1 Can Large Language Models be Trusted for Evaluation? Scalable Meta-Evaluation of LLMs as Evaluators via Agent Debate Despite the utility of Large Language Models (LLMs) across a wide range of tasks and scenarios, developing a method for reliably evaluating LLMs across varied contexts continues to be challenging. Modern evaluation approaches often use LLMs to assess responses generated by LLMs. However, the meta-evaluation conducted to assess the effectiveness of these LLMs as evaluators is typically constrained by the coverage of existing benchmarks or requires extensive human annotation. This underscores the urgency of methods for scalable meta-evaluation that can effectively, reliably, and efficiently evaluate the performance of LLMs as evaluators across diverse tasks and scenarios, particularly in potentially new, user-defined scenarios. To fill this gap, we propose ScaleEval, an agent-debate-assisted meta-evaluation framework that leverages the capabilities of multiple communicative LLM agents. This framework supports multi-round discussions to assist human annotators in discerning the most capable LLMs as evaluators, which significantly eases their workload in cases that used to require large-scale annotations during meta-evaluation. We release the code for our framework, which is publicly available at: https://github.com/GAIR-NLP/scaleeval. 4 authors · Jan 30, 2024 1
3 MedAgents: Large Language Models as Collaborators for Zero-shot Medical Reasoning Large Language Models (LLMs), despite their remarkable progress across various general domains, encounter significant barriers in medicine and healthcare. This field faces unique challenges such as domain-specific terminologies and the reasoning over specialized knowledge. To address these obstinate issues, we propose a novel Multi-disciplinary Collaboration (MC) framework for the medical domain that leverages role-playing LLM-based agents who participate in a collaborative multi-round discussion, thereby enhancing LLM proficiency and reasoning capabilities. This training-free and interpretable framework encompasses five critical steps: gathering domain experts, proposing individual analyses, summarising these analyses into a report, iterating over discussions until a consensus is reached, and ultimately making a decision. Our work particularly focuses on the zero-shot scenario, our results on nine data sets (MedQA, MedMCQA, PubMedQA, and six subtasks from MMLU) establish that our proposed MC framework excels at mining and harnessing the medical expertise in LLMs, as well as extending its reasoning abilities. Based on these outcomes, we further conduct a human evaluation to pinpoint and categorize common errors within our method, as well as ablation studies aimed at understanding the impact of various factors on overall performance. Our code can be found at https://github.com/gersteinlab/MedAgents. 7 authors · Nov 16, 2023
2 Symbolic Mixture-of-Experts: Adaptive Skill-based Routing for Heterogeneous Reasoning Combining existing pre-trained expert LLMs is a promising avenue for scalably tackling large-scale and diverse tasks. However, selecting experts at the task level is often too coarse-grained, as heterogeneous tasks may require different expertise for each instance. To enable adaptive instance-level mixing of pre-trained LLM experts, we propose Symbolic-MoE, a symbolic, text-based, and gradient-free Mixture-of-Experts framework. Symbolic-MoE takes a fine-grained approach to selection by emphasizing skills, e.g., algebra in math or molecular biology in biomedical reasoning. We propose a skill-based recruiting strategy that dynamically selects the most relevant set of expert LLMs for diverse reasoning tasks based on their strengths. Each selected expert then generates its own reasoning, resulting in k outputs from k experts, which are then synthesized into a final high-quality response by an aggregator chosen based on its ability to integrate diverse reasoning outputs. We show that Symbolic-MoE's instance-level expert selection improves performance by a large margin but -- when implemented naively -- can introduce a high computational overhead due to the need for constant model loading and offloading. To address this, we implement a batch inference strategy that groups instances based on their assigned experts, loading each model only once. This allows us to integrate 16 expert models on 1 GPU with a time cost comparable to or better than prior multi-agent baselines using 4 GPUs. Through extensive evaluations on diverse benchmarks (MMLU-Pro, GPQA, AIME, and MedMCQA), we demonstrate that Symbolic-MoE outperforms strong LLMs like GPT4o-mini, as well as multi-agent approaches, with an absolute average improvement of 8.15% over the best multi-agent baseline. Moreover, Symbolic-MoE removes the need for expensive multi-round discussions, outperforming discussion baselines with less computation. 5 authors · Mar 7 2
1 Auto Arena of LLMs: Automating LLM Evaluations with Agent Peer-battles and Committee Discussions As LLMs evolve on a daily basis, there is an urgent need for a trustworthy evaluation method that can provide robust evaluation results in a timely fashion. Currently, as static benchmarks are prone to contamination concerns, users tend to trust human voting platforms, such as Chatbot Arena. However, human annotations require extensive manual efforts. To provide an automatic, robust, and trustworthy evaluation framework, we innovatively propose the Auto-Arena of LLMs, which automates the entire evaluation process with LLM agents. Firstly, an examiner LLM devises queries. Then, a pair of candidate LLMs engage in a multi-round peer-battle around the query, during which the LLM's true performance gaps become visible. Finally, a committee of LLM judges collectively discuss and determine the winner, which alleviates bias and promotes fairness. In our extensive experiment on the 17 newest LLMs, Auto-Arena shows the highest correlation with human preferences, providing a promising alternative to human evaluation platforms. 5 authors · May 30, 2024
- LVAgent: Long Video Understanding by Multi-Round Dynamical Collaboration of MLLM Agents Existing Multimodal Large Language Models (MLLMs) encounter significant challenges in modeling the temporal context within long videos. Currently, mainstream Agent-based methods use external tools (e.g., search engine, memory banks, OCR, retrieval models) to assist a single MLLM in answering long video questions. Despite such tool-based support, a solitary MLLM still offers only a partial understanding of long videos, resulting in limited performance. In order to better address long video tasks, we introduce LVAgent, the first framework enabling multi-round dynamic collaboration of MLLM agents in long video understanding. Our methodology consists of four key steps: 1. Selection: We pre-select appropriate agents from the model library to form optimal agent teams based on different tasks. 2. Perception: We design an effective retrieval scheme for long videos, improving the coverage of critical temporal segments while maintaining computational efficiency. 3. Action: Agents answer long video-related questions and exchange reasons. 4. Reflection: We evaluate the performance of each agent in each round of discussion and optimize the agent team for dynamic collaboration. The agents iteratively refine their answers by multi-round dynamical collaboration of MLLM agents. LVAgent is the first agent system method that outperforms all closed-source models (including GPT-4o) and open-source models (including InternVL-2.5 and Qwen2-VL) in the long video understanding tasks. Our LVAgent achieves an accuracy of 80% on four mainstream long video understanding tasks. Notably, on the LongVideoBench dataset, LVAgent improves accuracy by up to 13.3% compared with SOTA. 7 authors · Mar 13
1 ReConcile: Round-Table Conference Improves Reasoning via Consensus among Diverse LLMs Large Language Models (LLMs) still struggle with complex reasoning tasks. Motivated by the society of minds (Minsky, 1988), we propose ReConcile, a multi-model multi-agent framework designed as a round table conference among diverse LLM agents to foster diverse thoughts and discussion for improved consensus. ReConcile enhances the reasoning capabilities of LLMs by holding multiple rounds of discussion, learning to convince other agents to improve their answers, and employing a confidence-weighted voting mechanism. In each round, ReConcile initiates discussion between agents via a 'discussion prompt' that consists of (a) grouped answers and explanations generated by each agent in the previous round, (b) their uncertainties, and (c) demonstrations of answer-rectifying human explanations, used for convincing other agents. This discussion prompt enables each agent to revise their responses in light of insights from other agents. Once a consensus is reached and the discussion ends, ReConcile determines the final answer by leveraging the confidence of each agent in a weighted voting scheme. We implement ReConcile with ChatGPT, Bard, and Claude2 as the three agents. Our experimental results on various benchmarks demonstrate that ReConcile significantly enhances the reasoning performance of the agents (both individually and as a team), surpassing prior single-agent and multi-agent baselines by 7.7% and also outperforming GPT-4 on some of these datasets. We also experiment with GPT-4 itself as one of the agents in ReConcile and demonstrate that its initial performance also improves by absolute 10.0% through discussion and feedback from other agents. Finally, we also analyze the accuracy after every round and observe that ReConcile achieves better and faster consensus between agents, compared to a multi-agent debate baseline. Our code is available at: https://github.com/dinobby/ReConcile 3 authors · Sep 22, 2023
- Recent Advances, Applications, and Open Challenges in Machine Learning for Health: Reflections from Research Roundtables at ML4H 2023 Symposium The third ML4H symposium was held in person on December 10, 2023, in New Orleans, Louisiana, USA. The symposium included research roundtable sessions to foster discussions between participants and senior researchers on timely and relevant topics for the ML4H community. Encouraged by the successful virtual roundtables in the previous year, we organized eleven in-person roundtables and four virtual roundtables at ML4H 2022. The organization of the research roundtables at the conference involved 17 Senior Chairs and 19 Junior Chairs across 11 tables. Each roundtable session included invited senior chairs (with substantial experience in the field), junior chairs (responsible for facilitating the discussion), and attendees from diverse backgrounds with interest in the session's topic. Herein we detail the organization process and compile takeaways from these roundtable discussions, including recent advances, applications, and open challenges for each topic. We conclude with a summary and lessons learned across all roundtables. This document serves as a comprehensive review paper, summarizing the recent advancements in machine learning for healthcare as contributed by foremost researchers in the field. 43 authors · Mar 3, 2024
