feature Refinement and Cross-Task Alignment Transformer for Joint Video Highlight Detection and Moment Retrieval
Video Highlight Detection and Moment Retrieval (HD/MR) are essential in video analysis. Recent joint prediction transformer models often overlook their cross-task dynamics and video-text alignment and refinement. Moreover, most models typically use limited, uni-directional attention mechanisms, resulting in weakly integrated representations and suboptimal performance in capturing the interdependence between video and text modalities. Although large-language and vision-language models (LLM/LVLMs) have gained prominence across various domains, their application in this field remains relatively underexplored. Here we propose VideoLights, a novel HD/MR framework addressing these limitations through (i) Convolutional Projection and Feature Refinement modules with an alignment loss for better video-text feature alignment, (ii) Bi-Directional Cross-Modal Fusion network for strongly coupled query-aware clip representations, and (iii) Uni-directional joint-task feedback mechanism enhancing both tasks through correlation. In addition, (iv) we introduce hard positive/negative losses for adaptive error penalization and improved learning, and (v) leverage LVLMs like BLIP-2 for enhanced multimodal feature integration and intelligent pretraining using synthetic data generated from LVLMs. Comprehensive experiments on QVHighlights, TVSum, and Charades-STA benchmarks demonstrate state-of-the-art performance. Codes and models are available at https://github.com/dpaul06/VideoLights .
VinTAGe: Joint Video and Text Conditioning for Holistic Audio Generation
Recent advances in audio generation have focused on text-to-audio (T2A) and video-to-audio (V2A) tasks. However, T2A or V2A methods cannot generate holistic sounds (onscreen and off-screen). This is because T2A cannot generate sounds aligning with onscreen objects, while V2A cannot generate semantically complete (offscreen sounds missing). In this work, we address the task of holistic audio generation: given a video and a text prompt, we aim to generate both onscreen and offscreen sounds that are temporally synchronized with the video and semantically aligned with text and video. Previous approaches for joint text and video-to-audio generation often suffer from modality bias, favoring one modality over the other. To overcome this limitation, we introduce VinTAGe, a flow-based transformer model that jointly considers text and video to guide audio generation. Our framework comprises two key components: a Visual-Text Encoder and a Joint VT-SiT model. To reduce modality bias and improve generation quality, we employ pretrained uni-modal text-to-audio and video-to-audio generation models for additional guidance. Due to the lack of appropriate benchmarks, we also introduce VinTAGe-Bench, a dataset of 636 video-text-audio pairs containing both onscreen and offscreen sounds. Our comprehensive experiments on VinTAGe-Bench demonstrate that joint text and visual interaction is necessary for holistic audio generation. Furthermore, VinTAGe achieves state-of-the-art results on the VGGSound benchmark. Our source code and pre-trained models will be released. Demo is available at: https://www.youtube.com/watch?v=QmqWhUjPkJI.
SyncFlow: Toward Temporally Aligned Joint Audio-Video Generation from Text
Video and audio are closely correlated modalities that humans naturally perceive together. While recent advancements have enabled the generation of audio or video from text, producing both modalities simultaneously still typically relies on either a cascaded process or multi-modal contrastive encoders. These approaches, however, often lead to suboptimal results due to inherent information losses during inference and conditioning. In this paper, we introduce SyncFlow, a system that is capable of simultaneously generating temporally synchronized audio and video from text. The core of SyncFlow is the proposed dual-diffusion-transformer (d-DiT) architecture, which enables joint video and audio modelling with proper information fusion. To efficiently manage the computational cost of joint audio and video modelling, SyncFlow utilizes a multi-stage training strategy that separates video and audio learning before joint fine-tuning. Our empirical evaluations demonstrate that SyncFlow produces audio and video outputs that are more correlated than baseline methods with significantly enhanced audio quality and audio-visual correspondence. Moreover, we demonstrate strong zero-shot capabilities of SyncFlow, including zero-shot video-to-audio generation and adaptation to novel video resolutions without further training.
Omni-Embed-Nemotron: A Unified Multimodal Retrieval Model for Text, Image, Audio, and Video
We present Omni-Embed-Nemotron, a unified multimodal retrieval embedding model developed to handle the increasing complexity of real-world information needs. While Retrieval-Augmented Generation (RAG) has significantly advanced language models by incorporating external knowledge, existing text-based retrievers rely on clean, structured input and struggle with the visually and semantically rich content found in real-world documents such as PDFs, slides, or videos. Recent work such as ColPali has shown that preserving document layout using image-based representations can improve retrieval quality. Building on this, and inspired by the capabilities of recent multimodal models such as Qwen2.5-Omni, we extend retrieval beyond text and images to also support audio and video modalities. Omni-Embed-Nemotron enables both cross-modal (e.g., text - video) and joint-modal (e.g., text - video+audio) retrieval using a single model. We describe the architecture, training setup, and evaluation results of Omni-Embed-Nemotron, and demonstrate its effectiveness in text, image, and video retrieval.
Multi-event Video-Text Retrieval
Video-Text Retrieval (VTR) is a crucial multi-modal task in an era of massive video-text data on the Internet. A plethora of work characterized by using a two-stream Vision-Language model architecture that learns a joint representation of video-text pairs has become a prominent approach for the VTR task. However, these models operate under the assumption of bijective video-text correspondences and neglect a more practical scenario where video content usually encompasses multiple events, while texts like user queries or webpage metadata tend to be specific and correspond to single events. This establishes a gap between the previous training objective and real-world applications, leading to the potential performance degradation of earlier models during inference. In this study, we introduce the Multi-event Video-Text Retrieval (MeVTR) task, addressing scenarios in which each video contains multiple different events, as a niche scenario of the conventional Video-Text Retrieval Task. We present a simple model, Me-Retriever, which incorporates key event video representation and a new MeVTR loss for the MeVTR task. Comprehensive experiments show that this straightforward framework outperforms other models in the Video-to-Text and Text-to-Video tasks, effectively establishing a robust baseline for the MeVTR task. We believe this work serves as a strong foundation for future studies. Code is available at https://github.com/gengyuanmax/MeVTR.
UniVL: A Unified Video and Language Pre-Training Model for Multimodal Understanding and Generation
With the recent success of the pre-training technique for NLP and image-linguistic tasks, some video-linguistic pre-training works are gradually developed to improve video-text related downstream tasks. However, most of the existing multimodal models are pre-trained for understanding tasks, leading to a pretrain-finetune discrepancy for generation tasks. This paper proposes UniVL: a Unified Video and Language pre-training model for both multimodal understanding and generation. It comprises four components, including two single-modal encoders, a cross encoder, and a decoder with the Transformer backbone. Five objectives, including video-text joint, conditioned masked language model (CMLM), conditioned masked frame model (CMFM), video-text alignment, and language reconstruction, are designed to train each of the components. We further develop two pre-training strategies, stage by stage pre-training (StagedP) and enhanced video representation (EnhancedV), to make the training process of the UniVL more effective. The pre-train is carried out on a sizeable instructional video dataset HowTo100M. Experimental results demonstrate that the UniVL can learn strong video-text representation and achieves state-of-the-art results on five downstream tasks.
LAVIE: High-Quality Video Generation with Cascaded Latent Diffusion Models
This work aims to learn a high-quality text-to-video (T2V) generative model by leveraging a pre-trained text-to-image (T2I) model as a basis. It is a highly desirable yet challenging task to simultaneously a) accomplish the synthesis of visually realistic and temporally coherent videos while b) preserving the strong creative generation nature of the pre-trained T2I model. To this end, we propose LaVie, an integrated video generation framework that operates on cascaded video latent diffusion models, comprising a base T2V model, a temporal interpolation model, and a video super-resolution model. Our key insights are two-fold: 1) We reveal that the incorporation of simple temporal self-attentions, coupled with rotary positional encoding, adequately captures the temporal correlations inherent in video data. 2) Additionally, we validate that the process of joint image-video fine-tuning plays a pivotal role in producing high-quality and creative outcomes. To enhance the performance of LaVie, we contribute a comprehensive and diverse video dataset named Vimeo25M, consisting of 25 million text-video pairs that prioritize quality, diversity, and aesthetic appeal. Extensive experiments demonstrate that LaVie achieves state-of-the-art performance both quantitatively and qualitatively. Furthermore, we showcase the versatility of pre-trained LaVie models in various long video generation and personalized video synthesis applications.
AudioGen-Omni: A Unified Multimodal Diffusion Transformer for Video-Synchronized Audio, Speech, and Song Generation
We present AudioGen-Omni - a unified approach based on multimodal diffusion transformers (MMDit), capable of generating high-fidelity audio, speech, and song coherently synchronized with the input video. AudioGen-Omni introduces a novel joint training paradigm that seamlessly integrates large-scale video-text-audio corpora, enabling a model capable of generating semantically rich, acoustically diverse audio conditioned on multimodal inputs and adaptable to a wide range of audio generation tasks. AudioGen-Omni employs a unified lyrics-transcription encoder that encodes graphemes and phonemes from both song and spoken inputs into dense frame-level representations. Dense frame-level representations are fused using an AdaLN-based joint attention mechanism enhanced with phase-aligned anisotropic positional infusion (PAAPI), wherein RoPE is selectively applied to temporally structured modalities to ensure precise and robust cross-modal alignment. By unfreezing all modalities and masking missing inputs, AudioGen-Omni mitigates the semantic constraints of text-frozen paradigms, enabling effective cross-modal conditioning. This joint training approach enhances audio quality, semantic alignment, and lip-sync accuracy, while also achieving state-of-the-art results on Text-to-Audio/Speech/Song tasks. With an inference time of 1.91 seconds for 8 seconds of audio, it offers substantial improvements in both efficiency and generality.
DiffusionRet: Generative Text-Video Retrieval with Diffusion Model
Existing text-video retrieval solutions are, in essence, discriminant models focused on maximizing the conditional likelihood, i.e., p(candidates|query). While straightforward, this de facto paradigm overlooks the underlying data distribution p(query), which makes it challenging to identify out-of-distribution data. To address this limitation, we creatively tackle this task from a generative viewpoint and model the correlation between the text and the video as their joint probability p(candidates,query). This is accomplished through a diffusion-based text-video retrieval framework (DiffusionRet), which models the retrieval task as a process of gradually generating joint distribution from noise. During training, DiffusionRet is optimized from both the generation and discrimination perspectives, with the generator being optimized by generation loss and the feature extractor trained with contrastive loss. In this way, DiffusionRet cleverly leverages the strengths of both generative and discriminative methods. Extensive experiments on five commonly used text-video retrieval benchmarks, including MSRVTT, LSMDC, MSVD, ActivityNet Captions, and DiDeMo, with superior performances, justify the efficacy of our method. More encouragingly, without any modification, DiffusionRet even performs well in out-domain retrieval settings. We believe this work brings fundamental insights into the related fields. Code is available at https://github.com/jpthu17/DiffusionRet.
Goku: Flow Based Video Generative Foundation Models
This paper introduces Goku, a state-of-the-art family of joint image-and-video generation models leveraging rectified flow Transformers to achieve industry-leading performance. We detail the foundational elements enabling high-quality visual generation, including the data curation pipeline, model architecture design, flow formulation, and advanced infrastructure for efficient and robust large-scale training. The Goku models demonstrate superior performance in both qualitative and quantitative evaluations, setting new benchmarks across major tasks. Specifically, Goku achieves 0.76 on GenEval and 83.65 on DPG-Bench for text-to-image generation, and 84.85 on VBench for text-to-video tasks. We believe that this work provides valuable insights and practical advancements for the research community in developing joint image-and-video generation models.
Phantom: Subject-consistent video generation via cross-modal alignment
The continuous development of foundational models for video generation is evolving into various applications, with subject-consistent video generation still in the exploratory stage. We refer to this as Subject-to-Video, which extracts subject elements from reference images and generates subject-consistent video through textual instructions. We believe that the essence of subject-to-video lies in balancing the dual-modal prompts of text and image, thereby deeply and simultaneously aligning both text and visual content. To this end, we propose Phantom, a unified video generation framework for both single and multi-subject references. Building on existing text-to-video and image-to-video architectures, we redesign the joint text-image injection model and drive it to learn cross-modal alignment via text-image-video triplet data. In particular, we emphasize subject consistency in human generation, covering existing ID-preserving video generation while offering enhanced advantages. The project homepage is here https://phantom-video.github.io/Phantom/.
VideoRFSplat: Direct Scene-Level Text-to-3D Gaussian Splatting Generation with Flexible Pose and Multi-View Joint Modeling
We propose VideoRFSplat, a direct text-to-3D model leveraging a video generation model to generate realistic 3D Gaussian Splatting (3DGS) for unbounded real-world scenes. To generate diverse camera poses and unbounded spatial extent of real-world scenes, while ensuring generalization to arbitrary text prompts, previous methods fine-tune 2D generative models to jointly model camera poses and multi-view images. However, these methods suffer from instability when extending 2D generative models to joint modeling due to the modality gap, which necessitates additional models to stabilize training and inference. In this work, we propose an architecture and a sampling strategy to jointly model multi-view images and camera poses when fine-tuning a video generation model. Our core idea is a dual-stream architecture that attaches a dedicated pose generation model alongside a pre-trained video generation model via communication blocks, generating multi-view images and camera poses through separate streams. This design reduces interference between the pose and image modalities. Additionally, we propose an asynchronous sampling strategy that denoises camera poses faster than multi-view images, allowing rapidly denoised poses to condition multi-view generation, reducing mutual ambiguity and enhancing cross-modal consistency. Trained on multiple large-scale real-world datasets (RealEstate10K, MVImgNet, DL3DV-10K, ACID), VideoRFSplat outperforms existing text-to-3D direct generation methods that heavily depend on post-hoc refinement via score distillation sampling, achieving superior results without such refinement.
SkyReels-A2: Compose Anything in Video Diffusion Transformers
This paper presents SkyReels-A2, a controllable video generation framework capable of assembling arbitrary visual elements (e.g., characters, objects, backgrounds) into synthesized videos based on textual prompts while maintaining strict consistency with reference images for each element. We term this task elements-to-video (E2V), whose primary challenges lie in preserving the fidelity of each reference element, ensuring coherent composition of the scene, and achieving natural outputs. To address these, we first design a comprehensive data pipeline to construct prompt-reference-video triplets for model training. Next, we propose a novel image-text joint embedding model to inject multi-element representations into the generative process, balancing element-specific consistency with global coherence and text alignment. We also optimize the inference pipeline for both speed and output stability. Moreover, we introduce a carefully curated benchmark for systematic evaluation, i.e, A2 Bench. Experiments demonstrate that our framework can generate diverse, high-quality videos with precise element control. SkyReels-A2 is the first open-source commercial grade model for the generation of E2V, performing favorably against advanced closed-source commercial models. We anticipate SkyReels-A2 will advance creative applications such as drama and virtual e-commerce, pushing the boundaries of controllable video generation.
MagicEdit: High-Fidelity and Temporally Coherent Video Editing
In this report, we present MagicEdit, a surprisingly simple yet effective solution to the text-guided video editing task. We found that high-fidelity and temporally coherent video-to-video translation can be achieved by explicitly disentangling the learning of content, structure and motion signals during training. This is in contradict to most existing methods which attempt to jointly model both the appearance and temporal representation within a single framework, which we argue, would lead to degradation in per-frame quality. Despite its simplicity, we show that MagicEdit supports various downstream video editing tasks, including video stylization, local editing, video-MagicMix and video outpainting.
