- The Multi-Range Theory of Translation Quality Measurement: MQM scoring models and Statistical Quality Control The year 2024 marks the 10th anniversary of the Multidimensional Quality Metrics (MQM) framework for analytic translation quality evaluation. The MQM error typology has been widely used by practitioners in the translation and localization industry and has served as the basis for many derivative projects. The annual Conference on Machine Translation (WMT) shared tasks on both human and automatic translation quality evaluations used the MQM error typology. The metric stands on two pillars: error typology and the scoring model. The scoring model calculates the quality score from annotation data, detailing how to convert error type and severity counts into numeric scores to determine if the content meets specifications. Previously, only the raw scoring model had been published. This April, the MQM Council published the Linear Calibrated Scoring Model, officially presented herein, along with the Non-Linear Scoring Model, which had not been published before. This paper details the latest MQM developments and presents a universal approach to translation quality measurement across three sample size ranges. It also explains why Statistical Quality Control should be used for very small sample sizes, starting from a single sentence. 13 authors · May 27, 2024
2 On Non-interactive Evaluation of Animal Communication Translators If you had an AI Whale-to-English translator, how could you validate whether or not it is working? Does one need to interact with the animals or rely on grounded observations such as temperature? We provide theoretical and proof-of-concept experimental evidence suggesting that interaction and even observations may not be necessary for sufficiently complex languages. One may be able to evaluate translators solely by their English outputs, offering potential advantages in terms of safety, ethics, and cost. This is an instance of machine translation quality evaluation (MTQE) without any reference translations available. A key challenge is identifying ``hallucinations,'' false translations which may appear fluent and plausible. We propose using segment-by-segment translation together with the classic NLP shuffle test to evaluate translators. The idea is to translate animal communication, turn by turn, and evaluate how often the resulting translations make more sense in order than permuted. Proof-of-concept experiments on data-scarce human languages and constructed languages demonstrate the potential utility of this evaluation methodology. These human-language experiments serve solely to validate our reference-free metric under data scarcity. It is found to correlate highly with a standard evaluation based on reference translations, which are available in our experiments. We also perform a theoretical analysis suggesting that interaction may not be necessary nor efficient in the early stages of learning to translate. 3 authors · Oct 17 2
- Quality-Aware Decoding for Neural Machine Translation Despite the progress in machine translation quality estimation and evaluation in the last years, decoding in neural machine translation (NMT) is mostly oblivious to this and centers around finding the most probable translation according to the model (MAP decoding), approximated with beam search. In this paper, we bring together these two lines of research and propose quality-aware decoding for NMT, by leveraging recent breakthroughs in reference-free and reference-based MT evaluation through various inference methods like N-best reranking and minimum Bayes risk decoding. We perform an extensive comparison of various possible candidate generation and ranking methods across four datasets and two model classes and find that quality-aware decoding consistently outperforms MAP-based decoding according both to state-of-the-art automatic metrics (COMET and BLEURT) and to human assessments. Our code is available at https://github.com/deep-spin/qaware-decode. 7 authors · May 2, 2022
- Translation Quality Assessment: A Brief Survey on Manual and Automatic Methods To facilitate effective translation modeling and translation studies, one of the crucial questions to address is how to assess translation quality. From the perspectives of accuracy, reliability, repeatability and cost, translation quality assessment (TQA) itself is a rich and challenging task. In this work, we present a high-level and concise survey of TQA methods, including both manual judgement criteria and automated evaluation metrics, which we classify into further detailed sub-categories. We hope that this work will be an asset for both translation model researchers and quality assessment researchers. In addition, we hope that it will enable practitioners to quickly develop a better understanding of the conventional TQA field, and to find corresponding closely relevant evaluation solutions for their own needs. This work may also serve inspire further development of quality assessment and evaluation methodologies for other natural language processing (NLP) tasks in addition to machine translation (MT), such as automatic text summarization (ATS), natural language understanding (NLU) and natural language generation (NLG). 3 authors · May 5, 2021
1 Beyond Correlation: Interpretable Evaluation of Machine Translation Metrics Machine Translation (MT) evaluation metrics assess translation quality automatically. Recently, researchers have employed MT metrics for various new use cases, such as data filtering and translation re-ranking. However, most MT metrics return assessments as scalar scores that are difficult to interpret, posing a challenge to making informed design choices. Moreover, MT metrics' capabilities have historically been evaluated using correlation with human judgment, which, despite its efficacy, falls short of providing intuitive insights into metric performance, especially in terms of new metric use cases. To address these issues, we introduce an interpretable evaluation framework for MT metrics. Within this framework, we evaluate metrics in two scenarios that serve as proxies for the data filtering and translation re-ranking use cases. Furthermore, by measuring the performance of MT metrics using Precision, Recall, and F-score, we offer clearer insights into their capabilities than correlation with human judgments. Finally, we raise concerns regarding the reliability of manually curated data following the Direct Assessments+Scalar Quality Metrics (DA+SQM) guidelines, reporting a notably low agreement with Multidimensional Quality Metrics (MQM) annotations. 5 authors · Oct 7, 2024
4 Expanding FLORES+ Benchmark for more Low-Resource Settings: Portuguese-Emakhuwa Machine Translation Evaluation As part of the Open Language Data Initiative shared tasks, we have expanded the FLORES+ evaluation set to include Emakhuwa, a low-resource language widely spoken in Mozambique. We translated the dev and devtest sets from Portuguese into Emakhuwa, and we detail the translation process and quality assurance measures used. Our methodology involved various quality checks, including post-editing and adequacy assessments. The resulting datasets consist of multiple reference sentences for each source. We present baseline results from training a Neural Machine Translation system and fine-tuning existing multilingual translation models. Our findings suggest that spelling inconsistencies remain a challenge in Emakhuwa. Additionally, the baseline models underperformed on this evaluation set, underscoring the necessity for further research to enhance machine translation quality for Emakhuwa. The data is publicly available at https://huggingface.co/datasets/LIACC/Emakhuwa-FLORES. 3 authors · Aug 21, 2024 1
1 BlonDe: An Automatic Evaluation Metric for Document-level Machine Translation Standard automatic metrics, e.g. BLEU, are not reliable for document-level MT evaluation. They can neither distinguish document-level improvements in translation quality from sentence-level ones, nor identify the discourse phenomena that cause context-agnostic translations. This paper introduces a novel automatic metric BlonDe to widen the scope of automatic MT evaluation from sentence to document level. BlonDe takes discourse coherence into consideration by categorizing discourse-related spans and calculating the similarity-based F1 measure of categorized spans. We conduct extensive comparisons on a newly constructed dataset BWB. The experimental results show that BlonDe possesses better selectivity and interpretability at the document-level, and is more sensitive to document-level nuances. In a large-scale human study, BlonDe also achieves significantly higher Pearson's r correlation with human judgments compared to previous metrics. 10 authors · Mar 22, 2021
- QUEST: Quality-Aware Metropolis-Hastings Sampling for Machine Translation An important challenge in machine translation (MT) is to generate high-quality and diverse translations. Prior work has shown that the estimated likelihood from the MT model correlates poorly with translation quality. In contrast, quality evaluation metrics (such as COMET or BLEURT) exhibit high correlations with human judgments, which has motivated their use as rerankers (such as quality-aware and minimum Bayes risk decoding). However, relying on a single translation with high estimated quality increases the chances of "gaming the metric''. In this paper, we address the problem of sampling a set of high-quality and diverse translations. We provide a simple and effective way to avoid over-reliance on noisy quality estimates by using them as the energy function of a Gibbs distribution. Instead of looking for a mode in the distribution, we generate multiple samples from high-density areas through the Metropolis-Hastings algorithm, a simple Markov chain Monte Carlo approach. The results show that our proposed method leads to high-quality and diverse outputs across multiple language pairs (Englishleftrightarrow{German, Russian}) with two strong decoder-only LLMs (Alma-7b, Tower-7b). 6 authors · May 28, 2024
- Subjective and Objective Evaluation of English to Urdu Machine Translation Machine translation is research based area where evaluation is very important phenomenon for checking the quality of MT output. The work is based on the evaluation of English to Urdu Machine translation. In this research work we have evaluated the translation quality of Urdu language which has been translated by using different Machine Translation systems like Google, Babylon and Ijunoon. The evaluation process is done by using two approaches - Human evaluation and Automatic evaluation. We have worked for both the approaches where in human evaluation emphasis is given to scales and parameters while in automatic evaluation emphasis is given to some automatic metric such as BLEU, GTM, METEOR and ATEC. 3 authors · Oct 2, 2013
- Remedy: Learning Machine Translation Evaluation from Human Preferences with Reward Modeling A key challenge in MT evaluation is the inherent noise and inconsistency of human ratings. Regression-based neural metrics struggle with this noise, while prompting LLMs shows promise at system-level evaluation but performs poorly at segment level. In this work, we propose ReMedy, a novel MT metric framework that reformulates translation evaluation as a reward modeling task. Instead of regressing on imperfect human ratings directly, ReMedy learns relative translation quality using pairwise preference data, resulting in a more reliable evaluation. In extensive experiments across WMT22-24 shared tasks (39 language pairs, 111 MT systems), ReMedy achieves state-of-the-art performance at both segment- and system-level evaluation. Specifically, ReMedy-9B surpasses larger WMT winners and massive closed LLMs such as MetricX-13B, XCOMET-Ensemble, GEMBA-GPT-4, PaLM-540B, and finetuned PaLM2. Further analyses demonstrate that ReMedy delivers superior capability in detecting translation errors and evaluating low-quality translations. 2 authors · Apr 18
- BOUQuET: dataset, Benchmark and Open initiative for Universal Quality Evaluation in Translation This paper presents BOUQuET, a multicentric and multi-register/domain dataset and benchmark, and its broader collaborative extension initiative. This dataset is handcrafted in non-English languages first, each of these source languages being represented among the 23 languages commonly used by half of the world's population and therefore having the potential to serve as pivot languages that will enable more accurate translations. The dataset is specially designed to avoid contamination and be multicentric, so as to enforce representation of multilingual language features. In addition, the dataset goes beyond the sentence level, as it is organized in paragraphs of various lengths. Compared with related machine translation (MT) datasets, we show that BOUQuET has a broader representation of domains while simplifying the translation task for non-experts. Therefore, BOUQuET is specially suitable for the open initiative and call for translation participation that we are launching to extend it to a multi-way parallel corpus to any written language. 17 authors · Feb 6
- Are Large Language Models State-of-the-art Quality Estimators for Machine Translation of User-generated Content? This paper investigates whether large language models (LLMs) are state-of-the-art quality estimators for machine translation of user-generated content (UGC) that contains emotional expressions, without the use of reference translations. To achieve this, we employ an existing emotion-related dataset with human-annotated errors and calculate quality evaluation scores based on the Multi-dimensional Quality Metrics. We compare the accuracy of several LLMs with that of our fine-tuned baseline models, under in-context learning and parameter-efficient fine-tuning (PEFT) scenarios. We find that PEFT of LLMs leads to better performance in score prediction with human interpretable explanations than fine-tuned models. However, a manual analysis of LLM outputs reveals that they still have problems such as refusal to reply to a prompt and unstable output while evaluating machine translation of UGC. 4 authors · Oct 8, 2024
- How Well Do Large Reasoning Models Translate? A Comprehensive Evaluation for Multi-Domain Machine Translation Large language models (LLMs) have demonstrated strong performance in general-purpose machine translation, but their effectiveness in complex, domain-sensitive translation tasks remains underexplored. Recent advancements in Large Reasoning Models (LRMs), raise the question of whether structured reasoning can enhance translation quality across diverse domains. In this work, we compare the performance of LRMs with traditional LLMs across 15 representative domains and four translation directions. Our evaluation considers various factors, including task difficulty, input length, and terminology density. We use a combination of automatic metrics and an enhanced MQM-based evaluation hierarchy to assess translation quality. Our findings show that LRMs consistently outperform traditional LLMs in semantically complex domains, especially in long-text and high-difficulty translation scenarios. Moreover, domain-adaptive prompting strategies further improve performance by better leveraging the reasoning capabilities of LRMs. These results highlight the potential of structured reasoning in MDMT tasks and provide valuable insights for optimizing translation systems in domain-sensitive contexts. 5 authors · May 26
- CaMMT: Benchmarking Culturally Aware Multimodal Machine Translation Cultural content poses challenges for machine translation systems due to the differences in conceptualizations between cultures, where language alone may fail to convey sufficient context to capture region-specific meanings. In this work, we investigate whether images can act as cultural context in multimodal translation. We introduce CaMMT, a human-curated benchmark of over 5,800 triples of images along with parallel captions in English and regional languages. Using this dataset, we evaluate five Vision Language Models (VLMs) in text-only and text+image settings. Through automatic and human evaluations, we find that visual context generally improves translation quality, especially in handling Culturally-Specific Items (CSIs), disambiguation, and correct gender usage. By releasing CaMMT, we aim to support broader efforts in building and evaluating multimodal translation systems that are better aligned with cultural nuance and regional variation. 34 authors · May 30
4 Early-Exit and Instant Confidence Translation Quality Estimation Quality estimation is omnipresent in machine translation, for both evaluation and generation. Unfortunately, quality estimation models are often opaque and computationally expensive, making them impractical to be part of large-scale pipelines. In this work, we tackle two connected challenges: (1) reducing the cost of quality estimation at scale, and (2) developing an inexpensive uncertainty estimation method for quality estimation. To address the latter, we introduce Instant Confidence COMET, an uncertainty-aware quality estimation model that matches the performance of previous approaches at a fraction of their costs. We extend this to Early-Exit COMET, a quality estimation model that can compute quality scores and associated confidences already at early model layers, allowing us to early-exit computations and reduce evaluation costs. We also apply our model to machine translation reranking. We combine Early-Exit COMET with an upper confidence bound bandit algorithm to find the best candidate from a large pool without having to run the full evaluation model on all candidates. In both cases (evaluation and reranking) our methods reduce the required compute by 50% with very little degradation in performance. 5 authors · Feb 20 2
- TransBench: Benchmarking Machine Translation for Industrial-Scale Applications Machine translation (MT) has become indispensable for cross-border communication in globalized industries like e-commerce, finance, and legal services, with recent advancements in large language models (LLMs) significantly enhancing translation quality. However, applying general-purpose MT models to industrial scenarios reveals critical limitations due to domain-specific terminology, cultural nuances, and stylistic conventions absent in generic benchmarks. Existing evaluation frameworks inadequately assess performance in specialized contexts, creating a gap between academic benchmarks and real-world efficacy. To address this, we propose a three-level translation capability framework: (1) Basic Linguistic Competence, (2) Domain-Specific Proficiency, and (3) Cultural Adaptation, emphasizing the need for holistic evaluation across these dimensions. We introduce TransBench, a benchmark tailored for industrial MT, initially targeting international e-commerce with 17,000 professionally translated sentences spanning 4 main scenarios and 33 language pairs. TransBench integrates traditional metrics (BLEU, TER) with Marco-MOS, a domain-specific evaluation model, and provides guidelines for reproducible benchmark construction. Our contributions include: (1) a structured framework for industrial MT evaluation, (2) the first publicly available benchmark for e-commerce translation, (3) novel metrics probing multi-level translation quality, and (4) open-sourced evaluation tools. This work bridges the evaluation gap, enabling researchers and practitioners to systematically assess and enhance MT systems for industry-specific needs. 16 authors · May 20
- Fine-Grained Reward Optimization for Machine Translation using Error Severity Mappings Reinforcement learning (RL) has been proven to be an effective and robust method for training neural machine translation systems, especially when paired with powerful reward models that accurately assess translation quality. However, most research has focused on RL methods that use sentence-level feedback, leading to inefficient learning signals due to the reward sparsity problem -- the model receives a single score for the entire sentence. To address this, we propose a novel approach that leverages fine-grained, token-level quality assessments along with error severity levels using RL methods. Specifically, we use xCOMET, a state-of-the-art quality estimation system, as our token-level reward model. We conduct experiments on small and large translation datasets with standard encoder-decoder and large language models-based machine translation systems, comparing the impact of sentence-level versus fine-grained reward signals on translation quality. Our results show that training with token-level rewards improves translation quality across language pairs over baselines according to both automatic and human evaluation. Furthermore, token-level reward optimization improves training stability, evidenced by a steady increase in mean rewards over training epochs. 7 authors · Nov 8, 2024
6 Beyond Decoder-only: Large Language Models Can be Good Encoders for Machine Translation The field of neural machine translation (NMT) has changed with the advent of large language models (LLMs). Much of the recent emphasis in natural language processing (NLP) has been on modeling machine translation and many other problems using a single pre-trained Transformer decoder, while encoder-decoder architectures, which were the standard in earlier NMT models, have received relatively less attention. In this paper, we explore translation models that are universal, efficient, and easy to optimize, by marrying the world of LLMs with the world of NMT. We apply LLMs to NMT encoding and leave the NMT decoder unchanged. We also develop methods for adapting LLMs to work better with the NMT decoder. Furthermore, we construct a new dataset involving multiple tasks to assess how well the machine translation system generalizes across various tasks. Evaluations on the WMT and our datasets show that results using our method match or surpass a range of baselines in terms of translation quality, but achieve 2.4 sim 6.5 times inference speedups and a 75% reduction in the memory footprint of the KV cache. It also demonstrates strong generalization across a variety of translation-related tasks. 11 authors · Mar 9 2
1 English-Twi Parallel Corpus for Machine Translation We present a parallel machine translation training corpus for English and Akuapem Twi of 25,421 sentence pairs. We used a transformer-based translator to generate initial translations in Akuapem Twi, which were later verified and corrected where necessary by native speakers to eliminate any occurrence of translationese. In addition, 697 higher quality crowd-sourced sentences are provided for use as an evaluation set for downstream Natural Language Processing (NLP) tasks. The typical use case for the larger human-verified dataset is for further training of machine translation models in Akuapem Twi. The higher quality 697 crowd-sourced dataset is recommended as a testing dataset for machine translation of English to Twi and Twi to English models. Furthermore, the Twi part of the crowd-sourced data may also be used for other tasks, such as representation learning, classification, etc. We fine-tune the transformer translation model on the training corpus and report benchmarks on the crowd-sourced test set. 27 authors · Mar 29, 2021
- Towards Inducing Document-Level Abilities in Standard Multilingual Neural Machine Translation Models Neural Machine Translation (NMT) models have traditionally used Sinusoidal Positional Embeddings (PEs), which often struggle to capture long-range dependencies and are less efficient for handling extended context or document-level translation tasks. This work addresses the challenge of transitioning pre-trained NMT models from absolute sinusoidal PEs to relative PEs, such as Rotary Positional Embeddings (ROPE) and Attention with Linear Biases (ALIBI), without compromising performance. We demonstrate that parameter-efficient fine-tuning, using only a small amount of high-quality data, can successfully facilitate this transition. Experimental results indicate that switching from sinusoidal to relative PEs results in competitive translation quality on sentence-level evaluation benchmarks. Additionally, models trained with ROPE consistently outperform those using ALIBI and Sinusoidal PEs on document-level benchmarks across both string-based metrics and qualitative evaluations. Moreover, we find that a small amount of long-context data in a few languages is sufficient for cross-lingual length generalization, thereby inducing long-context capabilities. 3 authors · Aug 21, 2024
3 Reinforced Self-Training (ReST) for Language Modeling Reinforcement learning from human feedback (RLHF) can improve the quality of large language model's (LLM) outputs by aligning them with human preferences. We propose a simple algorithm for aligning LLMs with human preferences inspired by growing batch reinforcement learning (RL), which we call Reinforced Self-Training (ReST). Given an initial LLM policy, ReST produces a dataset by generating samples from the policy, which are then used to improve the LLM policy using offline RL algorithms. ReST is more efficient than typical online RLHF methods because the training dataset is produced offline, which allows data reuse. While ReST is a general approach applicable to all generative learning settings, we focus on its application to machine translation. Our results show that ReST can substantially improve translation quality, as measured by automated metrics and human evaluation on machine translation benchmarks in a compute and sample-efficient manner. 14 authors · Aug 17, 2023 1
