Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAttention Illuminates LLM Reasoning: The Preplan-and-Anchor Rhythm Enables Fine-Grained Policy Optimization
The reasoning pattern of Large language models (LLMs) remains opaque, and Reinforcement learning (RL) typically applies uniform credit across an entire generation, blurring the distinction between pivotal and routine steps. This work positions attention as a privileged substrate that renders the internal logic of LLMs legible, not merely as a byproduct of computation, but as a mechanistic blueprint of reasoning itself. We first distinguish attention heads between locally and globally focused information processing and reveal that locally focused heads produce a sawtooth pattern near the diagonal indicating phrasal chunks, while globally focused heads expose tokens that exert broad downstream influence over future tokens. We formalize these with two metrics: 1) Windowed Average Attention Distance, which measures the extent of backward attention within a clipped window; 2) Future Attention Influence, which quantifies a token's global importance as the average attention it receives from subsequent tokens. Taken together, these signals reveal a recurring preplan-and-anchor mechanism, where the model first performs a long-range contextual reference to generate an introductory token, which is immediately followed by or coincides with a semantic anchor token that organizes subsequent reasoning. Leveraging these insights, we introduce three novel RL strategies that dynamically perform targeted credit assignment to critical nodes (preplan tokens, anchor tokens, and their temporal coupling) and show consistent performance gains across various reasoning tasks. By aligning optimization with the model's intrinsic reasoning rhythm, we aim to transform opaque optimization into an actionable structure-aware process, hoping to offer a potential step toward more transparent and effective optimization of LLM reasoning.
Grouping First, Attending Smartly: Training-Free Acceleration for Diffusion Transformers
Diffusion-based Transformers have demonstrated impressive generative capabilities, but their high computational costs hinder practical deployment, for example, generating an 8192times 8192 image can take over an hour on an A100 GPU. In this work, we propose GRAT (GRouping first, ATtending smartly), a training-free attention acceleration strategy for fast image and video generation without compromising output quality. The key insight is to exploit the inherent sparsity in learned attention maps (which tend to be locally focused) in pretrained Diffusion Transformers and leverage better GPU parallelism. Specifically, GRAT first partitions contiguous tokens into non-overlapping groups, aligning both with GPU execution patterns and the local attention structures learned in pretrained generative Transformers. It then accelerates attention by having all query tokens within the same group share a common set of attendable key and value tokens. These key and value tokens are further restricted to structured regions, such as surrounding blocks or criss-cross regions, significantly reducing computational overhead (e.g., attaining a 35.8times speedup over full attention when generating 8192times 8192 images) while preserving essential attention patterns and long-range context. We validate GRAT on pretrained Flux and HunyuanVideo for image and video generation, respectively. In both cases, GRAT achieves substantially faster inference without any fine-tuning, while maintaining the performance of full attention. We hope GRAT will inspire future research on accelerating Diffusion Transformers for scalable visual generation.
DCT-Net: Domain-Calibrated Translation for Portrait Stylization
This paper introduces DCT-Net, a novel image translation architecture for few-shot portrait stylization. Given limited style exemplars (sim100), the new architecture can produce high-quality style transfer results with advanced ability to synthesize high-fidelity contents and strong generality to handle complicated scenes (e.g., occlusions and accessories). Moreover, it enables full-body image translation via one elegant evaluation network trained by partial observations (i.e., stylized heads). Few-shot learning based style transfer is challenging since the learned model can easily become overfitted in the target domain, due to the biased distribution formed by only a few training examples. This paper aims to handle the challenge by adopting the key idea of "calibration first, translation later" and exploring the augmented global structure with locally-focused translation. Specifically, the proposed DCT-Net consists of three modules: a content adapter borrowing the powerful prior from source photos to calibrate the content distribution of target samples; a geometry expansion module using affine transformations to release spatially semantic constraints; and a texture translation module leveraging samples produced by the calibrated distribution to learn a fine-grained conversion. Experimental results demonstrate the proposed method's superiority over the state of the art in head stylization and its effectiveness on full image translation with adaptive deformations.
Improving Virtual Try-On with Garment-focused Diffusion Models
Diffusion models have led to the revolutionizing of generative modeling in numerous image synthesis tasks. Nevertheless, it is not trivial to directly apply diffusion models for synthesizing an image of a target person wearing a given in-shop garment, i.e., image-based virtual try-on (VTON) task. The difficulty originates from the aspect that the diffusion process should not only produce holistically high-fidelity photorealistic image of the target person, but also locally preserve every appearance and texture detail of the given garment. To address this, we shape a new Diffusion model, namely GarDiff, which triggers the garment-focused diffusion process with amplified guidance of both basic visual appearance and detailed textures (i.e., high-frequency details) derived from the given garment. GarDiff first remoulds a pre-trained latent diffusion model with additional appearance priors derived from the CLIP and VAE encodings of the reference garment. Meanwhile, a novel garment-focused adapter is integrated into the UNet of diffusion model, pursuing local fine-grained alignment with the visual appearance of reference garment and human pose. We specifically design an appearance loss over the synthesized garment to enhance the crucial, high-frequency details. Extensive experiments on VITON-HD and DressCode datasets demonstrate the superiority of our GarDiff when compared to state-of-the-art VTON approaches. Code is publicly available at: https://github.com/siqi0905/GarDiff/tree/master{https://github.com/siqi0905/GarDiff/tree/master}.
LocalSearchBench: Benchmarking Agentic Search in Real-World Local Life Services
Recent advances in large reasoning models (LRMs) have enabled agentic search systems to perform complex multi-step reasoning across multiple sources. However, most studies focus on general information retrieval and rarely explores vertical domains with unique challenges. In this work, we focus on local life services and introduce LocalSearchBench, which encompass diverse and complex business scenarios. Real-world queries in this domain are often ambiguous and require multi-hop reasoning across merchants and products, remaining challenging and not fully addressed. As the first comprehensive benchmark for agentic search in local life services, LocalSearchBench includes over 150,000 high-quality entries from various cities and business types. We construct 300 multi-hop QA tasks based on real user queries, challenging agents to understand questions and retrieve information in multiple steps. We also developed LocalPlayground, a unified environment integrating multiple tools for agent interaction. Experiments show that even state-of-the-art LRMs struggle on LocalSearchBench: the best model (DeepSeek-V3.1) achieves only 34.34% correctness, and most models have issues with completeness (average 77.33%) and faithfulness (average 61.99%). This highlights the need for specialized benchmarks and domain-specific agent training in local life services. Code, Benchmark, and Leaderboard are available at localsearchbench.github.io.
Focus on Local: Finding Reliable Discriminative Regions for Visual Place Recognition
Visual Place Recognition (VPR) is aimed at predicting the location of a query image by referencing a database of geotagged images. For VPR task, often fewer discriminative local regions in an image produce important effects while mundane background regions do not contribute or even cause perceptual aliasing because of easy overlap. However, existing methods lack precisely modeling and full exploitation of these discriminative regions. In this paper, we propose the Focus on Local (FoL) approach to stimulate the performance of image retrieval and re-ranking in VPR simultaneously by mining and exploiting reliable discriminative local regions in images and introducing pseudo-correlation supervision. First, we design two losses, Extraction-Aggregation Spatial Alignment Loss (SAL) and Foreground-Background Contrast Enhancement Loss (CEL), to explicitly model reliable discriminative local regions and use them to guide the generation of global representations and efficient re-ranking. Second, we introduce a weakly-supervised local feature training strategy based on pseudo-correspondences obtained from aggregating global features to alleviate the lack of local correspondences ground truth for the VPR task. Third, we suggest an efficient re-ranking pipeline that is efficiently and precisely based on discriminative region guidance. Finally, experimental results show that our FoL achieves the state-of-the-art on multiple VPR benchmarks in both image retrieval and re-ranking stages and also significantly outperforms existing two-stage VPR methods in terms of computational efficiency. Code and models are available at https://github.com/chenshunpeng/FoL
Local Linear Attention: An Optimal Interpolation of Linear and Softmax Attention For Test-Time Regression
Transformer architectures have achieved remarkable success in various domains. While efficient alternatives to Softmax Attention have been widely studied, the search for more expressive mechanisms grounded in theoretical insight-even at greater computational cost-has been relatively underexplored. In this work, we bridge this gap by proposing Local Linear Attention (LLA), a novel attention mechanism derived from nonparametric statistics through the lens of test-time regression. First, we show that LLA offers theoretical advantages over Linear and Softmax Attention for associative memory via a bias-variance trade-off analysis. Next, we address its computational challenges and propose two memory-efficient primitives to tackle the Theta(n^2 d) and Theta(n d^2) complexity. We then introduce FlashLLA, a hardware-efficient, blockwise algorithm that enables scalable and parallel computation on modern accelerators. In addition, we implement and profile a customized inference kernel that significantly reduces memory overheads. Finally, we empirically validate the advantages and limitations of LLA on test-time regression, in-context regression, associative recall and state tracking tasks. Experiment results demonstrate that LLA effectively adapts to non-stationarity, outperforming strong baselines in test-time training and in-context learning, and exhibiting promising evidence for its scalability and applicability in large-scale models. Code is available at https://github.com/Yifei-Zuo/Flash-LLA.
LoRA-Contextualizing Adaptation of Large Multimodal Models for Long Document Understanding
Large multimodal models (LMMs) have recently shown great progress in text-rich image understanding, yet they still struggle with complex, multi-page, visually-rich documents. Traditional methods using document parsers for retrieval-augmented generation suffer from performance and efficiency limitations, while directly presenting all pages to LMMs leads to inefficiencies, especially with lengthy documents. In this work, we present a novel framework named LoRA-Contextualizing Adaptation of Large multimodal models (LoCAL), which broadens the capabilities of any LMM to support long-document understanding. We demonstrate that LMMs can effectively serve as multimodal retrievers, fetching relevant pages to answer user questions based on these pages. LoCAL is implemented with two specific LMM adapters: one for evidence page retrieval and another for question answering. Empirical results show state-of-the-art performance on public benchmarks, demonstrating the effectiveness of LoCAL.
Local Self-Attention over Long Text for Efficient Document Retrieval
Neural networks, particularly Transformer-based architectures, have achieved significant performance improvements on several retrieval benchmarks. When the items being retrieved are documents, the time and memory cost of employing Transformers over a full sequence of document terms can be prohibitive. A popular strategy involves considering only the first n terms of the document. This can, however, result in a biased system that under retrieves longer documents. In this work, we propose a local self-attention which considers a moving window over the document terms and for each term attends only to other terms in the same window. This local attention incurs a fraction of the compute and memory cost of attention over the whole document. The windowed approach also leads to more compact packing of padded documents in minibatches resulting in additional savings. We also employ a learned saturation function and a two-staged pooling strategy to identify relevant regions of the document. The Transformer-Kernel pooling model with these changes can efficiently elicit relevance information from documents with thousands of tokens. We benchmark our proposed modifications on the document ranking task from the TREC 2019 Deep Learning track and observe significant improvements in retrieval quality as well as increased retrieval of longer documents at moderate increase in compute and memory costs.
Weighted Flow Diffusion for Local Graph Clustering with Node Attributes: an Algorithm and Statistical Guarantees
Local graph clustering methods aim to detect small clusters in very large graphs without the need to process the whole graph. They are fundamental and scalable tools for a wide range of tasks such as local community detection, node ranking and node embedding. While prior work on local graph clustering mainly focuses on graphs without node attributes, modern real-world graph datasets typically come with node attributes that provide valuable additional information. We present a simple local graph clustering algorithm for graphs with node attributes, based on the idea of diffusing mass locally in the graph while accounting for both structural and attribute proximities. Using high-dimensional concentration results, we provide statistical guarantees on the performance of the algorithm for the recovery of a target cluster with a single seed node. We give conditions under which a target cluster generated from a fairly general contextual random graph model, which includes both the stochastic block model and the planted cluster model as special cases, can be fully recovered with bounded false positives. Empirically, we validate all theoretical claims using synthetic data, and we show that incorporating node attributes leads to superior local clustering performances using real-world graph datasets.
Accelerating Diffusion LLM Inference via Local Determinism Propagation
Diffusion large language models (dLLMs) represent a significant advancement in text generation, offering parallel token decoding capabilities. However, existing open-source implementations suffer from quality-speed trade-offs that impede their practical deployment. Conservative sampling strategies typically decode only the most confident token per step to ensure quality (i.e., greedy decoding), at the cost of inference efficiency due to repeated redundant refinement iterations--a phenomenon we term delayed decoding. Through systematic analysis of dLLM decoding dynamics, we characterize this delayed decoding behavior and propose a training-free adaptive parallel decoding strategy, named LocalLeap, to address these inefficiencies. LocalLeap is built on two fundamental empirical principles: local determinism propagation centered on high-confidence anchors and progressive spatial consistency decay. By applying these principles, LocalLeap identifies anchors and performs localized relaxed parallel decoding within bounded neighborhoods, achieving substantial inference step reduction through early commitment of already-determined tokens without compromising output quality. Comprehensive evaluation on various benchmarks demonstrates that LocalLeap achieves 6.94times throughput improvements and reduces decoding steps to just 14.2\% of the original requirement, achieving these gains with negligible performance impact. The source codes are available at: https://github.com/friedrichor/LocalLeap.
CiteBART: Learning to Generate Citations for Local Citation Recommendation
Citations are essential building blocks in scientific writing. The scientific community is longing for support in their generation. Citation generation involves two complementary subtasks: Determining the citation worthiness of a context and, if it's worth it, proposing the best candidate papers for the citation placeholder. The latter subtask is called local citation recommendation (LCR). This paper proposes CiteBART, a custom BART pre-training based on citation token masking to generate citations to achieve LCR. In the base scheme, we mask the citation token in the local citation context to make the citation prediction. In the global one, we concatenate the citing paper's title and abstract to the local citation context to learn to reconstruct the citation token. CiteBART outperforms state-of-the-art approaches on the citation recommendation benchmarks except for the smallest FullTextPeerRead dataset. The effect is significant in the larger benchmarks, e.g., Refseer and ArXiv. We present a qualitative analysis and an ablation study to provide insights into the workings of CiteBART. Our analyses confirm that its generative nature brings about a zero-shot capability.
Localist LLMs -- A Mathematical Framework for Dynamic Locality Control
We present a novel framework for training large language models with continuously adjustable internal representations that span the full spectrum from localist (interpretable, rule-based) to distributed (generalizable, efficient) encodings. The key innovation is a locality dial, a tunable parameter that dynamically controls the degree of localization during both training and inference without requiring model retraining. This is achieved through group sparsity penalties on attention mechanisms, information-theoretic anchor design, and dynamic rule injection. We provide rigorous mathematical proofs establishing explicit threshold conditions under which attention provably concentrates on semantically relevant blocks, with exponential bounds on attention entropy and pointer fidelity. Specifically, we prove that when group sparsity penalties exceed certain threshold values, the model's attention mechanisms concentrate on semantically relevant blocks, achieving low entropy and high fidelity with negligible error. This framework enables practitioners to continuously interpolate between interpretable and high-performance modes, supporting applications in regulated domains requiring both transparency and capability.
BOAT: Bilateral Local Attention Vision Transformer
Vision Transformers achieved outstanding performance in many computer vision tasks. Early Vision Transformers such as ViT and DeiT adopt global self-attention, which is computationally expensive when the number of patches is large. To improve efficiency, recent Vision Transformers adopt local self-attention mechanisms, where self-attention is computed within local windows. Despite the fact that window-based local self-attention significantly boosts efficiency, it fails to capture the relationships between distant but similar patches in the image plane. To overcome this limitation of image-space local attention, in this paper, we further exploit the locality of patches in the feature space. We group the patches into multiple clusters using their features, and self-attention is computed within every cluster. Such feature-space local attention effectively captures the connections between patches across different local windows but still relevant. We propose a Bilateral lOcal Attention vision Transformer (BOAT), which integrates feature-space local attention with image-space local attention. We further integrate BOAT with both Swin and CSWin models, and extensive experiments on several benchmark datasets demonstrate that our BOAT-CSWin model clearly and consistently outperforms existing state-of-the-art CNN models and vision Transformers.