Zero-Shot Dense Video Captioning by Jointly Optimizing Text and Moment
Dense video captioning, a task of localizing meaningful moments and generating relevant captions for videos, often requires a large, expensive corpus of annotated video segments paired with text. In an effort to minimize the annotation cost, we propose ZeroTA, a novel method for dense video captioning in a zero-shot manner. Our method does not require any videos or annotations for training; instead, it localizes and describes events within each input video at test time by optimizing solely on the input. This is accomplished by introducing a soft moment mask that represents a temporal segment in the video and jointly optimizing it with the prefix parameters of a language model. This joint optimization aligns a frozen language generation model (i.e., GPT-2) with a frozen vision-language contrastive model (i.e., CLIP) by maximizing the matching score between the generated text and a moment within the video. We also introduce a pairwise temporal IoU loss to let a set of soft moment masks capture multiple distinct events within the video. Our method effectively discovers diverse significant events within the video, with the resulting captions appropriately describing these events. The empirical results demonstrate that ZeroTA surpasses zero-shot baselines and even outperforms the state-of-the-art few-shot method on the widely-used benchmark ActivityNet Captions. Moreover, our method shows greater robustness compared to supervised methods when evaluated in out-of-domain scenarios. This research provides insight into the potential of aligning widely-used models, such as language generation models and vision-language models, to unlock a new capability: understanding temporal aspects of videos.
Towards Robust Referring Video Object Segmentation with Cyclic Relational Consensus
Referring Video Object Segmentation (R-VOS) is a challenging task that aims to segment an object in a video based on a linguistic expression. Most existing R-VOS methods have a critical assumption: the object referred to must appear in the video. This assumption, which we refer to as semantic consensus, is often violated in real-world scenarios, where the expression may be queried against false videos. In this work, we highlight the need for a robust R-VOS model that can handle semantic mismatches. Accordingly, we propose an extended task called Robust R-VOS, which accepts unpaired video-text inputs. We tackle this problem by jointly modeling the primary R-VOS problem and its dual (text reconstruction). A structural text-to-text cycle constraint is introduced to discriminate semantic consensus between video-text pairs and impose it in positive pairs, thereby achieving multi-modal alignment from both positive and negative pairs. Our structural constraint effectively addresses the challenge posed by linguistic diversity, overcoming the limitations of previous methods that relied on the point-wise constraint. A new evaluation dataset, R2-Youtube-VOSis constructed to measure the model robustness. Our model achieves state-of-the-art performance on R-VOS benchmarks, Ref-DAVIS17 and Ref-Youtube-VOS, and also our R2-Youtube-VOS~dataset.
DynamiCtrl: Rethinking the Basic Structure and the Role of Text for High-quality Human Image Animation
With diffusion transformer (DiT) excelling in video generation, its use in specific tasks has drawn increasing attention. However, adapting DiT for pose-guided human image animation faces two core challenges: (a) existing U-Net-based pose control methods may be suboptimal for the DiT backbone; and (b) removing text guidance, as in previous approaches, often leads to semantic loss and model degradation. To address these issues, we propose DynamiCtrl, a novel framework for human animation in video DiT architecture. Specifically, we use a shared VAE encoder for human images and driving poses, unifying them into a common latent space, maintaining pose fidelity, and eliminating the need for an expert pose encoder during video denoising. To integrate pose control into the DiT backbone effectively, we propose a novel Pose-adaptive Layer Norm model. It injects normalized pose features into the denoising process via conditioning on visual tokens, enabling seamless and scalable pose control across DiT blocks. Furthermore, to overcome the shortcomings of text removal, we introduce the "Joint-text" paradigm, which preserves the role of text embeddings to provide global semantic context. Through full-attention blocks, image and pose features are aligned with text features, enhancing semantic consistency, leveraging pretrained knowledge, and enabling multi-level control. Experiments verify the superiority of DynamiCtrl on benchmark and self-collected data (e.g., achieving the best LPIPS of 0.166), demonstrating strong character control and high-quality synthesis. The project page is available at https://gulucaptain.github.io/DynamiCtrl/.
Masked Diffusion with Task-awareness for Procedure Planning in Instructional Videos
A key challenge with procedure planning in instructional videos lies in how to handle a large decision space consisting of a multitude of action types that belong to various tasks. To understand real-world video content, an AI agent must proficiently discern these action types (e.g., pour milk, pour water, open lid, close lid, etc.) based on brief visual observation. Moreover, it must adeptly capture the intricate semantic relation of the action types and task goals, along with the variable action sequences. Recently, notable progress has been made via the integration of diffusion models and visual representation learning to address the challenge. However, existing models employ rudimentary mechanisms to utilize task information to manage the decision space. To overcome this limitation, we introduce a simple yet effective enhancement - a masked diffusion model. The introduced mask acts akin to a task-oriented attention filter, enabling the diffusion/denoising process to concentrate on a subset of action types. Furthermore, to bolster the accuracy of task classification, we harness more potent visual representation learning techniques. In particular, we learn a joint visual-text embedding, where a text embedding is generated by prompting a pre-trained vision-language model to focus on human actions. We evaluate the method on three public datasets and achieve state-of-the-art performance on multiple metrics. Code is available at https://github.com/ffzzy840304/Masked-PDPP.
X-Pool: Cross-Modal Language-Video Attention for Text-Video Retrieval
In text-video retrieval, the objective is to learn a cross-modal similarity function between a text and a video that ranks relevant text-video pairs higher than irrelevant pairs. However, videos inherently express a much wider gamut of information than texts. Instead, texts often capture sub-regions of entire videos and are most semantically similar to certain frames within videos. Therefore, for a given text, a retrieval model should focus on the text's most semantically similar video sub-regions to make a more relevant comparison. Yet, most existing works aggregate entire videos without directly considering text. Common text-agnostic aggregations schemes include mean-pooling or self-attention over the frames, but these are likely to encode misleading visual information not described in the given text. To address this, we propose a cross-modal attention model called X-Pool that reasons between a text and the frames of a video. Our core mechanism is a scaled dot product attention for a text to attend to its most semantically similar frames. We then generate an aggregated video representation conditioned on the text's attention weights over the frames. We evaluate our method on three benchmark datasets of MSR-VTT, MSVD and LSMDC, achieving new state-of-the-art results by up to 12% in relative improvement in Recall@1. Our findings thereby highlight the importance of joint text-video reasoning to extract important visual cues according to text. Full code and demo can be found at: https://layer6ai-labs.github.io/xpool/
Taming Text-to-Sounding Video Generation via Advanced Modality Condition and Interaction
This study focuses on a challenging yet promising task, Text-to-Sounding-Video (T2SV) generation, which aims to generate a video with synchronized audio from text conditions, meanwhile ensuring both modalities are aligned with text. Despite progress in joint audio-video training, two critical challenges still remain unaddressed: (1) a single, shared text caption where the text for video is equal to the text for audio often creates modal interference, confusing the pretrained backbones, and (2) the optimal mechanism for cross-modal feature interaction remains unclear. To address these challenges, we first propose the Hierarchical Visual-Grounded Captioning (HVGC) framework that generates pairs of disentangled captions, a video caption, and an audio caption, eliminating interference at the conditioning stage. Based on HVGC, we further introduce BridgeDiT, a novel dual-tower diffusion transformer, which employs a Dual CrossAttention (DCA) mechanism that acts as a robust ``bridge" to enable a symmetric, bidirectional exchange of information, achieving both semantic and temporal synchronization. Extensive experiments on three benchmark datasets, supported by human evaluations, demonstrate that our method achieves state-of-the-art results on most metrics. Comprehensive ablation studies further validate the effectiveness of our contributions, offering key insights for the future T2SV task. All the codes and checkpoints will be publicly released.
LaT: Latent Translation with Cycle-Consistency for Video-Text Retrieval
Video-text retrieval is a class of cross-modal representation learning problems, where the goal is to select the video which corresponds to the text query between a given text query and a pool of candidate videos. The contrastive paradigm of vision-language pretraining has shown promising success with large-scale datasets and unified transformer architecture, and demonstrated the power of a joint latent space. Despite this, the intrinsic divergence between the visual domain and textual domain is still far from being eliminated, and projecting different modalities into a joint latent space might result in the distorting of the information inside the single modality. To overcome the above issue, we present a novel mechanism for learning the translation relationship from a source modality space S to a target modality space T without the need for a joint latent space, which bridges the gap between visual and textual domains. Furthermore, to keep cycle consistency between translations, we adopt a cycle loss involving both forward translations from S to the predicted target space T', and backward translations from T' back to S. Extensive experiments conducted on MSR-VTT, MSVD, and DiDeMo datasets demonstrate the superiority and effectiveness of our LaT approach compared with vanilla state-of-the-art methods.
Multi-Modal Motion Retrieval by Learning a Fine-Grained Joint Embedding Space
Motion retrieval is crucial for motion acquisition, offering superior precision, realism, controllability, and editability compared to motion generation. Existing approaches leverage contrastive learning to construct a unified embedding space for motion retrieval from text or visual modality. However, these methods lack a more intuitive and user-friendly interaction mode and often overlook the sequential representation of most modalities for improved retrieval performance. To address these limitations, we propose a framework that aligns four modalities -- text, audio, video, and motion -- within a fine-grained joint embedding space, incorporating audio for the first time in motion retrieval to enhance user immersion and convenience. This fine-grained space is achieved through a sequence-level contrastive learning approach, which captures critical details across modalities for better alignment. To evaluate our framework, we augment existing text-motion datasets with synthetic but diverse audio recordings, creating two multi-modal motion retrieval datasets. Experimental results demonstrate superior performance over state-of-the-art methods across multiple sub-tasks, including an 10.16% improvement in R@10 for text-to-motion retrieval and a 25.43% improvement in R@1 for video-to-motion retrieval on the HumanML3D dataset. Furthermore, our results show that our 4-modal framework significantly outperforms its 3-modal counterpart, underscoring the potential of multi-modal motion retrieval for advancing motion acquisition.
A CLIP-Hitchhiker's Guide to Long Video Retrieval
Our goal in this paper is the adaptation of image-text models for long video retrieval. Recent works have demonstrated state-of-the-art performance in video retrieval by adopting CLIP, effectively hitchhiking on the image-text representation for video tasks. However, there has been limited success in learning temporal aggregation that outperform mean-pooling the image-level representations extracted per frame by CLIP. We find that the simple yet effective baseline of weighted-mean of frame embeddings via query-scoring is a significant improvement above all prior temporal modelling attempts and mean-pooling. In doing so, we provide an improved baseline for others to compare to and demonstrate state-of-the-art performance of this simple baseline on a suite of long video retrieval benchmarks.
Learning Video Representations from Textual Web Supervision
Videos on the Internet are paired with pieces of text, such as titles and descriptions. This text typically describes the most important content in the video, such as the objects in the scene and the actions being performed. Based on this observation, we propose to use text as a method for learning video representations. To accomplish this, we propose a data collection process and use it to collect 70M video clips shared publicly on the Internet, and we then train a model to pair each video with its associated text. We evaluate the model on several down-stream action recognition tasks, including Kinetics, HMDB-51, and UCF-101. We find that this approach is an effective method of pre-training video representations. Specifically, it outperforms all existing methods for self-supervised and cross-modal video representation learning.
MiniGPT4-Video: Advancing Multimodal LLMs for Video Understanding with Interleaved Visual-Textual Tokens
This paper introduces MiniGPT4-Video, a multimodal Large Language Model (LLM) designed specifically for video understanding. The model is capable of processing both temporal visual and textual data, making it adept at understanding the complexities of videos. Building upon the success of MiniGPT-v2, which excelled in translating visual features into the LLM space for single images and achieved impressive results on various image-text benchmarks, this paper extends the model's capabilities to process a sequence of frames, enabling it to comprehend videos. MiniGPT4-video does not only consider visual content but also incorporates textual conversations, allowing the model to effectively answer queries involving both visual and text components. The proposed model outperforms existing state-of-the-art methods, registering gains of 4.22%, 1.13%, 20.82%, and 13.1% on the MSVD, MSRVTT, TGIF, and TVQA benchmarks respectively. Our models and code have been made publicly available here https://vision-cair.github.io/MiniGPT4-video/
CLIPSep: Learning Text-queried Sound Separation with Noisy Unlabeled Videos
Recent years have seen progress beyond domain-specific sound separation for speech or music towards universal sound separation for arbitrary sounds. Prior work on universal sound separation has investigated separating a target sound out of an audio mixture given a text query. Such text-queried sound separation systems provide a natural and scalable interface for specifying arbitrary target sounds. However, supervised text-queried sound separation systems require costly labeled audio-text pairs for training. Moreover, the audio provided in existing datasets is often recorded in a controlled environment, causing a considerable generalization gap to noisy audio in the wild. In this work, we aim to approach text-queried universal sound separation by using only unlabeled data. We propose to leverage the visual modality as a bridge to learn the desired audio-textual correspondence. The proposed CLIPSep model first encodes the input query into a query vector using the contrastive language-image pretraining (CLIP) model, and the query vector is then used to condition an audio separation model to separate out the target sound. While the model is trained on image-audio pairs extracted from unlabeled videos, at test time we can instead query the model with text inputs in a zero-shot setting, thanks to the joint language-image embedding learned by the CLIP model. Further, videos in the wild often contain off-screen sounds and background noise that may hinder the model from learning the desired audio-textual correspondence. To address this problem, we further propose an approach called noise invariant training for training a query-based sound separation model on noisy data. Experimental results show that the proposed models successfully learn text-queried universal sound separation using only noisy unlabeled videos, even achieving competitive performance against a supervised model in some settings.
DeepAudio-V1:Towards Multi-Modal Multi-Stage End-to-End Video to Speech and Audio Generation
Currently, high-quality, synchronized audio is synthesized using various multi-modal joint learning frameworks, leveraging video and optional text inputs. In the video-to-audio benchmarks, video-to-audio quality, semantic alignment, and audio-visual synchronization are effectively achieved. However, in real-world scenarios, speech and audio often coexist in videos simultaneously, and the end-to-end generation of synchronous speech and audio given video and text conditions are not well studied. Therefore, we propose an end-to-end multi-modal generation framework that simultaneously produces speech and audio based on video and text conditions. Furthermore, the advantages of video-to-audio (V2A) models for generating speech from videos remain unclear. The proposed framework, DeepAudio, consists of a video-to-audio (V2A) module, a text-to-speech (TTS) module, and a dynamic mixture of modality fusion (MoF) module. In the evaluation, the proposed end-to-end framework achieves state-of-the-art performance on the video-audio benchmark, video-speech benchmark, and text-speech benchmark. In detail, our framework achieves comparable results in the comparison with state-of-the-art models for the video-audio and text-speech benchmarks, and surpassing state-of-the-art models in the video-speech benchmark, with WER 16.57% to 3.15% (+80.99%), SPK-SIM 78.30% to 89.38% (+14.15%), EMO-SIM 66.24% to 75.56% (+14.07%), MCD 8.59 to 7.98 (+7.10%), MCD SL 11.05 to 9.40 (+14.93%) across a variety of dubbing settings.
VideoSET: Video Summary Evaluation through Text
In this paper we present VideoSET, a method for Video Summary Evaluation through Text that can evaluate how well a video summary is able to retain the semantic information contained in its original video. We observe that semantics is most easily expressed in words, and develop a text-based approach for the evaluation. Given a video summary, a text representation of the video summary is first generated, and an NLP-based metric is then used to measure its semantic distance to ground-truth text summaries written by humans. We show that our technique has higher agreement with human judgment than pixel-based distance metrics. We also release text annotations and ground-truth text summaries for a number of publicly available video datasets, for use by the computer vision community.