1 Evaluating Optimal Reference Translations The overall translation quality reached by current machine translation (MT) systems for high-resourced language pairs is remarkably good. Standard methods of evaluation are not suitable nor intended to uncover the many translation errors and quality deficiencies that still persist. Furthermore, the quality of standard reference translations is commonly questioned and comparable quality levels have been reached by MT alone in several language pairs. Navigating further research in these high-resource settings is thus difficult. In this article, we propose a methodology for creating more reliable document-level human reference translations, called "optimal reference translations," with the simple aim to raise the bar of what should be deemed "human translation quality." We evaluate the obtained document-level optimal reference translations in comparison with "standard" ones, confirming a significant quality increase and also documenting the relationship between evaluation and translation editing. 4 authors · Nov 28, 2023
1 Unsupervised Word-level Quality Estimation for Machine Translation Through the Lens of Annotators (Dis)agreement Word-level quality estimation (WQE) aims to automatically identify fine-grained error spans in machine-translated outputs and has found many uses, including assisting translators during post-editing. Modern WQE techniques are often expensive, involving prompting of large language models or ad-hoc training on large amounts of human-labeled data. In this work, we investigate efficient alternatives exploiting recent advances in language model interpretability and uncertainty quantification to identify translation errors from the inner workings of translation models. In our evaluation spanning 14 metrics across 12 translation directions, we quantify the impact of human label variation on metric performance by using multiple sets of human labels. Our results highlight the untapped potential of unsupervised metrics, the shortcomings of supervised methods when faced with label uncertainty, and the brittleness of single-annotator evaluation practices. 4 authors · May 29 2
1 Quality and Quantity of Machine Translation References for Automated Metrics Automatic machine translation metrics often use human translations to determine the quality of system translations. Common wisdom in the field dictates that the human references should be of very high quality. However, there are no cost-benefit analyses that could be used to guide practitioners who plan to collect references for machine translation evaluation. We find that higher-quality references lead to better metric correlations with humans at the segment-level. Having up to 7 references per segment and taking their average helps all metrics. Interestingly, the references from vendors of different qualities can be mixed together and improve metric success. Higher quality references, however, cost more to create and we frame this as an optimization problem: given a specific budget, what references should be collected to maximize metric success. These findings can be used by evaluators of shared tasks when references need to be created under a certain budget. 2 authors · Jan 2, 2024
- BiVert: Bidirectional Vocabulary Evaluation using Relations for Machine Translation Neural machine translation (NMT) has progressed rapidly in the past few years, promising improvements and quality translations for different languages. Evaluation of this task is crucial to determine the quality of the translation. Overall, insufficient emphasis is placed on the actual sense of the translation in traditional methods. We propose a bidirectional semantic-based evaluation method designed to assess the sense distance of the translation from the source text. This approach employs the comprehensive multilingual encyclopedic dictionary BabelNet. Through the calculation of the semantic distance between the source and its back translation of the output, our method introduces a quantifiable approach that empowers sentence comparison on the same linguistic level. Factual analysis shows a strong correlation between the average evaluation scores generated by our method and the human assessments across various machine translation systems for English-German language pair. Finally, our method proposes a new multilingual approach to rank MT systems without the need for parallel corpora. 2 authors · Mar 6, 2024
- Improving the Quality of Neural Machine Translation Through Proper Translation of Name Entities In this paper, we have shown a method of improving the quality of neural machine translation by translating/transliterating name entities as a preprocessing step. Through experiments we have shown the performance gain of our system. For evaluation we considered three types of name entities viz person names, location names and organization names. The system was able to correctly translate mostly all the name entities. For person names the accuracy was 99.86%, for location names the accuracy was 99.63% and for organization names the accuracy was 99.05%. Overall, the accuracy of the system was 99.52% 3 authors · May 12, 2023
1 The FLORES-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation One of the biggest challenges hindering progress in low-resource and multilingual machine translation is the lack of good evaluation benchmarks. Current evaluation benchmarks either lack good coverage of low-resource languages, consider only restricted domains, or are low quality because they are constructed using semi-automatic procedures. In this work, we introduce the FLORES-101 evaluation benchmark, consisting of 3001 sentences extracted from English Wikipedia and covering a variety of different topics and domains. These sentences have been translated in 101 languages by professional translators through a carefully controlled process. The resulting dataset enables better assessment of model quality on the long tail of low-resource languages, including the evaluation of many-to-many multilingual translation systems, as all translations are multilingually aligned. By publicly releasing such a high-quality and high-coverage dataset, we hope to foster progress in the machine translation community and beyond. 10 authors · Jun 6, 2021
- Lost in the Source Language: How Large Language Models Evaluate the Quality of Machine Translation Large Language Models (LLMs) have achieved remarkable results in the machine translation evaluation task, yet there remains a gap in knowledge regarding how they utilize the provided data to conduct evaluations. This study aims to explore how LLMs leverage source and reference information in evaluating translations, with the ultimate goal of better understanding the working mechanism of LLMs. To this end, we design the controlled experiments across various input modes and model types, and employ both coarse-grained and fine-grained prompts to discern the utility of source versus reference information. Surprisingly, we find that reference information significantly enhances the evaluation accuracy, while source information sometimes is counterproductive, indicating a lack of cross-lingual capability when using LLMs to evaluate translations. We further conduct a meta-evaluation for translation error detection of LLMs, observing a similar phenomenon. These findings also suggest a potential research direction for LLMs that fully exploits the cross-lingual capability of LLMs to achieve better performance in machine translation evaluation tasks. 6 authors · Jan 12, 2024
- Uncertainty-Aware Machine Translation Evaluation Several neural-based metrics have been recently proposed to evaluate machine translation quality. However, all of them resort to point estimates, which provide limited information at segment level. This is made worse as they are trained on noisy, biased and scarce human judgements, often resulting in unreliable quality predictions. In this paper, we introduce uncertainty-aware MT evaluation and analyze the trustworthiness of the predicted quality. We combine the COMET framework with two uncertainty estimation methods, Monte Carlo dropout and deep ensembles, to obtain quality scores along with confidence intervals. We compare the performance of our uncertainty-aware MT evaluation methods across multiple language pairs from the QT21 dataset and the WMT20 metrics task, augmented with MQM annotations. We experiment with varying numbers of references and further discuss the usefulness of uncertainty-aware quality estimation (without references) to flag possibly critical translation mistakes. 4 authors · Sep 13, 2021
3 xCOMET: Transparent Machine Translation Evaluation through Fine-grained Error Detection Widely used learned metrics for machine translation evaluation, such as COMET and BLEURT, estimate the quality of a translation hypothesis by providing a single sentence-level score. As such, they offer little insight into translation errors (e.g., what are the errors and what is their severity). On the other hand, generative large language models (LLMs) are amplifying the adoption of more granular strategies to evaluation, attempting to detail and categorize translation errors. In this work, we introduce xCOMET, an open-source learned metric designed to bridge the gap between these approaches. xCOMET integrates both sentence-level evaluation and error span detection capabilities, exhibiting state-of-the-art performance across all types of evaluation (sentence-level, system-level, and error span detection). Moreover, it does so while highlighting and categorizing error spans, thus enriching the quality assessment. We also provide a robustness analysis with stress tests, and show that xCOMET is largely capable of identifying localized critical errors and hallucinations. 6 authors · Oct 16, 2023
- The FLoRes Evaluation Datasets for Low-Resource Machine Translation: Nepali-English and Sinhala-English For machine translation, a vast majority of language pairs in the world are considered low-resource because they have little parallel data available. Besides the technical challenges of learning with limited supervision, it is difficult to evaluate methods trained on low-resource language pairs because of the lack of freely and publicly available benchmarks. In this work, we introduce the FLoRes evaluation datasets for Nepali-English and Sinhala-English, based on sentences translated from Wikipedia. Compared to English, these are languages with very different morphology and syntax, for which little out-of-domain parallel data is available and for which relatively large amounts of monolingual data are freely available. We describe our process to collect and cross-check the quality of translations, and we report baseline performance using several learning settings: fully supervised, weakly supervised, semi-supervised, and fully unsupervised. Our experiments demonstrate that current state-of-the-art methods perform rather poorly on this benchmark, posing a challenge to the research community working on low-resource MT. Data and code to reproduce our experiments are available at https://github.com/facebookresearch/flores. 8 authors · Feb 4, 2019
5 Guardians of the Machine Translation Meta-Evaluation: Sentinel Metrics Fall In! Annually, at the Conference of Machine Translation (WMT), the Metrics Shared Task organizers conduct the meta-evaluation of Machine Translation (MT) metrics, ranking them according to their correlation with human judgments. Their results guide researchers toward enhancing the next generation of metrics and MT systems. With the recent introduction of neural metrics, the field has witnessed notable advancements. Nevertheless, the inherent opacity of these metrics has posed substantial challenges to the meta-evaluation process. This work highlights two issues with the meta-evaluation framework currently employed in WMT, and assesses their impact on the metrics rankings. To do this, we introduce the concept of sentinel metrics, which are designed explicitly to scrutinize the meta-evaluation process's accuracy, robustness, and fairness. By employing sentinel metrics, we aim to validate our findings, and shed light on and monitor the potential biases or inconsistencies in the rankings. We discover that the present meta-evaluation framework favors two categories of metrics: i) those explicitly trained to mimic human quality assessments, and ii) continuous metrics. Finally, we raise concerns regarding the evaluation capabilities of state-of-the-art metrics, emphasizing that they might be basing their assessments on spurious correlations found in their training data. 5 authors · Aug 25, 2024
- Disentangling Uncertainty in Machine Translation Evaluation Trainable evaluation metrics for machine translation (MT) exhibit strong correlation with human judgements, but they are often hard to interpret and might produce unreliable scores under noisy or out-of-domain data. Recent work has attempted to mitigate this with simple uncertainty quantification techniques (Monte Carlo dropout and deep ensembles), however these techniques (as we show) are limited in several ways -- for example, they are unable to distinguish between different kinds of uncertainty, and they are time and memory consuming. In this paper, we propose more powerful and efficient uncertainty predictors for MT evaluation, and we assess their ability to target different sources of aleatoric and epistemic uncertainty. To this end, we develop and compare training objectives for the COMET metric to enhance it with an uncertainty prediction output, including heteroscedastic regression, divergence minimization, and direct uncertainty prediction. Our experiments show improved results on uncertainty prediction for the WMT metrics task datasets, with a substantial reduction in computational costs. Moreover, they demonstrate the ability of these predictors to address specific uncertainty causes in MT evaluation, such as low quality references and out-of-domain data. 4 authors · Apr 13, 2022
- Rethinking Round-Trip Translation for Machine Translation Evaluation Automatic evaluation on low-resource language translation suffers from a deficiency of parallel corpora. Round-trip translation could be served as a clever and straightforward technique to alleviate the requirement of the parallel evaluation corpus. However, there was an observation of obscure correlations between the evaluation scores by forward and round-trip translations in the era of statistical machine translation (SMT). In this paper, we report the surprising finding that round-trip translation can be used for automatic evaluation without the references. Firstly, our revisit on the round-trip translation in SMT evaluation unveils that its long-standing misunderstanding is essentially caused by copying mechanism. After removing copying mechanism in SMT, round-trip translation scores can appropriately reflect the forward translation performance. Then, we demonstrate the rectification is overdue as round-trip translation could benefit multiple machine translation evaluation tasks. To be more specific, round-trip translation could be used i) to predict corresponding forward translation scores; ii) to improve the performance of the recently advanced quality estimation model; and iii) to identify adversarial competitors in shared tasks via cross-system verification. 4 authors · Sep 15, 2022
- Déjà Vu: Multilingual LLM Evaluation through the Lens of Machine Translation Evaluation Generation capabilities and language coverage of multilingual large language models (mLLMs) are advancing rapidly. However, evaluation practices for generative abilities of mLLMs are still lacking comprehensiveness, scientific rigor, and consistent adoption across research labs, which undermines their potential to meaningfully guide mLLM development. We draw parallels with machine translation (MT) evaluation, a field that faced similar challenges and has, over decades, developed transparent reporting standards and reliable evaluations for multilingual generative models. Through targeted experiments across key stages of the generative evaluation pipeline, we demonstrate how best practices from MT evaluation can deepen the understanding of quality differences between models. Additionally, we identify essential components for robust meta-evaluation of mLLMs, ensuring the evaluation methods themselves are rigorously assessed. We distill these insights into a checklist of actionable recommendations for mLLM research and development. 5 authors · Apr 16
- The Inside Story: Towards Better Understanding of Machine Translation Neural Evaluation Metrics Neural metrics for machine translation evaluation, such as COMET, exhibit significant improvements in their correlation with human judgments, as compared to traditional metrics based on lexical overlap, such as BLEU. Yet, neural metrics are, to a great extent, "black boxes" returning a single sentence-level score without transparency about the decision-making process. In this work, we develop and compare several neural explainability methods and demonstrate their effectiveness for interpreting state-of-the-art fine-tuned neural metrics. Our study reveals that these metrics leverage token-level information that can be directly attributed to translation errors, as assessed through comparison of token-level neural saliency maps with Multidimensional Quality Metrics (MQM) annotations and with synthetically-generated critical translation errors. To ease future research, we release our code at: https://github.com/Unbabel/COMET/tree/explainable-metrics. 6 authors · May 19, 2023
6 The Devil is in the Errors: Leveraging Large Language Models for Fine-grained Machine Translation Evaluation Automatic evaluation of machine translation (MT) is a critical tool driving the rapid iterative development of MT systems. While considerable progress has been made on estimating a single scalar quality score, current metrics lack the informativeness of more detailed schemes that annotate individual errors, such as Multidimensional Quality Metrics (MQM). In this paper, we help fill this gap by proposing AutoMQM, a prompting technique which leverages the reasoning and in-context learning capabilities of large language models (LLMs) and asks them to identify and categorize errors in translations. We start by evaluating recent LLMs, such as PaLM and PaLM-2, through simple score prediction prompting, and we study the impact of labeled data through in-context learning and finetuning. We then evaluate AutoMQM with PaLM-2 models, and we find that it improves performance compared to just prompting for scores (with particularly large gains for larger models) while providing interpretability through error spans that align with human annotations. 10 authors · Aug 14, 2023
- Quality Estimation with $k$-nearest Neighbors and Automatic Evaluation for Model-specific Quality Estimation Providing quality scores along with Machine Translation (MT) output, so-called reference-free Quality Estimation (QE), is crucial to inform users about the reliability of the translation. We propose a model-specific, unsupervised QE approach, termed kNN-QE, that extracts information from the MT model's training data using k-nearest neighbors. Measuring the performance of model-specific QE is not straightforward, since they provide quality scores on their own MT output, thus cannot be evaluated using benchmark QE test sets containing human quality scores on premade MT output. Therefore, we propose an automatic evaluation method that uses quality scores from reference-based metrics as gold standard instead of human-generated ones. We are the first to conduct detailed analyses and conclude that this automatic method is sufficient, and the reference-based MetricX-23 is best for the task. 3 authors · Apr 27, 2024
2 xCOMET-lite: Bridging the Gap Between Efficiency and Quality in Learned MT Evaluation Metrics State-of-the-art trainable machine translation evaluation metrics like xCOMET achieve high correlation with human judgment but rely on large encoders (up to 10.7B parameters), making them computationally expensive and inaccessible to researchers with limited resources. To address this issue, we investigate whether the knowledge stored in these large encoders can be compressed while maintaining quality. We employ distillation, quantization, and pruning techniques to create efficient xCOMET alternatives and introduce a novel data collection pipeline for efficient black-box distillation. Our experiments show that, using quantization, xCOMET can be compressed up to three times with no quality degradation. Additionally, through distillation, we create an xCOMET-lite metric, which has only 2.6% of xCOMET-XXL parameters, but retains 92.1% of its quality. Besides, it surpasses strong small-scale metrics like COMET-22 and BLEURT-20 on the WMT22 metrics challenge dataset by 6.4%, despite using 50% fewer parameters. All code, dataset, and models are available online. 5 authors · Jun 20, 2024 2
- When LLMs Struggle: Reference-less Translation Evaluation for Low-resource Languages This paper investigates the reference-less evaluation of machine translation for low-resource language pairs, known as quality estimation (QE). Segment-level QE is a challenging cross-lingual language understanding task that provides a quality score (0-100) to the translated output. We comprehensively evaluate large language models (LLMs) in zero/few-shot scenarios and perform instruction fine-tuning using a novel prompt based on annotation guidelines. Our results indicate that prompt-based approaches are outperformed by the encoder-based fine-tuned QE models. Our error analysis reveals tokenization issues, along with errors due to transliteration and named entities, and argues for refinement in LLM pre-training for cross-lingual tasks. We release the data, and models trained publicly for further research. 4 authors · Jan 8
- ACADATA: Parallel Dataset of Academic Data for Machine Translation We present ACADATA, a high-quality parallel dataset for academic translation, that consists of two subsets: ACAD-TRAIN, which contains approximately 1.5 million author-generated paragraph pairs across 96 language directions and ACAD-BENCH, a curated evaluation set of almost 6,000 translations covering 12 directions. To validate its utility, we fine-tune two Large Language Models (LLMs) on ACAD-TRAIN and benchmark them on ACAD-BENCH against specialized machine-translation systems, general-purpose, open-weight LLMs, and several large-scale proprietary models. Experimental results demonstrate that fine-tuning on ACAD-TRAIN leads to improvements in academic translation quality by +6.1 and +12.4 d-BLEU points on average for 7B and 2B models respectively, while also improving long-context translation in a general domain by up to 24.9% when translating out of English. The fine-tuned top-performing model surpasses the best propietary and open-weight models on academic translation domain. By releasing ACAD-TRAIN, ACAD-BENCH and the fine-tuned models, we provide the community with a valuable resource to advance research in academic domain and long-context translation. 7 authors · Oct 14
- DivEMT: Neural Machine Translation Post-Editing Effort Across Typologically Diverse Languages We introduce DivEMT, the first publicly available post-editing study of Neural Machine Translation (NMT) over a typologically diverse set of target languages. Using a strictly controlled setup, 18 professional translators were instructed to translate or post-edit the same set of English documents into Arabic, Dutch, Italian, Turkish, Ukrainian, and Vietnamese. During the process, their edits, keystrokes, editing times and pauses were recorded, enabling an in-depth, cross-lingual evaluation of NMT quality and post-editing effectiveness. Using this new dataset, we assess the impact of two state-of-the-art NMT systems, Google Translate and the multilingual mBART-50 model, on translation productivity. We find that post-editing is consistently faster than translation from scratch. However, the magnitude of productivity gains varies widely across systems and languages, highlighting major disparities in post-editing effectiveness for languages at different degrees of typological relatedness to English, even when controlling for system architecture and training data size. We publicly release the complete dataset including all collected behavioral data, to foster new research on the translation capabilities of NMT systems for typologically diverse languages. 4 authors · May 24, 2022
- COMET-poly: Machine Translation Metric Grounded in Other Candidates Automated metrics for machine translation attempt to replicate human judgment. Unlike humans, who often assess a translation in the context of multiple alternatives, these metrics typically consider only the source sentence and a single translation. This discrepancy in the evaluation setup may negatively impact the performance of automated metrics. We propose two automated metrics that incorporate additional information beyond the single translation. COMET-polycand uses alternative translations of the same source sentence to compare and contrast with the translation at hand, thereby providing a more informed assessment of its quality. COMET-polyic, inspired by retrieval-based in-context learning, takes in translations of similar source texts along with their human-labeled quality scores to guide the evaluation. We find that including a single additional translation in COMET-polycand improves the segment-level metric performance (0.079 to 0.118 Kendall's tau-b correlation), with further gains when more translations are added. Incorporating retrieved examples in COMET-polyic yields similar improvements (0.079 to 0.116 Kendall's tau-b correlation). We release our models publicly. 6 authors · Aug 25