FocusLLM: Scaling LLM's Context by Parallel Decoding
Empowering LLMs with the ability to utilize useful information from a long context is crucial for many downstream applications. However, achieving long context lengths with the conventional transformer architecture requires substantial training and inference resources. In this paper, we present FocusLLM, a framework designed to extend the context length of any decoder-only LLM, enabling the model to focus on relevant information from very long sequences. FocusLLM processes long text inputs by dividing them into chunks based on the model's original context length to alleviate the issue of attention distraction. Then, it appends the local context to each chunk as a prompt to extract essential information from each chunk based on a novel parallel decoding mechanism, and ultimately integrates the extracted information into the local context. FocusLLM stands out for great training efficiency and versatility: trained with an 8K input length with much less training cost than previous methods, FocusLLM exhibits superior performance across downstream long-context tasks and maintains strong language modeling ability when handling extensive long texts, even up to 400K tokens. Our code is available at https://github.com/leezythu/FocusLLM.
Large-Scale Image Retrieval with Attentive Deep Local Features
We propose an attentive local feature descriptor suitable for large-scale image retrieval, referred to as DELF (DEep Local Feature). The new feature is based on convolutional neural networks, which are trained only with image-level annotations on a landmark image dataset. To identify semantically useful local features for image retrieval, we also propose an attention mechanism for keypoint selection, which shares most network layers with the descriptor. This framework can be used for image retrieval as a drop-in replacement for other keypoint detectors and descriptors, enabling more accurate feature matching and geometric verification. Our system produces reliable confidence scores to reject false positives---in particular, it is robust against queries that have no correct match in the database. To evaluate the proposed descriptor, we introduce a new large-scale dataset, referred to as Google-Landmarks dataset, which involves challenges in both database and query such as background clutter, partial occlusion, multiple landmarks, objects in variable scales, etc. We show that DELF outperforms the state-of-the-art global and local descriptors in the large-scale setting by significant margins. Code and dataset can be found at the project webpage: https://github.com/tensorflow/models/tree/master/research/delf .
LocalMamba: Visual State Space Model with Windowed Selective Scan
Recent advancements in state space models, notably Mamba, have demonstrated significant progress in modeling long sequences for tasks like language understanding. Yet, their application in vision tasks has not markedly surpassed the performance of traditional Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). This paper posits that the key to enhancing Vision Mamba (ViM) lies in optimizing scan directions for sequence modeling. Traditional ViM approaches, which flatten spatial tokens, overlook the preservation of local 2D dependencies, thereby elongating the distance between adjacent tokens. We introduce a novel local scanning strategy that divides images into distinct windows, effectively capturing local dependencies while maintaining a global perspective. Additionally, acknowledging the varying preferences for scan patterns across different network layers, we propose a dynamic method to independently search for the optimal scan choices for each layer, substantially improving performance. Extensive experiments across both plain and hierarchical models underscore our approach's superiority in effectively capturing image representations. For example, our model significantly outperforms Vim-Ti by 3.1% on ImageNet with the same 1.5G FLOPs. Code is available at: https://github.com/hunto/LocalMamba.
Local Conditional Controlling for Text-to-Image Diffusion Models
Diffusion models have exhibited impressive prowess in the text-to-image task. Recent methods add image-level structure controls, e.g., edge and depth maps, to manipulate the generation process together with text prompts to obtain desired images. This controlling process is globally operated on the entire image, which limits the flexibility of control regions. In this paper, we explore a novel and practical task setting: local control. It focuses on controlling specific local region according to user-defined image conditions, while the remaining regions are only conditioned by the original text prompt. However, it is non-trivial to achieve local conditional controlling. The naive manner of directly adding local conditions may lead to the local control dominance problem, which forces the model to focus on the controlled region and neglect object generation in other regions. To mitigate this problem, we propose Regional Discriminate Loss to update the noised latents, aiming at enhanced object generation in non-control regions. Furthermore, the proposed Focused Token Response suppresses weaker attention scores which lack the strongest response to enhance object distinction and reduce duplication. Lastly, we adopt Feature Mask Constraint to reduce quality degradation in images caused by information differences across the local control region. All proposed strategies are operated at the inference stage. Extensive experiments demonstrate that our method can synthesize high-quality images aligned with the text prompt under local control conditions.
A Massive Scale Semantic Similarity Dataset of Historical English
A diversity of tasks use language models trained on semantic similarity data. While there are a variety of datasets that capture semantic similarity, they are either constructed from modern web data or are relatively small datasets created in the past decade by human annotators. This study utilizes a novel source, newly digitized articles from off-copyright, local U.S. newspapers, to assemble a massive-scale semantic similarity dataset spanning 70 years from 1920 to 1989 and containing nearly 400M positive semantic similarity pairs. Historically, around half of articles in U.S. local newspapers came from newswires like the Associated Press. While local papers reproduced articles from the newswire, they wrote their own headlines, which form abstractive summaries of the associated articles. We associate articles and their headlines by exploiting document layouts and language understanding. We then use deep neural methods to detect which articles are from the same underlying source, in the presence of substantial noise and abridgement. The headlines of reproduced articles form positive semantic similarity pairs. The resulting publicly available HEADLINES dataset is significantly larger than most existing semantic similarity datasets and covers a much longer span of time. It will facilitate the application of contrastively trained semantic similarity models to a variety of tasks, including the study of semantic change across space and time.
DualFocus: Integrating Macro and Micro Perspectives in Multi-modal Large Language Models
We present DualFocus, a novel framework for integrating macro and micro perspectives within multi-modal large language models (MLLMs) to enhance vision-language task performance. Current MLLMs typically singularly focus on inputs at a predefined resolution, resulting in deficiencies in detailed questions involving local regions. We introduced a DualFocus mechanism where the model concentrates on the image from a macro perspective, responses to the question, and identifies suitable sub-regions to zoom in for subsequent micro perspective analysis. Via the integration of answers from both macro and micro perspectives, the model is adept at addressing tasks that encompass global, detailed, and combined considerations. To endows the DualFocus mechanism in MLLMs, we curated a tailored dataset derived from the Visual Genome (VG) and adapted it to align with the training regimen of DualFocus. Through comparative studies across different model sizes and benchmarks, we demonstrate DualFocus's superiority in balancing detailed examination with holistic insight, significantly reducing hallucination instances in MLLMs and improving their performance in various vision-language tasks.
Intelligence per Watt: Measuring Intelligence Efficiency of Local AI
Large language model (LLM) queries are predominantly processed by frontier models in centralized cloud infrastructure. Rapidly growing demand strains this paradigm, and cloud providers struggle to scale infrastructure at pace. Two advances enable us to rethink this paradigm: small LMs (<=20B active parameters) now achieve competitive performance to frontier models on many tasks, and local accelerators (e.g., Apple M4 Max) run these models at interactive latencies. This raises the question: can local inference viably redistribute demand from centralized infrastructure? Answering this requires measuring whether local LMs can accurately answer real-world queries and whether they can do so efficiently enough to be practical on power-constrained devices (i.e., laptops). We propose intelligence per watt (IPW), task accuracy divided by unit of power, as a metric for assessing capability and efficiency of local inference across model-accelerator pairs. We conduct a large-scale empirical study across 20+ state-of-the-art local LMs, 8 accelerators, and a representative subset of LLM traffic: 1M real-world single-turn chat and reasoning queries. For each query, we measure accuracy, energy, latency, and power. Our analysis reveals 3 findings. First, local LMs can accurately answer 88.7% of single-turn chat and reasoning queries with accuracy varying by domain. Second, from 2023-2025, IPW improved 5.3x and local query coverage rose from 23.2% to 71.3%. Third, local accelerators achieve at least 1.4x lower IPW than cloud accelerators running identical models, revealing significant headroom for optimization. These findings demonstrate that local inference can meaningfully redistribute demand from centralized infrastructure, with IPW serving as the critical metric for tracking this transition. We release our IPW profiling harness for systematic intelligence-per-watt benchmarking.
3DLNews: A Three-decade Dataset of US Local News Articles
We present 3DLNews, a novel dataset with local news articles from the United States spanning the period from 1996 to 2024. It contains almost 1 million URLs (with HTML text) from over 14,000 local newspapers, TV, and radio stations across all 50 states, and provides a broad snapshot of the US local news landscape. The dataset was collected by scraping Google and Twitter search results. We employed a multi-step filtering process to remove non-news article links and enriched the dataset with metadata such as the names and geo-coordinates of the source news media organizations, article publication dates, etc. Furthermore, we demonstrated the utility of 3DLNews by outlining four applications.
SECTOR: A Neural Model for Coherent Topic Segmentation and Classification
When searching for information, a human reader first glances over a document, spots relevant sections and then focuses on a few sentences for resolving her intention. However, the high variance of document structure complicates to identify the salient topic of a given section at a glance. To tackle this challenge, we present SECTOR, a model to support machine reading systems by segmenting documents into coherent sections and assigning topic labels to each section. Our deep neural network architecture learns a latent topic embedding over the course of a document. This can be leveraged to classify local topics from plain text and segment a document at topic shifts. In addition, we contribute WikiSection, a publicly available dataset with 242k labeled sections in English and German from two distinct domains: diseases and cities. From our extensive evaluation of 20 architectures, we report a highest score of 71.6% F1 for the segmentation and classification of 30 topics from the English city domain, scored by our SECTOR LSTM model with bloom filter embeddings and bidirectional segmentation. This is a significant improvement of 29.5 points F1 compared to state-of-the-art CNN classifiers with baseline segmentation.
FocusAgent: Simple Yet Effective Ways of Trimming the Large Context of Web Agents
Web agents powered by large language models (LLMs) must process lengthy web page observations to complete user goals; these pages often exceed tens of thousands of tokens. This saturates context limits and increases computational cost processing; moreover, processing full pages exposes agents to security risks such as prompt injection. Existing pruning strategies either discard relevant content or retain irrelevant context, leading to suboptimal action prediction. We introduce FocusAgent, a simple yet effective approach that leverages a lightweight LLM retriever to extract the most relevant lines from accessibility tree (AxTree) observations, guided by task goals. By pruning noisy and irrelevant content, FocusAgent enables efficient reasoning while reducing vulnerability to injection attacks. Experiments on WorkArena and WebArena benchmarks show that FocusAgent matches the performance of strong baselines, while reducing observation size by over 50%. Furthermore, a variant of FocusAgent significantly reduces the success rate of prompt-injection attacks, including banner and pop-up attacks, while maintaining task success performance in attack-free settings. Our results highlight that targeted LLM-based retrieval is a practical and robust strategy for building web agents that are efficient, effective, and secure.
LocalValueBench: A Collaboratively Built and Extensible Benchmark for Evaluating Localized Value Alignment and Ethical Safety in Large Language Models
The proliferation of large language models (LLMs) requires robust evaluation of their alignment with local values and ethical standards, especially as existing benchmarks often reflect the cultural, legal, and ideological values of their creators. LocalValueBench, introduced in this paper, is an extensible benchmark designed to assess LLMs' adherence to Australian values, and provides a framework for regulators worldwide to develop their own LLM benchmarks for local value alignment. Employing a novel typology for ethical reasoning and an interrogation approach, we curated comprehensive questions and utilized prompt engineering strategies to probe LLMs' value alignment. Our evaluation criteria quantified deviations from local values, ensuring a rigorous assessment process. Comparative analysis of three commercial LLMs by USA vendors revealed significant insights into their effectiveness and limitations, demonstrating the critical importance of value alignment. This study offers valuable tools and methodologies for regulators to create tailored benchmarks, highlighting avenues for future research to enhance ethical AI development.
Exploring Scaling Laws for Local SGD in Large Language Model Training
This paper investigates scaling laws for local SGD in LLM training, a distributed optimization algorithm that facilitates training on loosely connected devices. Through extensive experiments, we show that local SGD achieves competitive results compared to conventional methods, given equivalent model parameters, datasets, and computational resources. Furthermore, we explore the application of local SGD in various practical scenarios, including multi-cluster setups and edge computing environments. Our findings elucidate the necessary conditions for effective multi-cluster LLM training and examine the potential and limitations of leveraging edge computing resources in the LLM training process. This demonstrates its viability as an alternative to single large-cluster training.
LiDPM: Rethinking Point Diffusion for Lidar Scene Completion
Training diffusion models that work directly on lidar points at the scale of outdoor scenes is challenging due to the difficulty of generating fine-grained details from white noise over a broad field of view. The latest works addressing scene completion with diffusion models tackle this problem by reformulating the original DDPM as a local diffusion process. It contrasts with the common practice of operating at the level of objects, where vanilla DDPMs are currently used. In this work, we close the gap between these two lines of work. We identify approximations in the local diffusion formulation, show that they are not required to operate at the scene level, and that a vanilla DDPM with a well-chosen starting point is enough for completion. Finally, we demonstrate that our method, LiDPM, leads to better results in scene completion on SemanticKITTI. The project page is https://astra-vision.github.io/LiDPM .
AILA--First Experiments with Localist Language Models
This paper presents the first empirical demonstration of controllable locality in transformer language models, a novel architectural framework that enables continuous control over the degree of representation localization through a tunable locality dial parameter. Unlike traditional language models that rely exclusively on distributed representations, our approach allows dynamic interpolation between highly interpretable localist encodings and efficient distributed representations without requiring model retraining. We conducted experiments on the WikiText corpus using a two-layer transformer architecture, systematically varying the locality parameter λ across the full spectrum from 1.0 (fully localist) to 0.0 (fully distributed). Our results demonstrate that localist configurations achieve dramatically lower attention entropy, with λ = 1.0 yielding 5.36 bits compared to 7.18 bits at λ = 0.0, while maintaining substantially higher pointer fidelity scores reflecting stronger alignment with rule-specified targets. Prediction experiments reveal that intermediate locality values optimize the tradeoff between interpretability and performance, with λ = 0.6 achieving test perplexity of 4.65 and accuracy of 84.7%. These findings establish that localist language models provide a practical framework for applications in regulated domains requiring both transparency and capability, offering precise mathematical control over the interpretability-performance spectrum through explicit penalty thresholds and information-theoretic design principles.
YUAN 2.0: A Large Language Model with Localized Filtering-based Attention
In this work, the Localized Filtering-based Attention (LFA) is introduced to incorporate prior knowledge of local dependencies of natural language into Attention. Based on LFA, we develop and release Yuan 2.0, a large language model with parameters ranging from 2.1 billion to 102.6 billion. A data filtering and generation method is presented to build pretraining and fine-tuning dataset in high quality. A distributed training method with non-uniform pipeline parallel, data parallel, and optimizer parallel is proposed, which greatly reduces the bandwidth requirements of intra-node communication, and achieves good performance in large-scale distributed training. Yuan 2.0 models display impressive ability in code generation, math problem-solving, and chat compared with existing models. The latest version of YUAN 2.0, including model weights and source code, is accessible at Github.