- DEBATE: A Large-Scale Benchmark for Role-Playing LLM Agents in Multi-Agent, Long-Form Debates Accurately modeling opinion change through social interactions is crucial for addressing issues like misinformation and polarization. While role-playing large language models (LLMs) offer a promising way to simulate human-like interactions, existing research shows that single-agent alignment does not guarantee authentic multi-agent group dynamics. Current LLM role-play setups often produce unnatural dynamics (e.g., premature convergence), without an empirical benchmark to measure authentic human opinion trajectories. To bridge this gap, we introduce DEBATE, the first large-scale empirical benchmark explicitly designed to evaluate the authenticity of the interaction between multi-agent role-playing LLMs. DEBATE contains 29,417 messages from multi-round debate conversations among over 2,792 U.S.-based participants discussing 107 controversial topics, capturing both publicly-expressed messages and privately-reported opinions. Using DEBATE, we systematically evaluate and identify critical discrepancies between simulated and authentic group dynamics. We further demonstrate DEBATE's utility for aligning LLMs with human behavior through supervised fine-tuning, achieving improvements in surface-level metrics (e.g., ROUGE-L and message length) while highlighting limitations in deeper semantic alignment (e.g., semantic similarity). Our findings highlight both the potential and current limitations of role-playing LLM agents for realistically simulating human-like social dynamics. 11 authors · Oct 28
- LLM Discussion: Enhancing the Creativity of Large Language Models via Discussion Framework and Role-Play Large language models (LLMs) have shown exceptional proficiency in natural language processing but often fall short of generating creative and original responses to open-ended questions. To enhance LLM creativity, our key insight is to emulate the human process of inducing collective creativity through engaging discussions with participants from diverse backgrounds and perspectives. To this end, we propose LLM Discussion, a three-phase discussion framework that facilitates vigorous and diverging idea exchanges and ensures convergence to creative answers. Moreover, we adopt a role-playing technique by assigning distinct roles to LLMs to combat the homogeneity of LLMs. We evaluate the efficacy of the proposed framework with the Alternative Uses Test, Similarities Test, Instances Test, and Scientific Creativity Test through both LLM evaluation and human study. Our proposed framework outperforms single-LLM approaches and existing multi-LLM frameworks across various creativity metrics. 6 authors · May 10, 2024
1 DebateKG: Automatic Policy Debate Case Creation with Semantic Knowledge Graphs Recent work within the Argument Mining community has shown the applicability of Natural Language Processing systems for solving problems found within competitive debate. One of the most important tasks within competitive debate is for debaters to create high quality debate cases. We show that effective debate cases can be constructed using constrained shortest path traversals on Argumentative Semantic Knowledge Graphs. We study this potential in the context of a type of American Competitive Debate, called Policy Debate, which already has a large scale dataset targeting it called DebateSum. We significantly improve upon DebateSum by introducing 53180 new examples, as well as further useful metadata for every example, to the dataset. We leverage the txtai semantic search and knowledge graph toolchain to produce and contribute 9 semantic knowledge graphs built on this dataset. We create a unique method for evaluating which knowledge graphs are better in the context of producing policy debate cases. A demo which automatically generates debate cases, along with all other code and the Knowledge Graphs, are open-sourced and made available to the public here: https://github.com/Hellisotherpeople/DebateKG 1 authors · Jul 9, 2023
- Can LLMs Speak For Diverse People? Tuning LLMs via Debate to Generate Controllable Controversial Statements Making LLMs speak for different, especially minority groups of people, and generate statements supporting their diverse or even controversial perspectives is critical to creating an inclusive environment. However, existing LLMs lack sufficient controllability to the stance of their generated content, which often contains inconsistent, neutral, or biased statements. In this paper, we improve the controllability of LLMs in generating statements supporting an argument the user defined in the prompt. We find that multi-round debates between two LLMs with opposite stances generate higher-quality and more salient statements for each, which are important training data to improve the controllability of LLMs. Motivated by this, we develop a novel debate & tuning (DEBATUNE) pipeline finetuning LLMs to generate the statements obtained via debate. To examine DEBATUNE, we curate the largest dataset of debate topics so far, which covers 710 controversial topics and corresponding arguments for each topic. Evaluations by the GPT-4 judge with a novel controversy controllability metric show that LLMs' capability of generating diverse perspectives is significantly improved by DEBATUNE. Moreover, such controllability can be generalized to unseen topics, generating high-quality statements supporting controversial arguments. 4 authors · Feb 16, 2024
1 NaturalConv: A Chinese Dialogue Dataset Towards Multi-turn Topic-driven Conversation In this paper, we propose a Chinese multi-turn topic-driven conversation dataset, NaturalConv, which allows the participants to chat anything they want as long as any element from the topic is mentioned and the topic shift is smooth. Our corpus contains 19.9K conversations from six domains, and 400K utterances with an average turn number of 20.1. These conversations contain in-depth discussions on related topics or widely natural transition between multiple topics. We believe either way is normal for human conversation. To facilitate the research on this corpus, we provide results of several benchmark models. Comparative results show that for this dataset, our current models are not able to provide significant improvement by introducing background knowledge/topic. Therefore, the proposed dataset should be a good benchmark for further research to evaluate the validity and naturalness of multi-turn conversation systems. Our dataset is available at https://ai.tencent.com/ailab/nlp/dialogue/#datasets. 4 authors · Mar 3, 2021
- Let's Negotiate! A Survey of Negotiation Dialogue Systems Negotiation is one of the crucial abilities in human communication, and there has been a resurgent research interest in negotiation dialogue systems recently, which goal is to empower intelligent agents with such ability that can efficiently help humans resolve conflicts or reach beneficial agreements. Although there have been many explorations in negotiation dialogue systems, a systematic review of this task has to date remained notably absent. To this end, we aim to fill this gap by reviewing contemporary studies in the emerging field of negotiation dialogue systems, covering benchmarks, evaluations, and methodologies. Furthermore, we also discuss potential future directions, including multi-modal, multi-party, and cross-cultural negotiation scenarios. Our goal is to provide the community with a systematic overview of negotiation dialogue systems and to inspire future research. 8 authors · Dec 18, 2022
- Do Differences in Values Influence Disagreements in Online Discussions? Disagreements are common in online discussions. Disagreement may foster collaboration and improve the quality of a discussion under some conditions. Although there exist methods for recognizing disagreement, a deeper understanding of factors that influence disagreement is lacking in the literature. We investigate a hypothesis that differences in personal values are indicative of disagreement in online discussions. We show how state-of-the-art models can be used for estimating values in online discussions and how the estimated values can be aggregated into value profiles. We evaluate the estimated value profiles based on human-annotated agreement labels. We find that the dissimilarity of value profiles correlates with disagreement in specific cases. We also find that including value information in agreement prediction improves performance. 4 authors · Oct 24, 2023
- Visions in Quantum Gravity To deepen our understanding of Quantum Gravity and its connections with black holes and cosmology, building a common language and exchanging ideas across different approaches is crucial. The Nordita Program "Quantum Gravity: from gravitational effective field theories to ultraviolet complete approaches" created a platform for extensive discussions, aimed at pinpointing both common grounds and sources of disagreements, with the hope of generating ideas and driving progress in the field. This contribution summarizes the twelve topical discussions held during the program and collects individual thoughts of speakers and panelists on the future of the field in light of these discussions. 38 authors · Dec 11, 2024
- Issue Framing in Online Discussion Fora In online discussion fora, speakers often make arguments for or against something, say birth control, by highlighting certain aspects of the topic. In social science, this is referred to as issue framing. In this paper, we introduce a new issue frame annotated corpus of online discussions. We explore to what extent models trained to detect issue frames in newswire and social media can be transferred to the domain of discussion fora, using a combination of multi-task and adversarial training, assuming only unlabeled training data in the target domain. 4 authors · Apr 8, 2019