- A Large-Scale Study of Machine Translation in the Turkic Languages Recent advances in neural machine translation (NMT) have pushed the quality of machine translation systems to the point where they are becoming widely adopted to build competitive systems. However, there is still a large number of languages that are yet to reap the benefits of NMT. In this paper, we provide the first large-scale case study of the practical application of MT in the Turkic language family in order to realize the gains of NMT for Turkic languages under high-resource to extremely low-resource scenarios. In addition to presenting an extensive analysis that identifies the bottlenecks towards building competitive systems to ameliorate data scarcity, our study has several key contributions, including, i) a large parallel corpus covering 22 Turkic languages consisting of common public datasets in combination with new datasets of approximately 2 million parallel sentences, ii) bilingual baselines for 26 language pairs, iii) novel high-quality test sets in three different translation domains and iv) human evaluation scores. All models, scripts, and data will be released to the public. 16 authors · Sep 9, 2021
- RIVAL: Reinforcement Learning with Iterative and Adversarial Optimization for Machine Translation Large language models (LLMs) possess strong multilingual capabilities, and combining Reinforcement Learning from Human Feedback (RLHF) with translation tasks has shown great potential. However, we observe that this paradigm performs unexpectedly poorly when applied to colloquial subtitle translation tasks. In this work, we investigate this issue and find that the offline reward model (RM) gradually diverges from the online LLM due to distributional shift, ultimately leading to undesirable training outcomes. To address this, we propose RIVAL, an adversarial training framework that formulates the process as a min-max game between the RM and the LLM. RIVAL iteratively updates the both models, with the RM trained to distinguish strong from weak translations (qualitative preference reward), and the LLM trained to enhance its translation for closing this gap. To stabilize training and improve generalizability, we also incorporate quantitative preference reward (e.g., BLEU) into the RM, enabling reference-free quality modeling aligned with human evaluation. Through extensive experiments, we demonstrate that the proposed adversarial training framework significantly improves upon translation baselines. 9 authors · Jun 5
- HEVAL: Yet Another Human Evaluation Metric Machine translation evaluation is a very important activity in machine translation development. Automatic evaluation metrics proposed in literature are inadequate as they require one or more human reference translations to compare them with output produced by machine translation. This does not always give accurate results as a text can have several different translations. Human evaluation metrics, on the other hand, lacks inter-annotator agreement and repeatability. In this paper we have proposed a new human evaluation metric which addresses these issues. Moreover this metric also provides solid grounds for making sound assumptions on the quality of the text produced by a machine translation. 4 authors · Nov 15, 2013
2 Out of the BLEU: how should we assess quality of the Code Generation models? In recent years, researchers have created and introduced a significant number of various code generation models. As human evaluation of every new model version is unfeasible, the community adopted automatic evaluation metrics such as BLEU to approximate the results of human judgement. These metrics originate from the machine translation domain and it is unclear whether they are applicable for the code generation tasks and how well they agree with the human evaluation on this task. There are also other metrics, CodeBLEU and RUBY, developed to estimate the similarity of code, that take into account the properties of source code. However, for these metrics there are hardly any studies on their agreement with the human evaluation. Despite all that, minimal differences in the metric scores have been used in recent papers to claim superiority of some code generation models over the others. In this paper, we present a study on the applicability of six metrics -- BLEU, ROUGE-L, METEOR, ChrF, CodeBLEU, and RUBY -- for evaluation of code generation models. We conduct a study on two different code generation datasets and use human annotators to assess the quality of all models run on these datasets. The results indicate that for the CoNaLa dataset of Python one-liners, none of the metrics can correctly emulate human judgement on which model is better with >95% certainty if the difference in model scores is less than 5 points. For the HearthStone dataset, which consists of classes of a particular structure, a difference in model scores of at least 2 points is enough to claim the superiority of one model over the other. Our findings suggest that the ChrF metric is a better fit for the evaluation of code generation models than the commonly used BLEU and CodeBLEU. Yet, finding a metric for code generation that closely agrees with humans requires additional work. 4 authors · Aug 5, 2022
- Document-aligned Japanese-English Conversation Parallel Corpus Sentence-level (SL) machine translation (MT) has reached acceptable quality for many high-resourced languages, but not document-level (DL) MT, which is difficult to 1) train with little amount of DL data; and 2) evaluate, as the main methods and data sets focus on SL evaluation. To address the first issue, we present a document-aligned Japanese-English conversation corpus, including balanced, high-quality business conversation data for tuning and testing. As for the second issue, we manually identify the main areas where SL MT fails to produce adequate translations in lack of context. We then create an evaluation set where these phenomena are annotated to alleviate automatic evaluation of DL systems. We train MT models using our corpus to demonstrate how using context leads to improvements. 4 authors · Dec 11, 2020
- Evaluating Machine Translation Quality with Conformal Predictive Distributions This paper presents a new approach for assessing uncertainty in machine translation by simultaneously evaluating translation quality and providing a reliable confidence score. Our approach utilizes conformal predictive distributions to produce prediction intervals with guaranteed coverage, meaning that for any given significance level epsilon, we can expect the true quality score of a translation to fall out of the interval at a rate of 1-epsilon. In this paper, we demonstrate how our method outperforms a simple, but effective baseline on six different language pairs in terms of coverage and sharpness. Furthermore, we validate that our approach requires the data exchangeability assumption to hold for optimal performance. 1 authors · Jun 2, 2023
- Parallel Corpora for Machine Translation in Low-resource Indic Languages: A Comprehensive Review Parallel corpora play an important role in training machine translation (MT) models, particularly for low-resource languages where high-quality bilingual data is scarce. This review provides a comprehensive overview of available parallel corpora for Indic languages, which span diverse linguistic families, scripts, and regional variations. We categorize these corpora into text-to-text, code-switched, and various categories of multimodal datasets, highlighting their significance in the development of robust multilingual MT systems. Beyond resource enumeration, we critically examine the challenges faced in corpus creation, including linguistic diversity, script variation, data scarcity, and the prevalence of informal textual content.We also discuss and evaluate these corpora in various terms such as alignment quality and domain representativeness. Furthermore, we address open challenges such as data imbalance across Indic languages, the trade-off between quality and quantity, and the impact of noisy, informal, and dialectal data on MT performance. Finally, we outline future directions, including leveraging cross-lingual transfer learning, expanding multilingual datasets, and integrating multimodal resources to enhance translation quality. To the best of our knowledge, this paper presents the first comprehensive review of parallel corpora specifically tailored for low-resource Indic languages in the context of machine translation. 2 authors · Mar 2
- MT-GenEval: A Counterfactual and Contextual Dataset for Evaluating Gender Accuracy in Machine Translation As generic machine translation (MT) quality has improved, the need for targeted benchmarks that explore fine-grained aspects of quality has increased. In particular, gender accuracy in translation can have implications in terms of output fluency, translation accuracy, and ethics. In this paper, we introduce MT-GenEval, a benchmark for evaluating gender accuracy in translation from English into eight widely-spoken languages. MT-GenEval complements existing benchmarks by providing realistic, gender-balanced, counterfactual data in eight language pairs where the gender of individuals is unambiguous in the input segment, including multi-sentence segments requiring inter-sentential gender agreement. Our data and code is publicly available under a CC BY SA 3.0 license. 8 authors · Nov 2, 2022
- SSA-COMET: Do LLMs Outperform Learned Metrics in Evaluating MT for Under-Resourced African Languages? Evaluating machine translation (MT) quality for under-resourced African languages remains a significant challenge, as existing metrics often suffer from limited language coverage and poor performance in low-resource settings. While recent efforts, such as AfriCOMET, have addressed some of the issues, they are still constrained by small evaluation sets, a lack of publicly available training data tailored to African languages, and inconsistent performance in extremely low-resource scenarios. In this work, we introduce SSA-MTE, a large-scale human-annotated MT evaluation (MTE) dataset covering 13 African language pairs from the News domain, with over 63,000 sentence-level annotations from a diverse set of MT systems. Based on this data, we develop SSA-COMET and SSA-COMET-QE, improved reference-based and reference-free evaluation metrics. We also benchmark prompting-based approaches using state-of-the-art LLMs like GPT-4o and Claude. Our experimental results show that SSA-COMET models significantly outperform AfriCOMET and are competitive with the strongest LLM (Gemini 2.5 Pro) evaluated in our study, particularly on low-resource languages such as Twi, Luo, and Yoruba. All resources are released under open licenses to support future research. 10 authors · Jun 4
- IndicXNLI: Evaluating Multilingual Inference for Indian Languages While Indic NLP has made rapid advances recently in terms of the availability of corpora and pre-trained models, benchmark datasets on standard NLU tasks are limited. To this end, we introduce IndicXNLI, an NLI dataset for 11 Indic languages. It has been created by high-quality machine translation of the original English XNLI dataset and our analysis attests to the quality of IndicXNLI. By finetuning different pre-trained LMs on this IndicXNLI, we analyze various cross-lingual transfer techniques with respect to the impact of the choice of language models, languages, multi-linguality, mix-language input, etc. These experiments provide us with useful insights into the behaviour of pre-trained models for a diverse set of languages. 3 authors · Apr 19, 2022
- IMTLab: An Open-Source Platform for Building, Evaluating, and Diagnosing Interactive Machine Translation Systems We present IMTLab, an open-source end-to-end interactive machine translation (IMT) system platform that enables researchers to quickly build IMT systems with state-of-the-art models, perform an end-to-end evaluation, and diagnose the weakness of systems. IMTLab treats the whole interactive translation process as a task-oriented dialogue with a human-in-the-loop setting, in which human interventions can be explicitly incorporated to produce high-quality, error-free translations. To this end, a general communication interface is designed to support the flexible IMT architectures and user policies. Based on the proposed design, we construct a simulated and real interactive environment to achieve end-to-end evaluation and leverage the framework to systematically evaluate previous IMT systems. Our simulated and manual experiments show that the prefix-constrained decoding approach still gains the lowest editing cost in the end-to-end evaluation, while BiTIIMT achieves comparable editing cost with a better interactive experience. 9 authors · Oct 17, 2023
- DOLFIN -- Document-Level Financial test set for Machine Translation Despite the strong research interest in document-level Machine Translation (MT), the test sets dedicated to this task are still scarce. The existing test sets mainly cover topics from the general domain and fall short on specialised domains, such as legal and financial. Also, in spite of their document-level aspect, they still follow a sentence-level logic that does not allow for including certain linguistic phenomena such as information reorganisation. In this work, we aim to fill this gap by proposing a novel test set: DOLFIN. The dataset is built from specialised financial documents, and it makes a step towards true document-level MT by abandoning the paradigm of perfectly aligned sentences, presenting data in units of sections rather than sentences. The test set consists of an average of 1950 aligned sections for five language pairs. We present a detailed data collection pipeline that can serve as inspiration for aligning new document-level datasets. We demonstrate the usefulness and quality of this test set by evaluating a number of models. Our results show that the test set is able to discriminate between context-sensitive and context-agnostic models and shows the weaknesses when models fail to accurately translate financial texts. The test set is made public for the community. 5 authors · Feb 5
- Improving Access to Justice for the Indian Population: A Benchmark for Evaluating Translation of Legal Text to Indian Languages Most legal text in the Indian judiciary is written in complex English due to historical reasons. However, only about 10% of the Indian population is comfortable in reading English. Hence legal text needs to be made available in various Indian languages, possibly by translating the available legal text from English. Though there has been a lot of research on translation to and between Indian languages, to our knowledge, there has not been much prior work on such translation in the legal domain. In this work, we construct the first high-quality legal parallel corpus containing aligned text units in English and nine Indian languages, that includes several low-resource languages. We also benchmark the performance of a wide variety of Machine Translation (MT) systems over this corpus, including commercial MT systems, open-source MT systems and Large Language Models. Through a comprehensive survey by Law practitioners, we check how satisfied they are with the translations by some of these MT systems, and how well automatic MT evaluation metrics agree with the opinions of Law practitioners. 5 authors · Oct 15, 2023
- Automatically Generating Commit Messages from Diffs using Neural Machine Translation Commit messages are a valuable resource in comprehension of software evolution, since they provide a record of changes such as feature additions and bug repairs. Unfortunately, programmers often neglect to write good commit messages. Different techniques have been proposed to help programmers by automatically writing these messages. These techniques are effective at describing what changed, but are often verbose and lack context for understanding the rationale behind a change. In contrast, humans write messages that are short and summarize the high level rationale. In this paper, we adapt Neural Machine Translation (NMT) to automatically "translate" diffs into commit messages. We trained an NMT algorithm using a corpus of diffs and human-written commit messages from the top 1k Github projects. We designed a filter to help ensure that we only trained the algorithm on higher-quality commit messages. Our evaluation uncovered a pattern in which the messages we generate tend to be either very high or very low quality. Therefore, we created a quality-assurance filter to detect cases in which we are unable to produce good messages, and return a warning instead. 3 authors · Aug 30, 2017
- COMET: A Neural Framework for MT Evaluation We present COMET, a neural framework for training multilingual machine translation evaluation models which obtains new state-of-the-art levels of correlation with human judgements. Our framework leverages recent breakthroughs in cross-lingual pretrained language modeling resulting in highly multilingual and adaptable MT evaluation models that exploit information from both the source input and a target-language reference translation in order to more accurately predict MT quality. To showcase our framework, we train three models with different types of human judgements: Direct Assessments, Human-mediated Translation Edit Rate and Multidimensional Quality Metrics. Our models achieve new state-of-the-art performance on the WMT 2019 Metrics shared task and demonstrate robustness to high-performing systems. 4 authors · Sep 18, 2020
1 EffEval: A Comprehensive Evaluation of Efficiency for MT Evaluation Metrics Efficiency is a key property to foster inclusiveness and reduce environmental costs, especially in an era of LLMs. In this work, we provide a comprehensive evaluation of efficiency for MT evaluation metrics. Our approach involves replacing computation-intensive transformers with lighter alternatives and employing linear and quadratic approximations for alignment algorithms on top of LLM representations. We evaluate six (reference-free and reference-based) metrics across three MT datasets and examine 16 lightweight transformers. In addition, we look into the training efficiency of metrics like COMET by utilizing adapters. Our results indicate that (a) TinyBERT provides the optimal balance between quality and efficiency, (b) CPU speed-ups are more substantial than those on GPU; (c) WMD approximations yield no efficiency gains while reducing quality and (d) adapters enhance training efficiency (regarding backward pass speed and memory requirements) as well as, in some cases, metric quality. These findings can help to strike a balance between evaluation speed and quality, which is essential for effective NLG systems. Furthermore, our research contributes to the ongoing efforts to optimize NLG evaluation metrics with minimal impact on performance. To our knowledge, ours is the most comprehensive analysis of different aspects of efficiency for MT metrics conducted so far. 4 authors · Sep 20, 2022
- ACES: Evaluating Automated Audio Captioning Models on the Semantics of Sounds Automated Audio Captioning is a multimodal task that aims to convert audio content into natural language. The assessment of audio captioning systems is typically based on quantitative metrics applied to text data. Previous studies have employed metrics derived from machine translation and image captioning to evaluate the quality of generated audio captions. Drawing inspiration from auditory cognitive neuroscience research, we introduce a novel metric approach -- Audio Captioning Evaluation on Semantics of Sound (ACES). ACES takes into account how human listeners parse semantic information from sounds, providing a novel and comprehensive evaluation perspective for automated audio captioning systems. ACES combines semantic similarities and semantic entity labeling. ACES outperforms similar automated audio captioning metrics on the Clotho-Eval FENSE benchmark in two evaluation categories. 4 authors · Mar 27, 2024
3 Are Large Reasoning Models Good Translation Evaluators? Analysis and Performance Boost Recent advancements in large reasoning models (LRMs) have introduced an intermediate "thinking" process prior to generating final answers, improving their reasoning capabilities on complex downstream tasks. However, the potential of LRMs as evaluators for machine translation (MT) quality remains underexplored. We provides the first systematic analysis of LRM-as-a-judge in MT evaluation. We identify key challenges, revealing LRMs require tailored evaluation materials, tend to "overthink" simpler instances and have issues with scoring mechanisms leading to overestimation. To address these, we propose to calibrate LRM thinking by training them on synthetic, human-like thinking trajectories. Our experiments on WMT24 Metrics benchmarks demonstrate that this approach largely reduces thinking budgets by ~35x while concurrently improving evaluation performance across different LRM scales from 7B to 32B (e.g., R1-Distill-Qwen-7B achieves a +8.7 correlation point improvement). These findings highlight the potential of efficiently calibrated LRMs to advance fine-grained automatic MT evaluation. 6 authors · Oct 23 1
- Automatic Ranking of MT Outputs using Approximations Since long, research on machine translation has been ongoing. Still, we do not get good translations from MT engines so developed. Manual ranking of these outputs tends to be very time consuming and expensive. Identifying which one is better or worse than the others is a very taxing task. In this paper, we show an approach which can provide automatic ranks to MT outputs (translations) taken from different MT Engines and which is based on N-gram approximations. We provide a solution where no human intervention is required for ranking systems. Further we also show the evaluations of our results which show equivalent results as that of human ranking. 3 authors · Nov 22, 2013
1 KoBE: Knowledge-Based Machine Translation Evaluation We propose a simple and effective method for machine translation evaluation which does not require reference translations. Our approach is based on (1) grounding the entity mentions found in each source sentence and candidate translation against a large-scale multilingual knowledge base, and (2) measuring the recall of the grounded entities found in the candidate vs. those found in the source. Our approach achieves the highest correlation with human judgements on 9 out of the 18 language pairs from the WMT19 benchmark for evaluation without references, which is the largest number of wins for a single evaluation method on this task. On 4 language pairs, we also achieve higher correlation with human judgements than BLEU. To foster further research, we release a dataset containing 1.8 million grounded entity mentions across 18 language pairs from the WMT19 metrics track data. 5 authors · Sep 23, 2020
1 A comparison of translation performance between DeepL and Supertext As strong machine translation (MT) systems are increasingly based on large language models (LLMs), reliable quality benchmarking requires methods that capture their ability to leverage extended context. This study compares two commercial MT systems -- DeepL and Supertext -- by assessing their performance on unsegmented texts. We evaluate translation quality across four language directions with professional translators assessing segments with full document-level context. While segment-level assessments indicate no strong preference between the systems in most cases, document-level analysis reveals a preference for Supertext in three out of four language directions, suggesting superior consistency across longer texts. We advocate for more context-sensitive evaluation methodologies to ensure that MT quality assessments reflect real-world usability. We release all evaluation data and scripts for further analysis and reproduction at https://github.com/supertext/evaluation_deepl_supertext. 8 authors · Feb 4
- FRMT: A Benchmark for Few-Shot Region-Aware Machine Translation We present FRMT, a new dataset and evaluation benchmark for Few-shot Region-aware Machine Translation, a type of style-targeted translation. The dataset consists of professional translations from English into two regional variants each of Portuguese and Mandarin Chinese. Source documents are selected to enable detailed analysis of phenomena of interest, including lexically distinct terms and distractor terms. We explore automatic evaluation metrics for FRMT and validate their correlation with expert human evaluation across both region-matched and mismatched rating scenarios. Finally, we present a number of baseline models for this task, and offer guidelines for how researchers can train, evaluate, and compare their own models. Our dataset and evaluation code are publicly available: https://bit.ly/frmt-task 8 authors · Oct 1, 2022
12 In-Context Example Selection via Similarity Search Improves Low-Resource Machine Translation The ability of generative large language models (LLMs) to perform in-context learning has given rise to a large body of research into how best to prompt models for various natural language processing tasks. In this paper, we focus on machine translation (MT), a task that has been shown to benefit from in-context translation examples. However no systematic studies have been published on how best to select examples, and mixed results have been reported on the usefulness of similarity-based selection over random selection. We provide a study covering multiple LLMs and multiple in-context example retrieval strategies, comparing multilingual sentence embeddings. We cover several language directions, representing different levels of language resourcedness (English into French, German, Swahili and Wolof). Contrarily to previously published results, we find that sentence embedding similarity can improve MT, especially for low-resource language directions, and discuss the balance between selection pool diversity and quality. We also highlight potential problems with the evaluation of LLM-based MT and suggest a more appropriate evaluation protocol, adapting the COMET metric to the evaluation of LLMs. Code and outputs are freely available at https://github.com/ArmelRandy/ICL-MT. 3 authors · Aug 1, 2024 2