ELA: Efficient Local Attention for Deep Convolutional Neural Networks
The attention mechanism has gained significant recognition in the field of computer vision due to its ability to effectively enhance the performance of deep neural networks. However, existing methods often struggle to effectively utilize spatial information or, if they do, they come at the cost of reducing channel dimensions or increasing the complexity of neural networks. In order to address these limitations, this paper introduces an Efficient Local Attention (ELA) method that achieves substantial performance improvements with a simple structure. By analyzing the limitations of the Coordinate Attention method, we identify the lack of generalization ability in Batch Normalization, the adverse effects of dimension reduction on channel attention, and the complexity of attention generation process. To overcome these challenges, we propose the incorporation of 1D convolution and Group Normalization feature enhancement techniques. This approach enables accurate localization of regions of interest by efficiently encoding two 1D positional feature maps without the need for dimension reduction, while allowing for a lightweight implementation. We carefully design three hyperparameters in ELA, resulting in four different versions: ELA-T, ELA-B, ELA-S, and ELA-L, to cater to the specific requirements of different visual tasks such as image classification, object detection and sementic segmentation. ELA can be seamlessly integrated into deep CNN networks such as ResNet, MobileNet, and DeepLab. Extensive evaluations on the ImageNet, MSCOCO, and Pascal VOC datasets demonstrate the superiority of the proposed ELA module over current state-of-the-art methods in all three aforementioned visual tasks.
Unveiling Simplicities of Attention: Adaptive Long-Context Head Identification
The ability to process long contexts is crucial for many natural language processing tasks, yet it remains a significant challenge. While substantial progress has been made in enhancing the efficiency of attention mechanisms, there is still a gap in understanding how attention heads function in long-context settings. In this paper, we observe that while certain heads consistently attend to local information only, others swing between attending to local and long-context information depending on the query. This raises the question: can we identify which heads require long-context information to predict the next token accurately? We demonstrate that it's possible to predict which heads are crucial for long-context processing using only local keys. The core idea here is to exploit a simple model for the long-context scores via second moment approximations. These findings unveil simple properties of attention in the context of long sequences, and open the door to potentially significant gains in efficiency.
The Linear Attention Resurrection in Vision Transformer
Vision Transformers (ViTs) have recently taken computer vision by storm. However, the softmax attention underlying ViTs comes with a quadratic complexity in time and memory, hindering the application of ViTs to high-resolution images. We revisit the attention design and propose a linear attention method to address the limitation, which doesn't sacrifice ViT's core advantage of capturing global representation like existing methods (e.g. local window attention of Swin). We further investigate the key difference between linear attention and softmax attention. Our empirical results suggest that linear attention lacks a fundamental property of concentrating the distribution of the attention matrix. Inspired by this observation, we introduce a local concentration module to enhance linear attention. By incorporating enhanced linear global attention and local window attention, we propose a new ViT architecture, dubbed L^2ViT. Notably, L^2ViT can effectively capture both global interactions and local representations while enjoying linear computational complexity. Extensive experiments demonstrate the strong performance of L^2ViT. On image classification, L^2ViT achieves 84.4% Top-1 accuracy on ImageNet-1K without any extra training data or label. By further pre-training on ImageNet-22k, it attains 87.0% when fine-tuned with resolution 384^2. For downstream tasks, L^2ViT delivers favorable performance as a backbone on object detection as well as semantic segmentation.
Local 3D Editing via 3D Distillation of CLIP Knowledge
3D content manipulation is an important computer vision task with many real-world applications (e.g., product design, cartoon generation, and 3D Avatar editing). Recently proposed 3D GANs can generate diverse photorealistic 3D-aware contents using Neural Radiance fields (NeRF). However, manipulation of NeRF still remains a challenging problem since the visual quality tends to degrade after manipulation and suboptimal control handles such as 2D semantic maps are used for manipulations. While text-guided manipulations have shown potential in 3D editing, such approaches often lack locality. To overcome these problems, we propose Local Editing NeRF (LENeRF), which only requires text inputs for fine-grained and localized manipulation. Specifically, we present three add-on modules of LENeRF, the Latent Residual Mapper, the Attention Field Network, and the Deformation Network, which are jointly used for local manipulations of 3D features by estimating a 3D attention field. The 3D attention field is learned in an unsupervised way, by distilling the zero-shot mask generation capability of CLIP to the 3D space with multi-view guidance. We conduct diverse experiments and thorough evaluations both quantitatively and qualitatively.
DISK: Learning local features with policy gradient
Local feature frameworks are difficult to learn in an end-to-end fashion, due to the discreteness inherent to the selection and matching of sparse keypoints. We introduce DISK (DIScrete Keypoints), a novel method that overcomes these obstacles by leveraging principles from Reinforcement Learning (RL), optimizing end-to-end for a high number of correct feature matches. Our simple yet expressive probabilistic model lets us keep the training and inference regimes close, while maintaining good enough convergence properties to reliably train from scratch. Our features can be extracted very densely while remaining discriminative, challenging commonly held assumptions about what constitutes a good keypoint, as showcased in Fig. 1, and deliver state-of-the-art results on three public benchmarks.
BALF: Simple and Efficient Blur Aware Local Feature Detector
Local feature detection is a key ingredient of many image processing and computer vision applications, such as visual odometry and localization. Most existing algorithms focus on feature detection from a sharp image. They would thus have degraded performance once the image is blurred, which could happen easily under low-lighting conditions. To address this issue, we propose a simple yet both efficient and effective keypoint detection method that is able to accurately localize the salient keypoints in a blurred image. Our method takes advantages of a novel multi-layer perceptron (MLP) based architecture that significantly improve the detection repeatability for a blurred image. The network is also light-weight and able to run in real-time, which enables its deployment for time-constrained applications. Extensive experimental results demonstrate that our detector is able to improve the detection repeatability with blurred images, while keeping comparable performance as existing state-of-the-art detectors for sharp images.
Scale-DiT: Ultra-High-Resolution Image Generation with Hierarchical Local Attention
Ultra-high-resolution text-to-image generation demands both fine-grained texture synthesis and globally coherent structure, yet current diffusion models remain constrained to sub-1K times 1K resolutions due to the prohibitive quadratic complexity of attention and the scarcity of native 4K training data. We present Scale-DiT, a new diffusion framework that introduces hierarchical local attention with low-resolution global guidance, enabling efficient, scalable, and semantically coherent image synthesis at ultra-high resolutions. Specifically, high-resolution latents are divided into fixed-size local windows to reduce attention complexity from quadratic to near-linear, while a low-resolution latent equipped with scaled positional anchors injects global semantics. A lightweight LoRA adaptation bridges global and local pathways during denoising, ensuring consistency across structure and detail. To maximize inference efficiency, we repermute token sequence in Hilbert curve order and implement a fused-kernel for skipping masked operations, resulting in a GPU-friendly design. Extensive experiments demonstrate that Scale-DiT achieves more than 2times faster inference and lower memory usage compared to dense attention baselines, while reliably scaling to 4K times 4K resolution without requiring additional high-resolution training data. On both quantitative benchmarks (FID, IS, CLIP Score) and qualitative comparisons, Scale-DiT delivers superior global coherence and sharper local detail, matching or outperforming state-of-the-art methods that rely on native 4K training. Taken together, these results highlight hierarchical local attention with guided low-resolution anchors as a promising and effective approach for advancing ultra-high-resolution image generation.
Online hierarchical partitioning of the output space in extreme multi-label data stream
Mining data streams with multi-label outputs poses significant challenges due to evolving distributions, high-dimensional label spaces, sparse label occurrences, and complex label dependencies. Moreover, concept drift affects not only input distributions but also label correlations and imbalance ratios over time, complicating model adaptation. To address these challenges, structured learners are categorized into local and global methods. Local methods break down the task into simpler components, while global methods adapt the algorithm to the full output space, potentially yielding better predictions by exploiting label correlations. This work introduces iHOMER (Incremental Hierarchy Of Multi-label Classifiers), an online multi-label learning framework that incrementally partitions the label space into disjoint, correlated clusters without relying on predefined hierarchies. iHOMER leverages online divisive-agglomerative clustering based on Jaccard similarity and a global tree-based learner driven by a multivariate Bernoulli process to guide instance partitioning. To address non-stationarity, it integrates drift detection mechanisms at both global and local levels, enabling dynamic restructuring of label partitions and subtrees. Experiments across 23 real-world datasets show iHOMER outperforms 5 state-of-the-art global baselines, such as MLHAT, MLHT of Pruned Sets and iSOUPT, by 23\%, and 12 local baselines, such as binary relevance transformations of kNN, EFDT, ARF, and ADWIN bagging/boosting ensembles, by 32\%, establishing its robustness for online multi-label classification.
Effective Approaches to Attention-based Neural Machine Translation
An attentional mechanism has lately been used to improve neural machine translation (NMT) by selectively focusing on parts of the source sentence during translation. However, there has been little work exploring useful architectures for attention-based NMT. This paper examines two simple and effective classes of attentional mechanism: a global approach which always attends to all source words and a local one that only looks at a subset of source words at a time. We demonstrate the effectiveness of both approaches over the WMT translation tasks between English and German in both directions. With local attention, we achieve a significant gain of 5.0 BLEU points over non-attentional systems which already incorporate known techniques such as dropout. Our ensemble model using different attention architectures has established a new state-of-the-art result in the WMT'15 English to German translation task with 25.9 BLEU points, an improvement of 1.0 BLEU points over the existing best system backed by NMT and an n-gram reranker.
Visual Test-time Scaling for GUI Agent Grounding
We introduce RegionFocus, a visual test-time scaling approach for Vision Language Model Agents. Understanding webpages is challenging due to the visual complexity of GUI images and the large number of interface elements, making accurate action selection difficult. Our approach dynamically zooms in on relevant regions, reducing background clutter and improving grounding accuracy. To support this process, we propose an image-as-map mechanism that visualizes key landmarks at each step, providing a transparent action record and enables the agent to effectively choose among action candidates. Even with a simple region selection strategy, we observe significant performance gains of 28+\% on Screenspot-pro and 24+\% on WebVoyager benchmarks on top of two state-of-the-art open vision language model agents, UI-TARS and Qwen2.5-VL, highlighting the effectiveness of visual test-time scaling in interactive settings. We achieve a new state-of-the-art grounding performance of 61.6\% on the ScreenSpot-Pro benchmark by applying RegionFocus to a Qwen2.5-VL-72B model. Our code will be released publicly at https://github.com/tiangeluo/RegionFocus.
Scaling Supervised Local Learning with Augmented Auxiliary Networks
Deep neural networks are typically trained using global error signals that backpropagate (BP) end-to-end, which is not only biologically implausible but also suffers from the update locking problem and requires huge memory consumption. Local learning, which updates each layer independently with a gradient-isolated auxiliary network, offers a promising alternative to address the above problems. However, existing local learning methods are confronted with a large accuracy gap with the BP counterpart, particularly for large-scale networks. This is due to the weak coupling between local layers and their subsequent network layers, as there is no gradient communication across layers. To tackle this issue, we put forward an augmented local learning method, dubbed AugLocal. AugLocal constructs each hidden layer's auxiliary network by uniformly selecting a small subset of layers from its subsequent network layers to enhance their synergy. We also propose to linearly reduce the depth of auxiliary networks as the hidden layer goes deeper, ensuring sufficient network capacity while reducing the computational cost of auxiliary networks. Our extensive experiments on four image classification datasets (i.e., CIFAR-10, SVHN, STL-10, and ImageNet) demonstrate that AugLocal can effectively scale up to tens of local layers with a comparable accuracy to BP-trained networks while reducing GPU memory usage by around 40%. The proposed AugLocal method, therefore, opens up a myriad of opportunities for training high-performance deep neural networks on resource-constrained platforms.Code is available at https://github.com/ChenxiangMA/AugLocal.
Beyond LLaVA-HD: Diving into High-Resolution Large Multimodal Models
Seeing clearly with high resolution is a foundation of Large Multimodal Models (LMMs), which has been proven to be vital for visual perception and reasoning. Existing works usually employ a straightforward resolution upscaling method, where the image consists of global and local branches, with the latter being the sliced image patches but resized to the same resolution as the former. This means that higher resolution requires more local patches, resulting in exorbitant computational expenses, and meanwhile, the dominance of local image tokens may diminish the global context. In this paper, we dive into the problems and propose a new framework as well as an elaborate optimization strategy. Specifically, we extract contextual information from the global view using a mixture of adapters, based on the observation that different adapters excel at different tasks. With regard to local patches, learnable query embeddings are introduced to reduce image tokens, the most important tokens accounting for the user question will be further selected by a similarity-based selector. Our empirical results demonstrate a `less is more' pattern, where utilizing fewer but more informative local image tokens leads to improved performance. Besides, a significant challenge lies in the training strategy, as simultaneous end-to-end training of the global mining block and local compression block does not yield optimal results. We thus advocate for an alternating training way, ensuring balanced learning between global and local aspects. Finally, we also introduce a challenging dataset with high requirements for image detail, enhancing the training of the local compression layer. The proposed method, termed LMM with Sophisticated Tasks, Local image compression, and Mixture of global Experts (SliME), achieves leading performance across various benchmarks with only 2 million training data.
A Neural Attention Model for Abstractive Sentence Summarization
Summarization based on text extraction is inherently limited, but generation-style abstractive methods have proven challenging to build. In this work, we propose a fully data-driven approach to abstractive sentence summarization. Our method utilizes a local attention-based model that generates each word of the summary conditioned on the input sentence. While the model is structurally simple, it can easily be trained end-to-end and scales to a large amount of training data. The model shows significant performance gains on the DUC-2004 shared task compared with several strong baselines.
Why We Build Local Large Language Models: An Observational Analysis from 35 Japanese and Multilingual LLMs
Why do we build local large language models (LLMs)? What should a local LLM learn from the target language? Which abilities can be transferred from other languages? Do language-specific scaling laws exist? To explore these research questions, we evaluated 35 Japanese, English, and multilingual LLMs on 19 evaluation benchmarks for Japanese and English, taking Japanese as a local language. Adopting an observational approach, we analyzed correlations of benchmark scores, and conducted principal component analysis (PCA) on the scores to derive ability factors of local LLMs. We found that training on English text can improve the scores of academic subjects in Japanese (JMMLU). In addition, it is unnecessary to specifically train on Japanese text to enhance abilities for solving Japanese code generation, arithmetic reasoning, commonsense, and reading comprehension tasks. In contrast, training on Japanese text could improve question-answering tasks about Japanese knowledge and English-Japanese translation, which indicates that abilities for solving these two tasks can be regarded as Japanese abilities for LLMs. Furthermore, we confirmed that the Japanese abilities scale with the computational budget for Japanese text.
ConDaFormer: Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding
Transformers have been recently explored for 3D point cloud understanding with impressive progress achieved. A large number of points, over 0.1 million, make the global self-attention infeasible for point cloud data. Thus, most methods propose to apply the transformer in a local region, e.g., spherical or cubic window. However, it still contains a large number of Query-Key pairs, which requires high computational costs. In addition, previous methods usually learn the query, key, and value using a linear projection without modeling the local 3D geometric structure. In this paper, we attempt to reduce the costs and model the local geometry prior by developing a new transformer block, named ConDaFormer. Technically, ConDaFormer disassembles the cubic window into three orthogonal 2D planes, leading to fewer points when modeling the attention in a similar range. The disassembling operation is beneficial to enlarging the range of attention without increasing the computational complexity, but ignores some contexts. To provide a remedy, we develop a local structure enhancement strategy that introduces a depth-wise convolution before and after the attention. This scheme can also capture the local geometric information. Taking advantage of these designs, ConDaFormer captures both long-range contextual information and local priors. The effectiveness is demonstrated by experimental results on several 3D point cloud understanding benchmarks. Code is available at https://github.com/LHDuan/ConDaFormer .