Learning Audio-Video Modalities from Image Captions
A major challenge in text-video and text-audio retrieval is the lack of large-scale training data. This is unlike image-captioning, where datasets are in the order of millions of samples. To close this gap we propose a new video mining pipeline which involves transferring captions from image captioning datasets to video clips with no additional manual effort. Using this pipeline, we create a new large-scale, weakly labelled audio-video captioning dataset consisting of millions of paired clips and captions. We show that training a multimodal transformed based model on this data achieves competitive performance on video retrieval and video captioning, matching or even outperforming HowTo100M pretraining with 20x fewer clips. We also show that our mined clips are suitable for text-audio pretraining, and achieve state of the art results for the task of audio retrieval.
Video-Text Retrieval by Supervised Sparse Multi-Grained Learning
While recent progress in video-text retrieval has been advanced by the exploration of better representation learning, in this paper, we present a novel multi-grained sparse learning framework, S3MA, to learn an aligned sparse space shared between the video and the text for video-text retrieval. The shared sparse space is initialized with a finite number of sparse concepts, each of which refers to a number of words. With the text data at hand, we learn and update the shared sparse space in a supervised manner using the proposed similarity and alignment losses. Moreover, to enable multi-grained alignment, we incorporate frame representations for better modeling the video modality and calculating fine-grained and coarse-grained similarities. Benefiting from the learned shared sparse space and multi-grained similarities, extensive experiments on several video-text retrieval benchmarks demonstrate the superiority of S3MA over existing methods. Our code is available at https://github.com/yimuwangcs/Better_Cross_Modal_Retrieval.
QuerYD: A video dataset with high-quality text and audio narrations
We introduce QuerYD, a new large-scale dataset for retrieval and event localisation in video. A unique feature of our dataset is the availability of two audio tracks for each video: the original audio, and a high-quality spoken description of the visual content. The dataset is based on YouDescribe, a volunteer project that assists visually-impaired people by attaching voiced narrations to existing YouTube videos. This ever-growing collection of videos contains highly detailed, temporally aligned audio and text annotations. The content descriptions are more relevant than dialogue, and more detailed than previous description attempts, which can be observed to contain many superficial or uninformative descriptions. To demonstrate the utility of the QuerYD dataset, we show that it can be used to train and benchmark strong models for retrieval and event localisation. Data, code and models are made publicly available, and we hope that QuerYD inspires further research on video understanding with written and spoken natural language.
Text-Video Retrieval with Global-Local Semantic Consistent Learning
Adapting large-scale image-text pre-training models, e.g., CLIP, to the video domain represents the current state-of-the-art for text-video retrieval. The primary approaches involve transferring text-video pairs to a common embedding space and leveraging cross-modal interactions on specific entities for semantic alignment. Though effective, these paradigms entail prohibitive computational costs, leading to inefficient retrieval. To address this, we propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL), which capitalizes on latent shared semantics across modalities for text-video retrieval. Specifically, we introduce a parameter-free global interaction module to explore coarse-grained alignment. Then, we devise a shared local interaction module that employs several learnable queries to capture latent semantic concepts for learning fine-grained alignment. Furthermore, an Inter-Consistency Loss (ICL) is devised to accomplish the concept alignment between the visual query and corresponding textual query, and an Intra-Diversity Loss (IDL) is developed to repulse the distribution within visual (textual) queries to generate more discriminative concepts. Extensive experiments on five widely used benchmarks (i.e., MSR-VTT, MSVD, DiDeMo, LSMDC, and ActivityNet) substantiate the superior effectiveness and efficiency of the proposed method. Remarkably, our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost. Code is available at: https://github.com/zchoi/GLSCL.
Goldfish: Vision-Language Understanding of Arbitrarily Long Videos
Most current LLM-based models for video understanding can process videos within minutes. However, they struggle with lengthy videos due to challenges such as "noise and redundancy", as well as "memory and computation" constraints. In this paper, we present Goldfish, a methodology tailored for comprehending videos of arbitrary lengths. We also introduce the TVQA-long benchmark, specifically designed to evaluate models' capabilities in understanding long videos with questions in both vision and text content. Goldfish approaches these challenges with an efficient retrieval mechanism that initially gathers the top-k video clips relevant to the instruction before proceeding to provide the desired response. This design of the retrieval mechanism enables the Goldfish to efficiently process arbitrarily long video sequences, facilitating its application in contexts such as movies or television series. To facilitate the retrieval process, we developed MiniGPT4-Video that generates detailed descriptions for the video clips. In addressing the scarcity of benchmarks for long video evaluation, we adapted the TVQA short video benchmark for extended content analysis by aggregating questions from entire episodes, thereby shifting the evaluation from partial to full episode comprehension. We attained a 41.78% accuracy rate on the TVQA-long benchmark, surpassing previous methods by 14.94%. Our MiniGPT4-Video also shows exceptional performance in short video comprehension, exceeding existing state-of-the-art methods by 3.23%, 2.03%, 16.5% and 23.59% on the MSVD, MSRVTT, TGIF, and TVQA short video benchmarks, respectively. These results indicate that our models have significant improvements in both long and short-video understanding. Our models and code have been made publicly available at https://vision-cair.github.io/Goldfish_website/
Video-adverb retrieval with compositional adverb-action embeddings
Retrieving adverbs that describe an action in a video poses a crucial step towards fine-grained video understanding. We propose a framework for video-to-adverb retrieval (and vice versa) that aligns video embeddings with their matching compositional adverb-action text embedding in a joint embedding space. The compositional adverb-action text embedding is learned using a residual gating mechanism, along with a novel training objective consisting of triplet losses and a regression target. Our method achieves state-of-the-art performance on five recent benchmarks for video-adverb retrieval. Furthermore, we introduce dataset splits to benchmark video-adverb retrieval for unseen adverb-action compositions on subsets of the MSR-VTT Adverbs and ActivityNet Adverbs datasets. Our proposed framework outperforms all prior works for the generalisation task of retrieving adverbs from videos for unseen adverb-action compositions. Code and dataset splits are available at https://hummelth.github.io/ReGaDa/.
Towards Generalisable Video Moment Retrieval: Visual-Dynamic Injection to Image-Text Pre-Training
The correlation between the vision and text is essential for video moment retrieval (VMR), however, existing methods heavily rely on separate pre-training feature extractors for visual and textual understanding. Without sufficient temporal boundary annotations, it is non-trivial to learn universal video-text alignments. In this work, we explore multi-modal correlations derived from large-scale image-text data to facilitate generalisable VMR. To address the limitations of image-text pre-training models on capturing the video changes, we propose a generic method, referred to as Visual-Dynamic Injection (VDI), to empower the model's understanding of video moments. Whilst existing VMR methods are focusing on building temporal-aware video features, being aware of the text descriptions about the temporal changes is also critical but originally overlooked in pre-training by matching static images with sentences. Therefore, we extract visual context and spatial dynamic information from video frames and explicitly enforce their alignments with the phrases describing video changes (e.g. verb). By doing so, the potentially relevant visual and motion patterns in videos are encoded in the corresponding text embeddings (injected) so to enable more accurate video-text alignments. We conduct extensive experiments on two VMR benchmark datasets (Charades-STA and ActivityNet-Captions) and achieve state-of-the-art performances. Especially, VDI yields notable advantages when being tested on the out-of-distribution splits where the testing samples involve novel scenes and vocabulary.
Distilling Vision-Language Models on Millions of Videos
The recent advance in vision-language models is largely attributed to the abundance of image-text data. We aim to replicate this success for video-language models, but there simply is not enough human-curated video-text data available. We thus resort to fine-tuning a video-language model from a strong image-language baseline with synthesized instructional data. The resulting video-language model is then used to auto-label millions of videos to generate high-quality captions. We show the adapted video-language model performs well on a wide range of video-language benchmarks. For instance, it surpasses the best prior result on open-ended NExT-QA by 2.8%. Besides, our model generates detailed descriptions for previously unseen videos, which provide better textual supervision than existing methods. Experiments show that a video-language dual-encoder model contrastively trained on these auto-generated captions is 3.8% better than the strongest baseline that also leverages vision-language models. Our best model outperforms state-of-the-art methods on MSR-VTT zero-shot text-to-video retrieval by 6%.
ConTra: (Con)text (Tra)nsformer for Cross-Modal Video Retrieval
In this paper, we re-examine the task of cross-modal clip-sentence retrieval, where the clip is part of a longer untrimmed video. When the clip is short or visually ambiguous, knowledge of its local temporal context (i.e. surrounding video segments) can be used to improve the retrieval performance. We propose Context Transformer (ConTra); an encoder architecture that models the interaction between a video clip and its local temporal context in order to enhance its embedded representations. Importantly, we supervise the context transformer using contrastive losses in the cross-modal embedding space. We explore context transformers for video and text modalities. Results consistently demonstrate improved performance on three datasets: YouCook2, EPIC-KITCHENS and a clip-sentence version of ActivityNet Captions. Exhaustive ablation studies and context analysis show the efficacy of the proposed method.
VideoComp: Advancing Fine-Grained Compositional and Temporal Alignment in Video-Text Models
We introduce VideoComp, a benchmark and learning framework for advancing video-text compositionality understanding, aimed at improving vision-language models (VLMs) in fine-grained temporal alignment. Unlike existing benchmarks focused on static image-text compositionality or isolated single-event videos, our benchmark targets alignment in continuous multi-event videos. Leveraging video-text datasets with temporally localized event captions (e.g. ActivityNet-Captions, YouCook2), we construct two compositional benchmarks, ActivityNet-Comp and YouCook2-Comp. We create challenging negative samples with subtle temporal disruptions such as reordering, action word replacement, partial captioning, and combined disruptions. These benchmarks comprehensively test models' compositional sensitivity across extended, cohesive video-text sequences. To improve model performance, we propose a hierarchical pairwise preference loss that strengthens alignment with temporally accurate pairs and gradually penalizes increasingly disrupted ones, encouraging fine-grained compositional learning. To mitigate the limited availability of densely annotated video data, we introduce a pretraining strategy that concatenates short video-caption pairs to simulate multi-event sequences. We evaluate video-text foundational models and large multimodal models (LMMs) on our benchmark, identifying both strengths and areas for improvement in compositionality. Overall, our work provides a comprehensive framework for evaluating and enhancing model capabilities in achieving fine-grained, temporally coherent video-text alignment.
Hierarchical Video-Moment Retrieval and Step-Captioning
There is growing interest in searching for information from large video corpora. Prior works have studied relevant tasks, such as text-based video retrieval, moment retrieval, video summarization, and video captioning in isolation, without an end-to-end setup that can jointly search from video corpora and generate summaries. Such an end-to-end setup would allow for many interesting applications, e.g., a text-based search that finds a relevant video from a video corpus, extracts the most relevant moment from that video, and segments the moment into important steps with captions. To address this, we present the HiREST (HIerarchical REtrieval and STep-captioning) dataset and propose a new benchmark that covers hierarchical information retrieval and visual/textual stepwise summarization from an instructional video corpus. HiREST consists of 3.4K text-video pairs from an instructional video dataset, where 1.1K videos have annotations of moment spans relevant to text query and breakdown of each moment into key instruction steps with caption and timestamps (totaling 8.6K step captions). Our hierarchical benchmark consists of video retrieval, moment retrieval, and two novel moment segmentation and step captioning tasks. In moment segmentation, models break down a video moment into instruction steps and identify start-end boundaries. In step captioning, models generate a textual summary for each step. We also present starting point task-specific and end-to-end joint baseline models for our new benchmark. While the baseline models show some promising results, there still exists large room for future improvement by the community. Project website: https://hirest-cvpr2023.github.io
DREAM: Improving Video-Text Retrieval Through Relevance-Based Augmentation Using Large Foundation Models
Recent progress in video-text retrieval has been driven largely by advancements in model architectures and training strategies. However, the representation learning capabilities of videotext retrieval models remain constrained by lowquality and limited training data annotations. To address this issue, we present a novel ViDeoText Retrieval Paradigm with RElevance-based AugMentation, namely DREAM, which enhances video and text data using large foundation models to learn more generalized features. Specifically, we first adopt a simple augmentation method, which generates self-similar data by randomly duplicating or dropping subwords and frames. In addition, inspired by the recent advancement in visual and language generative models, we propose a more robust augmentation method through textual paraphrasing and video stylization using large language models (LLMs) and visual generative models (VGMs). To further enrich video and text information, we propose a relevance-based augmentation method, where LLMs and VGMs generate and integrate new relevant information into the original data. Leveraging this enriched data, extensive experiments on several video-text retrieval benchmarks demonstrate the superiority of DREAM over existing methods.
Bidirectional Likelihood Estimation with Multi-Modal Large Language Models for Text-Video Retrieval
Text-Video Retrieval aims to find the most relevant text (or video) candidate given a video (or text) query from large-scale online databases. Recent work leverages multi-modal large language models (MLLMs) to improve retrieval, especially for long or complex query-candidate pairs. However, we observe that the naive application of MLLMs, i.e., retrieval based on candidate likelihood, introduces candidate prior bias, favoring candidates with inherently higher priors over those more relevant to the query. To this end, we propose a novel retrieval framework, Bidirectional Likelihood Estimation with MLLM (BLiM), which leverages both query and candidate likelihoods by training the model to generate text from a given video as well as video features from a given text. Furthermore, we introduce Candidate Prior Normalization (CPN), a simple yet effective training-free score calibration module designed to mitigate candidate prior bias in candidate likelihood. On four Text-Video Retrieval benchmarks, our BLiM equipped with CPN outperforms previous state-of-the-art models by 6.4 R@1 on average, effectively alleviating candidate prior bias and emphasizing query-candidate relevance. Our in-depth analysis across various multi-modal tasks beyond retrieval highlights the broad applicability of CPN which enhances visual understanding by reducing reliance on textual priors. Code is available at https://github.com/mlvlab/BLiM.
Prompt Switch: Efficient CLIP Adaptation for Text-Video Retrieval
In text-video retrieval, recent works have benefited from the powerful learning capabilities of pre-trained text-image foundation models (e.g., CLIP) by adapting them to the video domain. A critical problem for them is how to effectively capture the rich semantics inside the video using the image encoder of CLIP. To tackle this, state-of-the-art methods adopt complex cross-modal modeling techniques to fuse the text information into video frame representations, which, however, incurs severe efficiency issues in large-scale retrieval systems as the video representations must be recomputed online for every text query. In this paper, we discard this problematic cross-modal fusion process and aim to learn semantically-enhanced representations purely from the video, so that the video representations can be computed offline and reused for different texts. Concretely, we first introduce a spatial-temporal "Prompt Cube" into the CLIP image encoder and iteratively switch it within the encoder layers to efficiently incorporate the global video semantics into frame representations. We then propose to apply an auxiliary video captioning objective to train the frame representations, which facilitates the learning of detailed video semantics by providing fine-grained guidance in the semantic space. With a naive temporal fusion strategy (i.e., mean-pooling) on the enhanced frame representations, we obtain state-of-the-art performances on three benchmark datasets, i.e., MSR-VTT, MSVD, and LSMDC.
HawkEye: Training Video-Text LLMs for Grounding Text in Videos
Video-text Large Language Models (video-text LLMs) have shown remarkable performance in answering questions and holding conversations on simple videos. However, they perform almost the same as random on grounding text queries in long and complicated videos, having little ability to understand and reason about temporal information, which is the most fundamental difference between videos and images. In this paper, we propose HawkEye, one of the first video-text LLMs that can perform temporal video grounding in a fully text-to-text manner. To collect training data that is applicable for temporal video grounding, we construct InternVid-G, a large-scale video-text corpus with segment-level captions and negative spans, with which we introduce two new time-aware training objectives to video-text LLMs. We also propose a coarse-grained method of representing segments in videos, which is more robust and easier for LLMs to learn and follow than other alternatives. Extensive experiments show that HawkEye is better at temporal video grounding and comparable on other video-text tasks with existing video-text LLMs, which verifies its superior video-text multi-modal understanding abilities.