- BLEU might be Guilty but References are not Innocent The quality of automatic metrics for machine translation has been increasingly called into question, especially for high-quality systems. This paper demonstrates that, while choice of metric is important, the nature of the references is also critical. We study different methods to collect references and compare their value in automated evaluation by reporting correlation with human evaluation for a variety of systems and metrics. Motivated by the finding that typical references exhibit poor diversity, concentrating around translationese language, we develop a paraphrasing task for linguists to perform on existing reference translations, which counteracts this bias. Our method yields higher correlation with human judgment not only for the submissions of WMT 2019 English to German, but also for Back-translation and APE augmented MT output, which have been shown to have low correlation with automatic metrics using standard references. We demonstrate that our methodology improves correlation with all modern evaluation metrics we look at, including embedding-based methods. To complete this picture, we reveal that multi-reference BLEU does not improve the correlation for high quality output, and present an alternative multi-reference formulation that is more effective. 3 authors · Apr 13, 2020
3 Estimating Machine Translation Difficulty Machine translation quality has steadily improved over the years, achieving near-perfect translations in recent benchmarks. These high-quality outputs make it difficult to distinguish between state-of-the-art models and to identify areas for future improvement. In this context, automatically identifying texts where machine translation systems struggle holds promise for developing more discriminative evaluations and guiding future research. In this work, we address this gap by formalizing the task of translation difficulty estimation, defining a text's difficulty based on the expected quality of its translations. We introduce a new metric to evaluate difficulty estimators and use it to assess both baselines and novel approaches. Finally, we demonstrate the practical utility of difficulty estimators by using them to construct more challenging benchmarks for machine translation. Our results show that dedicated models outperform both heuristic-based methods and LLM-as-a-judge approaches, with Sentinel-src achieving the best performance. Thus, we release two improved models for difficulty estimation, Sentinel-src-24 and Sentinel-src-25, which can be used to scan large collections of texts and select those most likely to challenge contemporary machine translation systems. 5 authors · Aug 13
1 Scaling Low-Resource MT via Synthetic Data Generation with LLMs We investigate the potential of LLM-generated synthetic data for improving low-resource machine translation (MT). Focusing on seven diverse target languages, we construct a document-level synthetic corpus from English Europarl, and extend it via pivoting to 147 additional language pairs. Automatic and human evaluation confirm its high overall quality. We study its practical application by (i) identifying effective training regimes, (ii) comparing our data with the HPLT dataset, and (iii) testing its utility beyond English-centric MT. Finally, we introduce SynOPUS, a public repository for synthetic parallel datasets. Our findings show that LLM-generated synthetic data, even when noisy, can substantially improve MT performance for low-resource languages. 8 authors · May 20
17 Is Preference Alignment Always the Best Option to Enhance LLM-Based Translation? An Empirical Analysis Neural metrics for machine translation (MT) evaluation have become increasingly prominent due to their superior correlation with human judgments compared to traditional lexical metrics. Researchers have therefore utilized neural metrics through quality-informed decoding strategies, achieving better results than likelihood-based methods. With the rise of Large Language Models (LLMs), preference-based alignment techniques have gained attention for their potential to enhance translation quality by optimizing model weights directly on preferences induced by quality estimators. This study focuses on Contrastive Preference Optimization (CPO) and conducts extensive experiments to evaluate the impact of preference-based alignment on translation quality. Our findings indicate that while CPO consistently outperforms Supervised Fine-Tuning (SFT) on high-quality data with regard to the alignment metric, it may lead to instability across downstream evaluation metrics, particularly between neural and lexical ones. Additionally, we demonstrate that relying solely on the base model for generating candidate translations achieves performance comparable to using multiple external systems, while ensuring better consistency across downstream metrics. 6 authors · Sep 30, 2024 2
- Machine Translation Meta Evaluation through Translation Accuracy Challenge Sets Recent machine translation (MT) metrics calibrate their effectiveness by correlating with human judgement but without any insights about their behaviour across different error types. Challenge sets are used to probe specific dimensions of metric behaviour but there are very few such datasets and they either focus on a limited number of phenomena or a limited number of language pairs. We introduce ACES, a contrastive challenge set spanning 146 language pairs, aimed at discovering whether metrics can identify 68 translation accuracy errors. These phenomena range from simple alterations at the word/character level to more complex errors based on discourse and real-world knowledge. We conduct a large-scale study by benchmarking ACES on 50 metrics submitted to the WMT 2022 and 2023 metrics shared tasks. We benchmark metric performance, assess their incremental performance over successive campaigns, and measure their sensitivity to a range of linguistic phenomena. We also investigate claims that Large Language Models (LLMs) are effective as MT evaluators by evaluating on ACES. Our results demonstrate that different metric families struggle with different phenomena and that LLM-based methods fail to demonstrate reliable performance. Our analyses indicate that most metrics ignore the source sentence, tend to prefer surface-level overlap and end up incorporating properties of base models which are not always beneficial. We expand ACES to include error span annotations, denoted as SPAN-ACES and we use this dataset to evaluate span-based error metrics showing these metrics also need considerable improvement. Finally, we provide a set of recommendations for building better MT metrics, including focusing on error labels instead of scores, ensembling, designing strategies to explicitly focus on the source sentence, focusing on semantic content and choosing the right base model for representations. 8 authors · Jan 29, 2024
- TransEvalnia: Reasoning-based Evaluation and Ranking of Translations We present TransEvalnia, a prompting-based translation evaluation and ranking system that uses reasoning in performing its evaluations and ranking. This system presents fine-grained evaluations based on a subset of the Multidimensional Quality Metrics (https://themqm.org/), returns an assessment of which translation it deems the best, and provides numerical scores for the various dimensions and for the overall translation. We show that TransEvalnia performs as well as or better than the state-of-the-art MT-Ranker (Moosa et al. 2024) on our own English-Japanese data as well as several language pairs from various WMT shared tasks. Using Anthropic's Claude-3.5-Sonnet and Qwen-2.5-72B-Instruct as the evaluation LLMs, we show that the evaluations returned are deemed highly acceptable to human raters, and that the scores assigned to the translations by Sonnet, as well as other LLMs, correlate well with scores assigned by the human raters. We also note the sensitivity of our system -- as well as MT-Ranker -- to the order in which the translations are presented, and we propose methods to address this position bias. All data, including the system's evaluation and reasoning, human assessments, as well as code is released. 3 authors · Jul 16
- How Good is Zero-Shot MT Evaluation for Low Resource Indian Languages? While machine translation evaluation has been studied primarily for high-resource languages, there has been a recent interest in evaluation for low-resource languages due to the increasing availability of data and models. In this paper, we focus on a zero-shot evaluation setting focusing on low-resource Indian languages, namely Assamese, Kannada, Maithili, and Punjabi. We collect sufficient Multi-Dimensional Quality Metrics (MQM) and Direct Assessment (DA) annotations to create test sets and meta-evaluate a plethora of automatic evaluation metrics. We observe that even for learned metrics, which are known to exhibit zero-shot performance, the Kendall Tau and Pearson correlations with human annotations are only as high as 0.32 and 0.45. Synthetic data approaches show mixed results and overall do not help close the gap by much for these languages. This indicates that there is still a long way to go for low-resource evaluation. 6 authors · Jun 6, 2024
- SpeechQE: Estimating the Quality of Direct Speech Translation Recent advances in automatic quality estimation for machine translation have exclusively focused on written language, leaving the speech modality underexplored. In this work, we formulate the task of quality estimation for speech translation (SpeechQE), construct a benchmark, and evaluate a family of systems based on cascaded and end-to-end architectures. In this process, we introduce a novel end-to-end system leveraging pre-trained text LLM. Results suggest that end-to-end approaches are better suited to estimating the quality of direct speech translation than using quality estimation systems designed for text in cascaded systems. More broadly, we argue that quality estimation of speech translation needs to be studied as a separate problem from that of text, and release our data and models to guide further research in this space. 3 authors · Oct 28, 2024
1 Do GPTs Produce Less Literal Translations? Large Language Models (LLMs) such as GPT-3 have emerged as general-purpose language models capable of addressing many natural language generation or understanding tasks. On the task of Machine Translation (MT), multiple works have investigated few-shot prompting mechanisms to elicit better translations from LLMs. However, there has been relatively little investigation on how such translations differ qualitatively from the translations generated by standard Neural Machine Translation (NMT) models. In this work, we investigate these differences in terms of the literalness of translations produced by the two systems. Using literalness measures involving word alignment and monotonicity, we find that translations out of English (E-X) from GPTs tend to be less literal, while exhibiting similar or better scores on MT quality metrics. We demonstrate that this finding is borne out in human evaluations as well. We then show that these differences are especially pronounced when translating sentences that contain idiomatic expressions. 4 authors · May 26, 2023
- Using Machine Translation to Localize Task Oriented NLG Output One of the challenges in a task oriented natural language application like the Google Assistant, Siri, or Alexa is to localize the output to many languages. This paper explores doing this by applying machine translation to the English output. Using machine translation is very scalable, as it can work with any English output and can handle dynamic text, but otherwise the problem is a poor fit. The required quality bar is close to perfection, the range of sentences is extremely narrow, and the sentences are often very different than the ones in the machine translation training data. This combination of requirements is novel in the field of domain adaptation for machine translation. We are able to reach the required quality bar by building on existing ideas and adding new ones: finetuning on in-domain translations, adding sentences from the Web, adding semantic annotations, and using automatic error detection. The paper shares our approach and results, together with a distillation model to serve the translation models at scale. 9 authors · Jul 9, 2021
- Instruction-Tuned LLMs Succeed in Document-Level MT Without Fine-Tuning -- But BLEU Turns a Blind Eye Large language models (LLMs) have excelled in various NLP tasks, including machine translation (MT), yet most studies focus on sentence-level translation. This work investigates the inherent capability of instruction-tuned LLMs for document-level translation (docMT). Unlike prior approaches that require specialized techniques, we evaluate LLMs by directly prompting them to translate entire documents in a single pass. Our results show that this method improves translation quality compared to translating sentences separately, even without document-level fine-tuning. However, this advantage is not reflected in BLEU scores, which often favor sentence-based translations. We propose using the LLM-as-a-judge paradigm for evaluation, where GPT-4 is used to assess document coherence, accuracy, and fluency in a more nuanced way than n-gram-based metrics. Overall, our work demonstrates that instruction-tuned LLMs can effectively leverage document context for translation. However, we caution against using BLEU scores for evaluating docMT, as they often provide misleading outcomes, failing to capture the quality of document-level translation. Code and data are available at https://github.com/EIT-NLP/BLEUless_DocMT 6 authors · Oct 28, 2024
- Word-Alignment-Based Segment-Level Machine Translation Evaluation using Word Embeddings One of the most important problems in machine translation (MT) evaluation is to evaluate the similarity between translation hypotheses with different surface forms from the reference, especially at the segment level. We propose to use word embeddings to perform word alignment for segment-level MT evaluation. We performed experiments with three types of alignment methods using word embeddings. We evaluated our proposed methods with various translation datasets. Experimental results show that our proposed methods outperform previous word embeddings-based methods. 3 authors · Apr 2, 2017
- Exploring the Use of Large Language Models for Reference-Free Text Quality Evaluation: An Empirical Study Evaluating the quality of generated text is a challenging task in NLP, due to the inherent complexity and diversity of text. Recently, large language models (LLMs) have garnered significant attention due to their impressive performance in various tasks. Therefore, we present this paper to investigate the effectiveness of LLMs, especially ChatGPT, and explore ways to optimize their use in assessing text quality. We compared three kinds of reference-free evaluation methods. The experimental results prove that ChatGPT is capable of evaluating text quality effectively from various perspectives without reference and demonstrates superior performance than most existing automatic metrics. In particular, the Explicit Score, which utilizes ChatGPT to generate a numeric score measuring text quality, is the most effective and reliable method among the three exploited approaches. However, directly comparing the quality of two texts may lead to suboptimal results. We believe this paper will provide valuable insights for evaluating text quality with LLMs and have released the used data. 5 authors · Apr 3, 2023
- The Effect of Domain and Diacritics in Yorùbá-English Neural Machine Translation Massively multilingual machine translation (MT) has shown impressive capabilities, including zero and few-shot translation between low-resource language pairs. However, these models are often evaluated on high-resource languages with the assumption that they generalize to low-resource ones. The difficulty of evaluating MT models on low-resource pairs is often due to lack of standardized evaluation datasets. In this paper, we present MENYO-20k, the first multi-domain parallel corpus with a special focus on clean orthography for Yor\`ub\'a--English with standardized train-test splits for benchmarking. We provide several neural MT benchmarks and compare them to the performance of popular pre-trained (massively multilingual) MT models both for the heterogeneous test set and its subdomains. Since these pre-trained models use huge amounts of data with uncertain quality, we also analyze the effect of diacritics, a major characteristic of Yor\`ub\'a, in the training data. We investigate how and when this training condition affects the final quality and intelligibility of a translation. Our models outperform massively multilingual models such as Google (+8.7 BLEU) and Facebook M2M (+9.1 BLEU) when translating to Yor\`ub\'a, setting a high quality benchmark for future research. 8 authors · Mar 15, 2021
1 MISMATCH: Fine-grained Evaluation of Machine-generated Text with Mismatch Error Types With the growing interest in large language models, the need for evaluating the quality of machine text compared to reference (typically human-generated) text has become focal attention. Most recent works focus either on task-specific evaluation metrics or study the properties of machine-generated text captured by the existing metrics. In this work, we propose a new evaluation scheme to model human judgments in 7 NLP tasks, based on the fine-grained mismatches between a pair of texts. Inspired by the recent efforts in several NLP tasks for fine-grained evaluation, we introduce a set of 13 mismatch error types such as spatial/geographic errors, entity errors, etc, to guide the model for better prediction of human judgments. We propose a neural framework for evaluating machine texts that uses these mismatch error types as auxiliary tasks and re-purposes the existing single-number evaluation metrics as additional scalar features, in addition to textual features extracted from the machine and reference texts. Our experiments reveal key insights about the existing metrics via the mismatch errors. We show that the mismatch errors between the sentence pairs on the held-out datasets from 7 NLP tasks align well with the human evaluation. 12 authors · Jun 17, 2023
- Large Language Models Are State-of-the-Art Evaluators of Translation Quality We describe GEMBA, a GPT-based metric for assessment of translation quality, which works both with a reference translation and without. In our evaluation, we focus on zero-shot prompting, comparing four prompt variants in two modes, based on the availability of the reference. We investigate nine versions of GPT models, including ChatGPT and GPT-4. We show that our method for translation quality assessment only works with GPT~3.5 and larger models. Comparing to results from WMT22's Metrics shared task, our method achieves state-of-the-art accuracy in both modes when compared to MQM-based human labels. Our results are valid on the system level for all three WMT22 Metrics shared task language pairs, namely English into German, English into Russian, and Chinese into English. This provides a first glimpse into the usefulness of pre-trained, generative large language models for quality assessment of translations. We publicly release all our code and prompt templates used for the experiments described in this work, as well as all corresponding scoring results, to allow for external validation and reproducibility. 2 authors · Feb 28, 2023
- Text Quality-Based Pruning for Efficient Training of Language Models In recent times training Language Models (LMs) have relied on computationally heavy training over massive datasets which makes this training process extremely laborious. In this paper we propose a novel method for numerically evaluating text quality in large unlabelled NLP datasets in a model agnostic manner to assign the text instances a "quality score". By proposing the text quality metric, the paper establishes a framework to identify and eliminate low-quality text instances, leading to improved training efficiency for LM models. Experimental results over multiple models and datasets demonstrate the efficacy of this approach, showcasing substantial gains in training effectiveness and highlighting the potential for resource-efficient LM training. For example, we observe an absolute accuracy improvement of 0.9% averaged over 14 downstream evaluation tasks for multiple LM models while using 40% lesser data and training 42% faster when training on the OpenWebText dataset and 0.8% average absolute accuracy improvement while using 20% lesser data and training 21% faster on the Wikipedia dataset. 11 authors · Apr 26, 2024
- Improving LLMs for Machine Translation Using Synthetic Preference Data Large language models have emerged as effective machine translation systems. In this paper, we explore how a general instruction-tuned large language model can be improved for machine translation using relatively few easily produced data resources. Using Slovene as a use case, we improve the GaMS-9B-Instruct model using Direct Preference Optimization (DPO) training on a programmatically curated and enhanced subset of a public dataset. As DPO requires pairs of quality-ranked instances, we generated its training dataset by translating English Wikipedia articles using two LLMs, GaMS-9B-Instruct and EuroLLM-9B-Instruct. We ranked the resulting translations based on heuristics coupled with automatic evaluation metrics such as COMET. The evaluation shows that our fine-tuned model outperforms both models involved in the dataset generation. In comparison to the baseline models, the fine-tuned model achieved a COMET score gain of around 0.04 and 0.02, respectively, on translating Wikipedia articles. It also more consistently avoids language and formatting errors. 3 authors · Aug 20
1 BLEU Meets COMET: Combining Lexical and Neural Metrics Towards Robust Machine Translation Evaluation Although neural-based machine translation evaluation metrics, such as COMET or BLEURT, have achieved strong correlations with human judgements, they are sometimes unreliable in detecting certain phenomena that can be considered as critical errors, such as deviations in entities and numbers. In contrast, traditional evaluation metrics, such as BLEU or chrF, which measure lexical or character overlap between translation hypotheses and human references, have lower correlations with human judgements but are sensitive to such deviations. In this paper, we investigate several ways of combining the two approaches in order to increase robustness of state-of-the-art evaluation methods to translations with critical errors. We show that by using additional information during training, such as sentence-level features and word-level tags, the trained metrics improve their capability to penalize translations with specific troublesome phenomena, which leads to gains in correlation with human judgments and on recent challenge sets on several language pairs. 3 authors · May 30, 2023
- Why Not Simply Translate? A First Swedish Evaluation Benchmark for Semantic Similarity This paper presents the first Swedish evaluation benchmark for textual semantic similarity. The benchmark is compiled by simply running the English STS-B dataset through the Google machine translation API. This paper discusses potential problems with using such a simple approach to compile a Swedish evaluation benchmark, including translation errors, vocabulary variation, and productive compounding. Despite some obvious problems with the resulting dataset, we use the benchmark to compare the majority of the currently existing Swedish text representations, demonstrating that native models outperform multilingual ones, and that simple bag of words performs remarkably well. 2 authors · Sep 7, 2020
- ACES: Translation Accuracy Challenge Sets for Evaluating Machine Translation Metrics As machine translation (MT) metrics improve their correlation with human judgement every year, it is crucial to understand the limitations of such metrics at the segment level. Specifically, it is important to investigate metric behaviour when facing accuracy errors in MT because these can have dangerous consequences in certain contexts (e.g., legal, medical). We curate ACES, a translation accuracy challenge set, consisting of 68 phenomena ranging from simple perturbations at the word/character level to more complex errors based on discourse and real-world knowledge. We use ACES to evaluate a wide range of MT metrics including the submissions to the WMT 2022 metrics shared task and perform several analyses leading to general recommendations for metric developers. We recommend: a) combining metrics with different strengths, b) developing metrics that give more weight to the source and less to surface-level overlap with the reference and c) explicitly modelling additional language-specific information beyond what is available via multilingual embeddings. 3 authors · Oct 27, 2022