UrbanLLaVA: A Multi-modal Large Language Model for Urban Intelligence with Spatial Reasoning and Understanding
Urban research involves a wide range of scenarios and tasks that require the understanding of multi-modal data. Current methods often focus on specific data types and lack a unified framework in urban field for processing them comprehensively. The recent success of multi-modal large language models (MLLMs) presents a promising opportunity to overcome this limitation. In this paper, we introduce UrbanLLaVA, a multi-modal large language model designed to process these four types of data simultaneously and achieve strong performance across diverse urban tasks compared with general MLLMs. In UrbanLLaVA, we first curate a diverse urban instruction dataset encompassing both single-modal and cross-modal urban data, spanning from location view to global view of urban environment. Additionally, we propose a multi-stage training framework that decouples spatial reasoning enhancement from domain knowledge learning, thereby improving the compatibility and downstream performance of UrbanLLaVA across diverse urban tasks. Finally, we also extend existing benchmark for urban research to assess the performance of MLLMs across a wide range of urban tasks. Experimental results from three cities demonstrate that UrbanLLaVA outperforms open-source and proprietary MLLMs in both single-modal tasks and complex cross-modal tasks and shows robust generalization abilities across cities. Source codes and data are openly accessible to the research community via https://github.com/tsinghua-fib-lab/UrbanLLaVA.
DyFo: A Training-Free Dynamic Focus Visual Search for Enhancing LMMs in Fine-Grained Visual Understanding
Humans can effortlessly locate desired objects in cluttered environments, relying on a cognitive mechanism known as visual search to efficiently filter out irrelevant information and focus on task-related regions. Inspired by this process, we propose Dyfo (Dynamic Focus), a training-free dynamic focusing visual search method that enhances fine-grained visual understanding in large multimodal models (LMMs). Unlike existing approaches which require additional modules or data collection, Dyfo leverages a bidirectional interaction between LMMs and visual experts, using a Monte Carlo Tree Search (MCTS) algorithm to simulate human-like focus adjustments. This enables LMMs to focus on key visual regions while filtering out irrelevant content, without introducing additional training caused by vocabulary expansion or the integration of specialized localization modules. Experimental results demonstrate that Dyfo significantly improves fine-grained visual understanding and reduces hallucination issues in LMMs, achieving superior performance across both fixed and dynamic resolution models. The code is available at https://github.com/PKU-ICST-MIPL/DyFo_CVPR2025
Trajectories of Change: Approaches for Tracking Knowledge Evolution
We explore local vs. global evolution of knowledge systems through the framework of socio-epistemic networks (SEN), applying two complementary methods to a corpus of scientific texts. The framework comprises three interconnected layers-social, semiotic (material), and semantic-proposing a multilayered approach to understanding structural developments of knowledge. To analyse diachronic changes on the semantic layer, we first use information-theoretic measures based on relative entropy to detect semantic shifts, assess their significance, and identify key driving features. Second, variations in document embedding densities reveal changes in semantic neighbourhoods, tracking how concentration of similar documents increase, remain stable, or disperse. This enables us to trace document trajectories based on content (topics) or metadata (authorship, institution). Case studies of Joseph Silk and Hans-J\"urgen Treder illustrate how individual scholar's work aligns with broader disciplinary shifts in general relativity and gravitation research, demonstrating the applications, limitations, and further potential of this approach.
Local-Prompt: Extensible Local Prompts for Few-Shot Out-of-Distribution Detection
Out-of-Distribution (OOD) detection, aiming to distinguish outliers from known categories, has gained prominence in practical scenarios. Recently, the advent of vision-language models (VLM) has heightened interest in enhancing OOD detection for VLM through few-shot tuning. However, existing methods mainly focus on optimizing global prompts, ignoring refined utilization of local information with regard to outliers. Motivated by this, we freeze global prompts and introduce Local-Prompt, a novel coarse-to-fine tuning paradigm to emphasize regional enhancement with local prompts. Our method comprises two integral components: global prompt guided negative augmentation and local prompt enhanced regional regularization. The former utilizes frozen, coarse global prompts as guiding cues to incorporate negative augmentation, thereby leveraging local outlier knowledge. The latter employs trainable local prompts and a regional regularization to capture local information effectively, aiding in outlier identification. We also propose regional-related metric to empower the enrichment of OOD detection. Moreover, since our approach explores enhancing local prompts only, it can be seamlessly integrated with trained global prompts during inference to boost the performance. Comprehensive experiments demonstrate the effectiveness and potential of our method. Notably, our method reduces average FPR95 by 5.17% against state-of-the-art method in 4-shot tuning on challenging ImageNet-1k dataset, even outperforming 16-shot results of previous methods. Code is released at https://github.com/AuroraZengfh/Local-Prompt.
Local Learning on Transformers via Feature Reconstruction
Transformers are becoming increasingly popular due to their superior performance over conventional convolutional neural networks(CNNs). However, transformers usually require a much larger amount of memory to train than CNNs, which prevents their application in many low resource settings. Local learning, which divides the network into several distinct modules and trains them individually, is a promising alternative to the end-to-end (E2E) training approach to reduce the amount of memory for training and to increase parallelism. This paper is the first to apply Local Learning on transformers for this purpose. The standard CNN-based local learning method, InfoPro [32], reconstructs the input images for each module in a CNN. However, reconstructing the entire image does not generalize well. In this paper, we propose a new mechanism for each local module, where instead of reconstructing the entire image, we reconstruct its input features, generated from previous modules. We evaluate our approach on 4 commonly used datasets and 3 commonly used decoder structures on Swin-Tiny. The experiments show that our approach outperforms InfoPro-Transformer, the InfoPro with Transfomer backbone we introduced, by at up to 0.58% on CIFAR-10, CIFAR-100, STL-10 and SVHN datasets, while using up to 12% less memory. Compared to the E2E approach, we require 36% less GPU memory when the network is divided into 2 modules and 45% less GPU memory when the network is divided into 4 modules.
Factorization Vision Transformer: Modeling Long Range Dependency with Local Window Cost
Transformers have astounding representational power but typically consume considerable computation which is quadratic with image resolution. The prevailing Swin transformer reduces computational costs through a local window strategy. However, this strategy inevitably causes two drawbacks: (1) the local window-based self-attention hinders global dependency modeling capability; (2) recent studies point out that local windows impair robustness. To overcome these challenges, we pursue a preferable trade-off between computational cost and performance. Accordingly, we propose a novel factorization self-attention mechanism (FaSA) that enjoys both the advantages of local window cost and long-range dependency modeling capability. By factorizing the conventional attention matrix into sparse sub-attention matrices, FaSA captures long-range dependencies while aggregating mixed-grained information at a computational cost equivalent to the local window-based self-attention. Leveraging FaSA, we present the factorization vision transformer (FaViT) with a hierarchical structure. FaViT achieves high performance and robustness, with linear computational complexity concerning input image spatial resolution. Extensive experiments have shown FaViT's advanced performance in classification and downstream tasks. Furthermore, it also exhibits strong model robustness to corrupted and biased data and hence demonstrates benefits in favor of practical applications. In comparison to the baseline model Swin-T, our FaViT-B2 significantly improves classification accuracy by 1% and robustness by 7%, while reducing model parameters by 14%. Our code will soon be publicly available at https://github.com/q2479036243/FaViT.
Visual-Text Cross Alignment: Refining the Similarity Score in Vision-Language Models
It has recently been discovered that using a pre-trained vision-language model (VLM), e.g., CLIP, to align a whole query image with several finer text descriptions generated by a large language model can significantly enhance zero-shot performance. However, in this paper, we empirically find that the finer descriptions tend to align more effectively with local areas of the query image rather than the whole image, and then we theoretically validate this finding. Thus, we present a method called weighted visual-text cross alignment (WCA). This method begins with a localized visual prompting technique, designed to identify local visual areas within the query image. The local visual areas are then cross-aligned with the finer descriptions by creating a similarity matrix using the pre-trained VLM. To determine how well a query image aligns with each category, we develop a score function based on the weighted similarities in this matrix. Extensive experiments demonstrate that our method significantly improves zero-shot performance across various datasets, achieving results that are even comparable to few-shot learning methods.
Faster Neighborhood Attention: Reducing the O(n^2) Cost of Self Attention at the Threadblock Level
Neighborhood attention reduces the cost of self attention by restricting each token's attention span to its nearest neighbors. This restriction, parameterized by a window size and dilation factor, draws a spectrum of possible attention patterns between linear projection and self attention. Neighborhood attention, and more generally sliding window attention patterns, have long been bounded by infrastructure, particularly in higher-rank spaces (2-D and 3-D), calling for the development of custom kernels, which have been limited in either functionality, or performance, if not both. In this work, we first show that neighborhood attention can be represented as a batched GEMM problem, similar to standard attention, and implement it for 1-D and 2-D neighborhood attention. These kernels on average provide 895% and 272% improvement in full precision latency compared to existing naive kernels for 1-D and 2-D neighborhood attention respectively. We find certain inherent inefficiencies in all unfused neighborhood attention kernels that bound their performance and lower-precision scalability. We also developed fused neighborhood attention; an adaptation of fused dot-product attention kernels that allow fine-grained control over attention across different spatial axes. Known for reducing the quadratic time complexity of self attention to a linear complexity, neighborhood attention can now enjoy a reduced and constant memory footprint, and record-breaking half precision latency. We observe that our fused kernels successfully circumvent some of the unavoidable inefficiencies in unfused implementations. While our unfused GEMM-based kernels only improve half precision performance compared to naive kernels by an average of 496% and 113% in 1-D and 2-D problems respectively, our fused kernels improve naive kernels by an average of 1607% and 581% in 1-D and 2-D problems respectively.
LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba
Recent Transformer-based diffusion models have shown remarkable performance, largely attributed to the ability of the self-attention mechanism to accurately capture both global and local contexts by computing all-pair interactions among input tokens. However, their quadratic complexity poses significant computational challenges for long-sequence inputs. Conversely, a recent state space model called Mamba offers linear complexity by compressing a filtered global context into a hidden state. Despite its efficiency, compression inevitably leads to information loss of fine-grained local dependencies among tokens, which are crucial for effective visual generative modeling. Motivated by these observations, we introduce Local Attentional Mamba (LaMamba) blocks that combine the strengths of self-attention and Mamba, capturing both global contexts and local details with linear complexity. Leveraging the efficient U-Net architecture, our model exhibits exceptional scalability and surpasses the performance of DiT across various model scales on ImageNet at 256x256 resolution, all while utilizing substantially fewer GFLOPs and a comparable number of parameters. Compared to state-of-the-art diffusion models on ImageNet 256x256 and 512x512, our largest model presents notable advantages, such as a reduction of up to 62\% GFLOPs compared to DiT-XL/2, while achieving superior performance with comparable or fewer parameters.
Localized Symbolic Knowledge Distillation for Visual Commonsense Models
Instruction following vision-language (VL) models offer a flexible interface that supports a broad range of multimodal tasks in a zero-shot fashion. However, interfaces that operate on full images do not directly enable the user to "point to" and access specific regions within images. This capability is important not only to support reference-grounded VL benchmarks, but also, for practical applications that require precise within-image reasoning. We build Localized Visual Commonsense models, which allow users to specify (multiple) regions as input. We train our model by sampling localized commonsense knowledge from a large language model (LLM): specifically, we prompt an LLM to collect commonsense knowledge given a global literal image description and a local literal region description automatically generated by a set of VL models. With a separately trained critic model that selects high-quality examples, we find that training on the localized commonsense corpus can successfully distill existing VL models to support a reference-as-input interface. Empirical results and human evaluations in a zero-shot setup demonstrate that our distillation method results in more precise VL models of reasoning compared to a baseline of passing a generated referring expression to an LLM.
VLAD-BuFF: Burst-aware Fast Feature Aggregation for Visual Place Recognition
Visual Place Recognition (VPR) is a crucial component of many visual localization pipelines for embodied agents. VPR is often formulated as an image retrieval task aimed at jointly learning local features and an aggregation method. The current state-of-the-art VPR methods rely on VLAD aggregation, which can be trained to learn a weighted contribution of features through their soft assignment to cluster centers. However, this process has two key limitations. Firstly, the feature-to-cluster weighting does not account for over-represented repetitive structures within a cluster, e.g., shadows or window panes; this phenomenon is also referred to as the `burstiness' problem, classically solved by discounting repetitive features before aggregation. Secondly, feature to cluster comparisons are compute-intensive for state-of-the-art image encoders with high-dimensional local features. This paper addresses these limitations by introducing VLAD-BuFF with two novel contributions: i) a self-similarity based feature discounting mechanism to learn Burst-aware features within end-to-end VPR training, and ii) Fast Feature aggregation by reducing local feature dimensions specifically through PCA-initialized learnable pre-projection. We benchmark our method on 9 public datasets, where VLAD-BuFF sets a new state of the art. Our method is able to maintain its high recall even for 12x reduced local feature dimensions, thus enabling fast feature aggregation without compromising on recall. Through additional qualitative studies, we show how our proposed weighting method effectively downweights the non-distinctive features. Source code: https://github.com/Ahmedest61/VLAD-BuFF/.
WideSearch: Benchmarking Agentic Broad Info-Seeking
From professional research to everyday planning, many tasks are bottlenecked by wide-scale information seeking, which is more repetitive than cognitively complex. With the rapid development of Large Language Models (LLMs), automated search agents powered by LLMs offer a promising solution to liberate humans from this tedious work. However, the capability of these agents to perform such "wide-context" collection reliably and completely remains largely unevaluated due to a lack of suitable benchmarks. To bridge this gap, we introduce WideSearch, a new benchmark engineered to evaluate agent reliability on these large-scale collection tasks. The benchmark features 200 manually curated questions (100 in English, 100 in Chinese) from over 15 diverse domains, grounded in real user queries. Each task requires agents to collect large-scale atomic information, which could be verified one by one objectively, and arrange it into a well-organized output. A rigorous five-stage quality control pipeline ensures the difficulty, completeness, and verifiability of the dataset. We benchmark over 10 state-of-the-art agentic search systems, including single-agent, multi-agent frameworks, and end-to-end commercial systems. Most systems achieve overall success rates near 0\%, with the best performer reaching just 5\%. However, given sufficient time, cross-validation by multiple human testers can achieve a near 100\% success rate. These results demonstrate that present search agents have critical deficiencies in large-scale information seeking, underscoring urgent areas for future research and development in agentic search. Our dataset, evaluation pipeline, and benchmark results have been publicly released at https://widesearch-seed.github.io/
KVQ: Boosting Video Quality Assessment via Saliency-guided Local Perception
Video Quality Assessment (VQA), which intends to predict the perceptual quality of videos, has attracted increasing attention. Due to factors like motion blur or specific distortions, the quality of different regions in a video varies. Recognizing the region-wise local quality within a video is beneficial for assessing global quality and can guide us in adopting fine-grained enhancement or transcoding strategies. Due to the heavy cost of annotating region-wise quality, the lack of ground truth constraints from relevant datasets further complicates the utilization of local perception. Inspired by the Human Visual System (HVS) that links global quality to the local texture of different regions and their visual saliency, we propose a Kaleidoscope Video Quality Assessment (KVQ) framework, which aims to effectively assess both saliency and local texture, thereby facilitating the assessment of global quality. Our framework extracts visual saliency and allocates attention using Fusion-Window Attention (FWA) while incorporating a Local Perception Constraint (LPC) to mitigate the reliance of regional texture perception on neighboring areas. KVQ obtains significant improvements across multiple scenarios on five VQA benchmarks compared to SOTA methods. Furthermore, to assess local perception, we establish a new Local Perception Visual Quality (LPVQ) dataset with region-wise annotations. Experimental results demonstrate the capability of KVQ in perceiving local distortions. KVQ models and the LPVQ dataset will be available at https://github.com/qyp2000/KVQ.