- Multi-Agent Large Language Models for Conversational Task-Solving In an era where single large language models have dominated the landscape of artificial intelligence for years, multi-agent systems arise as new protagonists in conversational task-solving. While previous studies have showcased their potential in reasoning tasks and creative endeavors, an analysis of their limitations concerning the conversational paradigms and the impact of individual agents is missing. It remains unascertained how multi-agent discussions perform across tasks of varying complexity and how the structure of these conversations influences the process. To fill that gap, this work systematically evaluates multi-agent systems across various discussion paradigms, assessing their strengths and weaknesses in both generative tasks and question-answering tasks. Alongside the experiments, I propose a taxonomy of 20 multi-agent research studies from 2022 to 2024, followed by the introduction of a framework for deploying multi-agent LLMs in conversational task-solving. I demonstrate that while multi-agent systems excel in complex reasoning tasks, outperforming a single model by leveraging expert personas, they fail on basic tasks. Concretely, I identify three challenges that arise: 1) While longer discussions enhance reasoning, agents fail to maintain conformity to strict task requirements, which leads to problem drift, making shorter conversations more effective for basic tasks. 2) Prolonged discussions risk alignment collapse, raising new safety concerns for these systems. 3) I showcase discussion monopolization through long generations, posing the problem of fairness in decision-making for tasks like summarization. This work uncovers both the potential and challenges that arise with multi-agent interaction and varying conversational paradigms, providing insights into how future research could improve the efficiency, performance, and safety of multi-agent LLMs. 1 authors · Oct 30, 2024
- KdConv: A Chinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation The research of knowledge-driven conversational systems is largely limited due to the lack of dialog data which consist of multi-turn conversations on multiple topics and with knowledge annotations. In this paper, we propose a Chinese multi-domain knowledge-driven conversation dataset, KdConv, which grounds the topics in multi-turn conversations to knowledge graphs. Our corpus contains 4.5K conversations from three domains (film, music, and travel), and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related topics and natural transition between multiple topics. To facilitate the following research on this corpus, we provide several benchmark models. Comparative results show that the models can be enhanced by introducing background knowledge, yet there is still a large space for leveraging knowledge to model multi-turn conversations for further research. Results also show that there are obvious performance differences between different domains, indicating that it is worth to further explore transfer learning and domain adaptation. The corpus and benchmark models are publicly available. 5 authors · Apr 8, 2020
- DELPHI: Data for Evaluating LLMs' Performance in Handling Controversial Issues Controversy is a reflection of our zeitgeist, and an important aspect to any discourse. The rise of large language models (LLMs) as conversational systems has increased public reliance on these systems for answers to their various questions. Consequently, it is crucial to systematically examine how these models respond to questions that pertaining to ongoing debates. However, few such datasets exist in providing human-annotated labels reflecting the contemporary discussions. To foster research in this area, we propose a novel construction of a controversial questions dataset, expanding upon the publicly released Quora Question Pairs Dataset. This dataset presents challenges concerning knowledge recency, safety, fairness, and bias. We evaluate different LLMs using a subset of this dataset, illuminating how they handle controversial issues and the stances they adopt. This research ultimately contributes to our understanding of LLMs' interaction with controversial issues, paving the way for improvements in their comprehension and handling of complex societal debates. 6 authors · Oct 27, 2023
- MODS: Moderating a Mixture of Document Speakers to Summarize Debatable Queries in Document Collections Query-focused summarization (QFS) gives a summary of documents to answer a query. Past QFS work assumes queries have one answer, ignoring debatable ones (Is law school worth it?). We introduce Debatable QFS (DQFS), a task to create summaries that answer debatable queries via documents with opposing perspectives; summaries must comprehensively cover all sources and balance perspectives, favoring no side. These goals elude LLM QFS systems, which: 1) lack structured content plans, failing to guide LLMs to write balanced summaries, and 2) use the same query to retrieve contexts across documents, failing to cover all perspectives specific to each document's content. To overcome this, we design MODS, a multi-LLM framework mirroring human panel discussions. MODS treats documents as individual Speaker LLMs and has a Moderator LLM that picks speakers to respond to tailored queries for planned topics. Speakers use tailored queries to retrieve relevant contexts from their documents and supply perspectives, which are tracked in a rich outline, yielding a content plan to guide the final summary. Experiments on ConflictingQA with controversial web queries and DebateQFS, our new dataset of debate queries from Debatepedia, show MODS beats SOTA by 38-59% in topic paragraph coverage and balance, based on new citation metrics. Users also find MODS's summaries to be readable and more balanced. 7 authors · Feb 1
- Facilitating Opinion Diversity through Hybrid NLP Approaches Modern democracies face a critical issue of declining citizen participation in decision-making. Online discussion forums are an important avenue for enhancing citizen participation. This thesis proposal 1) identifies the challenges involved in facilitating large-scale online discussions with Natural Language Processing (NLP), 2) suggests solutions to these challenges by incorporating hybrid human-AI technologies, and 3) investigates what these technologies can reveal about individual perspectives in online discussions. We propose a three-layered hierarchy for representing perspectives that can be obtained by a mixture of human intelligence and large language models. We illustrate how these representations can draw insights into the diversity of perspectives and allow us to investigate interactions in online discussions. 1 authors · May 15, 2024
1 Debate or Vote: Which Yields Better Decisions in Multi-Agent Large Language Models? Multi-Agent Debate~(MAD) has emerged as a promising paradigm for improving the performance of large language models through collaborative reasoning. Despite recent advances, the key factors driving MAD's effectiveness remain unclear. In this work, we disentangle MAD into two key components--Majority Voting and inter-agent Debate--and assess their respective contributions. Through extensive experiments across seven NLP benchmarks, we find that Majority Voting alone accounts for most of the performance gains typically attributed to MAD. To explain this, we propose a theoretical framework that models debate as a stochastic process. We prove that it induces a martingale over agents' belief trajectories, implying that debate alone does not improve expected correctness. Guided by these insights, we demonstrate that targeted interventions, by biasing the belief update toward correction, can meaningfully enhance debate effectiveness. Overall, our findings suggest that while MAD has potential, simple ensembling methods remain strong and more reliable alternatives in many practical settings. Code is released in https://github.com/deeplearning-wisc/debate-or-vote. 3 authors · Aug 24
- MP2D: An Automated Topic Shift Dialogue Generation Framework Leveraging Knowledge Graphs Despite advancements in on-topic dialogue systems, effectively managing topic shifts within dialogues remains a persistent challenge, largely attributed to the limited availability of training datasets. To address this issue, we propose Multi-Passage to Dialogue (MP2D), a data generation framework that automatically creates conversational question-answering datasets with natural topic transitions. By leveraging the relationships between entities in a knowledge graph, MP2D maps the flow of topics within a dialogue, effectively mirroring the dynamics of human conversation. It retrieves relevant passages corresponding to the topics and transforms them into dialogues through the passage-to-dialogue method. Through quantitative and qualitative experiments, we demonstrate MP2D's efficacy in generating dialogue with natural topic shifts. Furthermore, this study introduces a novel benchmark for topic shift dialogues, TS-WikiDialog. Utilizing the dataset, we demonstrate that even Large Language Models (LLMs) struggle to handle topic shifts in dialogue effectively, and we showcase the performance improvements of models trained on datasets generated by MP2D across diverse topic shift dialogue tasks. 6 authors · Mar 9, 2024
- OTTers: One-turn Topic Transitions for Open-Domain Dialogue Mixed initiative in open-domain dialogue requires a system to pro-actively introduce new topics. The one-turn topic transition task explores how a system connects two topics in a cooperative and coherent manner. The goal of the task is to generate a "bridging" utterance connecting the new topic to the topic of the previous conversation turn. We are especially interested in commonsense explanations of how a new topic relates to what has been mentioned before. We first collect a new dataset of human one-turn topic transitions, which we call OTTers. We then explore different strategies used by humans when asked to complete such a task, and notice that the use of a bridging utterance to connect the two topics is the approach used the most. We finally show how existing state-of-the-art text generation models can be adapted to this task and examine the performance of these baselines on different splits of the OTTers data. 4 authors · May 28, 2021
2 DebateSum: A large-scale argument mining and summarization dataset Prior work in Argument Mining frequently alludes to its potential applications in automatic debating systems. Despite this focus, almost no datasets or models exist which apply natural language processing techniques to problems found within competitive formal debate. To remedy this, we present the DebateSum dataset. DebateSum consists of 187,386 unique pieces of evidence with corresponding argument and extractive summaries. DebateSum was made using data compiled by competitors within the National Speech and Debate Association over a 7-year period. We train several transformer summarization models to benchmark summarization performance on DebateSum. We also introduce a set of fasttext word-vectors trained on DebateSum called debate2vec. Finally, we present a search engine for this dataset which is utilized extensively by members of the National Speech and Debate Association today. The DebateSum search engine is available to the public here: http://www.debate.cards 2 authors · Nov 14, 2020