1 Fine-Tuned Machine Translation Metrics Struggle in Unseen Domains We introduce a new, extensive multidimensional quality metrics (MQM) annotated dataset covering 11 language pairs in the biomedical domain. We use this dataset to investigate whether machine translation (MT) metrics which are fine-tuned on human-generated MT quality judgements are robust to domain shifts between training and inference. We find that fine-tuned metrics exhibit a substantial performance drop in the unseen domain scenario relative to metrics that rely on the surface form, as well as pre-trained metrics which are not fine-tuned on MT quality judgments. 6 authors · Feb 28, 2024
- Scaling up COMETKIWI: Unbabel-IST 2023 Submission for the Quality Estimation Shared Task We present the joint contribution of Unbabel and Instituto Superior T\'ecnico to the WMT 2023 Shared Task on Quality Estimation (QE). Our team participated on all tasks: sentence- and word-level quality prediction (task 1) and fine-grained error span detection (task 2). For all tasks, we build on the COMETKIWI-22 model (Rei et al., 2022b). Our multilingual approaches are ranked first for all tasks, reaching state-of-the-art performance for quality estimation at word-, span- and sentence-level granularity. Compared to the previous state-of-the-art COMETKIWI-22, we show large improvements in correlation with human judgements (up to 10 Spearman points). Moreover, we surpass the second-best multilingual submission to the shared-task with up to 3.8 absolute points. 8 authors · Sep 21, 2023
- Efficient Machine Translation Corpus Generation: Integrating Human-in-the-Loop Post-Editing with Large Language Models This paper introduces an advanced methodology for machine translation (MT) corpus generation, integrating semi-automated, human-in-the-loop post-editing with large language models (LLMs) to enhance efficiency and translation quality. Building upon previous work that utilized real-time training of a custom MT quality estimation metric, this system incorporates novel LLM features such as Enhanced Translation Synthesis and Assisted Annotation Analysis, which improve initial translation hypotheses and quality assessments, respectively. Additionally, the system employs LLM-Driven Pseudo Labeling and a Translation Recommendation System to reduce human annotator workload in specific contexts. These improvements not only retain the original benefits of cost reduction and enhanced post-edit quality but also open new avenues for leveraging cutting-edge LLM advancements. The project's source code is available for community use, promoting collaborative developments in the field. The demo video can be accessed here. 4 authors · Feb 18
- Towards Large Language Model driven Reference-less Translation Evaluation for English and Indian Languages With the primary focus on evaluating the effectiveness of large language models for automatic reference-less translation assessment, this work presents our experiments on mimicking human direct assessment to evaluate the quality of translations in English and Indian languages. We constructed a translation evaluation task where we performed zero-shot learning, in-context example-driven learning, and fine-tuning of large language models to provide a score out of 100, where 100 represents a perfect translation and 1 represents a poor translation. We compared the performance of our trained systems with existing methods such as COMET, BERT-Scorer, and LABSE, and found that the LLM-based evaluator (LLaMA-2-13B) achieves a comparable or higher overall correlation with human judgments for the considered Indian language pairs. 4 authors · Apr 3, 2024
- The Tatoeba Translation Challenge -- Realistic Data Sets for Low Resource and Multilingual MT This paper describes the development of a new benchmark for machine translation that provides training and test data for thousands of language pairs covering over 500 languages and tools for creating state-of-the-art translation models from that collection. The main goal is to trigger the development of open translation tools and models with a much broader coverage of the World's languages. Using the package it is possible to work on realistic low-resource scenarios avoiding artificially reduced setups that are common when demonstrating zero-shot or few-shot learning. For the first time, this package provides a comprehensive collection of diverse data sets in hundreds of languages with systematic language and script annotation and data splits to extend the narrow coverage of existing benchmarks. Together with the data release, we also provide a growing number of pre-trained baseline models for individual language pairs and selected language groups. 1 authors · Oct 13, 2020
- Translation Word-Level Auto-Completion: What can we achieve out of the box? Research on Machine Translation (MT) has achieved important breakthroughs in several areas. While there is much more to be done in order to build on this success, we believe that the language industry needs better ways to take full advantage of current achievements. Due to a combination of factors, including time, resources, and skills, businesses tend to apply pragmatism into their AI workflows. Hence, they concentrate more on outcomes, e.g. delivery, shipping, releases, and features, and adopt high-level working production solutions, where possible. Among the features thought to be helpful for translators are sentence-level and word-level translation auto-suggestion and auto-completion. Suggesting alternatives can inspire translators and limit their need to refer to external resources, which hopefully boosts their productivity. This work describes our submissions to WMT's shared task on word-level auto-completion, for the Chinese-to-English, English-to-Chinese, German-to-English, and English-to-German language directions. We investigate the possibility of using pre-trained models and out-of-the-box features from available libraries. We employ random sampling to generate diverse alternatives, which reveals good results. Furthermore, we introduce our open-source API, based on CTranslate2, to serve translations, auto-suggestions, and auto-completions. 3 authors · Oct 23, 2022
- Revisiting Low Resource Status of Indian Languages in Machine Translation Indian language machine translation performance is hampered due to the lack of large scale multi-lingual sentence aligned corpora and robust benchmarks. Through this paper, we provide and analyse an automated framework to obtain such a corpus for Indian language neural machine translation (NMT) systems. Our pipeline consists of a baseline NMT system, a retrieval module, and an alignment module that is used to work with publicly available websites such as press releases by the government. The main contribution towards this effort is to obtain an incremental method that uses the above pipeline to iteratively improve the size of the corpus as well as improve each of the components of our system. Through our work, we also evaluate the design choices such as the choice of pivoting language and the effect of iterative incremental increase in corpus size. Our work in addition to providing an automated framework also results in generating a relatively larger corpus as compared to existing corpora that are available for Indian languages. This corpus helps us obtain substantially improved results on the publicly available WAT evaluation benchmark and other standard evaluation benchmarks. 4 authors · Aug 11, 2020
- Discourse Centric Evaluation of Machine Translation with a Densely Annotated Parallel Corpus Several recent papers claim human parity at sentence-level Machine Translation (MT), especially in high-resource languages. Thus, in response, the MT community has, in part, shifted its focus to document-level translation. Translating documents requires a deeper understanding of the structure and meaning of text, which is often captured by various kinds of discourse phenomena such as consistency, coherence, and cohesion. However, this renders conventional sentence-level MT evaluation benchmarks inadequate for evaluating the performance of context-aware MT systems. This paper presents a new dataset with rich discourse annotations, built upon the large-scale parallel corpus BWB introduced in Jiang et al. (2022). The new BWB annotation introduces four extra evaluation aspects, i.e., entity, terminology, coreference, and quotation, covering 15,095 entity mentions in both languages. Using these annotations, we systematically investigate the similarities and differences between the discourse structures of source and target languages, and the challenges they pose to MT. We discover that MT outputs differ fundamentally from human translations in terms of their latent discourse structures. This gives us a new perspective on the challenges and opportunities in document-level MT. We make our resource publicly available to spur future research in document-level MT and the generalization to other language translation tasks. 6 authors · May 18, 2023
- Contextual Cues in Machine Translation: Investigating the Potential of Multi-Source Input Strategies in LLMs and NMT Systems We explore the impact of multi-source input strategies on machine translation (MT) quality, comparing GPT-4o, a large language model (LLM), with a traditional multilingual neural machine translation (NMT) system. Using intermediate language translations as contextual cues, we evaluate their effectiveness in enhancing English and Chinese translations into Portuguese. Results suggest that contextual information significantly improves translation quality for domain-specific datasets and potentially for linguistically distant language pairs, with diminishing returns observed in benchmarks with high linguistic variability. Additionally, we demonstrate that shallow fusion, a multi-source approach we apply within the NMT system, shows improved results when using high-resource languages as context for other translation pairs, highlighting the importance of strategic context language selection. 3 authors · Mar 10
- Context-Aware Machine Translation with Source Coreference Explanation Despite significant improvements in enhancing the quality of translation, context-aware machine translation (MT) models underperform in many cases. One of the main reasons is that they fail to utilize the correct features from context when the context is too long or their models are overly complex. This can lead to the explain-away effect, wherein the models only consider features easier to explain predictions, resulting in inaccurate translations. To address this issue, we propose a model that explains the decisions made for translation by predicting coreference features in the input. We construct a model for input coreference by exploiting contextual features from both the input and translation output representations on top of an existing MT model. We evaluate and analyze our method in the WMT document-level translation task of English-German dataset, the English-Russian dataset, and the multilingual TED talk dataset, demonstrating an improvement of over 1.0 BLEU score when compared with other context-aware models. 3 authors · Apr 30, 2024
36 Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation Moderate-sized large language models (LLMs) -- those with 7B or 13B parameters -- exhibit promising machine translation (MT) performance. However, even the top-performing 13B LLM-based translation models, like ALMA, does not match the performance of state-of-the-art conventional encoder-decoder translation models or larger-scale LLMs such as GPT-4. In this study, we bridge this performance gap. We first assess the shortcomings of supervised fine-tuning for LLMs in the MT task, emphasizing the quality issues present in the reference data, despite being human-generated. Then, in contrast to SFT which mimics reference translations, we introduce Contrastive Preference Optimization (CPO), a novel approach that trains models to avoid generating adequate but not perfect translations. Applying CPO to ALMA models with only 22K parallel sentences and 12M parameters yields significant improvements. The resulting model, called ALMA-R, can match or exceed the performance of the WMT competition winners and GPT-4 on WMT'21, WMT'22 and WMT'23 test datasets. 8 authors · Jan 16, 2024 3
1 GEMBA-MQM: Detecting Translation Quality Error Spans with GPT-4 This paper introduces GEMBA-MQM, a GPT-based evaluation metric designed to detect translation quality errors, specifically for the quality estimation setting without the need for human reference translations. Based on the power of large language models (LLM), GEMBA-MQM employs a fixed three-shot prompting technique, querying the GPT-4 model to mark error quality spans. Compared to previous works, our method has language-agnostic prompts, thus avoiding the need for manual prompt preparation for new languages. While preliminary results indicate that GEMBA-MQM achieves state-of-the-art accuracy for system ranking, we advise caution when using it in academic works to demonstrate improvements over other methods due to its dependence on the proprietary, black-box GPT model. 2 authors · Oct 21, 2023
9 A Shocking Amount of the Web is Machine Translated: Insights from Multi-Way Parallelism We show that content on the web is often translated into many languages, and the low quality of these multi-way translations indicates they were likely created using Machine Translation (MT). Multi-way parallel, machine generated content not only dominates the translations in lower resource languages; it also constitutes a large fraction of the total web content in those languages. We also find evidence of a selection bias in the type of content which is translated into many languages, consistent with low quality English content being translated en masse into many lower resource languages, via MT. Our work raises serious concerns about training models such as multilingual large language models on both monolingual and bilingual data scraped from the web. 5 authors · Jan 11, 2024
3 Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets With the success of large-scale pre-training and multilingual modeling in Natural Language Processing (NLP), recent years have seen a proliferation of large, web-mined text datasets covering hundreds of languages. We manually audit the quality of 205 language-specific corpora released with five major public datasets (CCAligned, ParaCrawl, WikiMatrix, OSCAR, mC4). Lower-resource corpora have systematic issues: At least 15 corpora have no usable text, and a significant fraction contains less than 50% sentences of acceptable quality. In addition, many are mislabeled or use nonstandard/ambiguous language codes. We demonstrate that these issues are easy to detect even for non-proficient speakers, and supplement the human audit with automatic analyses. Finally, we recommend techniques to evaluate and improve multilingual corpora and discuss potential risks that come with low-quality data releases. 52 authors · Mar 22, 2021
- Lessons from the Trenches on Reproducible Evaluation of Language Models Effective evaluation of language models remains an open challenge in NLP. Researchers and engineers face methodological issues such as the sensitivity of models to evaluation setup, difficulty of proper comparisons across methods, and the lack of reproducibility and transparency. In this paper we draw on three years of experience in evaluating large language models to provide guidance and lessons for researchers. First, we provide an overview of common challenges faced in language model evaluation. Second, we delineate best practices for addressing or lessening the impact of these challenges on research. Third, we present the Language Model Evaluation Harness (lm-eval): an open source library for independent, reproducible, and extensible evaluation of language models that seeks to address these issues. We describe the features of the library as well as case studies in which the library has been used to alleviate these methodological concerns. 30 authors · May 23, 2024
2 SynDARin: Synthesising Datasets for Automated Reasoning in Low-Resource Languages Question Answering (QA) datasets have been instrumental in developing and evaluating Large Language Model (LLM) capabilities. However, such datasets are scarce for languages other than English due to the cost and difficulties of collection and manual annotation. This means that producing novel models and measuring the performance of multilingual LLMs in low-resource languages is challenging. To mitigate this, we propose SynDARin, a method for generating and validating QA datasets for low-resource languages. We utilize parallel content mining to obtain human-curated paragraphs between English and the target language. We use the English data as context to generate synthetic multiple-choice (MC) question-answer pairs, which are automatically translated and further validated for quality. Combining these with their designated non-English human-curated paragraphs form the final QA dataset. The method allows to maintain the content quality, reduces the likelihood of factual errors, and circumvents the need for costly annotation. To test the method, we created a QA dataset with 1.2K samples for the Armenian language. The human evaluation shows that 98% of the generated English data maintains quality and diversity in the question types and topics, while the translation validation pipeline can filter out sim70% of data with poor quality. We use the dataset to benchmark state-of-the-art LLMs, showing their inability to achieve human accuracy with some model performances closer to random chance. This shows that the generated dataset is non-trivial and can be used to evaluate reasoning capabilities in low-resource language. 4 authors · Jun 20, 2024
1 Truth Knows No Language: Evaluating Truthfulness Beyond English We introduce a professionally translated extension of the TruthfulQA benchmark designed to evaluate truthfulness in Basque, Catalan, Galician, and Spanish. Truthfulness evaluations of large language models (LLMs) have primarily been conducted in English. However, the ability of LLMs to maintain truthfulness across languages remains under-explored. Our study evaluates 12 state-of-the-art open LLMs, comparing base and instruction-tuned models using human evaluation, multiple-choice metrics, and LLM-as-a-Judge scoring. Our findings reveal that, while LLMs perform best in English and worst in Basque (the lowest-resourced language), overall truthfulness discrepancies across languages are smaller than anticipated. Furthermore, we show that LLM-as-a-Judge correlates more closely with human judgments than multiple-choice metrics, and that informativeness plays a critical role in truthfulness assessment. Our results also indicate that machine translation provides a viable approach for extending truthfulness benchmarks to additional languages, offering a scalable alternative to professional translation. Finally, we observe that universal knowledge questions are better handled across languages than context- and time-dependent ones, highlighting the need for truthfulness evaluations that account for cultural and temporal variability. Dataset and code are publicly available under open licenses. 7 authors · Feb 13
1 Investigating Neural Machine Translation for Low-Resource Languages: Using Bavarian as a Case Study Machine Translation has made impressive progress in recent years offering close to human-level performance on many languages, but studies have primarily focused on high-resource languages with broad online presence and resources. With the help of growing Large Language Models, more and more low-resource languages achieve better results through the presence of other languages. However, studies have shown that not all low-resource languages can benefit from multilingual systems, especially those with insufficient training and evaluation data. In this paper, we revisit state-of-the-art Neural Machine Translation techniques to develop automatic translation systems between German and Bavarian. We investigate conditions of low-resource languages such as data scarcity and parameter sensitivity and focus on refined solutions that combat low-resource difficulties and creative solutions such as harnessing language similarity. Our experiment entails applying Back-translation and Transfer Learning to automatically generate more training data and achieve higher translation performance. We demonstrate noisiness in the data and present our approach to carry out text preprocessing extensively. Evaluation was conducted using combined metrics: BLEU, chrF and TER. Statistical significance results with Bonferroni correction show surprisingly high baseline systems, and that Back-translation leads to significant improvement. Furthermore, we present a qualitative analysis of translation errors and system limitations. 2 authors · Apr 12, 2024
- A 2-step Framework for Automated Literary Translation Evaluation: Its Promises and Pitfalls In this work, we propose and evaluate the feasibility of a two-stage pipeline to evaluate literary machine translation, in a fine-grained manner, from English to Korean. The results show that our framework provides fine-grained, interpretable metrics suited for literary translation and obtains a higher correlation with human judgment than traditional machine translation metrics. Nonetheless, it still fails to match inter-human agreement, especially in metrics like Korean Honorifics. We also observe that LLMs tend to favor translations generated by other LLMs, and we highlight the necessity of developing more sophisticated evaluation methods to ensure accurate and culturally sensitive machine translation of literary works. 6 authors · Dec 2, 2024
4 QuRating: Selecting High-Quality Data for Training Language Models Selecting high-quality pre-training data is important for creating capable language models, but existing methods rely on simple heuristics. We introduce QuRating, a method for selecting pre-training data that captures the abstract qualities of texts which humans intuitively perceive. In this paper, we investigate four qualities - writing style, required expertise, facts & trivia, and educational value. We find that LLMs are able to discern these qualities and observe that they are better at making pairwise judgments of texts than at rating the quality of a text directly. We train a QuRater model to learn scalar ratings from pairwise judgments, and use it to annotate a 260B training corpus with quality ratings for each of the four criteria. In our experiments, we select 30B tokens according to the different quality ratings and train 1.3B-parameter language models on the selected data. We find that it is important to balance quality and diversity, as selecting only the highest-rated documents leads to poor results. When we sample using quality ratings as logits over documents, our models achieve lower perplexity and stronger in-context learning performance than baselines. Beyond data selection, we use the quality ratings to construct a training curriculum which improves performance without changing the training dataset. We extensively analyze the quality ratings and discuss their characteristics, biases, and wider implications. 4 authors · Feb 15, 2024
2 Do Language Models Care About Text Quality? Evaluating Web-Crawled Corpora Across 11 Languages Large, curated, web-crawled corpora play a vital role in training language models (LMs). They form the lion's share of the training data in virtually all recent LMs, such as the well-known GPT, LLaMA and XLM-RoBERTa models. However, despite this importance, relatively little attention has been given to the quality of these corpora. In this paper, we compare four of the currently most relevant large, web-crawled corpora (CC100, MaCoCu, mC4 and OSCAR) across eleven lower-resourced European languages. Our approach is two-fold: first, we perform an intrinsic evaluation by performing a human evaluation of the quality of samples taken from different corpora; then, we assess the practical impact of the qualitative differences by training specific LMs on each of the corpora and evaluating their performance on downstream tasks. We find that there are clear differences in quality of the corpora, with MaCoCu and OSCAR obtaining the best results. However, during the extrinsic evaluation, we actually find that the CC100 corpus achieves the highest scores. We conclude that, in our experiments, the quality of the web-crawled corpora does not seem to play a significant role when training LMs. 7 authors · Mar 13, 2024 1
- WMT24++: Expanding the Language Coverage of WMT24 to 55 Languages & Dialects As large language models (LLM) become more and more capable in languages other than English, it is important to collect benchmark datasets in order to evaluate their multilingual performance, including on tasks like machine translation (MT). In this work, we extend the WMT24 dataset to cover 55 languages by collecting new human-written references and post-edits for 46 new languages and dialects in addition to post-edits of the references in 8 out of 9 languages in the original WMT24 dataset. The dataset covers four domains: literary, news, social, and speech. We benchmark a variety of MT providers and LLMs on the collected dataset using automatic metrics and find that LLMs are the best-performing MT systems in all 55 languages. These results should be confirmed using a human-based evaluation, which we leave for future work. 17 authors · Feb 17