Decoding Open-Ended Information Seeking Goals from Eye Movements in Reading
When reading, we often have specific information that interests us in a text. For example, you might be reading this paper because you are curious about LLMs for eye movements in reading, the experimental design, or perhaps you only care about the question ``but does it work?''. More broadly, in daily life, people approach texts with any number of text-specific goals that guide their reading behavior. In this work, we ask, for the first time, whether open-ended reading goals can be automatically decoded from eye movements in reading. To address this question, we introduce goal classification and goal reconstruction tasks and evaluation frameworks, and use large-scale eye tracking for reading data in English with hundreds of text-specific information seeking tasks. We develop and compare several discriminative and generative multimodal LLMs that combine eye movements and text for goal classification and goal reconstruction. Our experiments show considerable success on both tasks, suggesting that LLMs can extract valuable information about the readers' text-specific goals from eye movements.
Local Prompt Adaptation for Style-Consistent Multi-Object Generation in Diffusion Models
Diffusion models have become a powerful backbone for text-to-image generation, producing high-quality visuals from natural language prompts. However, when prompts involve multiple objects alongside global or local style instructions, the outputs often drift in style and lose spatial coherence, limiting their reliability for controlled, style-consistent scene generation. We present Local Prompt Adaptation (LPA), a lightweight, training-free method that splits the prompt into content and style tokens, then injects them selectively into the U-Net's attention layers at chosen timesteps. By conditioning object tokens early and style tokens later in the denoising process, LPA improves both layout control and stylistic uniformity without additional training cost. We conduct extensive ablations across parser settings and injection windows, finding that the best configuration -- lpa late only with a 300-650 step window -- delivers the strongest balance of prompt alignment and style consistency. On the T2I benchmark, LPA improves CLIP-prompt alignment over vanilla SDXL by +0.41% and over SD1.5 by +0.34%, with no diversity loss. On our custom 50-prompt style-rich benchmark, LPA achieves +0.09% CLIP-prompt and +0.08% CLIP-style gains over baseline. Our method is model-agnostic, easy to integrate, and requires only a single configuration change, making it a practical choice for controllable, style-consistent multi-object generation.
Optimizing Native Sparse Attention with Latent Attention and Local Global Alternating Strategies
In this work, we conduct a systematic analysis of Native Sparse Attention (NSA) and propose targeted improvements that enhance long-context modeling. A key insight is that alternating between local (sliding-window) and global (compression, selective) attention across layers, rather than using fixed patterns, enables more effective propagation of long-range dependencies and substantially boosts performance on long-sequence tasks. Meanwhile, we further refine NSA's branches with Latent Attention that the sliding-window branch is enhanced with Multi-head Latent Attention (MLA) while compression and selective branches adopt Group-head Latent Attention (GLA). These changes reduce KV-cache memory by 50\% versus NSA while improving the model's common-sense reasoning and long-text understanding capabilities. Experiments on models from 340M to 1.3B parameters (trained on 15B and 100B tokens) show our method matches or exceeds full attention and native sparse attention in both common-sense reasoning and long-context understanding tasks.
All-to-key Attention for Arbitrary Style Transfer
Attention-based arbitrary style transfer studies have shown promising performance in synthesizing vivid local style details. They typically use the all-to-all attention mechanism -- each position of content features is fully matched to all positions of style features. However, all-to-all attention tends to generate distorted style patterns and has quadratic complexity, limiting the effectiveness and efficiency of arbitrary style transfer. In this paper, we propose a novel all-to-key attention mechanism -- each position of content features is matched to stable key positions of style features -- that is more in line with the characteristics of style transfer. Specifically, it integrates two newly proposed attention forms: distributed and progressive attention. Distributed attention assigns attention to key style representations that depict the style distribution of local regions; Progressive attention pays attention from coarse-grained regions to fine-grained key positions. The resultant module, dubbed StyA2K, shows extraordinary performance in preserving the semantic structure and rendering consistent style patterns. Qualitative and quantitative comparisons with state-of-the-art methods demonstrate the superior performance of our approach.
AdaSwitch: Adaptive Switching between Small and Large Agents for Effective Cloud-Local Collaborative Learning
Recent advancements in large language models (LLMs) have been remarkable. Users face a choice between using cloud-based LLMs for generation quality and deploying local-based LLMs for lower computational cost. The former option is typically costly and inefficient, while the latter usually fails to deliver satisfactory performance for reasoning steps requiring deliberate thought processes. In this work, we propose a novel LLM utilization paradigm that facilitates the collaborative operation of large cloud-based LLMs and smaller local-deployed LLMs. Our framework comprises two primary modules: the local agent instantiated with a relatively smaller LLM, handling less complex reasoning steps, and the cloud agent equipped with a larger LLM, managing more intricate reasoning steps. This collaborative processing is enabled through an adaptive mechanism where the local agent introspectively identifies errors and proactively seeks assistance from the cloud agent, thereby effectively integrating the strengths of both locally-deployed and cloud-based LLMs, resulting in significant enhancements in task completion performance and efficiency. We evaluate AdaSwitch across 7 benchmarks, ranging from mathematical reasoning and complex question answering, using various types of LLMs to instantiate the local and cloud agents. The empirical results show that AdaSwitch effectively improves the performance of the local agent, and sometimes achieves competitive results compared to the cloud agent while utilizing much less computational overhead.
Mapping the changing structure of science through diachronic periodical embeddings
Understanding the changing structure of science over time is essential to elucidating how science evolves. We develop diachronic embeddings of scholarly periodicals to quantify "semantic changes" of periodicals across decades, allowing us to track the evolution of research topics and identify rapidly developing fields. By mapping periodicals within a physical-life-health triangle, we reveal an evolving interdisciplinary science landscape, finding an overall trend toward specialization for most periodicals but increasing interdisciplinarity for bioscience periodicals. Analyzing a periodical's trajectory within this triangle over time allows us to visualize how its research focus shifts. Furthermore, by monitoring the formation of local clusters of periodicals, we can identify emerging research topics such as AIDS research and nanotechnology in the 1980s. Our work offers novel quantification in the science of science and provides a quantitative lens to examine the evolution of science, which may facilitate future investigations into the emergence and development of research fields.
Blended-NeRF: Zero-Shot Object Generation and Blending in Existing Neural Radiance Fields
Editing a local region or a specific object in a 3D scene represented by a NeRF is challenging, mainly due to the implicit nature of the scene representation. Consistently blending a new realistic object into the scene adds an additional level of difficulty. We present Blended-NeRF, a robust and flexible framework for editing a specific region of interest in an existing NeRF scene, based on text prompts or image patches, along with a 3D ROI box. Our method leverages a pretrained language-image model to steer the synthesis towards a user-provided text prompt or image patch, along with a 3D MLP model initialized on an existing NeRF scene to generate the object and blend it into a specified region in the original scene. We allow local editing by localizing a 3D ROI box in the input scene, and seamlessly blend the content synthesized inside the ROI with the existing scene using a novel volumetric blending technique. To obtain natural looking and view-consistent results, we leverage existing and new geometric priors and 3D augmentations for improving the visual fidelity of the final result. We test our framework both qualitatively and quantitatively on a variety of real 3D scenes and text prompts, demonstrating realistic multi-view consistent results with much flexibility and diversity compared to the baselines. Finally, we show the applicability of our framework for several 3D editing applications, including adding new objects to a scene, removing/replacing/altering existing objects, and texture conversion.
LoFiT: Localized Fine-tuning on LLM Representations
Recent work in interpretability shows that large language models (LLMs) can be adapted for new tasks in a learning-free way: it is possible to intervene on LLM representations to elicit desired behaviors for alignment. For instance, adding certain bias vectors to the outputs of certain attention heads is reported to boost the truthfulness of models. In this work, we show that localized fine-tuning serves as an effective alternative to such representation intervention methods. We introduce a framework called Localized Fine-Tuning on LLM Representations (LoFiT), which identifies a subset of attention heads that are most important for learning a specific task, then trains offset vectors to add to the model's hidden representations at those selected heads. LoFiT localizes to a sparse set of heads (3%) and learns the offset vectors from limited training data, comparable to the settings used for representation intervention. For truthfulness and reasoning tasks, we find that LoFiT's intervention vectors are more effective for LLM adaptation than vectors from representation intervention methods such as Inference-time Intervention. We also find that the localization step is important: selecting a task-specific set of attention heads can lead to higher performance than intervening on heads selected for a different task. Finally, for the tasks we study, LoFiT achieves comparable performance to other parameter-efficient fine-tuning methods such as LoRA, despite modifying 20x-200x fewer parameters than these methods.
CMB: A Comprehensive Medical Benchmark in Chinese
Large Language Models (LLMs) provide a possibility to make a great breakthrough in medicine. The establishment of a standardized medical benchmark becomes a fundamental cornerstone to measure progression. However, medical environments in different regions have their local characteristics, e.g., the ubiquity and significance of traditional Chinese medicine within China. Therefore, merely translating English-based medical evaluation may result in contextual incongruities to a local region. To solve the issue, we propose a localized medical benchmark called CMB, a Comprehensive Medical Benchmark in Chinese, designed and rooted entirely within the native Chinese linguistic and cultural framework. While traditional Chinese medicine is integral to this evaluation, it does not constitute its entirety. Using this benchmark, we have evaluated several prominent large-scale LLMs, including ChatGPT, GPT-4, dedicated Chinese LLMs, and LLMs specialized in the medical domain. It is worth noting that our benchmark is not devised as a leaderboard competition but as an instrument for self-assessment of model advancements. We hope this benchmark could facilitate the widespread adoption and enhancement of medical LLMs within China. Check details in https://cmedbenchmark.llmzoo.com/.
TopNet: Transformer-based Object Placement Network for Image Compositing
We investigate the problem of automatically placing an object into a background image for image compositing. Given a background image and a segmented object, the goal is to train a model to predict plausible placements (location and scale) of the object for compositing. The quality of the composite image highly depends on the predicted location/scale. Existing works either generate candidate bounding boxes or apply sliding-window search using global representations from background and object images, which fail to model local information in background images. However, local clues in background images are important to determine the compatibility of placing the objects with certain locations/scales. In this paper, we propose to learn the correlation between object features and all local background features with a transformer module so that detailed information can be provided on all possible location/scale configurations. A sparse contrastive loss is further proposed to train our model with sparse supervision. Our new formulation generates a 3D heatmap indicating the plausibility of all location/scale combinations in one network forward pass, which is over 10 times faster than the previous sliding-window method. It also supports interactive search when users provide a pre-defined location or scale. The proposed method can be trained with explicit annotation or in a self-supervised manner using an off-the-shelf inpainting model, and it outperforms state-of-the-art methods significantly. The user study shows that the trained model generalizes well to real-world images with diverse challenging scenes and object categories.
R2D2: Repeatable and Reliable Detector and Descriptor
Interest point detection and local feature description are fundamental steps in many computer vision applications. Classical methods for these tasks are based on a detect-then-describe paradigm where separate handcrafted methods are used to first identify repeatable keypoints and then represent them with a local descriptor. Neural networks trained with metric learning losses have recently caught up with these techniques, focusing on learning repeatable saliency maps for keypoint detection and learning descriptors at the detected keypoint locations. In this work, we argue that salient regions are not necessarily discriminative, and therefore can harm the performance of the description. Furthermore, we claim that descriptors should be learned only in regions for which matching can be performed with high confidence. We thus propose to jointly learn keypoint detection and description together with a predictor of the local descriptor discriminativeness. This allows us to avoid ambiguous areas and leads to reliable keypoint detections and descriptions. Our detection-and-description approach, trained with self-supervision, can simultaneously output sparse, repeatable and reliable keypoints that outperforms state-of-the-art detectors and descriptors on the HPatches dataset. It also establishes a record on the recently released Aachen Day-Night localization dataset.
Momentum Auxiliary Network for Supervised Local Learning
Deep neural networks conventionally employ end-to-end backpropagation for their training process, which lacks biological credibility and triggers a locking dilemma during network parameter updates, leading to significant GPU memory use. Supervised local learning, which segments the network into multiple local blocks updated by independent auxiliary networks. However, these methods cannot replace end-to-end training due to lower accuracy, as gradients only propagate within their local block, creating a lack of information exchange between blocks. To address this issue and establish information transfer across blocks, we propose a Momentum Auxiliary Network (MAN) that establishes a dynamic interaction mechanism. The MAN leverages an exponential moving average (EMA) of the parameters from adjacent local blocks to enhance information flow. This auxiliary network, updated through EMA, helps bridge the informational gap between blocks. Nevertheless, we observe that directly applying EMA parameters has certain limitations due to feature discrepancies among local blocks. To overcome this, we introduce learnable biases, further boosting performance. We have validated our method on four image classification datasets (CIFAR-10, STL-10, SVHN, ImageNet), attaining superior performance and substantial memory savings. Notably, our method can reduce GPU memory usage by more than 45\% on the ImageNet dataset compared to end-to-end training, while achieving higher performance. The Momentum Auxiliary Network thus offers a new perspective for supervised local learning. Our code is available at: https://github.com/JunhaoSu0/MAN.
Emo, Love, and God: Making Sense of Urban Dictionary, a Crowd-Sourced Online Dictionary
The Internet facilitates large-scale collaborative projects and the emergence of Web 2.0 platforms, where producers and consumers of content unify, has drastically changed the information market. On the one hand, the promise of the "wisdom of the crowd" has inspired successful projects such as Wikipedia, which has become the primary source of crowd-based information in many languages. On the other hand, the decentralized and often un-monitored environment of such projects may make them susceptible to low quality content. In this work, we focus on Urban Dictionary, a crowd-sourced online dictionary. We combine computational methods with qualitative annotation and shed light on the overall features of Urban Dictionary in terms of growth, coverage and types of content. We measure a high presence of opinion-focused entries, as opposed to the meaning-focused entries that we expect from traditional dictionaries. Furthermore, Urban Dictionary covers many informal, unfamiliar words as well as proper nouns. Urban Dictionary also contains offensive content, but highly offensive content tends to receive lower scores through the dictionary's voting system. The low threshold to include new material in Urban Dictionary enables quick recording of new words and new meanings, but the resulting heterogeneous content can pose challenges in using Urban Dictionary as a source to study language innovation.
Efficient Content-Based Sparse Attention with Routing Transformers
Self-attention has recently been adopted for a wide range of sequence modeling problems. Despite its effectiveness, self-attention suffers from quadratic compute and memory requirements with respect to sequence length. Successful approaches to reduce this complexity focused on attending to local sliding windows or a small set of locations independent of content. Our work proposes to learn dynamic sparse attention patterns that avoid allocating computation and memory to attend to content unrelated to the query of interest. This work builds upon two lines of research: it combines the modeling flexibility of prior work on content-based sparse attention with the efficiency gains from approaches based on local, temporal sparse attention. Our model, the Routing Transformer, endows self-attention with a sparse routing module based on online k-means while reducing the overall complexity of attention to Oleft(n^{1.5}dright) from Oleft(n^2dright) for sequence length n and hidden dimension d. We show that our model outperforms comparable sparse attention models on language modeling on Wikitext-103 (15.8 vs 18.3 perplexity) as well as on image generation on ImageNet-64 (3.43 vs 3.44 bits/dim) while using fewer self-attention layers. Additionally, we set a new state-of-the-art on the newly released PG-19 data-set, obtaining a test perplexity of 33.2 with a 22 layer Routing Transformer model trained on sequences of length 8192.
