- Immersions of complexes of groups Given a complex of groups, we construct a new class of complex of groups that records its local data and offer a functorial perspective on the statement that complexes of groups are locally developable. We also construct a new notion of an immersion of complexes of groups and establish that a locally isometric immersion of a complex of groups into a non-positively curved complex of groups is pi_1-injective. Furthermore, the domain complex of groups is developable and the induced map on geometric realizations of developments is an isometric embedding. 1 authors · Oct 1
1 Local Augmentation for Graph Neural Networks Graph Neural Networks (GNNs) have achieved remarkable performance on graph-based tasks. The key idea for GNNs is to obtain informative representation through aggregating information from local neighborhoods. However, it remains an open question whether the neighborhood information is adequately aggregated for learning representations of nodes with few neighbors. To address this, we propose a simple and efficient data augmentation strategy, local augmentation, to learn the distribution of the node features of the neighbors conditioned on the central node's feature and enhance GNN's expressive power with generated features. Local augmentation is a general framework that can be applied to any GNN model in a plug-and-play manner. It samples feature vectors associated with each node from the learned conditional distribution as additional input for the backbone model at each training iteration. Extensive experiments and analyses show that local augmentation consistently yields performance improvement when applied to various GNN architectures across a diverse set of benchmarks. For example, experiments show that plugging in local augmentation to GCN and GAT improves by an average of 3.4\% and 1.6\% in terms of test accuracy on Cora, Citeseer, and Pubmed. Besides, our experimental results on large graphs (OGB) show that our model consistently improves performance over backbones. Code is available at https://github.com/SongtaoLiu0823/LAGNN. 9 authors · Sep 8, 2021
- BugPilot: Complex Bug Generation for Efficient Learning of SWE Skills High quality bugs are key to training the next generation of language model based software engineering (SWE) agents. We introduce a novel method for synthetic generation of difficult and diverse bugs. Our method instructs SWE Agents to introduce a feature into the codebase whereby they may unintentionally break tests, resulting in bugs. Prior approaches often induce an out-of-distribution effect by generating bugs intentionally (e.g. by introducing local perturbation to existing code), which does not reflect realistic development processes. We perform qualitative analysis to demonstrate that our approach for generating bugs more closely reflects the patterns found in human-authored edits. Through extensive experiments, we demonstrate that our bugs provide more efficient training data for supervised fine-tuning, outperforming other bug datasets by 2% with half the training data (1.2k vs. 3k bugs). We train on our newly generated bugs in addition to existing bug datasets to get FrogBoss a state-of-the-art 32B parameter model on SWE-bench Verified with a pass@1 of 54.6% and FrogMini a state-of-the-art 14B model on SWE-bench Verified with a pass@1 of 45.3% on SWE-bench Verified averaged over three seeds. 11 authors · Oct 22