- mMARCO: A Multilingual Version of the MS MARCO Passage Ranking Dataset The MS MARCO ranking dataset has been widely used for training deep learning models for IR tasks, achieving considerable effectiveness on diverse zero-shot scenarios. However, this type of resource is scarce in languages other than English. In this work, we present mMARCO, a multilingual version of the MS MARCO passage ranking dataset comprising 13 languages that was created using machine translation. We evaluated mMARCO by finetuning monolingual and multilingual reranking models, as well as a multilingual dense retrieval model on this dataset. We also evaluated models finetuned using the mMARCO dataset in a zero-shot scenario on Mr. TyDi dataset, demonstrating that multilingual models finetuned on our translated dataset achieve superior effectiveness to models finetuned on the original English version alone. Our experiments also show that a distilled multilingual reranker is competitive with non-distilled models while having 5.4 times fewer parameters. Lastly, we show a positive correlation between translation quality and retrieval effectiveness, providing evidence that improvements in translation methods might lead to improvements in multilingual information retrieval. The translated datasets and finetuned models are available at https://github.com/unicamp-dl/mMARCO. 7 authors · Aug 31, 2021
- Quality-Aware Decoding: Unifying Quality Estimation and Decoding Quality Estimation (QE) models for Neural Machine Translation (NMT) predict the quality of the hypothesis without having access to the reference. An emerging research direction in NMT involves the use of QE models, which have demonstrated high correlations with human judgment and can enhance translations through Quality-Aware Decoding. Although several approaches have been proposed based on sampling multiple candidate translations and picking the best candidate, none have integrated these models directly into the decoding process. In this paper, we address this by proposing a novel token-level QE model capable of reliably scoring partial translations. We build a uni-directional QE model for this, as decoder models are inherently trained and efficient on partial sequences. We then present a decoding strategy that integrates the QE model for Quality-Aware decoding and demonstrate that the translation quality improves when compared to the N-best list re-ranking with state-of-the-art QE models (up to 1.39 XCOMET-XXL uparrow). Finally, we show that our approach provides significant benefits in document translation tasks, where the quality of N-best lists is typically suboptimal. Code can be found at https://ai4lt.iar.kit.edu/english/projects\_kontextmt.php 4 authors · Feb 12
- Unify word-level and span-level tasks: NJUNLP's Participation for the WMT2023 Quality Estimation Shared Task We introduce the submissions of the NJUNLP team to the WMT 2023 Quality Estimation (QE) shared task. Our team submitted predictions for the English-German language pair on all two sub-tasks: (i) sentence- and word-level quality prediction; and (ii) fine-grained error span detection. This year, we further explore pseudo data methods for QE based on NJUQE framework (https://github.com/NJUNLP/njuqe). We generate pseudo MQM data using parallel data from the WMT translation task. We pre-train the XLMR large model on pseudo QE data, then fine-tune it on real QE data. At both stages, we jointly learn sentence-level scores and word-level tags. Empirically, we conduct experiments to find the key hyper-parameters that improve the performance. Technically, we propose a simple method that covert the word-level outputs to fine-grained error span results. Overall, our models achieved the best results in English-German for both word-level and fine-grained error span detection sub-tasks by a considerable margin. 7 authors · Sep 22, 2023
- Translation Quality Estimation using Recurrent Neural Network This paper describes our submission to the shared task on word/phrase level Quality Estimation (QE) in the First Conference on Statistical Machine Translation (WMT16). The objective of the shared task was to predict if the given word/phrase is a correct/incorrect (OK/BAD) translation in the given sentence. In this paper, we propose a novel approach for word level Quality Estimation using Recurrent Neural Network Language Model (RNN-LM) architecture. RNN-LMs have been found very effective in different Natural Language Processing (NLP) applications. RNN-LM is mainly used for vector space language modeling for different NLP problems. For this task, we modify the architecture of RNN-LM. The modified system predicts a label (OK/BAD) in the slot rather than predicting the word. The input to the system is a word sequence, similar to the standard RNN-LM. The approach is language independent and requires only the translated text for QE. To estimate the phrase level quality, we use the output of the word level QE system. 2 authors · Oct 16, 2016
- Should we Stop Training More Monolingual Models, and Simply Use Machine Translation Instead? Most work in NLP makes the assumption that it is desirable to develop solutions in the native language in question. There is consequently a strong trend towards building native language models even for low-resource languages. This paper questions this development, and explores the idea of simply translating the data into English, thereby enabling the use of pretrained, and large-scale, English language models. We demonstrate empirically that a large English language model coupled with modern machine translation outperforms native language models in most Scandinavian languages. The exception to this is Finnish, which we assume is due to inferior translation quality. Our results suggest that machine translation is a mature technology, which raises a serious counter-argument for training native language models for low-resource languages. This paper therefore strives to make a provocative but important point. As English language models are improving at an unprecedented pace, which in turn improves machine translation, it is from an empirical and environmental stand-point more effective to translate data from low-resource languages into English, than to build language models for such languages. 3 authors · Apr 21, 2021
2 Translation Errors Significantly Impact Low-Resource Languages in Cross-Lingual Learning Popular benchmarks (e.g., XNLI) used to evaluate cross-lingual language understanding consist of parallel versions of English evaluation sets in multiple target languages created with the help of professional translators. When creating such parallel data, it is critical to ensure high-quality translations for all target languages for an accurate characterization of cross-lingual transfer. In this work, we find that translation inconsistencies do exist and interestingly they disproportionally impact low-resource languages in XNLI. To identify such inconsistencies, we propose measuring the gap in performance between zero-shot evaluations on the human-translated and machine-translated target text across multiple target languages; relatively large gaps are indicative of translation errors. We also corroborate that translation errors exist for two target languages, namely Hindi and Urdu, by doing a manual reannotation of human-translated test instances in these two languages and finding poor agreement with the original English labels these instances were supposed to inherit. 3 authors · Feb 3, 2024 3
1 Neural machine translation system for Lezgian, Russian and Azerbaijani languages We release the first neural machine translation system for translation between Russian, Azerbaijani and the endangered Lezgian languages, as well as monolingual and parallel datasets collected and aligned for training and evaluating the system. Multiple experiments are conducted to identify how different sets of training language pairs and data domains can influence the resulting translation quality. We achieve BLEU scores of 26.14 for Lezgian-Azerbaijani, 22.89 for Azerbaijani-Lezgian, 29.48 for Lezgian-Russian and 24.25 for Russian-Lezgian pairs. The quality of zero-shot translation is assessed on a Large Language Model, showing its high level of fluency in Lezgian. However, the model often refuses to translate, justifying itself with its incompetence. We contribute our translation model along with the collected parallel and monolingual corpora and sentence encoder for the Lezgian language. 2 authors · Oct 7, 2024
- Debugging Neural Machine Translations In this paper, we describe a tool for debugging the output and attention weights of neural machine translation (NMT) systems and for improved estimations of confidence about the output based on the attention. The purpose of the tool is to help researchers and developers find weak and faulty example translations that their NMT systems produce without the need for reference translations. Our tool also includes an option to directly compare translation outputs from two different NMT engines or experiments. In addition, we present a demo website of our tool with examples of good and bad translations: http://attention.lielakeda.lv 1 authors · Aug 8, 2018
- Why don't people use character-level machine translation? We present a literature and empirical survey that critically assesses the state of the art in character-level modeling for machine translation (MT). Despite evidence in the literature that character-level systems are comparable with subword systems, they are virtually never used in competitive setups in WMT competitions. We empirically show that even with recent modeling innovations in character-level natural language processing, character-level MT systems still struggle to match their subword-based counterparts. Character-level MT systems show neither better domain robustness, nor better morphological generalization, despite being often so motivated. However, we are able to show robustness towards source side noise and that translation quality does not degrade with increasing beam size at decoding time. 3 authors · Oct 15, 2021
- xTower: A Multilingual LLM for Explaining and Correcting Translation Errors While machine translation (MT) systems are achieving increasingly strong performance on benchmarks, they often produce translations with errors and anomalies. Understanding these errors can potentially help improve the translation quality and user experience. This paper introduces xTower, an open large language model (LLM) built on top of TowerBase designed to provide free-text explanations for translation errors in order to guide the generation of a corrected translation. The quality of the generated explanations by xTower are assessed via both intrinsic and extrinsic evaluation. We ask expert translators to evaluate the quality of the explanations across two dimensions: relatedness towards the error span being explained and helpfulness in error understanding and improving translation quality. Extrinsically, we test xTower across various experimental setups in generating translation corrections, demonstrating significant improvements in translation quality. Our findings highlight xTower's potential towards not only producing plausible and helpful explanations of automatic translations, but also leveraging them to suggest corrected translations. 10 authors · Jun 27, 2024
1 AfriMTE and AfriCOMET: Empowering COMET to Embrace Under-resourced African Languages Despite the progress we have recorded in scaling multilingual machine translation (MT) models and evaluation data to several under-resourced African languages, it is difficult to measure accurately the progress we have made on these languages because evaluation is often performed on n-gram matching metrics like BLEU that often have worse correlation with human judgments. Embedding-based metrics such as COMET correlate better; however, lack of evaluation data with human ratings for under-resourced languages, complexity of annotation guidelines like Multidimensional Quality Metrics (MQM), and limited language coverage of multilingual encoders have hampered their applicability to African languages. In this paper, we address these challenges by creating high-quality human evaluation data with a simplified MQM guideline for error-span annotation and direct assessment (DA) scoring for 13 typologically diverse African languages. Furthermore, we develop AfriCOMET, a COMET evaluation metric for African languages by leveraging DA training data from high-resource languages and African-centric multilingual encoder (AfroXLM-Roberta) to create the state-of-the-art evaluation metric for African languages MT with respect to Spearman-rank correlation with human judgments (+0.406). 57 authors · Nov 16, 2023
- Margin-based Parallel Corpus Mining with Multilingual Sentence Embeddings Machine translation is highly sensitive to the size and quality of the training data, which has led to an increasing interest in collecting and filtering large parallel corpora. In this paper, we propose a new method for this task based on multilingual sentence embeddings. In contrast to previous approaches, which rely on nearest neighbor retrieval with a hard threshold over cosine similarity, our proposed method accounts for the scale inconsistencies of this measure, considering the margin between a given sentence pair and its closest candidates instead. Our experiments show large improvements over existing methods. We outperform the best published results on the BUCC mining task and the UN reconstruction task by more than 10 F1 and 30 precision points, respectively. Filtering the English-German ParaCrawl corpus with our approach, we obtain 31.2 BLEU points on newstest2014, an improvement of more than one point over the best official filtered version. 2 authors · Nov 2, 2018
1 University of Cape Town's WMT22 System: Multilingual Machine Translation for Southern African Languages The paper describes the University of Cape Town's submission to the constrained track of the WMT22 Shared Task: Large-Scale Machine Translation Evaluation for African Languages. Our system is a single multilingual translation model that translates between English and 8 South / South East African Languages, as well as between specific pairs of the African languages. We used several techniques suited for low-resource machine translation (MT), including overlap BPE, back-translation, synthetic training data generation, and adding more translation directions during training. Our results show the value of these techniques, especially for directions where very little or no bilingual training data is available. 3 authors · Oct 21, 2022
- The unreasonable effectiveness of few-shot learning for machine translation We demonstrate the potential of few-shot translation systems, trained with unpaired language data, for both high and low-resource language pairs. We show that with only 5 examples of high-quality translation data shown at inference, a transformer decoder-only model trained solely with self-supervised learning, is able to match specialized supervised state-of-the-art models as well as more general commercial translation systems. In particular, we outperform the best performing system on the WMT'21 English - Chinese news translation task by only using five examples of English - Chinese parallel data at inference. Moreover, our approach in building these models does not necessitate joint multilingual training or back-translation, is conceptually simple and shows the potential to extend to the multilingual setting. Furthermore, the resulting models are two orders of magnitude smaller than state-of-the-art language models. We then analyze the factors which impact the performance of few-shot translation systems, and highlight that the quality of the few-shot demonstrations heavily determines the quality of the translations generated by our models. Finally, we show that the few-shot paradigm also provides a way to control certain attributes of the translation -- we show that we are able to control for regional varieties and formality using only a five examples at inference, paving the way towards controllable machine translation systems. 8 authors · Feb 2, 2023
- Leveraging Domain Knowledge at Inference Time for LLM Translation: Retrieval versus Generation While large language models (LLMs) have been increasingly adopted for machine translation (MT), their performance for specialist domains such as medicine and law remains an open challenge. Prior work has shown that LLMs can be domain-adapted at test-time by retrieving targeted few-shot demonstrations or terminologies for inclusion in the prompt. Meanwhile, for general-purpose LLM MT, recent studies have found some success in generating similarly useful domain knowledge from an LLM itself, prior to translation. Our work studies domain-adapted MT with LLMs through a careful prompting setup, finding that demonstrations consistently outperform terminology, and retrieval consistently outperforms generation. We find that generating demonstrations with weaker models can close the gap with larger model's zero-shot performance. Given the effectiveness of demonstrations, we perform detailed analyses to understand their value. We find that domain-specificity is particularly important, and that the popular multi-domain benchmark is testing adaptation to a particular writing style more so than to a specific domain. 4 authors · Mar 6
5 Lost in Literalism: How Supervised Training Shapes Translationese in LLMs Large language models (LLMs) have achieved remarkable success in machine translation, demonstrating impressive performance across diverse languages. However, translationese, characterized by overly literal and unnatural translations, remains a persistent challenge in LLM-based translation systems. Despite their pre-training on vast corpora of natural utterances, LLMs exhibit translationese errors and generate unexpected unnatural translations, stemming from biases introduced during supervised fine-tuning (SFT). In this work, we systematically evaluate the prevalence of translationese in LLM-generated translations and investigate its roots during supervised training. We introduce methods to mitigate these biases, including polishing golden references and filtering unnatural training instances. Empirical evaluations demonstrate that these approaches significantly reduce translationese while improving translation naturalness, validated by human evaluations and automatic metrics. Our findings highlight the need for training-aware adjustments to optimize LLM translation outputs, paving the way for more fluent and target-language-consistent translations. We release the data and code at https://github.com/yafuly/LLM_Translationese. 8 authors · Mar 6 2
- MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth Mover Distance A robust evaluation metric has a profound impact on the development of text generation systems. A desirable metric compares system output against references based on their semantics rather than surface forms. In this paper we investigate strategies to encode system and reference texts to devise a metric that shows a high correlation with human judgment of text quality. We validate our new metric, namely MoverScore, on a number of text generation tasks including summarization, machine translation, image captioning, and data-to-text generation, where the outputs are produced by a variety of neural and non-neural systems. Our findings suggest that metrics combining contextualized representations with a distance measure perform the best. Such metrics also demonstrate strong generalization capability across tasks. For ease-of-use we make our metrics available as web service. 6 authors · Sep 5, 2019
1 How to Design Translation Prompts for ChatGPT: An Empirical Study The recently released ChatGPT has demonstrated surprising abilities in natural language understanding and natural language generation. Machine translation relies heavily on the abilities of language understanding and generation. Thus, in this paper, we explore how to assist machine translation with ChatGPT. We adopt several translation prompts on a wide range of translations. Our experimental results show that ChatGPT with designed translation prompts can achieve comparable or better performance over commercial translation systems for high-resource language translations. We further evaluate the translation quality using multiple references, and ChatGPT achieves superior performance compared to commercial systems. We also conduct experiments on domain-specific translations, the final results show that ChatGPT is able to comprehend the provided domain keyword and adjust accordingly to output proper translations. At last, we perform few-shot prompts that show consistent improvement across different base prompts. Our work provides empirical evidence that ChatGPT still has great potential in translations. 3 authors · Apr 4, 2023
- Confidence through Attention Attention distributions of the generated translations are a useful bi-product of attention-based recurrent neural network translation models and can be treated as soft alignments between the input and output tokens. In this work, we use attention distributions as a confidence metric for output translations. We present two strategies of using the attention distributions: filtering out bad translations from a large back-translated corpus, and selecting the best translation in a hybrid setup of two different translation systems. While manual evaluation indicated only a weak correlation between our confidence score and human judgments, the use-cases showed improvements of up to 2.22 BLEU points for filtering and 0.99 points for hybrid translation, tested on English<->German and English<->Latvian translation. 2 authors · Oct 10, 2017
- An Empirical study of Unsupervised Neural Machine Translation: analyzing NMT output, model's behavior and sentences' contribution Unsupervised Neural Machine Translation (UNMT) focuses on improving NMT results under the assumption there is no human translated parallel data, yet little work has been done so far in highlighting its advantages compared to supervised methods and analyzing its output in aspects other than translation accuracy. We focus on three very diverse languages, French, Gujarati, and Kazakh, and train bilingual NMT models, to and from English, with various levels of supervision, in high- and low- resource setups, measure quality of the NMT output and compare the generated sequences' word order and semantic similarity to source and reference sentences. We also use Layer-wise Relevance Propagation to evaluate the source and target sentences' contribution to the result, expanding the findings of previous works to the UNMT paradigm. 2 authors · Dec 19, 2023
- Zero-Shot Translation Quality Estimation with Explicit Cross-Lingual Patterns This paper describes our submission of the WMT 2020 Shared Task on Sentence Level Direct Assessment, Quality Estimation (QE). In this study, we empirically reveal the mismatching issue when directly adopting BERTScore to QE. Specifically, there exist lots of mismatching errors between the source sentence and translated candidate sentence with token pairwise similarity. In response to this issue, we propose to expose explicit cross-lingual patterns, e.g. word alignments and generation score, to our proposed zero-shot models. Experiments show that our proposed QE model with explicit cross-lingual patterns could alleviate the mismatching issue, thereby improving the performance. Encouragingly, our zero-shot QE method could achieve comparable performance with supervised QE method, and even outperforms the supervised counterpart on 2 out of 6 directions. We expect our work could shed light on the zero-shot QE model improvement. 3 authors · Oct 10, 2020
1 RoMe: A Robust Metric for Evaluating Natural Language Generation Evaluating Natural Language Generation (NLG) systems is a challenging task. Firstly, the metric should ensure that the generated hypothesis reflects the reference's semantics. Secondly, it should consider the grammatical quality of the generated sentence. Thirdly, it should be robust enough to handle various surface forms of the generated sentence. Thus, an effective evaluation metric has to be multifaceted. In this paper, we propose an automatic evaluation metric incorporating several core aspects of natural language understanding (language competence, syntactic and semantic variation). Our proposed metric, RoMe, is trained on language features such as semantic similarity combined with tree edit distance and grammatical acceptability, using a self-supervised neural network to assess the overall quality of the generated sentence. Moreover, we perform an extensive robustness analysis of the state-of-the-art methods and RoMe. Empirical results suggest that RoMe has a stronger correlation to human judgment over state-of-the-art metrics in evaluating system-generated sentences across several NLG tasks. 5 authors · Mar 17, 2022
- Lost in Translation? Translation Errors and Challenges for Fair Assessment of Text-to-Image Models on Multilingual Concepts Benchmarks of the multilingual capabilities of text-to-image (T2I) models compare generated images prompted in a test language to an expected image distribution over a concept set. One such benchmark, "Conceptual Coverage Across Languages" (CoCo-CroLa), assesses the tangible noun inventory of T2I models by prompting them to generate pictures from a concept list translated to seven languages and comparing the output image populations. Unfortunately, we find that this benchmark contains translation errors of varying severity in Spanish, Japanese, and Chinese. We provide corrections for these errors and analyze how impactful they are on the utility and validity of CoCo-CroLa as a benchmark. We reassess multiple baseline T2I models with the revisions, compare the outputs elicited under the new translations to those conditioned on the old, and show that a correction's impactfulness on the image-domain benchmark results can be predicted in the text domain with similarity scores. Our findings will guide the future development of T2I multilinguality metrics by providing analytical tools for practical translation decisions. 6 authors · Mar 17, 2024