Bridging the Divide: Reconsidering Softmax and Linear Attention
Widely adopted in modern Vision Transformer designs, Softmax attention can effectively capture long-range visual information; however, it incurs excessive computational cost when dealing with high-resolution inputs. In contrast, linear attention naturally enjoys linear complexity and has great potential to scale up to higher-resolution images. Nonetheless, the unsatisfactory performance of linear attention greatly limits its practical application in various scenarios. In this paper, we take a step forward to close the gap between the linear and Softmax attention with novel theoretical analyses, which demystify the core factors behind the performance deviations. Specifically, we present two key perspectives to understand and alleviate the limitations of linear attention: the injective property and the local modeling ability. Firstly, we prove that linear attention is not injective, which is prone to assign identical attention weights to different query vectors, thus adding to severe semantic confusion since different queries correspond to the same outputs. Secondly, we confirm that effective local modeling is essential for the success of Softmax attention, in which linear attention falls short. The aforementioned two fundamental differences significantly contribute to the disparities between these two attention paradigms, which is demonstrated by our substantial empirical validation in the paper. In addition, more experiment results indicate that linear attention, as long as endowed with these two properties, can outperform Softmax attention across various tasks while maintaining lower computation complexity. Code is available at https://github.com/LeapLabTHU/InLine.
Effective dimension of machine learning models
Making statements about the performance of trained models on tasks involving new data is one of the primary goals of machine learning, i.e., to understand the generalization power of a model. Various capacity measures try to capture this ability, but usually fall short in explaining important characteristics of models that we observe in practice. In this study, we propose the local effective dimension as a capacity measure which seems to correlate well with generalization error on standard data sets. Importantly, we prove that the local effective dimension bounds the generalization error and discuss the aptness of this capacity measure for machine learning models.
Focused Large Language Models are Stable Many-Shot Learners
In-Context Learning (ICL) enables large language models (LLMs) to achieve rapid task adaptation by learning from demonstrations. With the increase in available context length of LLMs, recent experiments have shown that the performance of ICL does not necessarily scale well in many-shot (demonstration) settings. We theoretically and experimentally confirm that the reason lies in more demonstrations dispersing the model attention from the query, hindering its understanding of key content. Inspired by how humans learn from examples, we propose a training-free method FocusICL, which conducts triviality filtering to avoid attention being diverted by unimportant contents at token-level and operates hierarchical attention to further ensure sufficient attention towards current query at demonstration-level. We also design an efficient hyperparameter searching strategy for FocusICL based on model perplexity of demonstrations. Comprehensive experiments validate that FocusICL achieves an average performance improvement of 5.2% over vanilla ICL and scales well with many-shot demonstrations.
Focus Directions Make Your Language Models Pay More Attention to Relevant Contexts
Long-context large language models (LLMs) are prone to be distracted by irrelevant contexts. The reason for distraction remains poorly understood. In this paper, we first identify the contextual heads, a special group of attention heads that control the overall attention of the LLM. Then, we demonstrate that distraction arises when contextual heads fail to allocate sufficient attention to relevant contexts and can be mitigated by increasing attention to these contexts. We further identify focus directions, located at the key and query activations of these heads, which enable them to allocate more attention to relevant contexts without explicitly specifying which context is relevant. We comprehensively evaluate the effect of focus direction on various long-context tasks and find out focus directions could help to mitigate the poor task alignment of the long-context LLMs. We believe our findings could promote further research on long-context LLM alignment.
GridMM: Grid Memory Map for Vision-and-Language Navigation
Vision-and-language navigation (VLN) enables the agent to navigate to a remote location following the natural language instruction in 3D environments. To represent the previously visited environment, most approaches for VLN implement memory using recurrent states, topological maps, or top-down semantic maps. In contrast to these approaches, we build the top-down egocentric and dynamically growing Grid Memory Map (i.e., GridMM) to structure the visited environment. From a global perspective, historical observations are projected into a unified grid map in a top-down view, which can better represent the spatial relations of the environment. From a local perspective, we further propose an instruction relevance aggregation method to capture fine-grained visual clues in each grid region. Extensive experiments are conducted on both the REVERIE, R2R, SOON datasets in the discrete environments, and the R2R-CE dataset in the continuous environments, showing the superiority of our proposed method.
Bidirectional Attention Flow for Machine Comprehension
Machine comprehension (MC), answering a query about a given context paragraph, requires modeling complex interactions between the context and the query. Recently, attention mechanisms have been successfully extended to MC. Typically these methods use attention to focus on a small portion of the context and summarize it with a fixed-size vector, couple attentions temporally, and/or often form a uni-directional attention. In this paper we introduce the Bi-Directional Attention Flow (BIDAF) network, a multi-stage hierarchical process that represents the context at different levels of granularity and uses bi-directional attention flow mechanism to obtain a query-aware context representation without early summarization. Our experimental evaluations show that our model achieves the state-of-the-art results in Stanford Question Answering Dataset (SQuAD) and CNN/DailyMail cloze test.
Improving Implicit Sentiment Learning via Local Sentiment Aggregation
Recent well-known works demonstrate encouraging progress in aspect-based sentiment classification (ABSC), while implicit aspect sentiment modeling is still a problem that has to be solved. Our preliminary study shows that implicit aspect sentiments usually depend on adjacent aspects' sentiments, which indicates we can extract implicit sentiment via local sentiment dependency modeling. We formulate a local sentiment aggregation paradigm (LSA) based on empirical sentiment patterns (SP) to address sentiment dependency modeling. Compared to existing methods, LSA is an efficient approach that learns the implicit sentiments in a local sentiment aggregation window, which tackles the efficiency problem and avoids the token-node alignment problem of syntax-based methods. Furthermore, we refine a differential weighting method based on gradient descent that guides the construction of the sentiment aggregation window. According to experimental results, LSA is effective for all objective ABSC models, attaining state-of-the-art performance on three public datasets. LSA is an adaptive paradigm and is ready to be adapted to existing models, and we release the code to offer insight to improve existing ABSC models.
FocalLens: Instruction Tuning Enables Zero-Shot Conditional Image Representations
Visual understanding is inherently contextual -- what we focus on in an image depends on the task at hand. For instance, given an image of a person holding a bouquet of flowers, we may focus on either the person such as their clothing, or the type of flowers, depending on the context of interest. Yet, most existing image encoding paradigms represent an image as a fixed, generic feature vector, overlooking the potential needs of prioritizing varying visual information for different downstream use cases. In this work, we introduce FocalLens, a conditional visual encoding method that produces different representations for the same image based on the context of interest, expressed flexibly through natural language. We leverage vision instruction tuning data and contrastively finetune a pretrained vision encoder to take natural language instructions as additional inputs for producing conditional image representations. Extensive experiments validate that conditional image representation from FocalLens better pronounce the visual features of interest compared to generic features produced by standard vision encoders like CLIP. In addition, we show FocalLens further leads to performance improvements on a range of downstream tasks including image-image retrieval, image classification, and image-text retrieval, with an average gain of 5 and 10 points on the challenging SugarCrepe and MMVP-VLM benchmarks, respectively.
Click2Mask: Local Editing with Dynamic Mask Generation
Recent advancements in generative models have revolutionized image generation and editing, making these tasks accessible to non-experts. This paper focuses on local image editing, particularly the task of adding new content to a loosely specified area. Existing methods often require a precise mask or a detailed description of the location, which can be cumbersome and prone to errors. We propose Click2Mask, a novel approach that simplifies the local editing process by requiring only a single point of reference (in addition to the content description). A mask is dynamically grown around this point during a Blended Latent Diffusion (BLD) process, guided by a masked CLIP-based semantic loss. Click2Mask surpasses the limitations of segmentation-based and fine-tuning dependent methods, offering a more user-friendly and contextually accurate solution. Our experiments demonstrate that Click2Mask not only minimizes user effort but also delivers competitive or superior local image manipulation results compared to SoTA methods, according to both human judgement and automatic metrics. Key contributions include the simplification of user input, the ability to freely add objects unconstrained by existing segments, and the integration potential of our dynamic mask approach within other editing methods.
LSceneLLM: Enhancing Large 3D Scene Understanding Using Adaptive Visual Preferences
Research on 3D Vision-Language Models (3D-VLMs) is gaining increasing attention, which is crucial for developing embodied AI within 3D scenes, such as visual navigation and embodied question answering. Due to the high density of visual features, especially in large 3D scenes, accurately locating task-relevant visual information is challenging. Existing works attempt to segment all objects and consider their features as scene representations. However, these task-agnostic object features include much redundant information and missing details for the task-relevant area. To tackle these problems, we propose LSceneLLM, an adaptive framework that automatically identifies task-relevant areas by leveraging LLM's visual preference for different tasks, followed by a plug-and-play scene magnifier module to capture fine-grained details in focused areas. Specifically, a dense token selector examines the attention map of LLM to identify visual preferences for the instruction input. It then magnifies fine-grained details of the focusing area. An adaptive self-attention module is leveraged to fuse the coarse-grained and selected fine-grained visual information. To comprehensively evaluate the large scene understanding ability of 3D-VLMs, we further introduce a cross-room understanding benchmark, XR-Scene, which contains a series of large scene understanding tasks including XR-QA, XR-EmbodiedPlanning, and XR-SceneCaption. Experiments show that our method surpasses existing methods on both large scene understanding and existing scene understanding benchmarks. Plunging our scene magnifier module into the existing 3D-VLMs also brings significant improvement.
Efficient-VQGAN: Towards High-Resolution Image Generation with Efficient Vision Transformers
Vector-quantized image modeling has shown great potential in synthesizing high-quality images. However, generating high-resolution images remains a challenging task due to the quadratic computational overhead of the self-attention process. In this study, we seek to explore a more efficient two-stage framework for high-resolution image generation with improvements in the following three aspects. (1) Based on the observation that the first quantization stage has solid local property, we employ a local attention-based quantization model instead of the global attention mechanism used in previous methods, leading to better efficiency and reconstruction quality. (2) We emphasize the importance of multi-grained feature interaction during image generation and introduce an efficient attention mechanism that combines global attention (long-range semantic consistency within the whole image) and local attention (fined-grained details). This approach results in faster generation speed, higher generation fidelity, and improved resolution. (3) We propose a new generation pipeline incorporating autoencoding training and autoregressive generation strategy, demonstrating a better paradigm for image synthesis. Extensive experiments demonstrate the superiority of our approach in high-quality and high-resolution image reconstruction and generation.
Local Search GFlowNets
Generative Flow Networks (GFlowNets) are amortized sampling methods that learn a distribution over discrete objects proportional to their rewards. GFlowNets exhibit a remarkable ability to generate diverse samples, yet occasionally struggle to consistently produce samples with high rewards due to over-exploration on wide sample space. This paper proposes to train GFlowNets with local search, which focuses on exploiting high-rewarded sample space to resolve this issue. Our main idea is to explore the local neighborhood via backtracking and reconstruction guided by backward and forward policies, respectively. This allows biasing the samples toward high-reward solutions, which is not possible for a typical GFlowNet solution generation scheme, which uses the forward policy to generate the solution from scratch. Extensive experiments demonstrate a remarkable performance improvement in several biochemical tasks. Source code is available: https://github.com/dbsxodud-11/ls_gfn.
Superposed Episodic and Semantic Memory via Sparse Distributed Representation
The abilities to perceive, learn, and use generalities, similarities, classes, i.e., semantic memory (SM), is central to cognition. Machine learning (ML), neural network, and AI research has been primarily driven by tasks requiring such abilities. However, another central facet of cognition, single-trial formation of permanent memories of experiences, i.e., episodic memory (EM), has had relatively little focus. Only recently has EM-like functionality been added to Deep Learning (DL) models, e.g., Neural Turing Machine, Memory Networks. However, in these cases: a) EM is implemented as a separate module, which entails substantial data movement (and so, time and power) between the DL net itself and EM; and b) individual items are stored localistically within the EM, precluding realizing the exponential representational efficiency of distributed over localist coding. We describe Sparsey, an unsupervised, hierarchical, spatial/spatiotemporal associative memory model differing fundamentally from mainstream ML models, most crucially, in its use of sparse distributed representations (SDRs), or, cell assemblies, which admits an extremely efficient, single-trial learning algorithm that maps input similarity into code space similarity (measured as intersection). SDRs of individual inputs are stored in superposition and because similarity is preserved, the patterns of intersections over the assigned codes reflect the similarity, i.e., statistical, structure, of all orders, not simply pairwise, over the inputs. Thus, SM, i.e., a generative model, is built as a computationally free side effect of the act of storing episodic memory traces of individual inputs, either spatial patterns or sequences. We report initial results on MNIST and on the Weizmann video event recognition benchmarks. While we have not yet attained SOTA class accuracy, learning takes only minutes on a single CPU.
Localist LLMs with Recruitment Learning
We present a novel framework for training large language models with continuously adjustable internal representations that span the full spectrum from localist (interpretable, rule-based) to distributed (generalizable, efficient) encodings. The key innovations are (1) a locality dial, a tunable parameter that dynamically controls the degree of localization during both training and inference without requiring model retraining, (2) an information-theoretic recruitment mechanism that adaptively allocates semantic blocks as needed, eliminating the requirement for complete domain knowledge at initialization, and (3) a hierarchical recruitment framework that extends capacity allocation to entire specialized LLMs, enabling multi-granularity architectural adaptation. This is achieved through group sparsity penalties on attention mechanisms, information-theoretic anchor design, dynamic rule injection, and principled recruitment criteria based on penalized likelihood with explicit units. We provide rigorous mathematical results establishing explicit threshold conditions under which attention provably concentrates on semantically relevant blocks at stationary points, with exact bounds on attention entropy and pointer fidelity. The hierarchical recruitment mechanism provides convergence guarantees at both the block level (fine-grained, within-LLM) and the LLM level (coarse-grained, cross-domain), ensuring the system discovers semantic partitions that balance model complexity against data encoding efficiency. This framework enables practitioners to continuously interpolate between interpretable and high-performance modes while adapting architectural capacity at multiple granularities, supporting applications in regulated domains requiring both transparency and capability.
FedBR: Improving Federated Learning on Heterogeneous Data via Local Learning Bias Reduction
Federated Learning (FL) is a way for machines to learn from data that is kept locally, in order to protect the privacy of clients. This is typically done using local SGD, which helps to improve communication efficiency. However, such a scheme is currently constrained by slow and unstable convergence due to the variety of data on different clients' devices. In this work, we identify three under-explored phenomena of biased local learning that may explain these challenges caused by local updates in supervised FL. As a remedy, we propose FedBR, a novel unified algorithm that reduces the local learning bias on features and classifiers to tackle these challenges. FedBR has two components. The first component helps to reduce bias in local classifiers by balancing the output of the models. The second component helps to learn local features that are similar to global features, but different from those learned from other data sources. We conducted several experiments to test \algopt and found that it consistently outperforms other SOTA FL methods. Both of its components also individually show performance gains. Our code is available at https://github.com/lins-lab/fedbr.
Visual Correspondence Hallucination
Given a pair of partially overlapping source and target images and a keypoint in the source image, the keypoint's correspondent in the target image can be either visible, occluded or outside the field of view. Local feature matching methods are only able to identify the correspondent's location when it is visible, while humans can also hallucinate its location when it is occluded or outside the field of view through geometric reasoning. In this paper, we bridge this gap by training a network to output a peaked probability distribution over the correspondent's location, regardless of this correspondent being visible, occluded, or outside the field of view. We experimentally demonstrate that this network is indeed able to hallucinate correspondences on pairs of images captured in scenes that were not seen at training-time. We also apply this network to an absolute camera pose estimation problem and find it is significantly more robust than state-of-the-art local feature matching-based competitors.