Weakly Supervised Video Representation Learning with Unaligned Text for Sequential Videos
Sequential video understanding, as an emerging video understanding task, has driven lots of researchers' attention because of its goal-oriented nature. This paper studies weakly supervised sequential video understanding where the accurate time-stamp level text-video alignment is not provided. We solve this task by borrowing ideas from CLIP. Specifically, we use a transformer to aggregate frame-level features for video representation and use a pre-trained text encoder to encode the texts corresponding to each action and the whole video, respectively. To model the correspondence between text and video, we propose a multiple granularity loss, where the video-paragraph contrastive loss enforces matching between the whole video and the complete script, and a fine-grained frame-sentence contrastive loss enforces the matching between each action and its description. As the frame-sentence correspondence is not available, we propose to use the fact that video actions happen sequentially in the temporal domain to generate pseudo frame-sentence correspondence and supervise the network training with the pseudo labels. Extensive experiments on video sequence verification and text-to-video matching show that our method outperforms baselines by a large margin, which validates the effectiveness of our proposed approach. Code is available at https://github.com/svip-lab/WeakSVR
Taming Multimodal Joint Training for High-Quality Video-to-Audio Synthesis
We propose to synthesize high-quality and synchronized audio, given video and optional text conditions, using a novel multimodal joint training framework MMAudio. In contrast to single-modality training conditioned on (limited) video data only, MMAudio is jointly trained with larger-scale, readily available text-audio data to learn to generate semantically aligned high-quality audio samples. Additionally, we improve audio-visual synchrony with a conditional synchronization module that aligns video conditions with audio latents at the frame level. Trained with a flow matching objective, MMAudio achieves new video-to-audio state-of-the-art among public models in terms of audio quality, semantic alignment, and audio-visual synchronization, while having a low inference time (1.23s to generate an 8s clip) and just 157M parameters. MMAudio also achieves surprisingly competitive performance in text-to-audio generation, showing that joint training does not hinder single-modality performance. Code and demo are available at: https://hkchengrex.github.io/MMAudio
Tri-Modal Motion Retrieval by Learning a Joint Embedding Space
Information retrieval is an ever-evolving and crucial research domain. The substantial demand for high-quality human motion data especially in online acquirement has led to a surge in human motion research works. Prior works have mainly concentrated on dual-modality learning, such as text and motion tasks, but three-modality learning has been rarely explored. Intuitively, an extra introduced modality can enrich a model's application scenario, and more importantly, an adequate choice of the extra modality can also act as an intermediary and enhance the alignment between the other two disparate modalities. In this work, we introduce LAVIMO (LAnguage-VIdeo-MOtion alignment), a novel framework for three-modality learning integrating human-centric videos as an additional modality, thereby effectively bridging the gap between text and motion. Moreover, our approach leverages a specially designed attention mechanism to foster enhanced alignment and synergistic effects among text, video, and motion modalities. Empirically, our results on the HumanML3D and KIT-ML datasets show that LAVIMO achieves state-of-the-art performance in various motion-related cross-modal retrieval tasks, including text-to-motion, motion-to-text, video-to-motion and motion-to-video.
Learning Multi-modal Representations by Watching Hundreds of Surgical Video Lectures
Recent advancements in surgical computer vision have been driven by vision-only models, which lack language semantics, relying on manually annotated videos to predict fixed object categories. This limits their generalizability to unseen surgical procedures and tasks. We propose leveraging surgical video lectures from e-learning platforms to provide effective vision and language supervisory signals for multi-modal representation learning, bypassing manual annotations. We address surgery-specific linguistic challenges using multiple automatic speech recognition systems for text transcriptions. We introduce SurgVLP - Surgical Vision Language Pre-training - a novel method for multi-modal representation learning. SurgVLP employs a new contrastive learning objective, aligning video clip embeddings with corresponding multiple text embeddings in a joint latent space. We demonstrate the representational capability of this space through several vision-and-language surgical tasks and vision-only tasks specific to surgery. Unlike current fully supervised approaches, SurgVLP adapts to different surgical procedures and tasks without specific fine-tuning, achieving zero-shot adaptation to tasks such as surgical tool, phase, and triplet recognition without manual annotation. These results highlight the transferability and versatility of the learned multi-modal representations in surgical video analysis. The code is available at https://github.com/CAMMA-public/SurgVLP
Video-as-Answer: Predict and Generate Next Video Event with Joint-GRPO
While language models have become impactful in many real-world applications, video generation remains largely confined to entertainment. Motivated by video's inherent capacity to demonstrate physical-world information that is difficult to convey through language alone (e.g., imagine teaching someone to tie a tie using only text), we identify an underutilized opportunity to extend video as a new answer modality for Next-Event Prediction (NEP), formalized as Video-Next-Event Prediction (VNEP). While the established NEP task takes a video with a procedural or predictive question as input to predict the next event in text, VNEP requires dynamic video responses. This shift from telling to showing unlocks more intuitive and customized answers for procedural learning and creative exploration. However, this task remains challenging for existing models, as it demands an understanding of multimodal input, instruction-conditioned reasoning, and the generation of video with visual and semantic consistency. To address this, we introduce VANS, a model that leverages reinforcement learning to align a Vision-Language Model (VLM) with a Video Diffusion Model (VDM) for VNEP. The core of VANS is our proposed Joint-GRPO that orchestrates the VLM and VDM to function as a unit. Driven by a shared reward on their respective output, it optimizes the VLM to produce captions that are both accurate and friendly to visualize, while guiding the VDM to generate videos that are faithful to these captions and the input visual context. To enable this learning, we craft VANS-Data-100K, a dedicated dataset for the VNEP task. Experiments on procedural and predictive benchmarks demonstrate that VANS achieves state-of-the-art performance in both video event prediction and visualization. Codes are released in https://github.com/KlingTeam/VANS.
Fine-grained Audio-Visual Joint Representations for Multimodal Large Language Models
Audio-visual large language models (LLM) have drawn significant attention, yet the fine-grained combination of both input streams is rather under-explored, which is challenging but necessary for LLMs to understand general video inputs. To this end, a fine-grained audio-visual joint representation (FAVOR) learning framework for multimodal LLMs is proposed in this paper, which extends a text-based LLM to simultaneously perceive speech and audio events in the audio input stream and images or videos in the visual input stream, at the frame level. To fuse the audio and visual feature streams into joint representations and to align the joint space with the LLM input embedding space, we propose a causal Q-Former structure with a causal attention module to enhance the capture of causal relations of the audio-visual frames across time. An audio-visual evaluation benchmark (AVEB) is also proposed which comprises six representative single-modal tasks with five cross-modal tasks reflecting audio-visual co-reasoning abilities. While achieving competitive single-modal performance on audio, speech and image tasks in AVEB, FAVOR achieved over 20% accuracy improvements on the video question-answering task when fine-grained information or temporal causal reasoning is required. FAVOR, in addition, demonstrated remarkable video comprehension and reasoning abilities on tasks that are unprecedented by other multimodal LLMs. An interactive demo of FAVOR is available at https://github.com/BriansIDP/AudioVisualLLM.git, and the training code and model checkpoints will be released soon.
Panda-70M: Captioning 70M Videos with Multiple Cross-Modality Teachers
The quality of the data and annotation upper-bounds the quality of a downstream model. While there exist large text corpora and image-text pairs, high-quality video-text data is much harder to collect. First of all, manual labeling is more time-consuming, as it requires an annotator to watch an entire video. Second, videos have a temporal dimension, consisting of several scenes stacked together, and showing multiple actions. Accordingly, to establish a video dataset with high-quality captions, we propose an automatic approach leveraging multimodal inputs, such as textual video description, subtitles, and individual video frames. Specifically, we curate 3.8M high-resolution videos from the publicly available HD-VILA-100M dataset. We then split them into semantically consistent video clips, and apply multiple cross-modality teacher models to obtain captions for each video. Next, we finetune a retrieval model on a small subset where the best caption of each video is manually selected and then employ the model in the whole dataset to select the best caption as the annotation. In this way, we get 70M videos paired with high-quality text captions. We dub the dataset as Panda-70M. We show the value of the proposed dataset on three downstream tasks: video captioning, video and text retrieval, and text-driven video generation. The models trained on the proposed data score substantially better on the majority of metrics across all the tasks.
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP
We present CLIP2Video network to transfer the image-language pre-training model to video-text retrieval in an end-to-end manner. Leading approaches in the domain of video-and-language learning try to distill the spatio-temporal video features and multi-modal interaction between videos and languages from a large-scale video-text dataset. Different from them, we leverage pretrained image-language model, simplify it as a two-stage framework with co-learning of image-text and enhancing temporal relations between video frames and video-text respectively, make it able to train on comparatively small datasets. Specifically, based on the spatial semantics captured by Contrastive Language-Image Pretraining (CLIP) model, our model involves a Temporal Difference Block to capture motions at fine temporal video frames, and a Temporal Alignment Block to re-align the tokens of video clips and phrases and enhance the multi-modal correlation. We conduct thorough ablation studies, and achieve state-of-the-art performance on major text-to-video and video-to-text retrieval benchmarks, including new records of retrieval accuracy on MSR-VTT, MSVD and VATEX.
VideoLLM Knows When to Speak: Enhancing Time-Sensitive Video Comprehension with Video-Text Duet Interaction Format
Recent researches on video large language models (VideoLLM) predominantly focus on model architectures and training datasets, leaving the interaction format between the user and the model under-explored. In existing works, users often interact with VideoLLMs by using the entire video and a query as input, after which the model generates a response. This interaction format constrains the application of VideoLLMs in scenarios such as live-streaming comprehension where videos do not end and responses are required in a real-time manner, and also results in unsatisfactory performance on time-sensitive tasks that requires localizing video segments. In this paper, we focus on a video-text duet interaction format. This interaction format is characterized by the continuous playback of the video, and both the user and the model can insert their text messages at any position during the video playback. When a text message ends, the video continues to play, akin to the alternative of two performers in a duet. We construct MMDuetIT, a video-text training dataset designed to adapt VideoLLMs to video-text duet interaction format. We also introduce the Multi-Answer Grounded Video Question Answering (MAGQA) task to benchmark the real-time response ability of VideoLLMs. Trained on MMDuetIT, MMDuet demonstrates that adopting the video-text duet interaction format enables the model to achieve significant improvements in various time-sensitive tasks (76% CIDEr on YouCook2 dense video captioning, 90\% mAP on QVHighlights highlight detection and 25% [email protected] on Charades-STA temporal video grounding) with minimal training efforts, and also enable VideoLLMs to reply in a real-time manner as the video plays. Code, data and demo are available at: https://github.com/yellow-binary-tree/MMDuet.
VideoUFO: A Million-Scale User-Focused Dataset for Text-to-Video Generation
Text-to-video generative models convert textual prompts into dynamic visual content, offering wide-ranging applications in film production, gaming, and education. However, their real-world performance often falls short of user expectations. One key reason is that these models have not been trained on videos related to some topics users want to create. In this paper, we propose VideoUFO, the first Video dataset specifically curated to align with Users' FOcus in real-world scenarios. Beyond this, our VideoUFO also features: (1) minimal (0.29%) overlap with existing video datasets, and (2) videos searched exclusively via YouTube's official API under the Creative Commons license. These two attributes provide future researchers with greater freedom to broaden their training sources. The VideoUFO comprises over 1.09 million video clips, each paired with both a brief and a detailed caption (description). Specifically, through clustering, we first identify 1,291 user-focused topics from the million-scale real text-to-video prompt dataset, VidProM. Then, we use these topics to retrieve videos from YouTube, split the retrieved videos into clips, and generate both brief and detailed captions for each clip. After verifying the clips with specified topics, we are left with about 1.09 million video clips. Our experiments reveal that (1) current 16 text-to-video models do not achieve consistent performance across all user-focused topics; and (2) a simple model trained on VideoUFO outperforms others on worst-performing topics. The dataset is publicly available at https://huggingface.co/datasets/WenhaoWang/VideoUFO under the CC BY 4.0 License.
MDMMT-2: Multidomain Multimodal Transformer for Video Retrieval, One More Step Towards Generalization
In this work we present a new State-of-The-Art on the text-to-video retrieval task on MSR-VTT, LSMDC, MSVD, YouCook2 and TGIF obtained by a single model. Three different data sources are combined: weakly-supervised videos, crowd-labeled text-image pairs and text-video pairs. A careful analysis of available pre-trained networks helps to choose the best prior-knowledge ones. We introduce three-stage training procedure that provides high transfer knowledge efficiency and allows to use noisy datasets during training without prior knowledge degradation. Additionally, double positional encoding is used for better fusion of different modalities and a simple method for non-square inputs processing is suggested.
FitCLIP: Refining Large-Scale Pretrained Image-Text Models for Zero-Shot Video Understanding Tasks
Large-scale pretrained image-text models have shown incredible zero-shot performance in a handful of tasks, including video ones such as action recognition and text-to-video retrieval. However, these models have not been adapted to video, mainly because they do not account for the time dimension but also because video frames are different from the typical images (e.g., containing motion blur, and less sharpness). In this paper, we present a fine-tuning strategy to refine these large-scale pretrained image-text models for zero-shot video understanding tasks. We show that by carefully adapting these models we obtain considerable improvements on two zero-shot Action Recognition tasks and three zero-shot Text-to-video Retrieval tasks. The code is available at https://github.com/bryant1410/fitclip
OST: Refining Text Knowledge with Optimal Spatio-Temporal Descriptor for General Video Recognition
Due to the resource-intensive nature of training vision-language models on expansive video data, a majority of studies have centered on adapting pre-trained image-language models to the video domain. Dominant pipelines propose to tackle the visual discrepancies with additional temporal learners while overlooking the substantial discrepancy for web-scaled descriptive narratives and concise action category names, leading to less distinct semantic space and potential performance limitations. In this work, we prioritize the refinement of text knowledge to facilitate generalizable video recognition. To address the limitations of the less distinct semantic space of category names, we prompt a large language model (LLM) to augment action class names into Spatio-Temporal Descriptors thus bridging the textual discrepancy and serving as a knowledge base for general recognition. Moreover, to assign the best descriptors with different video instances, we propose Optimal Descriptor Solver, forming the video recognition problem as solving the optimal matching flow across frame-level representations and descriptors. Comprehensive evaluations in zero-shot, few-shot, and fully supervised video recognition highlight the effectiveness of our approach. Our best model achieves a state-of-the-art zero-shot accuracy of 75.1% on Kinetics-600.
HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips
Learning text-video embeddings usually requires a dataset of video clips with manually provided captions. However, such datasets are expensive and time consuming to create and therefore difficult to obtain on a large scale. In this work, we propose instead to learn such embeddings from video data with readily available natural language annotations in the form of automatically transcribed narrations. The contributions of this work are three-fold. First, we introduce HowTo100M: a large-scale dataset of 136 million video clips sourced from 1.22M narrated instructional web videos depicting humans performing and describing over 23k different visual tasks. Our data collection procedure is fast, scalable and does not require any additional manual annotation. Second, we demonstrate that a text-video embedding trained on this data leads to state-of-the-art results for text-to-video retrieval and action localization on instructional video datasets such as YouCook2 or CrossTask. Finally, we show that this embedding transfers well to other domains: fine-tuning on generic Youtube videos (MSR-VTT dataset) and movies (LSMDC dataset) outperforms models trained on these datasets alone. Our dataset, code and models will be publicly available at: www.di.ens.fr/willow/research/howto100m/.