- DEBACER: a method for slicing moderated debates Subjects change frequently in moderated debates with several participants, such as in parliamentary sessions, electoral debates, and trials. Partitioning a debate into blocks with the same subject is essential for understanding. Often a moderator is responsible for defining when a new block begins so that the task of automatically partitioning a moderated debate can focus solely on the moderator's behavior. In this paper, we (i) propose a new algorithm, DEBACER, which partitions moderated debates; (ii) carry out a comparative study between conventional and BERTimbau pipelines; and (iii) validate DEBACER applying it to the minutes of the Assembly of the Republic of Portugal. Our results show the effectiveness of DEBACER. Keywords: Natural Language Processing, Political Documents, Spoken Text Processing, Speech Split, Dialogue Partitioning. 9 authors · Dec 10, 2021
- Rethinking the Bounds of LLM Reasoning: Are Multi-Agent Discussions the Key? Recent progress in LLMs discussion suggests that multi-agent discussion improves the reasoning abilities of LLMs. In this work, we reevaluate this claim through systematic experiments, where we propose a novel group discussion framework to enrich the set of discussion mechanisms. Interestingly, our results show that a single-agent LLM with strong prompts can achieve almost the same performance as the best existing discussion approach on a wide range of reasoning tasks and backbone LLMs. We observe that the multi-agent discussion performs better than a single agent only when there is no demonstration in the prompt. Further study reveals the common interaction mechanisms of LLMs during the discussion. 5 authors · Feb 28, 2024
- OpenDebateEvidence: A Massive-Scale Argument Mining and Summarization Dataset We introduce OpenDebateEvidence, a comprehensive dataset for argument mining and summarization sourced from the American Competitive Debate community. This dataset includes over 3.5 million documents with rich metadata, making it one of the most extensive collections of debate evidence. OpenDebateEvidence captures the complexity of arguments in high school and college debates, providing valuable resources for training and evaluation. Our extensive experiments demonstrate the efficacy of fine-tuning state-of-the-art large language models for argumentative abstractive summarization across various methods, models, and datasets. By providing this comprehensive resource, we aim to advance computational argumentation and support practical applications for debaters, educators, and researchers. OpenDebateEvidence is publicly available to support further research and innovation in computational argumentation. Access it here: https://huggingface.co/datasets/Yusuf5/OpenCaselist 10 authors · Jun 20, 2024
7 Tree-of-Debate: Multi-Persona Debate Trees Elicit Critical Thinking for Scientific Comparative Analysis With the exponential growth of research facilitated by modern technology and improved accessibility, scientific discoveries have become increasingly fragmented within and across fields. This makes it challenging to assess the significance, novelty, incremental findings, and equivalent ideas between related works, particularly those from different research communities. Large language models (LLMs) have recently demonstrated strong quantitative and qualitative reasoning abilities, and multi-agent LLM debates have shown promise in handling complex reasoning tasks by exploring diverse perspectives and reasoning paths. Inspired by this, we introduce Tree-of-Debate (ToD), a framework which converts scientific papers into LLM personas that debate their respective novelties. To emphasize structured, critical reasoning rather than focusing solely on outcomes, ToD dynamically constructs a debate tree, enabling fine-grained analysis of independent novelty arguments within scholarly articles. Through experiments on scientific literature across various domains, evaluated by expert researchers, we demonstrate that ToD generates informative arguments, effectively contrasts papers, and supports researchers in their literature review. 4 authors · Feb 20 2
- Multi-Party Chat: Conversational Agents in Group Settings with Humans and Models Current dialogue research primarily studies pairwise (two-party) conversations, and does not address the everyday setting where more than two speakers converse together. In this work, we both collect and evaluate multi-party conversations to study this more general case. We use the LIGHT environment to construct grounded conversations, where each participant has an assigned character to role-play. We thus evaluate the ability of language models to act as one or more characters in such conversations. Models require two skills that pairwise-trained models appear to lack: (1) being able to decide when to talk; (2) producing coherent utterances grounded on multiple characters. We compare models trained on our new dataset to existing pairwise-trained dialogue models, as well as large language models with few-shot prompting. We find that our new dataset, MultiLIGHT, which we will publicly release, can help bring significant improvements in the group setting. 6 authors · Apr 26, 2023
- Between welcome culture and border fence. A dataset on the European refugee crisis in German newspaper reports Newspaper reports provide a rich source of information on the unfolding of public debate on specific policy fields that can serve as basis for inquiry in political science. Such debates are often triggered by critical events, which attract public attention and incite the reactions of political actors: crisis sparks the debate. However, due to the challenges of reliable annotation and modeling, few large-scale datasets with high-quality annotation are available. This paper introduces DebateNet2.0, which traces the political discourse on the European refugee crisis in the German quality newspaper taz during the year 2015. The core units of our annotation are political claims (requests for specific actions to be taken within the policy field) and the actors who make them (politicians, parties, etc.). The contribution of this paper is twofold. First, we document and release DebateNet2.0 along with its companion R package, mardyR, guiding the reader through the practical and conceptual issues related to the annotation of policy debates in newspapers. Second, we outline and apply a Discourse Network Analysis (DNA) to DebateNet2.0, comparing two crucial moments of the policy debate on the 'refugee crisis': the migration flux through the Mediterranean in April/May and the one along the Balkan route in September/October. Besides the released resources and the case-study, our contribution is also methodological: we talk the reader through the steps from a newspaper article to a discourse network, demonstrating that there is not just one discourse network for the German migration debate, but multiple ones, depending on the topic of interest (political actors, policy fields, time spans). 6 authors · Nov 19, 2021
- SocraSynth: Multi-LLM Reasoning with Conditional Statistics Large language models (LLMs), while promising, face criticisms for biases, hallucinations, and a lack of reasoning capability. This paper introduces SocraSynth, a multi-LLM agent reasoning platform developed to mitigate these issues. SocraSynth utilizes conditional statistics and systematic context enhancement through continuous arguments, alongside adjustable debate contentiousness levels. The platform typically involves a human moderator and two LLM agents representing opposing viewpoints on a given subject. SocraSynth operates in two main phases: knowledge generation and reasoning evaluation. In the knowledge generation phase, the moderator defines the debate topic and contentiousness level, prompting the agents to formulate supporting arguments for their respective stances. The reasoning evaluation phase then employs Socratic reasoning and formal logic principles to appraise the quality of the arguments presented. The dialogue concludes with the moderator adjusting the contentiousness from confrontational to collaborative, gathering final, conciliatory remarks to aid in human reasoning and decision-making. Through case studies in three distinct application domains, this paper showcases SocraSynth's effectiveness in fostering rigorous research, dynamic reasoning, comprehensive assessment, and enhanced collaboration. This underscores the value of multi-agent interactions in leveraging LLMs for advanced knowledge extraction and decision-making support. 1 authors · Jan 19, 2024
1 Diversity of Thought Elicits Stronger Reasoning Capabilities in Multi-Agent Debate Frameworks Large language models (LLMs) excel in natural language generation but often confidently produce incorrect responses, especially in tasks like mathematical reasoning. Chain-of-thought prompting, self-verification, and multi-agent debate are among the strategies proposed to improve the reasoning and factual accuracy of LLMs. Building on Du et al.'s multi-agent debate framework, we find that multi-agent debate helps at any model scale, and that diversity of thought elicits stronger reasoning in debating LLMs. Across various model sizes, performance on mathematical reasoning tasks benefits most when diverse trained models are used. Remarkably, after 4 rounds of debate, a diverse set of medium-capacity models (Gemini-Pro, Mixtral 7BX8, and PaLM 2-M) outperforms GPT-4 on the GSM-8K benchmark, scoring 91% accuracy. By comparison, when 3 instances of Gemini-Pro are used, performance only reaches 82%. Finally, this diverse set of medium-capacity models sets a new state-of-the-art performance on the ASDiv benchmark (94%). These results underscore the idea that the future of AI is agentic, with diverse cooperating agents yielding emergent capabilities beyond even the most powerful individual models. 1 authors · Oct 10, 2024
- Persona Inconstancy in Multi-Agent LLM Collaboration: Conformity, Confabulation, and Impersonation Multi-agent AI systems can be used for simulating collective decision-making in scientific and practical applications. They can also be used to introduce a diverse group discussion step in chatbot pipelines, enhancing the cultural sensitivity of the chatbot's responses. These applications, however, are predicated on the ability of AI agents to reliably adopt assigned personas and mimic human interactions. To see whether LLM agents satisfy these requirements, we examine AI agent ensembles engaged in cross-national collaboration and debate by analyzing their private responses and chat transcripts. Our findings suggest that multi-agent discussions can support collective AI decisions that more often reflect diverse perspectives, yet this effect is tempered by the agents' susceptibility to conformity due to perceived peer pressure and occasional challenges in maintaining consistent personas and opinions. Instructions that encourage debate in support of one's opinions rather than collaboration increase the rate of inconstancy. Without addressing the factors we identify, the full potential of multi-agent frameworks for producing more culturally diverse AI outputs or more realistic simulations of group decision-making may remain untapped. 3 authors · May 6, 2024