Visual Chronicles: Using Multimodal LLMs to Analyze Massive Collections of Images
We present a system using Multimodal LLMs (MLLMs) to analyze a large database with tens of millions of images captured at different times, with the aim of discovering patterns in temporal changes. Specifically, we aim to capture frequent co-occurring changes ("trends") across a city over a certain period. Unlike previous visual analyses, our analysis answers open-ended queries (e.g., "what are the frequent types of changes in the city?") without any predetermined target subjects or training labels. These properties cast prior learning-based or unsupervised visual analysis tools unsuitable. We identify MLLMs as a novel tool for their open-ended semantic understanding capabilities. Yet, our datasets are four orders of magnitude too large for an MLLM to ingest as context. So we introduce a bottom-up procedure that decomposes the massive visual analysis problem into more tractable sub-problems. We carefully design MLLM-based solutions to each sub-problem. During experiments and ablation studies with our system, we find it significantly outperforms baselines and is able to discover interesting trends from images captured in large cities (e.g., "addition of outdoor dining,", "overpass was painted blue," etc.). See more results and interactive demos at https://boyangdeng.com/visual-chronicles.
Nonparametric Deconvolution Models
We describe nonparametric deconvolution models (NDMs), a family of Bayesian nonparametric models for collections of data in which each observation is the average over the features from heterogeneous particles. For example, these types of data are found in elections, where we observe precinct-level vote tallies (observations) of individual citizens' votes (particles) across each of the candidates or ballot measures (features), where each voter is part of a specific voter cohort or demographic (factor). Like the hierarchical Dirichlet process, NDMs rely on two tiers of Dirichlet processes to explain the data with an unknown number of latent factors; each observation is modeled as a weighted average of these latent factors. Unlike existing models, NDMs recover how factor distributions vary locally for each observation. This uniquely allows NDMs both to deconvolve each observation into its constituent factors, and also to describe how the factor distributions specific to each observation vary across observations and deviate from the corresponding global factors. We present variational inference techniques for this family of models and study its performance on simulated data and voting data from California. We show that including local factors improves estimates of global factors and provides a novel scaffold for exploring data.
SentiHood: Targeted Aspect Based Sentiment Analysis Dataset for Urban Neighbourhoods
In this paper, we introduce the task of targeted aspect-based sentiment analysis. The goal is to extract fine-grained information with respect to entities mentioned in user comments. This work extends both aspect-based sentiment analysis that assumes a single entity per document and targeted sentiment analysis that assumes a single sentiment towards a target entity. In particular, we identify the sentiment towards each aspect of one or more entities. As a testbed for this task, we introduce the SentiHood dataset, extracted from a question answering (QA) platform where urban neighbourhoods are discussed by users. In this context units of text often mention several aspects of one or more neighbourhoods. This is the first time that a generic social media platform in this case a QA platform, is used for fine-grained opinion mining. Text coming from QA platforms is far less constrained compared to text from review specific platforms which current datasets are based on. We develop several strong baselines, relying on logistic regression and state-of-the-art recurrent neural networks.
UrbanCLIP: Learning Text-enhanced Urban Region Profiling with Contrastive Language-Image Pretraining from the Web
Urban region profiling from web-sourced data is of utmost importance for urban planning and sustainable development. We are witnessing a rising trend of LLMs for various fields, especially dealing with multi-modal data research such as vision-language learning, where the text modality serves as a supplement information for the image. Since textual modality has never been introduced into modality combinations in urban region profiling, we aim to answer two fundamental questions in this paper: i) Can textual modality enhance urban region profiling? ii) and if so, in what ways and with regard to which aspects? To answer the questions, we leverage the power of Large Language Models (LLMs) and introduce the first-ever LLM-enhanced framework that integrates the knowledge of textual modality into urban imagery profiling, named LLM-enhanced Urban Region Profiling with Contrastive Language-Image Pretraining (UrbanCLIP). Specifically, it first generates a detailed textual description for each satellite image by an open-source Image-to-Text LLM. Then, the model is trained on the image-text pairs, seamlessly unifying natural language supervision for urban visual representation learning, jointly with contrastive loss and language modeling loss. Results on predicting three urban indicators in four major Chinese metropolises demonstrate its superior performance, with an average improvement of 6.1% on R^2 compared to the state-of-the-art methods. Our code and the image-language dataset will be released upon paper notification.
Towards Global Retrieval Augmented Generation: A Benchmark for Corpus-Level Reasoning
Retrieval-augmented generation (RAG) has emerged as a leading approach to reducing hallucinations in large language models (LLMs). Current RAG evaluation benchmarks primarily focus on what we call local RAG: retrieving relevant chunks from a small subset of documents to answer queries that require only localized understanding within specific text chunks. However, many real-world applications require a fundamentally different capability -- global RAG -- which involves aggregating and analyzing information across entire document collections to derive corpus-level insights (for example, "What are the top 10 most cited papers in 2023?"). In this paper, we introduce GlobalQA -- the first benchmark specifically designed to evaluate global RAG capabilities, covering four core task types: counting, extremum queries, sorting, and top-k extraction. Through systematic evaluation across different models and baselines, we find that existing RAG methods perform poorly on global tasks, with the strongest baseline achieving only 1.51 F1 score. To address these challenges, we propose GlobalRAG, a multi-tool collaborative framework that preserves structural coherence through chunk-level retrieval, incorporates LLM-driven intelligent filters to eliminate noisy documents, and integrates aggregation modules for precise symbolic computation. On the Qwen2.5-14B model, GlobalRAG achieves 6.63 F1 compared to the strongest baseline's 1.51 F1, validating the effectiveness of our method.
Practical and Optimal LSH for Angular Distance
We show the existence of a Locality-Sensitive Hashing (LSH) family for the angular distance that yields an approximate Near Neighbor Search algorithm with the asymptotically optimal running time exponent. Unlike earlier algorithms with this property (e.g., Spherical LSH [Andoni, Indyk, Nguyen, Razenshteyn 2014], [Andoni, Razenshteyn 2015]), our algorithm is also practical, improving upon the well-studied hyperplane LSH [Charikar, 2002] in practice. We also introduce a multiprobe version of this algorithm, and conduct experimental evaluation on real and synthetic data sets. We complement the above positive results with a fine-grained lower bound for the quality of any LSH family for angular distance. Our lower bound implies that the above LSH family exhibits a trade-off between evaluation time and quality that is close to optimal for a natural class of LSH functions.
Out-of-Town Recommendation with Travel Intention Modeling
Out-of-town recommendation is designed for those users who leave their home-town areas and visit the areas they have never been to before. It is challenging to recommend Point-of-Interests (POIs) for out-of-town users since the out-of-town check-in behavior is determined by not only the user's home-town preference but also the user's travel intention. Besides, the user's travel intentions are complex and dynamic, which leads to big difficulties in understanding such intentions precisely. In this paper, we propose a TRAvel-INtention-aware Out-of-town Recommendation framework, named TRAINOR. The proposed TRAINOR framework distinguishes itself from existing out-of-town recommenders in three aspects. First, graph neural networks are explored to represent users' home-town check-in preference and geographical constraints in out-of-town check-in behaviors. Second, a user-specific travel intention is formulated as an aggregation combining home-town preference and generic travel intention together, where the generic travel intention is regarded as a mixture of inherent intentions that can be learned by Neural Topic Model (NTM). Third, a non-linear mapping function, as well as a matrix factorization method, are employed to transfer users' home-town preference and estimate out-of-town POI's representation, respectively. Extensive experiments on real-world data sets validate the effectiveness of the TRAINOR framework. Moreover, the learned travel intention can deliver meaningful explanations for understanding a user's travel purposes.
SemEval-2020 Task 10: Emphasis Selection for Written Text in Visual Media
In this paper, we present the main findings and compare the results of SemEval-2020 Task 10, Emphasis Selection for Written Text in Visual Media. The goal of this shared task is to design automatic methods for emphasis selection, i.e. choosing candidates for emphasis in textual content to enable automated design assistance in authoring. The main focus is on short text instances for social media, with a variety of examples, from social media posts to inspirational quotes. Participants were asked to model emphasis using plain text with no additional context from the user or other design considerations. SemEval-2020 Emphasis Selection shared task attracted 197 participants in the early phase and a total of 31 teams made submissions to this task. The highest-ranked submission achieved 0.823 Matchm score. The analysis of systems submitted to the task indicates that BERT and RoBERTa were the most common choice of pre-trained models used, and part of speech tag (POS) was the most useful feature. Full results can be found on the task's website.
DMLR: Data-centric Machine Learning Research -- Past, Present and Future
Drawing from discussions at the inaugural DMLR workshop at ICML 2023 and meetings prior, in this report we outline the relevance of community engagement and infrastructure development for the creation of next-generation public datasets that will advance machine learning science. We chart a path forward as a collective effort to sustain the creation and maintenance of these datasets and methods towards positive scientific, societal and business impact.
Real-time Localized Photorealistic Video Style Transfer
We present a novel algorithm for transferring artistic styles of semantically meaningful local regions of an image onto local regions of a target video while preserving its photorealism. Local regions may be selected either fully automatically from an image, through using video segmentation algorithms, or from casual user guidance such as scribbles. Our method, based on a deep neural network architecture inspired by recent work in photorealistic style transfer, is real-time and works on arbitrary inputs without runtime optimization once trained on a diverse dataset of artistic styles. By augmenting our video dataset with noisy semantic labels and jointly optimizing over style, content, mask, and temporal losses, our method can cope with a variety of imperfections in the input and produce temporally coherent videos without visual artifacts. We demonstrate our method on a variety of style images and target videos, including the ability to transfer different styles onto multiple objects simultaneously, and smoothly transition between styles in time.
Cross Aggregation Transformer for Image Restoration
Recently, Transformer architecture has been introduced into image restoration to replace convolution neural network (CNN) with surprising results. Considering the high computational complexity of Transformer with global attention, some methods use the local square window to limit the scope of self-attention. However, these methods lack direct interaction among different windows, which limits the establishment of long-range dependencies. To address the above issue, we propose a new image restoration model, Cross Aggregation Transformer (CAT). The core of our CAT is the Rectangle-Window Self-Attention (Rwin-SA), which utilizes horizontal and vertical rectangle window attention in different heads parallelly to expand the attention area and aggregate the features cross different windows. We also introduce the Axial-Shift operation for different window interactions. Furthermore, we propose the Locality Complementary Module to complement the self-attention mechanism, which incorporates the inductive bias of CNN (e.g., translation invariance and locality) into Transformer, enabling global-local coupling. Extensive experiments demonstrate that our CAT outperforms recent state-of-the-art methods on several image restoration applications. The code and models are available at https://github.com/zhengchen1999/CAT.
DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features
Image Retrieval is a fundamental task of obtaining images similar to the query one from a database. A common image retrieval practice is to firstly retrieve candidate images via similarity search using global image features and then re-rank the candidates by leveraging their local features. Previous learning-based studies mainly focus on either global or local image representation learning to tackle the retrieval task. In this paper, we abandon the two-stage paradigm and seek to design an effective single-stage solution by integrating local and global information inside images into compact image representations. Specifically, we propose a Deep Orthogonal Local and Global (DOLG) information fusion framework for end-to-end image retrieval. It attentively extracts representative local information with multi-atrous convolutions and self-attention at first. Components orthogonal to the global image representation are then extracted from the local information. At last, the orthogonal components are concatenated with the global representation as a complementary, and then aggregation is performed to generate the final representation. The whole framework is end-to-end differentiable and can be trained with image-level labels. Extensive experimental results validate the effectiveness of our solution and show that our model achieves state-of-the-art image retrieval performances on Revisited Oxford and Paris datasets.
Creatively Upscaling Images with Global-Regional Priors
Contemporary diffusion models show remarkable capability in text-to-image generation, while still being limited to restricted resolutions (e.g., 1,024 X 1,024). Recent advances enable tuning-free higher-resolution image generation by recycling pre-trained diffusion models and extending them via regional denoising or dilated sampling/convolutions. However, these models struggle to simultaneously preserve global semantic structure and produce creative regional details in higher-resolution images. To address this, we present C-Upscale, a new recipe of tuning-free image upscaling that pivots on global-regional priors derived from given global prompt and estimated regional prompts via Multimodal LLM. Technically, the low-frequency component of low-resolution image is recognized as global structure prior to encourage global semantic consistency in high-resolution generation. Next, we perform regional attention control to screen cross-attention between global prompt and each region during regional denoising, leading to regional attention prior that alleviates object repetition issue. The estimated regional prompts containing rich descriptive details further act as regional semantic prior to fuel the creativity of regional detail generation. Both quantitative and qualitative evaluations demonstrate that our C-Upscale manages to generate ultra-high-resolution images (e.g., 4,096 X 4,096 and 8,192 X 8,192) with higher visual fidelity and more creative regional details.
Visual Position Prompt for MLLM based Visual Grounding
Although Multimodal Large Language Models (MLLMs) excel at various image-related tasks, they encounter challenges in precisely aligning coordinates with spatial information within images, particularly in position-aware tasks such as visual grounding. This limitation arises from two key factors. First, MLLMs lack explicit spatial references, making it difficult to associate textual descriptions with precise image locations. Second, their feature extraction processes prioritize global context over fine-grained spatial details, leading to weak localization capability. To address this issue, we introduce VPP-LLaVA, an MLLM equipped with Visual Position Prompt (VPP) to improve its grounding capability. VPP-LLaVA integrates two complementary mechanisms. The global VPP overlays learnable, axis-like embeddings onto the input image to provide structured spatial cues. The local VPP focuses on fine-grained localization by incorporating position-aware queries, which suggests probable object locations. We also introduce a VPP-SFT dataset with 0.6M samples, consolidating high-quality visual grounding data into a compact format for efficient model training. Training on this dataset with VPP enhances the model's performance, achieving state-of-the-art results on standard grounding benchmarks despite using fewer training samples compared to other MLLMs like MiniGPT-v2, which rely on much larger datasets (sim21M samples). The code and VPP-SFT dataset will be available at https://github.com/WayneTomas/VPP-LLaVA upon acceptance.
MiCRO: Multi-interest Candidate Retrieval Online
Providing personalized recommendations in an environment where items exhibit ephemerality and temporal relevancy (e.g. in social media) presents a few unique challenges: (1) inductively understanding ephemeral appeal for items in a setting where new items are created frequently, (2) adapting to trends within engagement patterns where items may undergo temporal shifts in relevance, (3) accurately modeling user preferences over this item space where users may express multiple interests. In this work we introduce MiCRO, a generative statistical framework that models multi-interest user preferences and temporal multi-interest item representations. Our framework is specifically formulated to adapt to both new items and temporal patterns of engagement. MiCRO demonstrates strong empirical performance on candidate retrieval experiments performed on two large scale user-item datasets: (1) an open-source temporal dataset of (User, User) follow interactions and (2) a temporal dataset of (User, Tweet) favorite interactions which we will open-source as an additional contribution to the community.
LLM In-Context Recall is Prompt Dependent
The proliferation of Large Language Models (LLMs) highlights the critical importance of conducting thorough evaluations to discern their comparative advantages, limitations, and optimal use cases. Particularly important is assessing their capacity to accurately retrieve information included in a given prompt. A model's ability to do this significantly influences how effectively it can utilize contextual details, thus impacting its practical efficacy and dependability in real-world applications. Our research analyzes the in-context recall performance of various LLMs using the needle-in-a-haystack method. In this approach, a factoid (the "needle") is embedded within a block of filler text (the "haystack"), which the model is asked to retrieve. We assess the recall performance of each model across various haystack lengths and with varying needle placements to identify performance patterns. This study demonstrates that an LLM's recall capability is not only contingent upon the prompt's content but also may be compromised by biases in its training data. Conversely, adjustments to model architecture, training strategy, or fine-tuning can improve performance. Our analysis provides insight into LLM behavior, offering direction for the development of more effective applications of LLMs.