Condensed Movies: Story Based Retrieval with Contextual Embeddings
Our objective in this work is long range understanding of the narrative structure of movies. Instead of considering the entire movie, we propose to learn from the `key scenes' of the movie, providing a condensed look at the full storyline. To this end, we make the following three contributions: (i) We create the Condensed Movies Dataset (CMD) consisting of the key scenes from over 3K movies: each key scene is accompanied by a high level semantic description of the scene, character face-tracks, and metadata about the movie. The dataset is scalable, obtained automatically from YouTube, and is freely available for anybody to download and use. It is also an order of magnitude larger than existing movie datasets in the number of movies; (ii) We provide a deep network baseline for text-to-video retrieval on our dataset, combining character, speech and visual cues into a single video embedding; and finally (iii) We demonstrate how the addition of context from other video clips improves retrieval performance.
ViMix-14M: A Curated Multi-Source Video-Text Dataset with Long-Form, High-Quality Captions and Crawl-Free Access
Text-to-video generation has surged in interest since Sora, yet open-source models still face a data bottleneck: there is no large, high-quality, easily obtainable video-text corpus. Existing public datasets typically require manual YouTube crawling, which yields low usable volume due to link rot and access limits, and raises licensing uncertainty. This work addresses this challenge by introducing ViMix-14M, a curated multi-source video-text dataset of around 14 million pairs that provides crawl-free, download-ready access and long-form, high-quality captions tightly aligned to video. ViMix-14M is built by merging diverse open video sources, followed by unified de-duplication and quality filtering, and a multi-granularity, ground-truth-guided re-captioning pipeline that refines descriptions to better match actions, scenes, and temporal structure. We evaluate the dataset by multimodal retrieval, text-to-video generation, and video question answering tasks, observing consistent improvements over counterpart datasets. We hope this work can help removing the key barrier to training and fine-tuning open-source video foundation models, and provide insights of building high-quality and generalizable video-text datasets.
VIOLIN: A Large-Scale Dataset for Video-and-Language Inference
We introduce a new task, Video-and-Language Inference, for joint multimodal understanding of video and text. Given a video clip with aligned subtitles as premise, paired with a natural language hypothesis based on the video content, a model needs to infer whether the hypothesis is entailed or contradicted by the given video clip. A new large-scale dataset, named Violin (VIdeO-and-Language INference), is introduced for this task, which consists of 95,322 video-hypothesis pairs from 15,887 video clips, spanning over 582 hours of video. These video clips contain rich content with diverse temporal dynamics, event shifts, and people interactions, collected from two sources: (i) popular TV shows, and (ii) movie clips from YouTube channels. In order to address our new multimodal inference task, a model is required to possess sophisticated reasoning skills, from surface-level grounding (e.g., identifying objects and characters in the video) to in-depth commonsense reasoning (e.g., inferring causal relations of events in the video). We present a detailed analysis of the dataset and an extensive evaluation over many strong baselines, providing valuable insights on the challenges of this new task.
Video-ColBERT: Contextualized Late Interaction for Text-to-Video Retrieval
In this work, we tackle the problem of text-to-video retrieval (T2VR). Inspired by the success of late interaction techniques in text-document, text-image, and text-video retrieval, our approach, Video-ColBERT, introduces a simple and efficient mechanism for fine-grained similarity assessment between queries and videos. Video-ColBERT is built upon 3 main components: a fine-grained spatial and temporal token-wise interaction, query and visual expansions, and a dual sigmoid loss during training. We find that this interaction and training paradigm leads to strong individual, yet compatible, representations for encoding video content. These representations lead to increases in performance on common text-to-video retrieval benchmarks compared to other bi-encoder methods.
MultiVENT 2.0: A Massive Multilingual Benchmark for Event-Centric Video Retrieval
Efficiently retrieving and synthesizing information from large-scale multimodal collections has become a critical challenge. However, existing video retrieval datasets suffer from scope limitations, primarily focusing on matching descriptive but vague queries with small collections of professionally edited, English-centric videos. To address this gap, we introduce MultiVENT 2.0, a large-scale, multilingual event-centric video retrieval benchmark featuring a collection of more than 218,000 news videos and 3,906 queries targeting specific world events. These queries specifically target information found in the visual content, audio, embedded text, and text metadata of the videos, requiring systems leverage all these sources to succeed at the task. Preliminary results show that state-of-the-art vision-language models struggle significantly with this task, and while alternative approaches show promise, they are still insufficient to adequately address this problem. These findings underscore the need for more robust multimodal retrieval systems, as effective video retrieval is a crucial step towards multimodal content understanding and generation tasks.
Chapter-Llama: Efficient Chaptering in Hour-Long Videos with LLMs
We address the task of video chaptering, i.e., partitioning a long video timeline into semantic units and generating corresponding chapter titles. While relatively underexplored, automatic chaptering has the potential to enable efficient navigation and content retrieval in long-form videos. In this paper, we achieve strong chaptering performance on hour-long videos by efficiently addressing the problem in the text domain with our 'Chapter-Llama' framework. Specifically, we leverage a pretrained large language model (LLM) with large context window, and feed as input (i) speech transcripts and (ii) captions describing video frames, along with their respective timestamps. Given the inefficiency of exhaustively captioning all frames, we propose a lightweight speech-guided frame selection strategy based on speech transcript content, and experimentally demonstrate remarkable advantages. We train the LLM to output timestamps for the chapter boundaries, as well as free-form chapter titles. This simple yet powerful approach scales to processing one-hour long videos in a single forward pass. Our results demonstrate substantial improvements (e.g., 45.3 vs 26.7 F1 score) over the state of the art on the recent VidChapters-7M benchmark. To promote further research, we release our code and models at our project page.
VoP: Text-Video Co-operative Prompt Tuning for Cross-Modal Retrieval
Many recent studies leverage the pre-trained CLIP for text-video cross-modal retrieval by tuning the backbone with additional heavy modules, which not only brings huge computational burdens with much more parameters, but also leads to the knowledge forgetting from upstream models. In this work, we propose the VoP: Text-Video Co-operative Prompt Tuning for efficient tuning on the text-video retrieval task. The proposed VoP is an end-to-end framework with both video & text prompts introducing, which can be regarded as a powerful baseline with only 0.1% trainable parameters. Further, based on the spatio-temporal characteristics of videos, we develop three novel video prompt mechanisms to improve the performance with different scales of trainable parameters. The basic idea of the VoP enhancement is to model the frame position, frame context, and layer function with specific trainable prompts, respectively. Extensive experiments show that compared to full fine-tuning, the enhanced VoP achieves a 1.4% average R@1 gain across five text-video retrieval benchmarks with 6x less parameter overhead. The code will be available at https://github.com/bighuang624/VoP.
Localizing Moments in Video with Natural Language
We consider retrieving a specific temporal segment, or moment, from a video given a natural language text description. Methods designed to retrieve whole video clips with natural language determine what occurs in a video but not when. To address this issue, we propose the Moment Context Network (MCN) which effectively localizes natural language queries in videos by integrating local and global video features over time. A key obstacle to training our MCN model is that current video datasets do not include pairs of localized video segments and referring expressions, or text descriptions which uniquely identify a corresponding moment. Therefore, we collect the Distinct Describable Moments (DiDeMo) dataset which consists of over 10,000 unedited, personal videos in diverse visual settings with pairs of localized video segments and referring expressions. We demonstrate that MCN outperforms several baseline methods and believe that our initial results together with the release of DiDeMo will inspire further research on localizing video moments with natural language.
Video Editing for Video Retrieval
Though pre-training vision-language models have demonstrated significant benefits in boosting video-text retrieval performance from large-scale web videos, fine-tuning still plays a critical role with manually annotated clips with start and end times, which requires considerable human effort. To address this issue, we explore an alternative cheaper source of annotations, single timestamps, for video-text retrieval. We initialise clips from timestamps in a heuristic way to warm up a retrieval model. Then a video clip editing method is proposed to refine the initial rough boundaries to improve retrieval performance. A student-teacher network is introduced for video clip editing. The teacher model is employed to edit the clips in the training set whereas the student model trains on the edited clips. The teacher weights are updated from the student's after the student's performance increases. Our method is model agnostic and applicable to any retrieval models. We conduct experiments based on three state-of-the-art retrieval models, COOT, VideoCLIP and CLIP4Clip. Experiments conducted on three video retrieval datasets, YouCook2, DiDeMo and ActivityNet-Captions show that our edited clips consistently improve retrieval performance over initial clips across all the three retrieval models.
Tell me what you see: A zero-shot action recognition method based on natural language descriptions
This paper presents a novel approach to Zero-Shot Action Recognition. Recent works have explored the detection and classification of objects to obtain semantic information from videos with remarkable performance. Inspired by them, we propose using video captioning methods to extract semantic information about objects, scenes, humans, and their relationships. To the best of our knowledge, this is the first work to represent both videos and labels with descriptive sentences. More specifically, we represent videos using sentences generated via video captioning methods and classes using sentences extracted from documents acquired through search engines on the Internet. Using these representations, we build a shared semantic space employing BERT-based embedders pre-trained in the paraphrasing task on multiple text datasets. The projection of both visual and semantic information onto this space is straightforward, as they are sentences, enabling classification using the nearest neighbor rule. We demonstrate that representing videos and labels with sentences alleviates the domain adaptation problem. Additionally, we show that word vectors are unsuitable for building the semantic embedding space of our descriptions. Our method outperforms the state-of-the-art performance on the UCF101 dataset by 3.3 p.p. in accuracy under the TruZe protocol and achieves competitive results on both the UCF101 and HMDB51 datasets under the conventional protocol (0/50\% - training/testing split). Our code is available at https://github.com/valterlej/zsarcap.
VideoCLIP-XL: Advancing Long Description Understanding for Video CLIP Models
Contrastive Language-Image Pre-training (CLIP) has been widely studied and applied in numerous applications. However, the emphasis on brief summary texts during pre-training prevents CLIP from understanding long descriptions. This issue is particularly acute regarding videos given that videos often contain abundant detailed contents. In this paper, we propose the VideoCLIP-XL (eXtra Length) model, which aims to unleash the long-description understanding capability of video CLIP models. Firstly, we establish an automatic data collection system and gather a large-scale VILD pre-training dataset with VIdeo and Long-Description pairs. Then, we propose Text-similarity-guided Primary Component Matching (TPCM) to better learn the distribution of feature space while expanding the long description capability. We also introduce two new tasks namely Detail-aware Description Ranking (DDR) and Hallucination-aware Description Ranking (HDR) for further understanding improvement. Finally, we construct a Long Video Description Ranking (LVDR) benchmark for evaluating the long-description capability more comprehensively. Extensive experimental results on widely-used text-video retrieval benchmarks with both short and long descriptions and our LVDR benchmark can fully demonstrate the effectiveness of our method.
VidGen-1M: A Large-Scale Dataset for Text-to-video Generation
The quality of video-text pairs fundamentally determines the upper bound of text-to-video models. Currently, the datasets used for training these models suffer from significant shortcomings, including low temporal consistency, poor-quality captions, substandard video quality, and imbalanced data distribution. The prevailing video curation process, which depends on image models for tagging and manual rule-based curation, leads to a high computational load and leaves behind unclean data. As a result, there is a lack of appropriate training datasets for text-to-video models. To address this problem, we present VidGen-1M, a superior training dataset for text-to-video models. Produced through a coarse-to-fine curation strategy, this dataset guarantees high-quality videos and detailed captions with excellent temporal consistency. When used to train the video generation model, this dataset has led to experimental results that surpass those obtained with other models.
Video Understanding with Large Language Models: A Survey
With the burgeoning growth of online video platforms and the escalating volume of video content, the demand for proficient video understanding tools has intensified markedly. Given the remarkable capabilities of Large Language Models (LLMs) in language and multimodal tasks, this survey provides a detailed overview of the recent advancements in video understanding harnessing the power of LLMs (Vid-LLMs). The emergent capabilities of Vid-LLMs are surprisingly advanced, particularly their ability for open-ended spatial-temporal reasoning combined with commonsense knowledge, suggesting a promising path for future video understanding. We examine the unique characteristics and capabilities of Vid-LLMs, categorizing the approaches into four main types: LLM-based Video Agents, Vid-LLMs Pretraining, Vid-LLMs Instruction Tuning, and Hybrid Methods. Furthermore, this survey presents a comprehensive study of the tasks, datasets, and evaluation methodologies for Vid-LLMs. Additionally, it explores the expansive applications of Vid-LLMs across various domains, highlighting their remarkable scalability and versatility in real-world video understanding challenges. Finally, it summarizes the limitations of existing Vid-LLMs and outlines directions for future research. For more information, readers are recommended to visit the repository at https://github.com/yunlong10/Awesome-LLMs-for-Video-Understanding.
Language-Guided Music Recommendation for Video via Prompt Analogies
We propose a method to recommend music for an input video while allowing a user to guide music selection with free-form natural language. A key challenge of this problem setting is that existing music video datasets provide the needed (video, music) training pairs, but lack text descriptions of the music. This work addresses this challenge with the following three contributions. First, we propose a text-synthesis approach that relies on an analogy-based prompting procedure to generate natural language music descriptions from a large-scale language model (BLOOM-176B) given pre-trained music tagger outputs and a small number of human text descriptions. Second, we use these synthesized music descriptions to train a new trimodal model, which fuses text and video input representations to query music samples. For training, we introduce a text dropout regularization mechanism which we show is critical to model performance. Our model design allows for the retrieved music audio to agree with the two input modalities by matching visual style depicted in the video and musical genre, mood, or instrumentation described in the natural language query. Third, to evaluate our approach, we collect a testing dataset for our problem by annotating a subset of 4k clips from the YT8M-MusicVideo dataset with natural language music descriptions which we make publicly available. We show that our approach can match or exceed the performance of prior methods on video-to-music retrieval while significantly improving retrieval accuracy when using text guidance.
Q2E: Query-to-Event Decomposition for Zero-Shot Multilingual Text-to-Video Retrieval
Recent approaches have shown impressive proficiency in extracting and leveraging parametric knowledge from Large-Language Models (LLMs) and Vision-Language Models (VLMs). In this work, we consider how we can improve the identification and retrieval of videos related to complex real-world events by automatically extracting latent parametric knowledge about those events. We present Q2E: a Query-to-Event decomposition method for zero-shot multilingual text-to-video retrieval, adaptable across datasets, domains, LLMs, or VLMs. Our approach demonstrates that we can enhance the understanding of otherwise overly simplified human queries by decomposing the query using the knowledge embedded in LLMs and VLMs. We additionally show how to apply our approach to both visual and speech-based inputs. To combine this varied multimodal knowledge, we adopt entropy-based fusion scoring for zero-shot fusion. Through evaluations on two diverse datasets and multiple retrieval metrics, we demonstrate that Q2E outperforms several state-of-the-art baselines. Our evaluation also shows that integrating audio information can significantly improve text-to-video retrieval. We have released code and data for future research.
All in One: Exploring Unified Video-Language Pre-training
Mainstream Video-Language Pre-training models actbert,clipbert,violet consist of three parts, a video encoder, a text encoder, and a video-text fusion Transformer. They pursue better performance via utilizing heavier unimodal encoders or multimodal fusion Transformers, resulting in increased parameters with lower efficiency in downstream tasks. In this work, we for the first time introduce an end-to-end video-language model, namely all-in-one Transformer, that embeds raw video and textual signals into joint representations using a unified backbone architecture. We argue that the unique temporal information of video data turns out to be a key barrier hindering the design of a modality-agnostic Transformer. To overcome the challenge, we introduce a novel and effective token rolling operation to encode temporal representations from video clips in a non-parametric manner. The careful design enables the representation learning of both video-text multimodal inputs and unimodal inputs using a unified backbone model. Our pre-trained all-in-one Transformer is transferred to various downstream video-text tasks after fine-tuning, including text-video retrieval, video-question answering, multiple choice and visual commonsense reasoning. State-of-the-art performances with the minimal model FLOPs on nine datasets demonstrate the superiority of our method compared to the competitive counterparts. The code and pretrained model have been released in https://github.com/showlab/all-in-one.