2 Compositional Translation: A Novel LLM-based Approach for Low-resource Machine Translation The ability of generative large language models (LLMs) to perform in-context learning has given rise to a large body of research into how best to prompt models for various natural language processing tasks. Machine Translation (MT) has been shown to benefit from in-context examples, in particular when they are semantically similar to the sentence to translate. In this paper, we propose a new LLM-based translation paradigm, compositional translation, to replace naive few-shot MT with similarity-based demonstrations. An LLM is used to decompose a sentence into simpler phrases, and then to translate each phrase with the help of retrieved demonstrations. Finally, the LLM is prompted to translate the initial sentence with the help of the self-generated phrase-translation pairs. Our intuition is that this approach should improve translation because these shorter phrases should be intrinsically easier to translate and easier to match with relevant examples. This is especially beneficial in low-resource scenarios, and more generally whenever the selection pool is small or out of domain. We show that compositional translation boosts LLM translation performance on a wide range of popular MT benchmarks, including FLORES 200, NTREX 128 and TICO-19. Code and outputs are available at https://github.com/ArmelRandy/compositional-translation 3 authors · Mar 6
- Learning Compact Metrics for MT Recent developments in machine translation and multilingual text generation have led researchers to adopt trained metrics such as COMET or BLEURT, which treat evaluation as a regression problem and use representations from multilingual pre-trained models such as XLM-RoBERTa or mBERT. Yet studies on related tasks suggest that these models are most efficient when they are large, which is costly and impractical for evaluation. We investigate the trade-off between multilinguality and model capacity with RemBERT, a state-of-the-art multilingual language model, using data from the WMT Metrics Shared Task. We present a series of experiments which show that model size is indeed a bottleneck for cross-lingual transfer, then demonstrate how distillation can help addressing this bottleneck, by leveraging synthetic data generation and transferring knowledge from one teacher to multiple students trained on related languages. Our method yields up to 10.5% improvement over vanilla fine-tuning and reaches 92.6% of RemBERT's performance using only a third of its parameters. 5 authors · Oct 12, 2021
- OpenKiwi: An Open Source Framework for Quality Estimation We introduce OpenKiwi, a PyTorch-based open source framework for translation quality estimation. OpenKiwi supports training and testing of word-level and sentence-level quality estimation systems, implementing the winning systems of the WMT 2015-18 quality estimation campaigns. We benchmark OpenKiwi on two datasets from WMT 2018 (English-German SMT and NMT), yielding state-of-the-art performance on the word-level tasks and near state-of-the-art in the sentence-level tasks. 5 authors · Feb 22, 2019
1 Adaptive Machine Translation with Large Language Models Consistency is a key requirement of high-quality translation. It is especially important to adhere to pre-approved terminology and adapt to corrected translations in domain-specific projects. Machine translation (MT) has achieved significant progress in the area of domain adaptation. However, real-time adaptation remains challenging. Large-scale language models (LLMs) have recently shown interesting capabilities of in-context learning, where they learn to replicate certain input-output text generation patterns, without further fine-tuning. By feeding an LLM at inference time with a prompt that consists of a list of translation pairs, it can then simulate the domain and style characteristics. This work aims to investigate how we can utilize in-context learning to improve real-time adaptive MT. Our extensive experiments show promising results at translation time. For example, LLMs can adapt to a set of in-domain sentence pairs and/or terminology while translating a new sentence. We observe that the translation quality with few-shot in-context learning can surpass that of strong encoder-decoder MT systems, especially for high-resource languages. Moreover, we investigate whether we can combine MT from strong encoder-decoder models with fuzzy matches, which can further improve translation quality, especially for less supported languages. We conduct our experiments across five diverse language pairs, namely English-to-Arabic (EN-AR), English-to-Chinese (EN-ZH), English-to-French (EN-FR), English-to-Kinyarwanda (EN-RW), and English-to-Spanish (EN-ES). 4 authors · Jan 30, 2023
- Revisiting Low-Resource Neural Machine Translation: A Case Study It has been shown that the performance of neural machine translation (NMT) drops starkly in low-resource conditions, underperforming phrase-based statistical machine translation (PBSMT) and requiring large amounts of auxiliary data to achieve competitive results. In this paper, we re-assess the validity of these results, arguing that they are the result of lack of system adaptation to low-resource settings. We discuss some pitfalls to be aware of when training low-resource NMT systems, and recent techniques that have shown to be especially helpful in low-resource settings, resulting in a set of best practices for low-resource NMT. In our experiments on German--English with different amounts of IWSLT14 training data, we show that, without the use of any auxiliary monolingual or multilingual data, an optimized NMT system can outperform PBSMT with far less data than previously claimed. We also apply these techniques to a low-resource Korean-English dataset, surpassing previously reported results by 4 BLEU. 2 authors · May 28, 2019
- An Empirical Study of In-context Learning in LLMs for Machine Translation Recent interest has surged in employing Large Language Models (LLMs) for machine translation (MT) via in-context learning (ICL) (Vilar et al., 2023). Most prior studies primarily focus on optimizing translation quality, with limited attention to understanding the specific aspects of ICL that influence the said quality. To this end, we perform the first of its kind, an exhaustive study of in-context learning for machine translation. We first establish that ICL is primarily example-driven and not instruction-driven. Following this, we conduct an extensive exploration of various aspects of the examples to understand their influence on downstream performance. Our analysis includes factors such as quality and quantity of demonstrations, spatial proximity, and source versus target originality. Further, we also investigate challenging scenarios involving indirectness and misalignment of examples to understand the limits of ICL. While we establish the significance of the quality of the target distribution over the source distribution of demonstrations, we further observe that perturbations sometimes act as regularizers, resulting in performance improvements. Surprisingly, ICL does not necessitate examples from the same task, and a related task with the same target distribution proves sufficient. We hope that our study acts as a guiding resource for considerations in utilizing ICL for MT. Our code is available on https://github.com/PranjalChitale/in-context-mt-analysis. 3 authors · Jan 22, 2024
- Self-Guided Curriculum Learning for Neural Machine Translation In the field of machine learning, the well-trained model is assumed to be able to recover the training labels, i.e. the synthetic labels predicted by the model should be as close to the ground-truth labels as possible. Inspired by this, we propose a self-guided curriculum strategy to encourage the learning of neural machine translation (NMT) models to follow the above recovery criterion, where we cast the recovery degree of each training example as its learning difficulty. Specifically, we adopt the sentence level BLEU score as the proxy of recovery degree. Different from existing curricula relying on linguistic prior knowledge or third-party language models, our chosen learning difficulty is more suitable to measure the degree of knowledge mastery of the NMT models. Experiments on translation benchmarks, including WMT14 EnglishRightarrowGerman and WMT17 ChineseRightarrowEnglish, demonstrate that our approach can consistently improve translation performance against strong baseline Transformer. 6 authors · May 10, 2021
- What Makes a Good Story and How Can We Measure It? A Comprehensive Survey of Story Evaluation With the development of artificial intelligence, particularly the success of Large Language Models (LLMs), the quantity and quality of automatically generated stories have significantly increased. This has led to the need for automatic story evaluation to assess the generative capabilities of computing systems and analyze the quality of both automatic-generated and human-written stories. Evaluating a story can be more challenging than other generation evaluation tasks. While tasks like machine translation primarily focus on assessing the aspects of fluency and accuracy, story evaluation demands complex additional measures such as overall coherence, character development, interestingness, etc. This requires a thorough review of relevant research. In this survey, we first summarize existing storytelling tasks, including text-to-text, visual-to-text, and text-to-visual. We highlight their evaluation challenges, identify various human criteria to measure stories, and present existing benchmark datasets. Then, we propose a taxonomy to organize evaluation metrics that have been developed or can be adopted for story evaluation. We also provide descriptions of these metrics, along with the discussion of their merits and limitations. Later, we discuss the human-AI collaboration for story evaluation and generation. Finally, we suggest potential future research directions, extending from story evaluation to general evaluations. 2 authors · Aug 26, 2024
- Is ChatGPT A Good Translator? Yes With GPT-4 As The Engine This report provides a preliminary evaluation of ChatGPT for machine translation, including translation prompt, multilingual translation, and translation robustness. We adopt the prompts advised by ChatGPT to trigger its translation ability and find that the candidate prompts generally work well and show minor performance differences. By evaluating on a number of benchmark test sets, we find that ChatGPT performs competitively with commercial translation products (e.g., Google Translate) on high-resource European languages but lags behind significantly on low-resource or distant languages. For distant languages, we explore an interesting strategy named pivot~prompting that asks ChatGPT to translate the source sentence into a high-resource pivot language before into the target language, which improves the translation performance significantly. As for the translation robustness, ChatGPT does not perform as well as the commercial systems on biomedical abstracts or Reddit comments but exhibits good results on spoken language. With the launch of the GPT-4 engine, the translation performance of ChatGPT is significantly boosted, becoming comparable to commercial translation products, even for distant languages. In other words, ChatGPT~has~already~become~a~good~translator! Scripts and data: https://github.com/wxjiao/Is-ChatGPT-A-Good-Translator 5 authors · Jan 20, 2023
6 QE4PE: Word-level Quality Estimation for Human Post-Editing Word-level quality estimation (QE) detects erroneous spans in machine translations, which can direct and facilitate human post-editing. While the accuracy of word-level QE systems has been assessed extensively, their usability and downstream influence on the speed, quality and editing choices of human post-editing remain understudied. Our QE4PE study investigates the impact of word-level QE on machine translation (MT) post-editing in a realistic setting involving 42 professional post-editors across two translation directions. We compare four error-span highlight modalities, including supervised and uncertainty-based word-level QE methods, for identifying potential errors in the outputs of a state-of-the-art neural MT model. Post-editing effort and productivity are estimated by behavioral logs, while quality improvements are assessed by word- and segment-level human annotation. We find that domain, language and editors' speed are critical factors in determining highlights' effectiveness, with modest differences between human-made and automated QE highlights underlining a gap between accuracy and usability in professional workflows. 6 authors · Mar 4 2
- MLQA: Evaluating Cross-lingual Extractive Question Answering Question answering (QA) models have shown rapid progress enabled by the availability of large, high-quality benchmark datasets. Such annotated datasets are difficult and costly to collect, and rarely exist in languages other than English, making training QA systems in other languages challenging. An alternative to building large monolingual training datasets is to develop cross-lingual systems which can transfer to a target language without requiring training data in that language. In order to develop such systems, it is crucial to invest in high quality multilingual evaluation benchmarks to measure progress. We present MLQA, a multi-way aligned extractive QA evaluation benchmark intended to spur research in this area. MLQA contains QA instances in 7 languages, namely English, Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese. It consists of over 12K QA instances in English and 5K in each other language, with each QA instance being parallel between 4 languages on average. MLQA is built using a novel alignment context strategy on Wikipedia articles, and serves as a cross-lingual extension to existing extractive QA datasets. We evaluate current state-of-the-art cross-lingual representations on MLQA, and also provide machine-translation-based baselines. In all cases, transfer results are shown to be significantly behind training-language performance. 5 authors · Oct 16, 2019
1 Leveraging GPT-4 for Automatic Translation Post-Editing While Neural Machine Translation (NMT) represents the leading approach to Machine Translation (MT), the outputs of NMT models still require translation post-editing to rectify errors and enhance quality, particularly under critical settings. In this work, we formalize the task of translation post-editing with Large Language Models (LLMs) and explore the use of GPT-4 to automatically post-edit NMT outputs across several language pairs. Our results demonstrate that GPT-4 is adept at translation post-editing and produces meaningful edits even when the target language is not English. Notably, we achieve state-of-the-art performance on WMT-22 English-Chinese, English-German, Chinese-English and German-English language pairs using GPT-4 based post-editing, as evaluated by state-of-the-art MT quality metrics. 4 authors · May 24, 2023
2 Multilingual k-Nearest-Neighbor Machine Translation k-nearest-neighbor machine translation has demonstrated remarkable improvements in machine translation quality by creating a datastore of cached examples. However, these improvements have been limited to high-resource language pairs, with large datastores, and remain a challenge for low-resource languages. In this paper, we address this issue by combining representations from multiple languages into a single datastore. Our results consistently demonstrate substantial improvements not only in low-resource translation quality (up to +3.6 BLEU), but also for high-resource translation quality (up to +0.5 BLEU). Our experiments show that it is possible to create multilingual datastores that are a quarter of the size, achieving a 5.3x speed improvement, by using linguistic similarities for datastore creation. 2 authors · Oct 23, 2023
- Exploring Human-Like Translation Strategy with Large Language Models Large language models (LLMs) have demonstrated impressive capabilities in general scenarios, exhibiting a level of aptitude that approaches, in some aspects even surpasses, human-level intelligence. Among their numerous skills, the translation abilities of LLMs have received considerable attention. In contrast to traditional machine translation that focuses solely on source-target mapping, LLM-based translation can potentially mimic the human translation process that takes many preparatory steps to ensure high-quality translation. This work aims to explore this possibility by proposing the MAPS framework, which stands for Multi-Aspect Prompting and Selection. Specifically, we enable LLMs to first analyze the given source text and extract three aspects of translation-related knowledge: keywords, topics and relevant demonstrations to guide the translation process. To filter out the noisy and unhelpful knowledge, we employ a selection mechanism based on quality estimation. Experiments suggest that MAPS brings significant and consistent improvements over text-davinci-003 and Alpaca on eight translation directions from the latest WMT22 test sets. Our further analysis shows that the extracted knowledge is critical in resolving up to 59% of hallucination mistakes in translation. Code is available at https://github.com/zwhe99/MAPS-mt. 9 authors · May 6, 2023
- Paying Attention to Multi-Word Expressions in Neural Machine Translation Processing of multi-word expressions (MWEs) is a known problem for any natural language processing task. Even neural machine translation (NMT) struggles to overcome it. This paper presents results of experiments on investigating NMT attention allocation to the MWEs and improving automated translation of sentences that contain MWEs in English->Latvian and English->Czech NMT systems. Two improvement strategies were explored -(1) bilingual pairs of automatically extracted MWE candidates were added to the parallel corpus used to train the NMT system, and (2) full sentences containing the automatically extracted MWE candidates were added to the parallel corpus. Both approaches allowed to increase automated evaluation results. The best result - 0.99 BLEU point increase - has been reached with the first approach, while with the second approach minimal improvements achieved. We also provide open-source software and tools used for MWE extraction and alignment inspection. 2 authors · Oct 17, 2017
- A Closer Look into Automatic Evaluation Using Large Language Models Using large language models (LLMs) to evaluate text quality has recently gained popularity. Some prior works explore the idea of using LLMs for evaluation, while they differ in some details of the evaluation process. In this paper, we analyze LLM evaluation (Chiang and Lee, 2023) and G-Eval (Liu et al., 2023), and we discuss how those details in the evaluation process change how well the ratings given by LLMs correlate with human ratings. We find that the auto Chain-of-Thought (CoT) used in G-Eval does not always make G-Eval more aligned with human ratings. We also show that forcing the LLM to output only a numeric rating, as in G-Eval, is suboptimal. Last, we reveal that asking the LLM to explain its own ratings consistently improves the correlation between the ChatGPT and human ratings and pushes state-of-the-art (SoTA) correlations on two meta-evaluation datasets. 2 authors · Oct 9, 2023
1 Repairing the Cracked Foundation: A Survey of Obstacles in Evaluation Practices for Generated Text Evaluation practices in natural language generation (NLG) have many known flaws, but improved evaluation approaches are rarely widely adopted. This issue has become more urgent, since neural NLG models have improved to the point where they can often no longer be distinguished based on the surface-level features that older metrics rely on. This paper surveys the issues with human and automatic model evaluations and with commonly used datasets in NLG that have been pointed out over the past 20 years. We summarize, categorize, and discuss how researchers have been addressing these issues and what their findings mean for the current state of model evaluations. Building on those insights, we lay out a long-term vision for NLG evaluation and propose concrete steps for researchers to improve their evaluation processes. Finally, we analyze 66 NLG papers from recent NLP conferences in how well they already follow these suggestions and identify which areas require more drastic changes to the status quo. 3 authors · Feb 14, 2022
2 Towards Cross-Lingual LLM Evaluation for European Languages The rise of Large Language Models (LLMs) has revolutionized natural language processing across numerous languages and tasks. However, evaluating LLM performance in a consistent and meaningful way across multiple European languages remains challenging, especially due to the scarcity of multilingual benchmarks. We introduce a cross-lingual evaluation approach tailored for European languages. We employ translated versions of five widely-used benchmarks to assess the capabilities of 40 LLMs across 21 European languages. Our contributions include examining the effectiveness of translated benchmarks, assessing the impact of different translation services, and offering a multilingual evaluation framework for LLMs that includes newly created datasets: EU20-MMLU, EU20-HellaSwag, EU20-ARC, EU20-TruthfulQA, and EU20-GSM8K. The benchmarks and results are made publicly available to encourage further research in multilingual LLM evaluation. 11 authors · Oct 11, 2024
- TEaR: Improving LLM-based Machine Translation with Systematic Self-Refinement Large Language Models (LLMs) have achieved impressive results in Machine Translation (MT). However, careful evaluations by human reveal that the translations produced by LLMs still contain multiple errors. Importantly, feeding back such error information into the LLMs can lead to self-refinement and result in improved translation performance. Motivated by these insights, we introduce a systematic LLM-based self-refinement translation framework, named TEaR, which stands for Translate, Estimate, and Refine, marking a significant step forward in this direction. Our findings demonstrate that 1) our self-refinement framework successfully assists LLMs in improving their translation quality across a wide range of languages, whether it's from high-resource languages to low-resource ones or whether it's English-centric or centered around other languages; 2) TEaR exhibits superior systematicity and interpretability; 3) different estimation strategies yield varied impacts, directly affecting the effectiveness of the final corrections. Additionally, traditional neural translation models and evaluation models operate separately, often focusing on singular tasks due to their limited capabilities, while general-purpose LLMs possess the capability to undertake both tasks simultaneously. We further conduct cross-model correction experiments to investigate the potential relationship between the translation and evaluation capabilities of general-purpose LLMs. Our code and data are available at https://github.com/fzp0424/self_correct_mt 10 authors · Feb 26, 2024
- Don't Rank, Combine! Combining Machine Translation Hypotheses Using Quality Estimation Neural machine translation systems estimate probabilities of target sentences given source sentences, yet these estimates may not align with human preferences. This work introduces QE-fusion, a method utilizing a quality estimation metric (QE) that better correlates with human judgments to synthesize improved translations. QE-fusion leverages a candidate pool sampled from a model, combining spans from different candidates using QE metrics such as CometKiwi. We compare QE-fusion against beam search and recent reranking techniques, such as Minimum Bayes Risk decoding or QE-reranking. Our method consistently improves translation quality in terms of COMET and BLEURT scores when applied to large language models (LLMs) used for translation (PolyLM, XGLM, Llama2, and Mistral) and to multilingual translation models (NLLB), over five language pairs. Notably, QE-fusion exhibits larger improvements for LLMs due to their ability to generate diverse outputs. We demonstrate that our approach generates novel translations in over half of the cases and consistently outperforms other methods across varying numbers of candidates (5-200). Furthermore, we empirically establish that QE-fusion scales linearly with the number of candidates in the pool. QE-fusion proves effective in enhancing LLM-based translation without the need for costly retraining of LLMs. 2 authors · Jan 12, 2024
- Facebook AI WMT21 News Translation Task Submission We describe Facebook's multilingual model submission to the WMT2021 shared task on news translation. We participate in 14 language directions: English to and from Czech, German, Hausa, Icelandic, Japanese, Russian, and Chinese. To develop systems covering all these directions, we focus on multilingual models. We utilize data from all available sources --- WMT, large-scale data mining, and in-domain backtranslation --- to create high quality bilingual and multilingual baselines. Subsequently, we investigate strategies for scaling multilingual model size, such that one system has sufficient capacity for high quality representations of all eight languages. Our final submission is an ensemble of dense and sparse Mixture-of-Expert multilingual translation models, followed by finetuning on in-domain news data and noisy channel reranking. Compared to previous year's winning submissions, our multilingual system improved the translation quality on all language directions, with an average improvement of 2.0 BLEU. In the WMT2021 task, our system ranks first in 10 directions based on automatic evaluation. 6 authors · Aug 6, 2021