- The perpetual motion machine of AI-generated data and the distraction of ChatGPT-as-scientist Since ChatGPT works so well, are we on the cusp of solving science with AI? Is not AlphaFold2 suggestive that the potential of LLMs in biology and the sciences more broadly is limitless? Can we use AI itself to bridge the lack of data in the sciences in order to then train an AI? Herein we present a discussion of these topics. 1 authors · Nov 29, 2023
- An Empirical Study on Developers Shared Conversations with ChatGPT in GitHub Pull Requests and Issues ChatGPT has significantly impacted software development practices, providing substantial assistance to developers in a variety of tasks, including coding, testing, and debugging. Despite its widespread adoption, the impact of ChatGPT as an assistant in collaborative coding remains largely unexplored. In this paper, we analyze a dataset of 210 and 370 developers shared conversations with ChatGPT in GitHub pull requests (PRs) and issues. We manually examined the content of the conversations and characterized the dynamics of the sharing behavior, i.e., understanding the rationale behind the sharing, identifying the locations where the conversations were shared, and determining the roles of the developers who shared them. Our main observations are: (1) Developers seek ChatGPT assistance across 16 types of software engineering inquiries. In both conversations shared in PRs and issues, the most frequently encountered inquiry categories include code generation, conceptual questions, how-to guides, issue resolution, and code review. (2) Developers frequently engage with ChatGPT via multi-turn conversations where each prompt can fulfill various roles, such as unveiling initial or new tasks, iterative follow-up, and prompt refinement. Multi-turn conversations account for 33.2% of the conversations shared in PRs and 36.9% in issues. (3) In collaborative coding, developers leverage shared conversations with ChatGPT to facilitate their role-specific contributions, whether as authors of PRs or issues, code reviewers, or collaborators on issues. Our work serves as the first step towards understanding the dynamics between developers and ChatGPT in collaborative software development and opens up new directions for future research on the topic. 7 authors · Mar 15, 2024
29 Think Twice: Enhancing LLM Reasoning by Scaling Multi-round Test-time Thinking Recent advances in large language models (LLMs), such as OpenAI-o1 and DeepSeek-R1, have demonstrated the effectiveness of test-time scaling, where extended reasoning processes substantially enhance model performance. Despite this, current models are constrained by limitations in handling long texts and reinforcement learning (RL) training efficiency. To address these issues, we propose a simple yet effective test-time scaling approach Multi-round Thinking. This method iteratively refines model reasoning by leveraging previous answers as prompts for subsequent rounds. Extensive experiments across multiple models, including QwQ-32B and DeepSeek-R1, consistently show performance improvements on various benchmarks such as AIME 2024, MATH-500, GPQA-diamond, and LiveCodeBench. For instance, the accuracy of QwQ-32B improved from 80.3% (Round 1) to 82.1% (Round 2) on the AIME 2024 dataset, while DeepSeek-R1 showed a similar increase from 79.7% to 82.0%. These results confirm that Multi-round Thinking is a broadly applicable, straightforward approach to achieving stable enhancements in model performance, underscoring its potential for future developments in test-time scaling techniques. The key prompt: {Original question prompt} The assistant's previous answer is: <answer> {last round answer} </answer>, and please re-answer. 8 authors · Mar 25 5
2 Why Should This Article Be Deleted? Transparent Stance Detection in Multilingual Wikipedia Editor Discussions The moderation of content on online platforms is usually non-transparent. On Wikipedia, however, this discussion is carried out publicly and the editors are encouraged to use the content moderation policies as explanations for making moderation decisions. Currently, only a few comments explicitly mention those policies -- 20% of the English ones, but as few as 2% of the German and Turkish comments. To aid in this process of understanding how content is moderated, we construct a novel multilingual dataset of Wikipedia editor discussions along with their reasoning in three languages. The dataset contains the stances of the editors (keep, delete, merge, comment), along with the stated reason, and a content moderation policy, for each edit decision. We demonstrate that stance and corresponding reason (policy) can be predicted jointly with a high degree of accuracy, adding transparency to the decision-making process. We release both our joint prediction models and the multilingual content moderation dataset for further research on automated transparent content moderation. 3 authors · Oct 9, 2023
- Advocate for Complete Benchmarks for Formal Reasoning with Formal/Informal Statements and Formal/Informal Proofs This position paper provides a critical but constructive discussion of current practices in benchmarking and evaluative practices in the field of formal reasoning and automated theorem proving. We take the position that open code, open data, and benchmarks that are complete and error-free will accelerate progress in this field. We identify practices that create barriers to contributing to this field and suggest ways to remove them. We also discuss some of the practices that might produce misleading evaluative information. We aim to create discussions that bring together people from various groups contributing to automated theorem proving, autoformalization, and informal reasoning. 2 authors · Jul 7
- DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset We develop a high-quality multi-turn dialog dataset, DailyDialog, which is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it benefit the research field of dialog systems. 6 authors · Oct 11, 2017
- Which Side Are You On? A Multi-task Dataset for End-to-End Argument Summarisation and Evaluation With the recent advances of large language models (LLMs), it is no longer infeasible to build an automated debate system that helps people to synthesise persuasive arguments. Previous work attempted this task by integrating multiple components. In our work, we introduce an argument mining dataset that captures the end-to-end process of preparing an argumentative essay for a debate, which covers the tasks of claim and evidence identification (Task 1 ED), evidence convincingness ranking (Task 2 ECR), argumentative essay summarisation and human preference ranking (Task 3 ASR) and metric learning for automated evaluation of resulting essays, based on human feedback along argument quality dimensions (Task 4 SQE). Our dataset contains 14k examples of claims that are fully annotated with the various properties supporting the aforementioned tasks. We evaluate multiple generative baselines for each of these tasks, including representative LLMs. We find, that while they show promising results on individual tasks in our benchmark, their end-to-end performance on all four tasks in succession deteriorates significantly, both in automated measures as well as in human-centred evaluation. This challenge presented by our proposed dataset motivates future research on end-to-end argument mining and summarisation. The repository of this project is available at https://github.com/HarrywillDr/ArgSum-Datatset 11 authors · Jun 5, 2024
- Persona Knowledge-Aligned Prompt Tuning Method for Online Debate Debate is the process of exchanging viewpoints or convincing others on a particular issue. Recent research has provided empirical evidence that the persuasiveness of an argument is determined not only by language usage but also by communicator characteristics. Researchers have paid much attention to aspects of languages, such as linguistic features and discourse structures, but combining argument persuasiveness and impact with the social personae of the audience has not been explored due to the difficulty and complexity. We have observed the impressive simulation and personification capability of ChatGPT, indicating a giant pre-trained language model may function as an individual to provide personae and exert unique influences based on diverse background knowledge. Therefore, we propose a persona knowledge-aligned framework for argument quality assessment tasks from the audience side. This is the first work that leverages the emergence of ChatGPT and injects such audience personae knowledge into smaller language models via prompt tuning. The performance of our pipeline demonstrates significant and consistent improvement compared to competitive architectures. 10 authors · Oct 5, 2024
- Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate Modern large language models (LLMs) like ChatGPT have shown remarkable performance on general language tasks but still struggle on complex reasoning tasks, which drives the research on cognitive behaviors of LLMs to explore human-like problem-solving strategies. Along this direction, one representative strategy is self-reflection, which asks an LLM to refine the solution with the feedback generated by itself iteratively. However, our study shows that such reflection-style methods suffer from the Degeneration-of-Thought (DoT) problem: once the LLM has established confidence in its solutions, it is unable to generate novel thoughts later through reflection even if its initial stance is incorrect. To address the DoT problem, we propose a Multi-Agent Debate (MAD) framework, in which multiple agents express their arguments in the state of "tit for tat" and a judge manages the debate process to obtain a final solution. Clearly, our MAD framework encourages divergent thinking in LLMs which would be helpful for tasks that require deep levels of contemplation. Experiment results on two challenging datasets, commonsense machine translation and counter-intuitive arithmetic reasoning, demonstrate the effectiveness of our MAD framework. Extensive analyses suggest that the adaptive break of debate and the modest level of "tit for tat" state are required for MAD to obtain good performance. Moreover, we find that LLMs might not be a fair judge if different LLMs are used for agents. Codes: https://github.com/Skytliang/Multi-Agents-Debate 9 authors · May 30, 2023