Fine-grained Audible Video Description
We explore a new task for audio-visual-language modeling called fine-grained audible video description (FAVD). It aims to provide detailed textual descriptions for the given audible videos, including the appearance and spatial locations of each object, the actions of moving objects, and the sounds in videos. Existing visual-language modeling tasks often concentrate on visual cues in videos while undervaluing the language and audio modalities. On the other hand, FAVD requires not only audio-visual-language modeling skills but also paragraph-level language generation abilities. We construct the first fine-grained audible video description benchmark (FAVDBench) to facilitate this research. For each video clip, we first provide a one-sentence summary of the video, ie, the caption, followed by 4-6 sentences describing the visual details and 1-2 audio-related descriptions at the end. The descriptions are provided in both English and Chinese. We create two new metrics for this task: an EntityScore to gauge the completeness of entities in the visual descriptions, and an AudioScore to assess the audio descriptions. As a preliminary approach to this task, we propose an audio-visual-language transformer that extends existing video captioning model with an additional audio branch. We combine the masked language modeling and auto-regressive language modeling losses to optimize our model so that it can produce paragraph-level descriptions. We illustrate the efficiency of our model in audio-visual-language modeling by evaluating it against the proposed benchmark using both conventional captioning metrics and our proposed metrics. We further put our benchmark to the test in video generation models, demonstrating that employing fine-grained video descriptions can create more intricate videos than using captions.
Tarsier: Recipes for Training and Evaluating Large Video Description Models
Generating fine-grained video descriptions is a fundamental challenge in video understanding. In this work, we introduce Tarsier, a family of large-scale video-language models designed to generate high-quality video descriptions. Tarsier employs CLIP-ViT to encode frames separately and then uses an LLM to model temporal relationships. Despite its simple architecture, we demonstrate that with a meticulously designed two-stage training procedure, the Tarsier models exhibit substantially stronger video description capabilities than any existing open-source model, showing a +51.4% advantage in human side-by-side evaluation over the strongest model. Additionally, they are comparable to state-of-the-art proprietary models, with a +12.3% advantage against GPT-4V and a -6.7% disadvantage against Gemini 1.5 Pro. Besides video description, Tarsier proves to be a versatile generalist model, achieving new state-of-the-art results across nine public benchmarks, including multi-choice VQA, open-ended VQA, and zero-shot video captioning. Our second contribution is the introduction of a new benchmark for evaluating video description models, consisting of a new challenging dataset featuring videos from diverse sources and varying complexity, along with an automatic method specifically designed to assess the quality of fine-grained video descriptions. We make our models and evaluation benchmark publicly available at https://github.com/bytedance/tarsier.
COSMO: COntrastive Streamlined MultimOdal Model with Interleaved Pre-Training
In the evolution of Vision-Language Pre-training, shifting from short-text comprehension to encompassing extended textual contexts is pivotal. Recent autoregressive vision-language models like flamingo, palme, leveraging the long-context capability of Large Language Models, have excelled in few-shot text generation tasks but face challenges in alignment tasks. Addressing this gap, we introduce the contrastive loss into text generation models, presenting the COntrastive-Streamlined MultimOdal framework (\ModelName), strategically partitioning the language model into dedicated unimodal text processing and adept multimodal data handling components. \ModelName, our unified framework, merges unimodal and multimodal elements, enhancing model performance for tasks involving textual and visual data while notably reducing learnable parameters. However, these models demand extensive long-text datasets, yet the availability of high-quality long-text video datasets remains limited. To bridge this gap, this work introduces \VideoDatasetName, an inaugural interleaved video-text dataset featuring comprehensive captions, marking a significant step forward. Demonstrating its impact, we illustrate how enhances model performance in image-text tasks. With 34% learnable parameters and utilizing 72\% of the available data, our model demonstrates significant superiority over OpenFlamingo~openflamingo. For instance, in the 4-shot flickr captioning task, performance notably improves from 57.2% to 65.\%. The contributions of and are underscored by notable performance gains across 14 diverse downstream datasets encompassing both image-text and video-text tasks.
Fine-grained Video-Text Retrieval: A New Benchmark and Method
The ability of perceiving fine-grained spatial and temporal information is crucial for video-language retrieval. However, the existing video retrieval benchmarks, such as MSRVTT and MSVD, fail to efficiently evaluate the fine-grained retrieval ability of video-language models (VLMs) due to a lack of detailed annotations. To address this problem, we present FIBER, a FIne-grained BEnchmark for text to video Retrieval, containing 1,000 videos sourced from the FineAction dataset. Uniquely, our FIBER benchmark provides detailed human-annotated spatial annotations and temporal annotations for each video, making it possible to independently evaluate the spatial and temporal bias of VLMs on video retrieval task. Besides, we employ a text embedding method to unlock the capability of fine-grained video-language understanding of Multimodal Large Language Models (MLLMs). Surprisingly, the experiment results show that our Video Large Language Encoder (VLLE) performs comparably to CLIP-based models on traditional benchmarks and has a stronger capability of fine-grained representation with lower spatial-temporal bias. Project page: https://fiber-bench.github.io.
Unified Coarse-to-Fine Alignment for Video-Text Retrieval
The canonical approach to video-text retrieval leverages a coarse-grained or fine-grained alignment between visual and textual information. However, retrieving the correct video according to the text query is often challenging as it requires the ability to reason about both high-level (scene) and low-level (object) visual clues and how they relate to the text query. To this end, we propose a Unified Coarse-to-fine Alignment model, dubbed UCoFiA. Specifically, our model captures the cross-modal similarity information at different granularity levels. To alleviate the effect of irrelevant visual clues, we also apply an Interactive Similarity Aggregation module (ISA) to consider the importance of different visual features while aggregating the cross-modal similarity to obtain a similarity score for each granularity. Finally, we apply the Sinkhorn-Knopp algorithm to normalize the similarities of each level before summing them, alleviating over- and under-representation issues at different levels. By jointly considering the crossmodal similarity of different granularity, UCoFiA allows the effective unification of multi-grained alignments. Empirically, UCoFiA outperforms previous state-of-the-art CLIP-based methods on multiple video-text retrieval benchmarks, achieving 2.4%, 1.4% and 1.3% improvements in text-to-video retrieval R@1 on MSR-VTT, Activity-Net, and DiDeMo, respectively. Our code is publicly available at https://github.com/Ziyang412/UCoFiA.
VidLA: Video-Language Alignment at Scale
In this paper, we propose VidLA, an approach for video-language alignment at scale. There are two major limitations of previous video-language alignment approaches. First, they do not capture both short-range and long-range temporal dependencies and typically employ complex hierarchical deep network architectures that are hard to integrate with existing pretrained image-text foundation models. To effectively address this limitation, we instead keep the network architecture simple and use a set of data tokens that operate at different temporal resolutions in a hierarchical manner, accounting for the temporally hierarchical nature of videos. By employing a simple two-tower architecture, we are able to initialize our video-language model with pretrained image-text foundation models, thereby boosting the final performance. Second, existing video-language alignment works struggle due to the lack of semantically aligned large-scale training data. To overcome it, we leverage recent LLMs to curate the largest video-language dataset to date with better visual grounding. Furthermore, unlike existing video-text datasets which only contain short clips, our dataset is enriched with video clips of varying durations to aid our temporally hierarchical data tokens in extracting better representations at varying temporal scales. Overall, empirical results show that our proposed approach surpasses state-of-the-art methods on multiple retrieval benchmarks, especially on longer videos, and performs competitively on classification benchmarks.
Re-thinking Temporal Search for Long-Form Video Understanding
Efficient understanding of long-form videos remains a significant challenge in computer vision. In this work, we revisit temporal search paradigms for long-form video understanding, studying a fundamental issue pertaining to all state-of-the-art (SOTA) long-context vision-language models (VLMs). In particular, our contributions are two-fold: First, we formulate temporal search as a Long Video Haystack problem, i.e., finding a minimal set of relevant frames (typically one to five) among tens of thousands of frames from real-world long videos given specific queries. To validate our formulation, we create LV-Haystack, the first benchmark containing 3,874 human-annotated instances with fine-grained evaluation metrics for assessing keyframe search quality and computational efficiency. Experimental results on LV-Haystack highlight a significant research gap in temporal search capabilities, with SOTA keyframe selection methods achieving only 2.1% temporal F1 score on the LVBench subset. Next, inspired by visual search in images, we re-think temporal searching and propose a lightweight keyframe searching framework, T*, which casts the expensive temporal search as a spatial search problem. T* leverages superior visual localization capabilities typically used in images and introduces an adaptive zooming-in mechanism that operates across both temporal and spatial dimensions. Our extensive experiments show that when integrated with existing methods, T* significantly improves SOTA long-form video understanding performance. Specifically, under an inference budget of 32 frames, T* improves GPT-4o's performance from 50.5% to 53.1% and LLaVA-OneVision-72B's performance from 56.5% to 62.4% on LongVideoBench XL subset. Our PyTorch code, benchmark dataset and models are included in the Supplementary material.
LoVR: A Benchmark for Long Video Retrieval in Multimodal Contexts
Long videos contain a vast amount of information, making video-text retrieval an essential and challenging task in multimodal learning. However, existing benchmarks suffer from limited video duration, low-quality captions, and coarse annotation granularity, which hinder the evaluation of advanced video-text retrieval methods. To address these limitations, we introduce LoVR, a benchmark specifically designed for long video-text retrieval. LoVR contains 467 long videos and over 40,804 fine-grained clips with high-quality captions. To overcome the issue of poor machine-generated annotations, we propose an efficient caption generation framework that integrates VLM automatic generation, caption quality scoring, and dynamic refinement. This pipeline improves annotation accuracy while maintaining scalability. Furthermore, we introduce a semantic fusion method to generate coherent full-video captions without losing important contextual information. Our benchmark introduces longer videos, more detailed captions, and a larger-scale dataset, presenting new challenges for video understanding and retrieval. Extensive experiments on various advanced embedding models demonstrate that LoVR is a challenging benchmark, revealing the limitations of current approaches and providing valuable insights for future research. We release the code and dataset link at https://github.com/TechNomad-ds/LoVR-benchmark
DrVideo: Document Retrieval Based Long Video Understanding
Existing methods for long video understanding primarily focus on videos only lasting tens of seconds, with limited exploration of techniques for handling longer videos. The increased number of frames in longer videos presents two main challenges: difficulty in locating key information and performing long-range reasoning. Thus, we propose DrVideo, a document-retrieval-based system designed for long video understanding. Our key idea is to convert the long-video understanding problem into a long-document understanding task so as to effectively leverage the power of large language models. Specifically, DrVideo transforms a long video into a text-based long document to initially retrieve key frames and augment the information of these frames, which is used this as the system's starting point. It then employs an agent-based iterative loop to continuously search for missing information, augment relevant data, and provide final predictions in a chain-of-thought manner once sufficient question-related information is gathered. Extensive experiments on long video benchmarks confirm the effectiveness of our method. DrVideo outperforms existing state-of-the-art methods with +3.8 accuracy on EgoSchema benchmark (3 minutes), +17.9 in MovieChat-1K break mode, +38.0 in MovieChat-1K global mode (10 minutes), and +30.2 on the LLama-Vid QA dataset (over 60 minutes).
VideoLLM Benchmarks and Evaluation: A Survey
The rapid development of Large Language Models (LLMs) has catalyzed significant advancements in video understanding technologies. This survey provides a comprehensive analysis of benchmarks and evaluation methodologies specifically designed or used for Video Large Language Models (VideoLLMs). We examine the current landscape of video understanding benchmarks, discussing their characteristics, evaluation protocols, and limitations. The paper analyzes various evaluation methodologies, including closed-set, open-set, and specialized evaluations for temporal and spatiotemporal understanding tasks. We highlight the performance trends of state-of-the-art VideoLLMs across these benchmarks and identify key challenges in current evaluation frameworks. Additionally, we propose future research directions to enhance benchmark design, evaluation metrics, and protocols, including the need for more diverse, multimodal, and interpretability-focused benchmarks. This survey aims to equip researchers with a structured understanding of how to effectively evaluate VideoLLMs and identify promising avenues for advancing the field of video understanding with large language models.
Towards Retrieval Augmented Generation over Large Video Libraries
Video content creators need efficient tools to repurpose content, a task that often requires complex manual or automated searches. Crafting a new video from large video libraries remains a challenge. In this paper we introduce the task of Video Library Question Answering (VLQA) through an interoperable architecture that applies Retrieval Augmented Generation (RAG) to video libraries. We propose a system that uses large language models (LLMs) to generate search queries, retrieving relevant video moments indexed by speech and visual metadata. An answer generation module then integrates user queries with this metadata to produce responses with specific video timestamps. This approach shows promise in multimedia content retrieval, and AI-assisted video content creation.
HowToCaption: Prompting LLMs to Transform Video Annotations at Scale
Instructional videos are an excellent source for learning multimodal representations by leveraging video-subtitle pairs extracted with automatic speech recognition systems (ASR) from the audio signal in the videos. However, in contrast to human-annotated captions, both speech and subtitles naturally differ from the visual content of the videos and thus provide only noisy supervision for multimodal learning. As a result, large-scale annotation-free web video training data remains sub-optimal for training text-video models. In this work, we propose to leverage the capability of large language models (LLMs) to obtain fine-grained video descriptions aligned with videos. Specifically, we prompt an LLM to create plausible video descriptions based on ASR narrations of the video for a large-scale instructional video dataset. To this end, we introduce a prompting method that is able to take into account a longer text of subtitles, allowing us to capture context beyond a single sentence. To align the captions to the video temporally, we prompt the LLM to generate timestamps for each produced caption based on the subtitles. In this way, we obtain human-style video captions at scale without human supervision. We apply our method to the subtitles of the HowTo100M dataset, creating a new large-scale dataset, HowToCaption. Our evaluation shows that the resulting captions not only significantly improve the performance over many different benchmark datasets for text-video retrieval but also lead to a disentangling of textual narration from the audio, boosting performance in text-video-audio tasks.
TVR-Ranking: A Dataset for Ranked Video Moment Retrieval with Imprecise Queries
In this paper, we propose the task of Ranked Video Moment Retrieval (RVMR) to locate a ranked list of matching moments from a collection of videos, through queries in natural language. Although a few related tasks have been proposed and studied by CV, NLP, and IR communities, RVMR is the task that best reflects the practical setting of moment search. To facilitate research in RVMR, we develop the TVR-Ranking dataset, based on the raw videos and existing moment annotations provided in the TVR dataset. Our key contribution is the manual annotation of relevance levels for 94,442 query-moment pairs. We then develop the NDCG@K, IoUgeq mu evaluation metric for this new task and conduct experiments to evaluate three baseline models. Our experiments show that the new RVMR task brings new challenges to existing models and we believe this new dataset contributes to the research on multi-modality search. The dataset is available at https://github.com/Ranking-VMR/TVR-Ranking
TEACHTEXT: CrossModal Generalized Distillation for Text-Video Retrieval
In recent years, considerable progress on the task of text-video retrieval has been achieved by leveraging large-scale pretraining on visual and audio datasets to construct powerful video encoders. By contrast, despite the natural symmetry, the design of effective algorithms for exploiting large-scale language pretraining remains under-explored. In this work, we are the first to investigate the design of such algorithms and propose a novel generalized distillation method, TeachText, which leverages complementary cues from multiple text encoders to provide an enhanced supervisory signal to the retrieval model. Moreover, we extend our method to video side modalities and show that we can effectively reduce the number of used modalities at test time without compromising performance. Our approach advances the state of the art on several video retrieval benchmarks by a significant margin and adds no computational overhead at test time. Last but not least, we show an effective application of our method for eliminating noise from retrieval datasets. Code and data can be found at https://www.robots.ox.ac.uk/~vgg/research/teachtext/.