- Revisiting Metric Reliability for Fine-grained Evaluation of Machine Translation and Summarization in Indian Languages While automatic metrics drive progress in Machine Translation (MT) and Text Summarization (TS), existing metrics have been developed and validated almost exclusively for English and other high-resource languages. This narrow focus leaves Indian languages, spoken by over 1.5 billion people, largely overlooked, casting doubt on the universality of current evaluation practices. To address this gap, we introduce ITEM, a large-scale benchmark that systematically evaluates the alignment of 26 automatic metrics with human judgments across six major Indian languages, enriched with fine-grained annotations. Our extensive evaluation, covering agreement with human judgments, sensitivity to outliers, language-specific reliability, inter-metric correlations, and resilience to controlled perturbations, reveals four central findings: (1) LLM-based evaluators show the strongest alignment with human judgments at both segment and system levels; (2) outliers exert a significant impact on metric-human agreement; (3) in TS, metrics are more effective at capturing content fidelity, whereas in MT, they better reflect fluency; and (4) metrics differ in their robustness and sensitivity when subjected to diverse perturbations. Collectively, these findings offer critical guidance for advancing metric design and evaluation in Indian languages. 4 authors · Oct 8
1 Cross-Lingual Auto Evaluation for Assessing Multilingual LLMs Evaluating machine-generated text remains a significant challenge in NLP, especially for non-English languages. Current methodologies, including automated metrics, human assessments, and LLM-based evaluations, predominantly focus on English, revealing a significant gap in multilingual evaluation frameworks. We introduce the Cross Lingual Auto Evaluation (CIA) Suite, an extensible framework that includes evaluator LLMs (Hercule) and a novel test set (Recon) specifically designed for multilingual evaluation. Our test set features 500 human-annotated instructions spanning various task capabilities along with human judgment scores across six languages. This would enable benchmarking of general-purpose multilingual LLMs and facilitate meta-evaluation of Evaluator LLMs. The proposed model, Hercule, is a cross-lingual evaluation model that addresses the scarcity of reference answers in the target language by learning to assign scores to responses based on easily available reference answers in English. Our experiments demonstrate that Hercule aligns more closely with human judgments compared to proprietary models, demonstrating the effectiveness of such cross-lingual evaluation in low resource scenarios. Further, it is also effective in zero-shot evaluation on unseen languages. This study is the first comprehensive examination of cross-lingual evaluation using LLMs, presenting a scalable and effective approach for multilingual assessment. All code, datasets, and models will be publicly available to enable further research in this important area. 6 authors · Oct 17, 2024 2
- Chinesewebtext: Large-scale high-quality Chinese web text extracted with effective evaluation model During the development of large language models (LLMs), the scale and quality of the pre-training data play a crucial role in shaping LLMs' capabilities. To accelerate the research of LLMs, several large-scale datasets, such as C4 [1], Pile [2], RefinedWeb [3] and WanJuan [4], have been released to the public. However, most of the released corpus focus mainly on English, and there is still lack of complete tool-chain for extracting clean texts from web data. Furthermore, fine-grained information of the corpus, e.g. the quality of each text, is missing. To address these challenges, we propose in this paper a new complete tool-chain EvalWeb to extract Chinese clean texts from noisy web data. First, similar to previous work, manually crafted rules are employed to discard explicit noisy texts from the raw crawled web contents. Second, a well-designed evaluation model is leveraged to assess the remaining relatively clean data, and each text is assigned a specific quality score. Finally, we can easily utilize an appropriate threshold to select the high-quality pre-training data for Chinese. Using our proposed approach, we release the largest and latest large-scale high-quality Chinese web text ChineseWebText, which consists of 1.42 TB and each text is associated with a quality score, facilitating the LLM researchers to choose the data according to the desired quality thresholds. We also release a much cleaner subset of 600 GB Chinese data with the quality exceeding 90%. 10 authors · Nov 2, 2023
- Style Over Substance: Evaluation Biases for Large Language Models As large language models (LLMs) continue to advance, accurately and comprehensively evaluating their performance becomes increasingly challenging. Human evaluations are conventionally considered the gold standard in natural language generation, but recent advancements incorporate state-of-the-art LLMs as proxies for human judges in evaluation processes. However, the extent to which humans and LLMs are capable evaluators remains uncertain. This study investigates the behavior of crowd-sourced and expert annotators, as well as LLMs, when comparing outputs from different models. To achieve this, we curate a dataset of intentionally flawed machine-generated answers. Our findings reveal a concerning bias in the evaluation process, as answers with factual errors are rated more favorably than answers that are too short or contained grammatical errors. To address this issue, we propose independently evaluating machine-generated text across multiple dimensions, rather than merging all the evaluation aspects into a single score. We instantiate this idea with the Elo rating system, resulting in the Multi-Elo Rating System. Empirical results from our study reveal that this proposed approach significantly enhances the quality of LLM-based evaluations, particularly in terms of factual accuracy. However, there is no significant improvement in crowd-sourced-based evaluations, indicating the need for further investigation and refinement. 2 authors · Jul 6, 2023
- Visualizing Uncertainty in Translation Tasks: An Evaluation of LLM Performance and Confidence Metrics Large language models (LLMs) are increasingly utilized for machine translation, yet their predictions often exhibit uncertainties that hinder interpretability and user trust. Effectively visualizing these uncertainties can enhance the usability of LLM outputs, particularly in contexts where translation accuracy is critical. This paper addresses two primary objectives: (1) providing users with token-level insights into model confidence and (2) developing a web-based visualization tool to quantify and represent translation uncertainties. To achieve these goals, we utilized the T5 model with the WMT19 dataset for translation tasks and evaluated translation quality using established metrics such as BLEU, METEOR, and ROUGE. We introduced three novel uncertainty quantification (UQ) metrics: (1) the geometric mean of token probabilities, (2) the arithmetic mean of token probabilities, and (3) the arithmetic mean of the kurtosis of token distributions. These metrics provide a simple yet effective framework for evaluating translation performance. Our analysis revealed a linear relationship between the traditional evaluation metrics and our UQ metrics, demonstrating the validity of our approach. Additionally, we developed an interactive web-based visualization that uses a color gradient to represent token confidence. This tool offers users a clear and intuitive understanding of translation quality while providing valuable insights into model performance. Overall, we show that our UQ metrics and visualization are both robust and interpretable, offering practical tools for evaluating and accessing machine translation systems. 5 authors · Jan 26
- Domain-Specific Text Generation for Machine Translation Preservation of domain knowledge from the source to target is crucial in any translation workflow. It is common in the translation industry to receive highly specialized projects, where there is hardly any parallel in-domain data. In such scenarios where there is insufficient in-domain data to fine-tune Machine Translation (MT) models, producing translations that are consistent with the relevant context is challenging. In this work, we propose a novel approach to domain adaptation leveraging state-of-the-art pretrained language models (LMs) for domain-specific data augmentation for MT, simulating the domain characteristics of either (a) a small bilingual dataset, or (b) the monolingual source text to be translated. Combining this idea with back-translation, we can generate huge amounts of synthetic bilingual in-domain data for both use cases. For our investigation, we use the state-of-the-art Transformer architecture. We employ mixed fine-tuning to train models that significantly improve translation of in-domain texts. More specifically, in both scenarios, our proposed methods achieve improvements of approximately 5-6 BLEU and 2-3 BLEU, respectively, on the Arabic-to-English and English-to-Arabic language pairs. Furthermore, the outcome of human evaluation corroborates the automatic evaluation results. 4 authors · Aug 11, 2022
64 The Bitter Lesson Learned from 2,000+ Multilingual Benchmarks As large language models (LLMs) continue to advance in linguistic capabilities, robust multilingual evaluation has become essential for promoting equitable technological progress. This position paper examines over 2,000 multilingual (non-English) benchmarks from 148 countries, published between 2021 and 2024, to evaluate past, present, and future practices in multilingual benchmarking. Our findings reveal that, despite significant investments amounting to tens of millions of dollars, English remains significantly overrepresented in these benchmarks. Additionally, most benchmarks rely on original language content rather than translations, with the majority sourced from high-resource countries such as China, India, Germany, the UK, and the USA. Furthermore, a comparison of benchmark performance with human judgments highlights notable disparities. STEM-related tasks exhibit strong correlations with human evaluations (0.70 to 0.85), while traditional NLP tasks like question answering (e.g., XQuAD) show much weaker correlations (0.11 to 0.30). Moreover, translating English benchmarks into other languages proves insufficient, as localized benchmarks demonstrate significantly higher alignment with local human judgments (0.68) than their translated counterparts (0.47). This underscores the importance of creating culturally and linguistically tailored benchmarks rather than relying solely on translations. Through this comprehensive analysis, we highlight six key limitations in current multilingual evaluation practices, propose the guiding principles accordingly for effective multilingual benchmarking, and outline five critical research directions to drive progress in the field. Finally, we call for a global collaborative effort to develop human-aligned benchmarks that prioritize real-world applications. 10 authors · Apr 21 2
- AFRIDOC-MT: Document-level MT Corpus for African Languages This paper introduces AFRIDOC-MT, a document-level multi-parallel translation dataset covering English and five African languages: Amharic, Hausa, Swahili, Yor\`ub\'a, and Zulu. The dataset comprises 334 health and 271 information technology news documents, all human-translated from English to these languages. We conduct document-level translation benchmark experiments by evaluating neural machine translation (NMT) models and large language models (LLMs) for translations between English and these languages, at both the sentence and pseudo-document levels. These outputs are realigned to form complete documents for evaluation. Our results indicate that NLLB-200 achieved the best average performance among the standard NMT models, while GPT-4o outperformed general-purpose LLMs. Fine-tuning selected models led to substantial performance gains, but models trained on sentences struggled to generalize effectively to longer documents. Furthermore, our analysis reveals that some LLMs exhibit issues such as under-generation, repetition of words or phrases, and off-target translations, especially for African languages. 16 authors · Jan 10
2 M-Prometheus: A Suite of Open Multilingual LLM Judges The use of language models for automatically evaluating long-form text (LLM-as-a-judge) is becoming increasingly common, yet most LLM judges are optimized exclusively for English, with strategies for enhancing their multilingual evaluation capabilities remaining largely unexplored in the current literature. This has created a disparity in the quality of automatic evaluation methods for non-English languages, ultimately hindering the development of models with better multilingual capabilities. To bridge this gap, we introduce M-Prometheus, a suite of open-weight LLM judges ranging from 3B to 14B parameters that can provide both direct assessment and pairwise comparison feedback on multilingual outputs. M-Prometheus models outperform state-of-the-art open LLM judges on multilingual reward benchmarks spanning more than 20 languages, as well as on literary machine translation (MT) evaluation covering 4 language pairs. Furthermore, M-Prometheus models can be leveraged at decoding time to significantly improve generated outputs across all 3 tested languages, showcasing their utility for the development of better multilingual models. Lastly, through extensive ablations, we identify the key factors for obtaining an effective multilingual judge, including backbone model selection and training on natively multilingual feedback data instead of translated data. We release our models, training dataset, and code. 8 authors · Apr 7
- Designing the Business Conversation Corpus While the progress of machine translation of written text has come far in the past several years thanks to the increasing availability of parallel corpora and corpora-based training technologies, automatic translation of spoken text and dialogues remains challenging even for modern systems. In this paper, we aim to boost the machine translation quality of conversational texts by introducing a newly constructed Japanese-English business conversation parallel corpus. A detailed analysis of the corpus is provided along with challenging examples for automatic translation. We also experiment with adding the corpus in a machine translation training scenario and show how the resulting system benefits from its use. 4 authors · Aug 5, 2020
25 SemScore: Automated Evaluation of Instruction-Tuned LLMs based on Semantic Textual Similarity Instruction-tuned Large Language Models (LLMs) have recently showcased remarkable advancements in their ability to generate fitting responses to natural language instructions. However, many current works rely on manual evaluation to judge the quality of generated responses. Since such manual evaluation is time-consuming, it does not easily scale to the evaluation of multiple models and model variants. In this short paper, we propose a straightforward but remarkably effective evaluation metric called SemScore, in which we directly compare model outputs to gold target responses using semantic textual similarity (STS). We conduct a comparative evaluation of the model outputs of 12 prominent instruction-tuned LLMs using 8 widely-used evaluation metrics for text generation. We find that our proposed SemScore metric outperforms all other, in many cases more complex, evaluation metrics in terms of correlation to human evaluation. These findings indicate the utility of our proposed metric for the evaluation of instruction-tuned LLMs. 2 authors · Jan 30, 2024 2
- (Perhaps) Beyond Human Translation: Harnessing Multi-Agent Collaboration for Translating Ultra-Long Literary Texts Recent advancements in machine translation (MT) have significantly enhanced translation quality across various domains. However, the translation of literary texts remains a formidable challenge due to their complex language, figurative expressions, and cultural nuances. In this work, we introduce a novel multi-agent framework based on large language models (LLMs) for literary translation, implemented as a company called TransAgents, which mirrors traditional translation publication process by leveraging the collective capabilities of multiple agents, to address the intricate demands of translating literary works. To evaluate the effectiveness of our system, we propose two innovative evaluation strategies: Monolingual Human Preference (MHP) and Bilingual LLM Preference (BLP). MHP assesses translations from the perspective of monolingual readers of the target language, while BLP uses advanced LLMs to compare translations directly with the original texts. Empirical findings indicate that despite lower d-BLEU scores, translations from TransAgents are preferred by both human evaluators and LLMs over human-written references, particularly in genres requiring domain-specific knowledge. We also highlight the strengths and limitations of TransAgents through case studies and suggests directions for future research. 4 authors · May 20, 2024
1 Finding Blind Spots in Evaluator LLMs with Interpretable Checklists Large Language Models (LLMs) are increasingly relied upon to evaluate text outputs of other LLMs, thereby influencing leaderboards and development decisions. However, concerns persist over the accuracy of these assessments and the potential for misleading conclusions. In this work, we investigate the effectiveness of LLMs as evaluators for text generation tasks. We propose FBI, a novel framework designed to examine the proficiency of Evaluator LLMs in assessing four critical abilities in other LLMs: factual accuracy, instruction following, coherence in long-form writing, and reasoning proficiency. By introducing targeted perturbations in answers generated by LLMs, that clearly impact one of these key capabilities, we test whether an Evaluator LLM can detect these quality drops. By creating a total of 2400 perturbed answers covering 22 perturbation categories, we conduct a comprehensive study using different evaluation strategies on five prominent LLMs commonly used as evaluators in the literature. Our findings reveal significant shortcomings in current Evaluator LLMs, which failed to identify quality drops in over 50\% of cases on average. Single-answer and pairwise evaluations demonstrated notable limitations, whereas reference-based evaluations showed comparatively better performance. These results underscore the unreliable nature of current Evaluator LLMs and advocate for cautious implementation in practical applications. Code and data are available at https://github.com/AI4Bharat/FBI. 4 authors · Jun 19, 2024
- Evaluating Large Language Models at Evaluating Instruction Following As research in large language models (LLMs) continues to accelerate, LLM-based evaluation has emerged as a scalable and cost-effective alternative to human evaluations for comparing the ever increasing list of models. This paper investigates the efficacy of these "LLM evaluators", particularly in using them to assess instruction following, a metric that gauges how closely generated text adheres to the given instruction. We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs. The authors manually curated 419 pairs of outputs, one adhering to instructions while the other diverging, yet may possess deceptive qualities that mislead an LLM evaluator, e.g., a more engaging tone. Contrary to existing meta-evaluation, we discover that different evaluators (i.e., combinations of LLMs and prompts) exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement. We also present a novel suite of prompting strategies that further close the gap between LLM and human evaluators. With LLMBar, we hope to offer more insight into LLM evaluators and foster future research in developing better instruction-following models. 6 authors · Oct 11, 2023
2 Beyond Metrics: A Critical Analysis of the Variability in Large Language Model Evaluation Frameworks As large language models (LLMs) continue to evolve, the need for robust and standardized evaluation benchmarks becomes paramount. Evaluating the performance of these models is a complex challenge that requires careful consideration of various linguistic tasks, model architectures, and benchmarking methodologies. In recent years, various frameworks have emerged as noteworthy contributions to the field, offering comprehensive evaluation tests and benchmarks for assessing the capabilities of LLMs across diverse domains. This paper provides an exploration and critical analysis of some of these evaluation methodologies, shedding light on their strengths, limitations, and impact on advancing the state-of-the-art in natural language processing. 6 authors · Jul 28, 2024
- Multilingual Translation with Extensible Multilingual Pretraining and Finetuning Recent work demonstrates the potential of multilingual pretraining of creating one model that can be used for various tasks in different languages. Previous work in multilingual pretraining has demonstrated that machine translation systems can be created by finetuning on bitext. In this work, we show that multilingual translation models can be created through multilingual finetuning. Instead of finetuning on one direction, a pretrained model is finetuned on many directions at the same time. Compared to multilingual models trained from scratch, starting from pretrained models incorporates the benefits of large quantities of unlabeled monolingual data, which is particularly important for low resource languages where bitext is not available. We demonstrate that pretrained models can be extended to incorporate additional languages without loss of performance. We double the number of languages in mBART to support multilingual machine translation models of 50 languages. Finally, we create the ML50 benchmark, covering low, mid, and high resource languages, to facilitate reproducible research by standardizing training and evaluation data. On ML50, we demonstrate that multilingual finetuning improves on average 1 BLEU over the strongest baselines (being either multilingual from scratch or bilingual finetuning) while improving 9.3 BLEU on average over bilingual baselines from scratch. 8 authors · Aug 2, 2020
- SemEval-2017 Task 1: Semantic Textual Similarity - Multilingual and Cross-lingual Focused Evaluation Semantic Textual Similarity (STS) measures the meaning similarity of sentences. Applications include machine translation (MT), summarization, generation, question answering (QA), short answer grading, semantic search, dialog and conversational systems. The STS shared task is a venue for assessing the current state-of-the-art. The 2017 task focuses on multilingual and cross-lingual pairs with one sub-track exploring MT quality estimation (MTQE) data. The task obtained strong participation from 31 teams, with 17 participating in all language tracks. We summarize performance and review a selection of well performing methods. Analysis highlights common errors, providing insight into the limitations of existing models. To support ongoing work on semantic representations, the STS Benchmark is introduced as a new shared training and evaluation set carefully selected from the corpus of English STS shared task data (2012-2017). 5 authors · Jul 31, 2017
1 "Vorbeşti Româneşte?" A Recipe to Train Powerful Romanian LLMs with English Instructions In recent years, Large Language Models (LLMs) have achieved almost human-like performance on various tasks. While some LLMs have been trained on multilingual data, most of the training data is in English; hence, their performance in English greatly exceeds other languages. To our knowledge, we are the first to collect and translate a large collection of texts, instructions, and benchmarks and train, evaluate, and release open-source LLMs tailored for Romanian. We evaluate our methods on four different categories, including academic benchmarks, MT-Bench (manually translated), and a professionally built historical, cultural, and social benchmark adapted to Romanian. We argue for the usefulness and high performance of RoLLMs by obtaining state-of-the-art results across the board. We publicly release all resources (i.e., data, training and evaluation code, models) to support and encourage research on Romanian LLMs while concurrently creating a generalizable recipe, adequate for other low or less-resourced languages. 13 authors · Jun 26, 2024
- CometKiwi: IST-Unbabel 2022 Submission for the Quality Estimation Shared Task We present the joint contribution of IST and Unbabel to the WMT 2022 Shared Task on Quality Estimation (QE). Our team participated on all three subtasks: (i) Sentence and Word-level Quality Prediction; (ii) Explainable QE; and (iii) Critical Error Detection. For all tasks we build on top of the COMET framework, connecting it with the predictor-estimator architecture of OpenKiwi, and equipping it with a word-level sequence tagger and an explanation extractor. Our results suggest that incorporating references during pretraining improves performance across several language pairs on downstream tasks, and that jointly training with sentence and word-level objectives yields a further boost. Furthermore, combining attention and gradient information proved to be the top strategy for extracting good explanations of sentence-level QE models. Overall, our submissions achieved the best results for all three tasks for almost all language pairs by a considerable margin. 12 authors · Sep 13, 2022