- MultiDoc2Dial: Modeling Dialogues Grounded in Multiple Documents We propose MultiDoc2Dial, a new task and dataset on modeling goal-oriented dialogues grounded in multiple documents. Most previous works treat document-grounded dialogue modeling as a machine reading comprehension task based on a single given document or passage. In this work, we aim to address more realistic scenarios where a goal-oriented information-seeking conversation involves multiple topics, and hence is grounded on different documents. To facilitate such a task, we introduce a new dataset that contains dialogues grounded in multiple documents from four different domains. We also explore modeling the dialogue-based and document-based context in the dataset. We present strong baseline approaches and various experimental results, aiming to support further research efforts on such a task. 4 authors · Sep 26, 2021
- MARS: toward more efficient multi-agent collaboration for LLM reasoning Large language models (LLMs) have achieved impressive results in natural language understanding, yet their reasoning capabilities remain limited when operating as single agents. Multi-Agent Debate (MAD) has been proposed to address this limitation by enabling collaborative reasoning among multiple models in a round-table debate manner. While effective, MAD introduces substantial computational overhead due to the number of agents involved and the frequent communication required. In this paper, we propose MARS (Multi-Agent Review System), a role-based collaboration framework inspired by the review process. In MARS, an author agent generates an initial solution, reviewer agents provide decisions and comments independently, and a meta-reviewer integrates the feedback to make the final decision and guide further revision. This design enhances reasoning quality while avoiding costly reviewer-to-reviewer interactions, thereby controlling token consumption and inference time. We compared MARS with both MAD and other state-of-the-art reasoning strategies across multiple benchmarks. Extensive experiments with different LLMs show that MARS matches the accuracy of MAD while reducing both token usage and inference time by approximately 50\%. Code is available at https://github.com/xwang97/MARS. 6 authors · Sep 24
- BabyLM Turns 3: Call for papers for the 2025 BabyLM workshop BabyLM aims to dissolve the boundaries between cognitive modeling and language modeling. We call for both workshop papers and for researchers to join the 3rd BabyLM competition. As in previous years, we call for participants in the data-efficient pretraining challenge in the general track. This year, we also offer a new track: INTERACTION. This new track encourages interactive behavior, learning from a teacher, and adapting the teaching material to the student. We also call for papers outside the competition in any relevant areas. These include training efficiency, cognitively plausible research, weak model evaluation, and more. 14 authors · Feb 14
- Debating Truth: Debate-driven Claim Verification with Multiple Large Language Model Agents Claim verification is critical for enhancing digital literacy. However, the state-of-the-art single-LLM methods struggle with complex claim verification that involves multi-faceted evidences. Inspired by real-world fact-checking practices, we propose DebateCV, the first claim verification framework that adopts a debate-driven methodology using multiple LLM agents. In our framework, two Debaters take opposing stances on a claim and engage in multi-round argumentation, while a Moderator evaluates the arguments and renders a verdict with justifications. To further improve the performance of the Moderator, we introduce a novel post-training strategy that leverages synthetic debate data generated by the zero-shot DebateCV, effectively addressing the scarcity of real-world debate-driven claim verification data. Experimental results show that our method outperforms existing claim verification methods under varying levels of evidence quality. Our code and dataset are publicly available at https://anonymous.4open.science/r/DebateCV-6781. 5 authors · Jul 25
- Scalable Evaluation of Online Facilitation Strategies via Synthetic Simulation of Discussions Limited large-scale evaluations exist for facilitation strategies of online discussions due to significant costs associated with human involvement. An effective solution is synthetic discussion simulations using Large Language Models (LLMs) to create initial pilot experiments. We propose a simple, generalizable, LLM-driven methodology to prototype the development of LLM facilitators, and produce high-quality synthetic data without human involvement. We use our methodology to test whether current facilitation strategies can improve the performance of LLM facilitators. We find that, while LLM facilitators significantly improve synthetic discussions, there is no evidence that the application of more elaborate facilitation strategies proposed in modern Social Science research lead to further improvements in discussion quality, compared to more basic approaches. Additionally, we find that small LLMs (such as Mistral Nemo 12B) can perform comparably to larger models (such as LLaMa 70B), and that special instructions must be used for instruction-tuned models to induce toxicity in synthetic discussions. We confirm that each component of our methodology contributes substantially to high quality data via an ablation study. We release an open-source framework, "SynDisco" (pip install syndisco), which implements our methodology. We also release the "Virtual Moderation Dataset" (https://paperswithcode.com/dataset/vmd), a large, publicly available dataset containing LLM-generated and LLM-annotated discussions using multiple open-source LLMs. 3 authors · Mar 13
- AITA Generating Moral Judgements of the Crowd with Reasoning Morality is a fundamental aspect of human behavior and ethics, influencing how we interact with each other and the world around us. When faced with a moral dilemma, a person's ability to make clear moral judgments can be clouded. Due to many factors such as personal biases, emotions and situational factors people can find it difficult to decide their best course of action. The AmITheAsshole (AITA) subreddit is a forum on the social media platform Reddit that helps people get clarity and objectivity on their predicaments. In the forum people post anecdotes about moral dilemmas they are facing in their lives, seeking validation for their actions or advice on how to navigate the situation from the community. The morality of the actions in each post is classified based on the collective opinion of the community into mainly two labels, "Not The Asshole" (NTA) and "You Are The Asshole" (YTA). This project aims to generate comments with moral reasoning for stories with moral dilemmas using the AITA subreddit as a dataset. While past literature has explored the classification of posts into labels (Alhassan et al., 2022), the generation of comments remains a novel and challenging task. It involves understanding the complex social and ethical considerations in each situation. To address this challenge, we will leverage the vast amount of data on the forum with the goal of generating coherent comments that align with the norms and values of the AITA community. In this endeavor, we aim to evaluate state-of-the-art seq2seq text generation models for their ability to make moral judgments similarly to humans, ultimately producing concise comments providing clear moral stances and advice for the poster. 2 authors · Oct 21, 2023
1 Peer Review as A Multi-Turn and Long-Context Dialogue with Role-Based Interactions Large Language Models (LLMs) have demonstrated wide-ranging applications across various fields and have shown significant potential in the academic peer-review process. However, existing applications are primarily limited to static review generation based on submitted papers, which fail to capture the dynamic and iterative nature of real-world peer reviews. In this paper, we reformulate the peer-review process as a multi-turn, long-context dialogue, incorporating distinct roles for authors, reviewers, and decision makers. We construct a comprehensive dataset containing over 26,841 papers with 92,017 reviews collected from multiple sources, including the top-tier conference and prestigious journal. This dataset is meticulously designed to facilitate the applications of LLMs for multi-turn dialogues, effectively simulating the complete peer-review process. Furthermore, we propose a series of metrics to evaluate the performance of LLMs for each role under this reformulated peer-review setting, ensuring fair and comprehensive evaluations. We believe this work provides a promising perspective on enhancing the LLM-driven peer-review process by incorporating dynamic, role-based interactions. It aligns closely with the iterative and interactive nature of real-world academic peer review, offering a robust foundation for future research and development in this area. We open-source the dataset at https://github.com/chengtan9907/ReviewMT. 8 authors · Jun 9, 2024
- An Empirical Analysis of Diversity in Argument Summarization Presenting high-level arguments is a crucial task for fostering participation in online societal discussions. Current argument summarization approaches miss an important facet of this task -- capturing diversity -- which is important for accommodating multiple perspectives. We introduce three aspects of diversity: those of opinions, annotators, and sources. We evaluate approaches to a popular argument summarization task called Key Point Analysis, which shows how these approaches struggle to (1) represent arguments shared by few people, (2) deal with data from various sources, and (3) align with subjectivity in human-provided annotations. We find that both general-purpose LLMs and dedicated KPA models exhibit this behavior, but have complementary strengths. Further, we observe that diversification of training data may ameliorate generalization. Addressing diversity in argument summarization requires a mix of strategies to deal with subjectivity. 4 authors · Feb 2, 2024