CI-VID: A Coherent Interleaved Text-Video Dataset
Text-to-video (T2V) generation has recently attracted considerable attention, resulting in the development of numerous high-quality datasets that have propelled progress in this area. However, existing public datasets are primarily composed of isolated text-video (T-V) pairs and thus fail to support the modeling of coherent multi-clip video sequences. To address this limitation, we introduce CI-VID, a dataset that moves beyond isolated text-to-video (T2V) generation toward text-and-video-to-video (TV2V) generation, enabling models to produce coherent, multi-scene video sequences. CI-VID contains over 340,000 samples, each featuring a coherent sequence of video clips with text captions that capture both the individual content of each clip and the transitions between them, enabling visually and textually grounded generation. To further validate the effectiveness of CI-VID, we design a comprehensive, multi-dimensional benchmark incorporating human evaluation, VLM-based assessment, and similarity-based metrics. Experimental results demonstrate that models trained on CI-VID exhibit significant improvements in both accuracy and content consistency when generating video sequences. This facilitates the creation of story-driven content with smooth visual transitions and strong temporal coherence, underscoring the quality and practical utility of the CI-VID dataset We release the CI-VID dataset and the accompanying code for data construction and evaluation at: https://github.com/ymju-BAAI/CI-VID
Learning Video Context as Interleaved Multimodal Sequences
Narrative videos, such as movies, pose significant challenges in video understanding due to their rich contexts (characters, dialogues, storylines) and diverse demands (identify who, relationship, and reason). In this paper, we introduce MovieSeq, a multimodal language model developed to address the wide range of challenges in understanding video contexts. Our core idea is to represent videos as interleaved multimodal sequences (including images, plots, videos, and subtitles), either by linking external knowledge databases or using offline models (such as whisper for subtitles). Through instruction-tuning, this approach empowers the language model to interact with videos using interleaved multimodal instructions. For example, instead of solely relying on video as input, we jointly provide character photos alongside their names and dialogues, allowing the model to associate these elements and generate more comprehensive responses. To demonstrate its effectiveness, we validate MovieSeq's performance on six datasets (LVU, MAD, Movienet, CMD, TVC, MovieQA) across five settings (video classification, audio description, video-text retrieval, video captioning, and video question-answering). The code will be public at https://github.com/showlab/MovieSeq.
Beyond Simple Edits: Composed Video Retrieval with Dense Modifications
Composed video retrieval is a challenging task that strives to retrieve a target video based on a query video and a textual description detailing specific modifications. Standard retrieval frameworks typically struggle to handle the complexity of fine-grained compositional queries and variations in temporal understanding limiting their retrieval ability in the fine-grained setting. To address this issue, we introduce a novel dataset that captures both fine-grained and composed actions across diverse video segments, enabling more detailed compositional changes in retrieved video content. The proposed dataset, named Dense-WebVid-CoVR, consists of 1.6 million samples with dense modification text that is around seven times more than its existing counterpart. We further develop a new model that integrates visual and textual information through Cross-Attention (CA) fusion using grounded text encoder, enabling precise alignment between dense query modifications and target videos. The proposed model achieves state-of-the-art results surpassing existing methods on all metrics. Notably, it achieves 71.3\% Recall@1 in visual+text setting and outperforms the state-of-the-art by 3.4\%, highlighting its efficacy in terms of leveraging detailed video descriptions and dense modification texts. Our proposed dataset, code, and model are available at :https://github.com/OmkarThawakar/BSE-CoVR
LongVLM: Efficient Long Video Understanding via Large Language Models
Empowered by Large Language Models (LLMs), recent advancements in Video-based LLMs (VideoLLMs) have driven progress in various video understanding tasks. These models encode video representations through pooling or query aggregation over a vast number of visual tokens, making computational and memory costs affordable. Despite successfully providing an overall comprehension of video content, existing VideoLLMs still face challenges in achieving detailed understanding due to overlooking local information in long-term videos. To tackle this challenge, we introduce LongVLM, a simple yet powerful VideoLLM for long video understanding, building upon the observation that long videos often consist of sequential key events, complex actions, and camera movements. Our approach proposes to decompose long videos into multiple short-term segments and encode local features for each segment via a hierarchical token merging module. These features are concatenated in temporal order to maintain the storyline across sequential short-term segments. Additionally, we propose to integrate global semantics into each local feature to enhance context understanding. In this way, we encode video representations that incorporate both local and global information, enabling the LLM to generate comprehensive responses for long-term videos. Experimental results on the VideoChatGPT benchmark and zero-shot video question-answering datasets demonstrate the superior capabilities of our model over the previous state-of-the-art methods. Qualitative examples show that our model produces more precise responses for long video understanding. Code is available at https://github.com/ziplab/LongVLM.
VideoRAG: Retrieval-Augmented Generation over Video Corpus
Retrieval-Augmented Generation (RAG) is a powerful strategy to address the issue of generating factually incorrect outputs in foundation models by retrieving external knowledge relevant to queries and incorporating it into their generation process. However, existing RAG approaches have primarily focused on textual information, with some recent advancements beginning to consider images, and they largely overlook videos, a rich source of multimodal knowledge capable of representing events, processes, and contextual details more effectively than any other modality. While a few recent studies explore the integration of videos in the response generation process, they either predefine query-associated videos without retrieving them according to queries, or convert videos into the textual descriptions without harnessing their multimodal richness. To tackle these, we introduce VideoRAG, a novel framework that not only dynamically retrieves relevant videos based on their relevance with queries but also utilizes both visual and textual information of videos in the output generation. Further, to operationalize this, our method revolves around the recent advance of Large Video Language Models (LVLMs), which enable the direct processing of video content to represent it for retrieval and seamless integration of the retrieved videos jointly with queries. We experimentally validate the effectiveness of VideoRAG, showcasing that it is superior to relevant baselines.
FALCONEye: Finding Answers and Localizing Content in ONE-hour-long videos with multi-modal LLMs
Information retrieval in hour-long videos presents a significant challenge, even for state-of-the-art Vision-Language Models (VLMs), particularly when the desired information is localized within a small subset of frames. Long video data presents challenges for VLMs due to context window limitations and the difficulty of pinpointing frames containing the answer. Our novel video agent, FALCONEye, combines a VLM and a Large Language Model (LLM) to search relevant information along the video, and locate the frames with the answer. FALCONEye novelty relies on 1) the proposed meta-architecture, which is better suited to tackle hour-long videos compared to short video approaches in the state-of-the-art; 2) a new efficient exploration algorithm to locate the information using short clips, captions and answer confidence; and 3) our state-of-the-art VLMs calibration analysis for the answer confidence. Our agent is built over a small-size VLM and a medium-size LLM being accessible to run on standard computational resources. We also release FALCON-Bench, a benchmark to evaluate long (average > 1 hour) Video Answer Search challenges, highlighting the need for open-ended question evaluation. Our experiments show FALCONEye's superior performance than the state-of-the-art in FALCON-Bench, and similar or better performance in related benchmarks.
VLM2Vec-V2: Advancing Multimodal Embedding for Videos, Images, and Visual Documents
Multimodal embedding models have been crucial in enabling various downstream tasks such as semantic similarity, information retrieval, and clustering over different modalities. However, existing multimodal embeddings like VLM2Vec, E5-V, GME are predominantly focused on natural images, with limited support for other visual forms such as videos and visual documents. This restricts their applicability in real-world scenarios, including AI agents, multi-modal search and recommendation, and retrieval-augmented generation (RAG). To close this gap, we propose VLM2Vec-V2, a unified framework for learning embeddings across diverse visual forms. First, we introduce MMEB-V2, a comprehensive benchmark that extends MMEB with five new task types: visual document retrieval, video retrieval, temporal grounding, video classification and video question answering - spanning text, image, video, and visual document inputs. Next, we train VLM2Vec-V2, a general-purpose embedding model that supports text, image, video, and visual document inputs. Extensive experiments show that VLM2Vec-V2 achieves strong performance not only on the newly introduced video and document retrieval tasks, but also improves over prior baselines on the original image benchmarks. Through extensive evaluation, our study offers insights into the generalizability of various multimodal embedding models and highlights effective strategies for unified embedding learning, laying the groundwork for more scalable and adaptable representation learning in both research and real-world settings.
MAD: A Scalable Dataset for Language Grounding in Videos from Movie Audio Descriptions
The recent and increasing interest in video-language research has driven the development of large-scale datasets that enable data-intensive machine learning techniques. In comparison, limited effort has been made at assessing the fitness of these datasets for the video-language grounding task. Recent works have begun to discover significant limitations in these datasets, suggesting that state-of-the-art techniques commonly overfit to hidden dataset biases. In this work, we present MAD (Movie Audio Descriptions), a novel benchmark that departs from the paradigm of augmenting existing video datasets with text annotations and focuses on crawling and aligning available audio descriptions of mainstream movies. MAD contains over 384,000 natural language sentences grounded in over 1,200 hours of videos and exhibits a significant reduction in the currently diagnosed biases for video-language grounding datasets. MAD's collection strategy enables a novel and more challenging version of video-language grounding, where short temporal moments (typically seconds long) must be accurately grounded in diverse long-form videos that can last up to three hours. We have released MAD's data and baselines code at https://github.com/Soldelli/MAD.
Phenaki: Variable Length Video Generation From Open Domain Textual Description
We present Phenaki, a model capable of realistic video synthesis, given a sequence of textual prompts. Generating videos from text is particularly challenging due to the computational cost, limited quantities of high quality text-video data and variable length of videos. To address these issues, we introduce a new model for learning video representation which compresses the video to a small representation of discrete tokens. This tokenizer uses causal attention in time, which allows it to work with variable-length videos. To generate video tokens from text we are using a bidirectional masked transformer conditioned on pre-computed text tokens. The generated video tokens are subsequently de-tokenized to create the actual video. To address data issues, we demonstrate how joint training on a large corpus of image-text pairs as well as a smaller number of video-text examples can result in generalization beyond what is available in the video datasets. Compared to the previous video generation methods, Phenaki can generate arbitrary long videos conditioned on a sequence of prompts (i.e. time variable text or a story) in open domain. To the best of our knowledge, this is the first time a paper studies generating videos from time variable prompts. In addition, compared to the per-frame baselines, the proposed video encoder-decoder computes fewer tokens per video but results in better spatio-temporal consistency.
Unsupervised Audio-Visual Lecture Segmentation
Over the last decade, online lecture videos have become increasingly popular and have experienced a meteoric rise during the pandemic. However, video-language research has primarily focused on instructional videos or movies, and tools to help students navigate the growing online lectures are lacking. Our first contribution is to facilitate research in the educational domain, by introducing AVLectures, a large-scale dataset consisting of 86 courses with over 2,350 lectures covering various STEM subjects. Each course contains video lectures, transcripts, OCR outputs for lecture frames, and optionally lecture notes, slides, assignments, and related educational content that can inspire a variety of tasks. Our second contribution is introducing video lecture segmentation that splits lectures into bite-sized topics that show promise in improving learner engagement. We formulate lecture segmentation as an unsupervised task that leverages visual, textual, and OCR cues from the lecture, while clip representations are fine-tuned on a pretext self-supervised task of matching the narration with the temporally aligned visual content. We use these representations to generate segments using a temporally consistent 1-nearest neighbor algorithm, TW-FINCH. We evaluate our method on 15 courses and compare it against various visual and textual baselines, outperforming all of them. Our comprehensive ablation studies also identify the key factors driving the success of our approach.
Simple Baselines for Interactive Video Retrieval with Questions and Answers
To date, the majority of video retrieval systems have been optimized for a "single-shot" scenario in which the user submits a query in isolation, ignoring previous interactions with the system. Recently, there has been renewed interest in interactive systems to enhance retrieval, but existing approaches are complex and deliver limited gains in performance. In this work, we revisit this topic and propose several simple yet effective baselines for interactive video retrieval via question-answering. We employ a VideoQA model to simulate user interactions and show that this enables the productive study of the interactive retrieval task without access to ground truth dialogue data. Experiments on MSR-VTT, MSVD, and AVSD show that our framework using question-based interaction significantly improves the performance of text-based video retrieval systems.
It's Time for Artistic Correspondence in Music and Video
We present an approach for recommending a music track for a given video, and vice versa, based on both their temporal alignment and their correspondence at an artistic level. We propose a self-supervised approach that learns this correspondence directly from data, without any need of human annotations. In order to capture the high-level concepts that are required to solve the task, we propose modeling the long-term temporal context of both the video and the music signals, using Transformer networks for each modality. Experiments show that this approach strongly outperforms alternatives that do not exploit the temporal context. The combination of our contributions improve retrieval accuracy up to 10x over prior state of the art. This strong improvement allows us to introduce a wide range of analyses and applications. For instance, we can condition music retrieval based on visually defined attributes.
A Strong Baseline for Temporal Video-Text Alignment
In this paper, we consider the problem of temporally aligning the video and texts from instructional videos, specifically, given a long-term video, and associated text sentences, our goal is to determine their corresponding timestamps in the video. To this end, we establish a simple, yet strong model that adopts a Transformer-based architecture with all texts as queries, iteratively attending to the visual features, to infer the optimal timestamp. We conduct thorough experiments to investigate: (i) the effect of upgrading ASR systems to reduce errors from speech recognition, (ii) the effect of various visual-textual backbones, ranging from CLIP to S3D, to the more recent InternVideo, (iii) the effect of transforming noisy ASR transcripts into descriptive steps by prompting a large language model (LLM), to summarize the core activities within the ASR transcript as a new training dataset. As a result, our proposed simple model demonstrates superior performance on both narration alignment and procedural step grounding tasks, surpassing existing state-of-the-art methods by a significant margin on three public benchmarks, namely, 9.3% on HT-Step, 3.4% on HTM-Align and 4.7% on CrossTask. We believe the proposed model and dataset with descriptive steps can be treated as a strong baseline for future research in temporal video-text alignment. All codes, models, and the resulting dataset will be publicly released to the research community.
Contextually Customized Video Summaries via Natural Language
The best summary of a long video differs among different people due to its highly subjective nature. Even for the same person, the best summary may change with time or mood. In this paper, we introduce the task of generating customized video summaries through simple text. First, we train a deep architecture to effectively learn semantic embeddings of video frames by leveraging the abundance of image-caption data via a progressive and residual manner. Given a user-specific text description, our algorithm is able to select semantically relevant video segments and produce a temporally aligned video summary. In order to evaluate our textually customized video summaries, we conduct experimental comparison with baseline methods that utilize ground-truth information. Despite the challenging baselines, our method still manages to show comparable or even exceeding performance. We also show that our method is able to generate semantically diverse video summaries by only utilizing the learned visual embeddings.
Shotluck Holmes: A Family of Efficient Small-Scale Large Language Vision Models For Video Captioning and Summarization
Video is an increasingly prominent and information-dense medium, yet it poses substantial challenges for language models. A typical video consists of a sequence of shorter segments, or shots, that collectively form a coherent narrative. Each shot is analogous to a word in a sentence where multiple data streams of information (such as visual and auditory data) must be processed simultaneously. Comprehension of the entire video requires not only understanding the visual-audio information of each shot but also requires that the model links the ideas between each shot to generate a larger, all-encompassing story. Despite significant progress in the field, current works often overlook videos' more granular shot-by-shot semantic information. In this project, we propose a family of efficient large language vision models (LLVMs) to boost video summarization and captioning called Shotluck Holmes. By leveraging better pretraining and data collection strategies, we extend the abilities of existing small LLVMs from being able to understand a picture to being able to understand a sequence of frames. Specifically, we show that Shotluck Holmes achieves better performance than state-of-the-art results on the Shot2Story video captioning and summary task with significantly smaller and more computationally efficient models.