Describe Anything: Detailed Localized Image and Video Captioning
Generating detailed and accurate descriptions for specific regions in images and videos remains a fundamental challenge for vision-language models. We introduce the Describe Anything Model (DAM), a model designed for detailed localized captioning (DLC). DAM preserves both local details and global context through two key innovations: a focal prompt, which ensures high-resolution encoding of targeted regions, and a localized vision backbone, which integrates precise localization with its broader context. To tackle the scarcity of high-quality DLC data, we propose a Semi-supervised learning (SSL)-based Data Pipeline (DLC-SDP). DLC-SDP starts with existing segmentation datasets and expands to unlabeled web images using SSL. We introduce DLC-Bench, a benchmark designed to evaluate DLC without relying on reference captions. DAM sets new state-of-the-art on 7 benchmarks spanning keyword-level, phrase-level, and detailed multi-sentence localized image and video captioning.
Fast or Slow? Integrating Fast Intuition and Deliberate Thinking for Enhancing Visual Question Answering
Multimodal large language models (MLLMs) still struggle with complex reasoning tasks in Visual Question Answering (VQA). While current methods have advanced by incorporating visual prompts, our study uncovers critical limitations: these approaches indiscriminately annotate all detected objects for every visual question, generating excessive visual markers that degrade task performance. This issue stems primarily from a lack of focus on key visual elements, raising two important questions: Are all objects equally important, and do all questions require visual prompts? Motivated by Dual Process Theory, which distinguishes between instinctive and deliberate cognitive modes in human reasoning, we propose FOCUS, a plug-and-play approach that dynamically adapts to the complexity of questions, combining fast intuitive judgments with deliberate analytical reasoning to enhance the vision-language reasoning capability of the MLLM. For straightforward questions, FOCUS supports efficient zero-shot reasoning. For more complex tasks, it employs the conceptualizing before observation strategy to highlight critical elements. Extensive experiments on four benchmarks, ScienceQA, TextQA, VizWiz, and MME, demonstrate that FOCUS consistently improves the performance of both open-source and black-box MLLMs, achieving significant gains across all datasets. Ablation studies further validate the importance of combining diverse cognitive strategies with refined visual information for superior performance. Code will be released.
The Science of Evaluating Foundation Models
The emergent phenomena of large foundation models have revolutionized natural language processing. However, evaluating these models presents significant challenges due to their size, capabilities, and deployment across diverse applications. Existing literature often focuses on individual aspects, such as benchmark performance or specific tasks, but fails to provide a cohesive process that integrates the nuances of diverse use cases with broader ethical and operational considerations. This work focuses on three key aspects: (1) Formalizing the Evaluation Process by providing a structured framework tailored to specific use-case contexts, (2) Offering Actionable Tools and Frameworks such as checklists and templates to ensure thorough, reproducible, and practical evaluations, and (3) Surveying Recent Work with a targeted review of advancements in LLM evaluation, emphasizing real-world applications.
FreeSwim: Revisiting Sliding-Window Attention Mechanisms for Training-Free Ultra-High-Resolution Video Generation
The quadratic time and memory complexity of the attention mechanism in modern Transformer based video generators makes end-to-end training for ultra high resolution videos prohibitively expensive. Motivated by this limitation, we introduce a training-free approach that leverages video Diffusion Transformers pretrained at their native scale to synthesize higher resolution videos without any additional training or adaptation. At the core of our method lies an inward sliding window attention mechanism, which originates from a key observation: maintaining each query token's training scale receptive field is crucial for preserving visual fidelity and detail. However, naive local window attention, unfortunately, often leads to repetitive content and exhibits a lack of global coherence in the generated results. To overcome this challenge, we devise a dual-path pipeline that backs up window attention with a novel cross-attention override strategy, enabling the semantic content produced by local attention to be guided by another branch with a full receptive field and, therefore, ensuring holistic consistency. Furthermore, to improve efficiency, we incorporate a cross-attention caching strategy for this branch to avoid the frequent computation of full 3D attention. Extensive experiments demonstrate that our method delivers ultra-high-resolution videos with fine-grained visual details and high efficiency in a training-free paradigm. Meanwhile, it achieves superior performance on VBench, even compared to training-based alternatives, with competitive or improved efficiency. Codes are available at: https://github.com/WillWu111/FreeSwim
Neural Attention Search
We present Neural Attention Search (NAtS), a framework that automatically evaluates the importance of each token within a sequence and determines if the corresponding token can be dropped after several steps. This approach can efficiently reduce the KV cache sizes required by transformer-based models during inference and thus reduce inference costs. In this paper, we design a search space that contains three token types: (i) Global Tokens will be preserved and queried by all the following tokens. (ii) Local Tokens survive until the next global token appears. (iii) Sliding Window Tokens have an impact on the inference of a fixed size of the next following tokens. Similar to the One-Shot Neural Architecture Search approach, this token-type information can be learned jointly with the architecture weights via a learnable attention mask. Experiments on both training a new transformer from scratch and fine-tuning existing large language models show that NAtS can efficiently reduce the KV cache size required for the models while maintaining the models' performance.
Less Is More: Training-Free Sparse Attention with Global Locality for Efficient Reasoning
Large reasoning models achieve strong performance through test-time scaling but incur substantial computational overhead, particularly from excessive token generation when processing short input prompts. While sparse attention mechanisms can reduce latency and memory usage, existing approaches suffer from significant accuracy degradation due to accumulated errors during long-generation reasoning. These methods generally require either high token retention rates or expensive retraining. We introduce LessIsMore, a training-free sparse attention mechanism for reasoning tasks, which leverages global attention patterns rather than relying on traditional head-specific local optimizations. LessIsMore aggregates token selections from local attention heads with recent contextual information, enabling unified cross-head token ranking for future decoding layers. This unified selection improves generalization and efficiency by avoiding the need to maintain separate token subsets per head. Evaluation across diverse reasoning tasks and benchmarks shows that LessIsMore preserves -- and in some cases improves -- accuracy while achieving a 1.1times average decoding speed-up compared to full attention. Moreover, LessIsMore attends to 2times fewer tokens without accuracy loss, achieving a 1.13times end-to-end speed-up compared to existing sparse attention methods.
Generalized Neighborhood Attention: Multi-dimensional Sparse Attention at the Speed of Light
Many sparse attention mechanisms such as Neighborhood Attention have typically failed to consistently deliver speedup over the self attention baseline. This is largely due to the level of complexity in attention infrastructure, and the rapid evolution of AI hardware architecture. At the same time, many state-of-the-art foundational models, particularly in computer vision, are heavily bound by attention, and need reliable sparsity to escape the O(n^2) complexity. In this paper, we study a class of promising sparse attention mechanisms that focus on locality, and aim to develop a better analytical model of their performance improvements. We first introduce Generalized Neighborhood Attention (GNA), which can describe sliding window, strided sliding window, and blocked attention. We then consider possible design choices in implementing these approaches, and create a simulator that can provide much more realistic speedup upper bounds for any given setting. Finally, we implement GNA on top of a state-of-the-art fused multi-headed attention (FMHA) kernel designed for the NVIDIA Blackwell architecture in CUTLASS. Our implementation can fully realize the maximum speedup theoretically possible in many perfectly block-sparse cases, and achieves an effective utilization of 1.3 petaFLOPs/second in FP16. In addition, we plug various GNA configurations into off-the-shelf generative models, such as Cosmos-7B, HunyuanVideo, and FLUX, and show that it can deliver 28% to 46% end-to-end speedup on B200 without any fine-tuning. We will open source our simulator and Blackwell kernels directly through the NATTEN project.
RAT: Bridging RNN Efficiency and Attention Accuracy in Language Modeling
Transformers have become the cornerstone of modern large-scale language models; however, their dependence on softmax attention poses a major computational bottleneck, particularly in long-context settings. In this work, rather than following prevalent approaches such as linear attention (or SSMs) and local attention, we introduce an intermediate design called \rat between recurrence and attention mechanisms. It partitions the input into chunks, applies a simple linear recurrence within each chunk to capture local dependencies, and then performs softmax attention across chunks to model long-range interactions. By adjusting the size of the chunk, \rat enables flexible trade-offs, combining the strengths of RNN and attention. Empirically, with a chunk size of 16, the \rat layer achieves a \(7\times\) improvement in training speed with 100K token sequences and \(9\times\) in generation at 4K sequence length, while maintaining similar or sometimes even better accuracy compared to standard attention. We demonstrate this by training 1.3B parameter models from scratch and performing large-scale evaluations, including short- and long-context benchmarks, as well as supervised fine-tuning~(SFT). We further propose a hybrid architecture that interleaves \rat with local attention. By combining efficient long-range modeling with strong local interactions, this hybrid design not only improves inference speed and reduces cache memory usage compared to attention, but also consistently enhances performance, for example, achieving an average 1 point gain in commonsense reasoning tasks, up to 4 points on code tasks, and a 1 point Rouge-L increase in a summarization SFT task. Code is available at https://github.com/CLAIRE-Labo/RAT
Improving Tool Retrieval by Leveraging Large Language Models for Query Generation
Using tools by Large Language Models (LLMs) is a promising avenue to extend their reach beyond language or conversational settings. The number of tools can scale to thousands as they enable accessing sensory information, fetching updated factual knowledge, or taking actions in the real world. In such settings, in-context learning by providing a short list of relevant tools in the prompt is a viable approach. To retrieve relevant tools, various approaches have been suggested, ranging from simple frequency-based matching to dense embedding-based semantic retrieval. However, such approaches lack the contextual and common-sense understanding required to retrieve the right tools for complex user requests. Rather than increasing the complexity of the retrieval component itself, we propose leveraging LLM understanding to generate a retrieval query. Then, the generated query is embedded and used to find the most relevant tools via a nearest-neighbor search. We investigate three approaches for query generation: zero-shot prompting, supervised fine-tuning on tool descriptions, and alignment learning by iteratively optimizing a reward metric measuring retrieval performance. By conducting extensive experiments on a dataset covering complex and multi-tool scenarios, we show that leveraging LLMs for query generation improves the retrieval for in-domain (seen tools) and out-of-domain (unseen tools) settings.
Collaborative Development of NLP models
Despite substantial advancements, Natural Language Processing (NLP) models often require post-training adjustments to enforce business rules, rectify undesired behavior, and align with user values. These adjustments involve operationalizing "concepts"--dictating desired model responses to certain inputs. However, it's difficult for a single entity to enumerate and define all possible concepts, indicating a need for a multi-user, collaborative model alignment framework. Moreover, the exhaustive delineation of a concept is challenging, and an improper approach can create shortcuts or interfere with original data or other concepts. To address these challenges, we introduce CoDev, a framework that enables multi-user interaction with the model, thereby mitigating individual limitations. CoDev aids users in operationalizing their concepts using Large Language Models, and relying on the principle that NLP models exhibit simpler behaviors in local regions. Our main insight is learning a local model for each concept, and a global model to integrate the original data with all concepts. We then steer a large language model to generate instances within concept boundaries where local and global disagree. Our experiments show CoDev is effective at helping multiple users operationalize concepts and avoid interference for a variety of scenarios, tasks, and models.
Towards Full Authorship with AI: Supporting Revision with AI-Generated Views
Large language models (LLMs) are shaping a new user interface (UI) paradigm in writing tools by enabling users to generate text through prompts. This paradigm shifts some creative control from the user to the system, thereby diminishing the user's authorship and autonomy in the writing process. To restore autonomy, we introduce Textfocals, a UI prototype designed to investigate a human-centered approach that emphasizes the user's role in writing. Textfocals supports the writing process by providing LLM-generated summaries, questions, and advice (i.e., LLM views) in a sidebar of a text editor, encouraging reflection and self-driven revision in writing without direct text generation. Textfocals' UI affordances, including contextually adaptive views and scaffolding for prompt selection and customization, offer a novel way to interact with LLMs where users maintain full authorship of their writing. A formative user study with Textfocals showed promising evidence that this approach might help users develop underdeveloped ideas, cater to the rhetorical audience, and clarify their writing. However, the study also showed interaction design challenges related to document navigation and scoping, prompt engineering, and context management. Our work highlights the breadth of the design space of writing support interfaces powered by generative AI that maintain authorship integrity.
Multi-Advisor Reinforcement Learning
We consider tackling a single-agent RL problem by distributing it to n learners. These learners, called advisors, endeavour to solve the problem from a different focus. Their advice, taking the form of action values, is then communicated to an aggregator, which is in control of the system. We show that the local planning method for the advisors is critical and that none of the ones found in the literature is flawless: the egocentric planning overestimates values of states where the other advisors disagree, and the agnostic planning is inefficient around danger zones. We introduce a novel approach called empathic and discuss its theoretical aspects. We empirically examine and validate our theoretical findings on a fruit collection task.
GIVL: Improving Geographical Inclusivity of Vision-Language Models with Pre-Training Methods
A key goal for the advancement of AI is to develop technologies that serve the needs not just of one group but of all communities regardless of their geographical region. In fact, a significant proportion of knowledge is locally shared by people from certain regions but may not apply equally in other regions because of cultural differences. If a model is unaware of regional characteristics, it may lead to performance disparity across regions and result in bias against underrepresented groups. We propose GIVL, a Geographically Inclusive Vision-and-Language Pre-trained model. There are two attributes of geo-diverse visual concepts which can help to learn geo-diverse knowledge: 1) concepts under similar categories have unique knowledge and visual characteristics, 2) concepts with similar visual features may fall in completely different categories. Motivated by the attributes, we design new pre-training objectives Image Knowledge Matching (IKM) and Image Edit Checking (IEC) to pre-train GIVL. Compared with similar-size models pre-trained with similar scale of data, GIVL achieves state-of-the-art (SOTA) and more balanced performance on geo-diverse V&L tasks.
Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation
Retrieval-augmented generation (RAG) has shown impressive capability in providing reliable answer predictions and addressing hallucination problems. A typical RAG implementation uses powerful retrieval models to extract external information and large language models (LLMs) to generate answers. In contrast, recent LLM-based retrieval has gained attention for its substantial improvements in information retrieval (IR) due to the LLMs' semantic understanding capability. However, directly applying LLM to RAG systems presents challenges. This may cause feature locality problems as massive parametric knowledge can hinder effective usage of global information across the corpus; for example, an LLM-based retriever often inputs document summaries instead of full documents. Moreover, various pre-trained tasks in LLMs introduce variance, further weakening performance as a retriever. To address these issues, we propose a novel two-stage fine-tuning architecture called Invar-RAG. In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning to tackle feature locality issues. To enhance retrieval performance, we develop two patterns (invariant and variant patterns) and an invariance loss to reduce LLM variance. In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information. Experimental results show that Invar-RAG significantly outperforms existing baselines across three open-domain question answering (ODQA) datasets. Code is available in the Supplementary Material for reproducibility.
Wiki-LLaVA: Hierarchical Retrieval-Augmented Generation for Multimodal LLMs
Multimodal LLMs are the natural evolution of LLMs, and enlarge their capabilities so as to work beyond the pure textual modality. As research is being carried out to design novel architectures and vision-and-language adapters, in this paper we concentrate on endowing such models with the capability of answering questions that require external knowledge. Our approach, termed Wiki-LLaVA, aims at integrating an external knowledge source of multimodal documents, which is accessed through a hierarchical retrieval pipeline. Relevant passages, using this approach, are retrieved from the external knowledge source and employed as additional context for the LLM, augmenting the effectiveness and precision of generated dialogues. We conduct extensive experiments on datasets tailored for visual question answering with external data and demonstrate the appropriateness of our approach.