1 The 1st Workshop on Human-Centered Recommender Systems Recommender systems are quintessential applications of human-computer interaction. Widely utilized in daily life, they offer significant convenience but also present numerous challenges, such as the information cocoon effect, privacy concerns, fairness issues, and more. Consequently, this workshop aims to provide a platform for researchers to explore the development of Human-Centered Recommender Systems~(HCRS). HCRS refers to the creation of recommender systems that prioritize human needs, values, and capabilities at the core of their design and operation. In this workshop, topics will include, but are not limited to, robustness, privacy, transparency, fairness, diversity, accountability, ethical considerations, and user-friendly design. We hope to engage in discussions on how to implement and enhance these properties in recommender systems. Additionally, participants will explore diverse evaluation methods, including innovative metrics that capture user satisfaction and trust. This workshop seeks to foster a collaborative environment for researchers to share insights and advance the field toward more ethical, user-centric, and socially responsible recommender systems. 9 authors · Nov 22, 2024
- DialoGPS: Dialogue Path Sampling in Continuous Semantic Space for Data Augmentation in Multi-Turn Conversations In open-domain dialogue generation tasks, contexts and responses in most datasets are one-to-one mapped, violating an important many-to-many characteristic: a context leads to various responses, and a response answers multiple contexts. Without such patterns, models poorly generalize and prefer responding safely. Many attempts have been made in either multi-turn settings from a one-to-many perspective or in a many-to-many perspective but limited to single-turn settings. The major challenge to many-to-many augment multi-turn dialogues is that discretely replacing each turn with semantic similarity breaks fragile context coherence. In this paper, we propose DialoGue Path Sampling (DialoGPS) method in continuous semantic space, the first many-to-many augmentation method for multi-turn dialogues. Specifically, we map a dialogue to our extended Brownian Bridge, a special Gaussian process. We sample latent variables to form coherent dialogue paths in the continuous space. A dialogue path corresponds to a new multi-turn dialogue and is used as augmented training data. We show the effect of DialoGPS with both automatic and human evaluation. 6 authors · Jun 29, 2023
1 Beyond Single-Turn: A Survey on Multi-Turn Interactions with Large Language Models Recent advancements in large language models (LLMs) have revolutionized their ability to handle single-turn tasks, yet real-world applications demand sophisticated multi-turn interactions. This survey provides a comprehensive review of recent advancements in evaluating and enhancing multi-turn interactions in LLMs. Focusing on task-specific scenarios, from instruction following in diverse domains such as math and coding to complex conversational engagements in roleplay, healthcare, education, and even adversarial jailbreak settings, we systematically examine the challenges of maintaining context, coherence, fairness, and responsiveness over prolonged dialogues. The paper organizes current benchmarks and datasets into coherent categories that reflect the evolving landscape of multi-turn dialogue evaluation. In addition, we review a range of enhancement methodologies under multi-turn settings, including model-centric strategies (contextual learning, supervised fine-tuning, reinforcement learning, and new architectures), external integration approaches (memory-augmented, retrieval-based methods, and knowledge graph), and agent-based techniques for collaborative interactions. Finally, we discuss open challenges and propose future directions for research to further advance the robustness and effectiveness of multi-turn interactions in LLMs. Related resources and papers are available at https://github.com/yubol-cmu/Awesome-Multi-Turn-LLMs. 7 authors · Apr 7
1 BigScience: A Case Study in the Social Construction of a Multilingual Large Language Model The BigScience Workshop was a value-driven initiative that spanned one and half years of interdisciplinary research and culminated in the creation of ROOTS, a 1.6TB multilingual dataset that was used to train BLOOM, one of the largest multilingual language models to date. In addition to the technical outcomes and artifacts, the workshop fostered multidisciplinary collaborations around large models, datasets, and their analysis. This in turn led to a wide range of research publications spanning topics from ethics to law, data governance, modeling choices and distributed training. This paper focuses on the collaborative research aspects of BigScience and takes a step back to look at the challenges of large-scale participatory research, with respect to participant diversity and the tasks required to successfully carry out such a project. Our main goal is to share the lessons we learned from this experience, what we could have done better and what we did well. We show how the impact of such a social approach to scientific research goes well beyond the technical artifacts that were the basis of its inception. 7 authors · Dec 9, 2022
- Topo Goes Political: TDA-Based Controversy Detection in Imbalanced Reddit Political Data The detection of controversial content in political discussions on the Internet is a critical challenge in maintaining healthy digital discourse. Unlike much of the existing literature that relies on synthetically balanced data, our work preserves the natural distribution of controversial and non-controversial posts. This real-world imbalance highlights a core challenge that needs to be addressed for practical deployment. Our study re-evaluates well-established methods for detecting controversial content. We curate our own dataset focusing on the Indian political context that preserves the natural distribution of controversial content, with only 12.9% of the posts in our dataset being controversial. This disparity reflects the true imbalance in real-world political discussions and highlights a critical limitation in the existing evaluation methods. Benchmarking on datasets that model data imbalance is vital for ensuring real-world applicability. Thus, in this work, (i) we release our dataset, with an emphasis on class imbalance, that focuses on the Indian political context, (ii) we evaluate existing methods from this domain on this dataset and demonstrate their limitations in the imbalanced setting, (iii) we introduce an intuitive metric to measure a model's robustness to class imbalance, (iv) we also incorporate ideas from the domain of Topological Data Analysis, specifically Persistent Homology, to curate features that provide richer representations of the data. Furthermore, we benchmark models trained with topological features against established baselines. 7 authors · Mar 5
- Stop Overvaluing Multi-Agent Debate -- We Must Rethink Evaluation and Embrace Model Heterogeneity Multi-agent debate (MAD) has gained significant attention as a promising line of research to improve the factual accuracy and reasoning capabilities of large language models (LLMs). Despite its conceptual appeal, current MAD research suffers from critical limitations in evaluation practices, including limited benchmark coverage, weak baseline comparisons, and inconsistent setups. This paper presents a systematic evaluation of 5 representative MAD methods across 9 benchmarks using 4 foundational models. Surprisingly, our findings reveal that MAD often fail to outperform simple single-agent baselines such as Chain-of-Thought and Self-Consistency, even when consuming significantly more inference-time computation. To advance MAD research, we further explore the role of model heterogeneity and find it as a universal antidote to consistently improve current MAD frameworks. Based on our findings, we argue that the field must stop overvaluing MAD in its current form; for true advancement, we must critically rethink evaluation paradigms and actively embrace model heterogeneity as a core design principle. 8 authors · Feb 12
1 Re^3Dial: Retrieve, Reorganize and Rescale Dialogue Corpus for Long-Turn Open-Domain Dialogue Pre-training Large-scale open-domain dialogue data crawled from public social media has greatly improved the performance of dialogue models. However, long-turn dialogues are still highly scarce. Specifically, most dialogue sessions in existing corpora have less than three turns. To alleviate this issue, we propose the Retrieve, Reorganize and Rescale framework (Re^3Dial), which can automatically construct a billion-scale long-turn dialogue corpus from existing short-turn dialogue data. Re^3Dial first trains an Unsupervised Dense Session Retriever (UDSR) to capture semantic and discourse relationships within multi-turn dialogues for retrieving relevant and coherent sessions. It then reorganizes the short-turn dialogues into long-turn sessions via recursively retrieving and selecting the consecutive sessions with our proposed diversity sampling strategy. Extensive evaluations on multiple multi-turn dialogue benchmarks demonstrate that Re^3Dial consistently and significantly improves the dialogue model's ability to utilize long-term context for modeling multi-turn dialogues across different pre-training settings. Finally, we build a toolkit for efficiently rescaling dialogue corpus with Re^3Dial, which enables us to construct a corpus containing 1B Chinese dialogue sessions with 11.3 turns on average (5X longer than the original EVA corpus). We will release our UDSR model, toolkit, and data for public use. 3 authors · May 4, 2023
- Beyond Brainstorming: What Drives High-Quality Scientific Ideas? Lessons from Multi-Agent Collaboration While AI agents show potential in scientific ideation, most existing frameworks rely on single-agent refinement, limiting creativity due to bounded knowledge and perspective. Inspired by real-world research dynamics, this paper investigates whether structured multi-agent discussions can surpass solitary ideation. We propose a cooperative multi-agent framework for generating research proposals and systematically compare configurations including group size, leaderled versus leaderless structures, and team compositions varying in interdisciplinarity and seniority. To assess idea quality, we employ a comprehensive protocol with agent-based scoring and human review across dimensions such as novelty, strategic vision, and integration depth. Our results show that multi-agent discussions substantially outperform solitary baselines. A designated leader acts as a catalyst, transforming discussion into more integrated and visionary proposals. Notably, we find that cognitive diversity is a primary driver of quality, yet expertise is a non-negotiable prerequisite, as teams lacking a foundation of senior knowledge fail to surpass even a single competent agent. These findings offer actionable insights for designing collaborative AI ideation systems and shed light on how team structure influences creative outcomes. 8 authors · Aug 6