VideoCLIP: Contrastive Pre-training for Zero-shot Video-Text Understanding
We present VideoCLIP, a contrastive approach to pre-train a unified model for zero-shot video and text understanding, without using any labels on downstream tasks. VideoCLIP trains a transformer for video and text by contrasting temporally overlapping positive video-text pairs with hard negatives from nearest neighbor retrieval. Our experiments on a diverse series of downstream tasks, including sequence-level text-video retrieval, VideoQA, token-level action localization, and action segmentation reveal state-of-the-art performance, surpassing prior work, and in some cases even outperforming supervised approaches. Code is made available at https://github.com/pytorch/fairseq/tree/main/examples/MMPT.
Audio-Enhanced Text-to-Video Retrieval using Text-Conditioned Feature Alignment
Text-to-video retrieval systems have recently made significant progress by utilizing pre-trained models trained on large-scale image-text pairs. However, most of the latest methods primarily focus on the video modality while disregarding the audio signal for this task. Nevertheless, a recent advancement by ECLIPSE has improved long-range text-to-video retrieval by developing an audiovisual video representation. Nonetheless, the objective of the text-to-video retrieval task is to capture the complementary audio and video information that is pertinent to the text query rather than simply achieving better audio and video alignment. To address this issue, we introduce TEFAL, a TExt-conditioned Feature ALignment method that produces both audio and video representations conditioned on the text query. Instead of using only an audiovisual attention block, which could suppress the audio information relevant to the text query, our approach employs two independent cross-modal attention blocks that enable the text to attend to the audio and video representations separately. Our proposed method's efficacy is demonstrated on four benchmark datasets that include audio: MSR-VTT, LSMDC, VATEX, and Charades, and achieves better than state-of-the-art performance consistently across the four datasets. This is attributed to the additional text-query-conditioned audio representation and the complementary information it adds to the text-query-conditioned video representation.
ChatVideo: A Tracklet-centric Multimodal and Versatile Video Understanding System
Existing deep video models are limited by specific tasks, fixed input-output spaces, and poor generalization capabilities, making it difficult to deploy them in real-world scenarios. In this paper, we present our vision for multimodal and versatile video understanding and propose a prototype system, \system. Our system is built upon a tracklet-centric paradigm, which treats tracklets as the basic video unit and employs various Video Foundation Models (ViFMs) to annotate their properties e.g., appearance, motion, \etc. All the detected tracklets are stored in a database and interact with the user through a database manager. We have conducted extensive case studies on different types of in-the-wild videos, which demonstrates the effectiveness of our method in answering various video-related problems. Our project is available at https://www.wangjunke.info/ChatVideo/
Language as the Medium: Multimodal Video Classification through text only
Despite an exciting new wave of multimodal machine learning models, current approaches still struggle to interpret the complex contextual relationships between the different modalities present in videos. Going beyond existing methods that emphasize simple activities or objects, we propose a new model-agnostic approach for generating detailed textual descriptions that captures multimodal video information. Our method leverages the extensive knowledge learnt by large language models, such as GPT-3.5 or Llama2, to reason about textual descriptions of the visual and aural modalities, obtained from BLIP-2, Whisper and ImageBind. Without needing additional finetuning of video-text models or datasets, we demonstrate that available LLMs have the ability to use these multimodal textual descriptions as proxies for ``sight'' or ``hearing'' and perform zero-shot multimodal classification of videos in-context. Our evaluations on popular action recognition benchmarks, such as UCF-101 or Kinetics, show these context-rich descriptions can be successfully used in video understanding tasks. This method points towards a promising new research direction in multimodal classification, demonstrating how an interplay between textual, visual and auditory machine learning models can enable more holistic video understanding.
VidChapters-7M: Video Chapters at Scale
Segmenting long videos into chapters enables users to quickly navigate to the information of their interest. This important topic has been understudied due to the lack of publicly released datasets. To address this issue, we present VidChapters-7M, a dataset of 817K user-chaptered videos including 7M chapters in total. VidChapters-7M is automatically created from videos online in a scalable manner by scraping user-annotated chapters and hence without any additional manual annotation. We introduce the following three tasks based on this data. First, the video chapter generation task consists of temporally segmenting the video and generating a chapter title for each segment. To further dissect the problem, we also define two variants of this task: video chapter generation given ground-truth boundaries, which requires generating a chapter title given an annotated video segment, and video chapter grounding, which requires temporally localizing a chapter given its annotated title. We benchmark both simple baselines and state-of-the-art video-language models for these three tasks. We also show that pretraining on VidChapters-7M transfers well to dense video captioning tasks in both zero-shot and finetuning settings, largely improving the state of the art on the YouCook2 and ViTT benchmarks. Finally, our experiments reveal that downstream performance scales well with the size of the pretraining dataset. Our dataset, code, and models are publicly available at https://antoyang.github.io/vidchapters.html.
UATVR: Uncertainty-Adaptive Text-Video Retrieval
With the explosive growth of web videos and emerging large-scale vision-language pre-training models, e.g., CLIP, retrieving videos of interest with text instructions has attracted increasing attention. A common practice is to transfer text-video pairs to the same embedding space and craft cross-modal interactions with certain entities in specific granularities for semantic correspondence. Unfortunately, the intrinsic uncertainties of optimal entity combinations in appropriate granularities for cross-modal queries are understudied, which is especially critical for modalities with hierarchical semantics, e.g., video, text, etc. In this paper, we propose an Uncertainty-Adaptive Text-Video Retrieval approach, termed UATVR, which models each look-up as a distribution matching procedure. Concretely, we add additional learnable tokens in the encoders to adaptively aggregate multi-grained semantics for flexible high-level reasoning. In the refined embedding space, we represent text-video pairs as probabilistic distributions where prototypes are sampled for matching evaluation. Comprehensive experiments on four benchmarks justify the superiority of our UATVR, which achieves new state-of-the-art results on MSR-VTT (50.8%), VATEX (64.5%), MSVD (49.7%), and DiDeMo (45.8%). The code is available at https://github.com/bofang98/UATVR.
LVBench: An Extreme Long Video Understanding Benchmark
Recent progress in multimodal large language models has markedly enhanced the understanding of short videos (typically under one minute), and several evaluation datasets have emerged accordingly. However, these advancements fall short of meeting the demands of real-world applications such as embodied intelligence for long-term decision-making, in-depth movie reviews and discussions, and live sports commentary, all of which require comprehension of long videos spanning several hours. To address this gap, we introduce LVBench, a benchmark specifically designed for long video understanding. Our dataset comprises publicly sourced videos and encompasses a diverse set of tasks aimed at long video comprehension and information extraction. LVBench is designed to challenge multimodal models to demonstrate long-term memory and extended comprehension capabilities. Our extensive evaluations reveal that current multimodal models still underperform on these demanding long video understanding tasks. Through LVBench, we aim to spur the development of more advanced models capable of tackling the complexities of long video comprehension. Our data and code are publicly available at: https://lvbench.github.io.
TempMe: Video Temporal Token Merging for Efficient Text-Video Retrieval
Most text-video retrieval methods utilize the text-image pre-trained models like CLIP as a backbone. These methods process each sampled frame independently by the image encoder, resulting in high computational overhead and limiting practical deployment. Addressing this, we focus on efficient text-video retrieval by tackling two key challenges: 1. From the perspective of trainable parameters, current parameter-efficient fine-tuning methods incur high inference costs; 2. From the perspective of model complexity, current token compression methods are mainly designed for images to reduce spatial redundancy but overlook temporal redundancy in consecutive frames of a video. To tackle these challenges, we propose Temporal Token Merging (TempMe), a parameter-efficient and training-inference efficient text-video retrieval architecture that minimizes trainable parameters and model complexity. Specifically, we introduce a progressive multi-granularity framework. By gradually combining neighboring clips, we reduce spatio-temporal redundancy and enhance temporal modeling across different frames, leading to improved efficiency and performance. Extensive experiments validate the superiority of our TempMe. Compared to previous parameter-efficient text-video retrieval methods, TempMe achieves superior performance with just 0.50M trainable parameters. It significantly reduces output tokens by 95% and GFLOPs by 51%, while achieving a 1.8X speedup and a 4.4% R-Sum improvement. With full fine-tuning, TempMe achieves a significant 7.9% R-Sum improvement, trains 1.57X faster, and utilizes 75.2% GPU memory usage. The code is available at https://github.com/LunarShen/TempMe.
A Feature-space Multimodal Data Augmentation Technique for Text-video Retrieval
Every hour, huge amounts of visual contents are posted on social media and user-generated content platforms. To find relevant videos by means of a natural language query, text-video retrieval methods have received increased attention over the past few years. Data augmentation techniques were introduced to increase the performance on unseen test examples by creating new training samples with the application of semantics-preserving techniques, such as color space or geometric transformations on images. Yet, these techniques are usually applied on raw data, leading to more resource-demanding solutions and also requiring the shareability of the raw data, which may not always be true, e.g. copyright issues with clips from movies or TV series. To address this shortcoming, we propose a multimodal data augmentation technique which works in the feature space and creates new videos and captions by mixing semantically similar samples. We experiment our solution on a large scale public dataset, EPIC-Kitchens-100, and achieve considerable improvements over a baseline method, improved state-of-the-art performance, while at the same time performing multiple ablation studies. We release code and pretrained models on Github at https://github.com/aranciokov/FSMMDA_VideoRetrieval.
VideoPoet: A Large Language Model for Zero-Shot Video Generation
We present VideoPoet, a language model capable of synthesizing high-quality video, with matching audio, from a large variety of conditioning signals. VideoPoet employs a decoder-only transformer architecture that processes multimodal inputs -- including images, videos, text, and audio. The training protocol follows that of Large Language Models (LLMs), consisting of two stages: pretraining and task-specific adaptation. During pretraining, VideoPoet incorporates a mixture of multimodal generative objectives within an autoregressive Transformer framework. The pretrained LLM serves as a foundation that can be adapted for a range of video generation tasks. We present empirical results demonstrating the model's state-of-the-art capabilities in zero-shot video generation, specifically highlighting VideoPoet's ability to generate high-fidelity motions. Project page: http://sites.research.google/videopoet/
ARC-Hunyuan-Video-7B: Structured Video Comprehension of Real-World Shorts
Real-world user-generated short videos, especially those distributed on platforms such as WeChat Channel and TikTok, dominate the mobile internet. However, current large multimodal models lack essential temporally-structured, detailed, and in-depth video comprehension capabilities, which are the cornerstone of effective video search and recommendation, as well as emerging video applications. Understanding real-world shorts is actually challenging due to their complex visual elements, high information density in both visuals and audio, and fast pacing that focuses on emotional expression and viewpoint delivery. This requires advanced reasoning to effectively integrate multimodal information, including visual, audio, and text. In this work, we introduce ARC-Hunyuan-Video, a multimodal model that processes visual, audio, and textual signals from raw video inputs end-to-end for structured comprehension. The model is capable of multi-granularity timestamped video captioning and summarization, open-ended video question answering, temporal video grounding, and video reasoning. Leveraging high-quality data from an automated annotation pipeline, our compact 7B-parameter model is trained through a comprehensive regimen: pre-training, instruction fine-tuning, cold start, reinforcement learning (RL) post-training, and final instruction fine-tuning. Quantitative evaluations on our introduced benchmark ShortVid-Bench and qualitative comparisons demonstrate its strong performance in real-world video comprehension, and it supports zero-shot or fine-tuning with a few samples for diverse downstream applications. The real-world production deployment of our model has yielded tangible and measurable improvements in user engagement and satisfaction, a success supported by its remarkable efficiency, with stress tests indicating an inference time of just 10 seconds for a one-minute video on H20 GPU.
Object-centric Video Question Answering with Visual Grounding and Referring
Video Large Language Models (VideoLLMs) have recently demonstrated remarkable progress in general video understanding. However, existing models primarily focus on high-level comprehension and are limited to text-only responses, restricting the flexibility for object-centric, multiround interactions. In this paper, we make three contributions: (i) we address these limitations by introducing a VideoLLM model, capable of performing both object referring for input and grounding for output in video reasoning tasks, i.e., allowing users to interact with videos using both textual and visual prompts; (ii) we propose STOM (Spatial-Temporal Overlay Module), a novel approach that propagates arbitrary visual prompts input at any single timestamp to the remaining frames within a video; (iii) we present VideoInfer, a manually curated object-centric video instruction dataset featuring questionanswering pairs that require reasoning. We conduct comprehensive experiments on VideoInfer and other existing benchmarks across video question answering and referring object segmentation. The results on 12 benchmarks of 6 tasks show that our proposed model consistently outperforms baselines in both video question answering and segmentation, underscoring its robustness in multimodal, object-centric video and image understanding. Project page: https://qirui-chen.github.io/RGA3-release/.
HERO: Hierarchical Encoder for Video+Language Omni-representation Pre-training
We present HERO, a novel framework for large-scale video+language omni-representation learning. HERO encodes multimodal inputs in a hierarchical structure, where local context of a video frame is captured by a Cross-modal Transformer via multimodal fusion, and global video context is captured by a Temporal Transformer. In addition to standard Masked Language Modeling (MLM) and Masked Frame Modeling (MFM) objectives, we design two new pre-training tasks: (i) Video-Subtitle Matching (VSM), where the model predicts both global and local temporal alignment; and (ii) Frame Order Modeling (FOM), where the model predicts the right order of shuffled video frames. HERO is jointly trained on HowTo100M and large-scale TV datasets to gain deep understanding of complex social dynamics with multi-character interactions. Comprehensive experiments demonstrate that HERO achieves new state of the art on multiple benchmarks over Text-based Video/Video-moment Retrieval, Video Question Answering (QA), Video-and-language Inference and Video Captioning tasks across different domains. We also introduce two new challenging benchmarks How2QA and How2R for Video QA and Retrieval, collected from diverse video content over multimodalities.
Joint Moment Retrieval and Highlight Detection Via Natural Language Queries
Video summarization has become an increasingly important task in the field of computer vision due to the vast amount of video content available on the internet. In this project, we propose a new method for natural language query based joint video summarization and highlight detection using multi-modal transformers. This approach will use both visual and audio cues to match a user's natural language query to retrieve the most relevant and interesting moments from a video. Our approach employs multiple recent techniques used in Vision Transformers (ViTs) to create a transformer-like encoder-decoder model. We evaluated our approach on multiple datasets such as YouTube Highlights and TVSum to demonstrate the flexibility of our proposed method.
Rethinking Video-Text Understanding: Retrieval from Counterfactually Augmented Data
Recent video-text foundation models have demonstrated strong performance on a wide variety of downstream video understanding tasks. Can these video-text models genuinely understand the contents of natural videos? Standard video-text evaluations could be misleading as many questions can be inferred merely from the objects and contexts in a single frame or biases inherent in the datasets. In this paper, we aim to better assess the capabilities of current video-text models and understand their limitations. We propose a novel evaluation task for video-text understanding, namely retrieval from counterfactually augmented data (RCAD), and a new Feint6K dataset. To succeed on our new evaluation task, models must derive a comprehensive understanding of the video from cross-frame reasoning. Analyses show that previous video-text foundation models can be easily fooled by counterfactually augmented data and are far behind human-level performance. In order to narrow the gap between video-text models and human performance on RCAD, we identify a key limitation of current contrastive approaches on video-text data and introduce LLM-teacher, a more effective approach to learn action semantics by leveraging knowledge obtained from a pretrained large language model. Experiments and analyses show that our approach successfully learn more discriminative action embeddings and improves results on Feint6K when applied to multiple video-text models. Our Feint6K dataset and project page is available at https://feint6k.github.io.