- Benchmarking Clinical Decision Support Search Finding relevant literature underpins the practice of evidence-based medicine. From 2014 to 2016, TREC conducted a clinical decision support track, wherein participants were tasked with finding articles relevant to clinical questions posed by physicians. In total, 87 teams have participated over the past three years, generating 395 runs. During this period, each team has trialled a variety of methods. While there was significant overlap in the methods employed by different teams, the results were varied. Due to the diversity of the platforms used, the results arising from the different techniques are not directly comparable, reducing the ability to build on previous work. By using a stable platform, we have been able to compare different document and query processing techniques, allowing us to experiment with different search parameters. We have used our system to reproduce leading teams runs, and compare the results obtained. By benchmarking our indexing and search techniques, we can statistically test a variety of hypotheses, paving the way for further research. 4 authors · Jan 28, 2018
1 The PRISM Alignment Project: What Participatory, Representative and Individualised Human Feedback Reveals About the Subjective and Multicultural Alignment of Large Language Models Human feedback plays a central role in the alignment of Large Language Models (LLMs). However, open questions remain about the methods (how), domains (where), people (who) and objectives (to what end) of human feedback collection. To navigate these questions, we introduce PRISM, a new dataset which maps the sociodemographics and stated preferences of 1,500 diverse participants from 75 countries, to their contextual preferences and fine-grained feedback in 8,011 live conversations with 21 LLMs. PRISM contributes (i) wide geographic and demographic participation in human feedback data; (ii) two census-representative samples for understanding collective welfare (UK and US); and (iii) individualised feedback where every rating is linked to a detailed participant profile, thus permitting exploration of personalisation and attribution of sample artefacts. We focus on collecting conversations that centre subjective and multicultural perspectives on value-laden and controversial topics, where we expect the most interpersonal and cross-cultural disagreement. We demonstrate the usefulness of PRISM via three case studies of dialogue diversity, preference diversity, and welfare outcomes, showing that it matters which humans set alignment norms. As well as offering a rich community resource, we advocate for broader participation in AI development and a more inclusive approach to technology design. 12 authors · Apr 24, 2024
4 The Claire French Dialogue Dataset We present the Claire French Dialogue Dataset (CFDD), a resource created by members of LINAGORA Labs in the context of the OpenLLM France initiative. CFDD is a corpus containing roughly 160 million words from transcripts and stage plays in French that we have assembled and publicly released in an effort to further the development of multilingual, open source language models. This paper describes the 24 individual corpora of which CFDD is composed and provides links and citations to their original sources. It also provides our proposed breakdown of the full CFDD dataset into eight categories of subcorpora and describes the process we followed to standardize the format of the final dataset. We conclude with a discussion of similar work and future directions. 6 authors · Nov 28, 2023 2
4 MultiVerse: A Multi-Turn Conversation Benchmark for Evaluating Large Vision and Language Models Vision-and-Language Models (VLMs) have shown impressive capabilities on single-turn benchmarks, yet real-world applications often demand more intricate multi-turn dialogues. Existing multi-turn datasets (e.g, MMDU, ConvBench) only partially capture the breadth and depth of conversational scenarios encountered by users. In this work, we introduce MultiVerse, a novel multi-turn conversation benchmark featuring 647 dialogues - each averaging four turns - derived from a diverse set of 12 popular VLM evaluation benchmarks. With 484 tasks and 484 interaction goals, MultiVerse covers a wide range of topics, from factual knowledge and perception to advanced reasoning tasks such as mathematics and coding. To facilitate robust assessment, we propose a checklist-based evaluation method that leverages GPT-4o as the automated evaluator, measuring performance across 37 key aspects, including perceptual accuracy, linguistic clarity, and factual correctness. We evaluate 18 VLMs on MultiVerse, revealing that even the strongest models (e.g., GPT-4o) achieve only a 50% success rate in complex multi-turn conversations, highlighting the dataset's challenging nature. Notably, we find that providing full dialogue context significantly enhances performance for smaller or weaker models, emphasizing the importance of in-context learning. We believe MultiVerse is a landscape of evaluating multi-turn interaction abilities for VLMs. KAIST · Oct 18 2
- Deal or No Deal? End-to-End Learning for Negotiation Dialogues Much of human dialogue occurs in semi-cooperative settings, where agents with different goals attempt to agree on common decisions. Negotiations require complex communication and reasoning skills, but success is easy to measure, making this an interesting task for AI. We gather a large dataset of human-human negotiations on a multi-issue bargaining task, where agents who cannot observe each other's reward functions must reach an agreement (or a deal) via natural language dialogue. For the first time, we show it is possible to train end-to-end models for negotiation, which must learn both linguistic and reasoning skills with no annotated dialogue states. We also introduce dialogue rollouts, in which the model plans ahead by simulating possible complete continuations of the conversation, and find that this technique dramatically improves performance. Our code and dataset are publicly available (https://github.com/facebookresearch/end-to-end-negotiator). 5 authors · Jun 15, 2017
- A Picture Is Worth a Graph: A Blueprint Debate Paradigm for Multimodal Reasoning This paper presents a pilot study aimed at introducing multi-agent debate into multimodal reasoning. The study addresses two key challenges: the trivialization of opinions resulting from excessive summarization and the diversion of focus caused by distractor concepts introduced from images. These challenges stem from the inductive (bottom-up) nature of existing debating schemes. To address the issue, we propose a deductive (top-down) debating approach called Blueprint Debate on Graphs (BDoG). In BDoG, debates are confined to a blueprint graph to prevent opinion trivialization through world-level summarization. Moreover, by storing evidence in branches within the graph, BDoG mitigates distractions caused by frequent but irrelevant concepts. Extensive experiments validate that BDoG is able to achieve state-of-the-art results in ScienceQA and MMBench with significant improvements over previous methods. The source code can be accessed at https://github.com/thecharm/BDoG. 6 authors · Mar 22, 2024
- Training Language Models to Win Debates with Self-Play Improves Judge Accuracy We test the robustness of debate as a method of scalable oversight by training models to debate with data generated via self-play. In a long-context reading comprehension task, we find that language model based evaluators answer questions more accurately when judging models optimized to win debates. By contrast, we find no such relationship for consultancy models trained to persuade a judge without an opposing debater present. In quantitative and qualitative comparisons between our debate models and novel consultancy baselines, we find evidence that debate training encourages stronger and more informative arguments, showing promise that it can help provide high-quality supervision for tasks that are difficult to directly evaluate. 3 authors · Sep 25, 2024
- Report from the NSF Future Directions Workshop on Automatic Evaluation of Dialog: Research Directions and Challenges This is a report on the NSF Future Directions Workshop on Automatic Evaluation of Dialog. The workshop explored the current state of the art along with its limitations and suggested promising directions for future work in this important and very rapidly changing area of research. 16 authors · Mar 18, 2022
- Towards Dialogues for Joint Human-AI Reasoning and Value Alignment We argue that enabling human-AI dialogue, purposed to support joint reasoning (i.e., 'inquiry'), is important for ensuring that AI decision making is aligned with human values and preferences. In particular, we point to logic-based models of argumentation and dialogue, and suggest that the traditional focus on persuasion dialogues be replaced by a focus on inquiry dialogues, and the distinct challenges that joint inquiry raises. Given recent dramatic advances in the performance of large language models (LLMs), and the anticipated increase in their use for decision making, we provide a roadmap for research into inquiry dialogues for supporting joint human-LLM reasoning tasks that are ethically salient, and that thereby require that decisions are value aligned. 3 authors · May 28, 2024
1 Parrot: Enhancing Multi-Turn Chat Models by Learning to Ask Questions Impressive progress has been made on chat models based on Large Language Models (LLMs) recently; however, there is a noticeable lag in multi-turn conversations between open-source chat models (e.g., Alpaca and Vicuna) and the leading chat models (e.g., ChatGPT and GPT-4). Through a series of analyses, we attribute the lag to the lack of enough high-quality multi-turn instruction-tuning data. The available instruction-tuning data for the community are either single-turn conversations or multi-turn ones with certain issues, such as non-human-like instructions, less detailed responses, or rare topic shifts. In this paper, we address these challenges by introducing Parrot, a highly scalable solution designed to automatically generate high-quality instruction-tuning data, which are then used to enhance the effectiveness of chat models in multi-turn conversations. Specifically, we start by training the Parrot-Ask model, which is designed to emulate real users in generating instructions. We then utilize Parrot-Ask to engage in multi-turn conversations with ChatGPT across a diverse range of topics, resulting in a collection of 40K high-quality multi-turn dialogues (Parrot-40K). These data are subsequently employed to train a chat model that we have named Parrot-Chat. We demonstrate that the dialogues gathered from Parrot-Ask markedly outperform existing multi-turn instruction-following datasets in critical metrics, including topic diversity, number of turns, and resemblance to human conversation. With only 40K training examples, Parrot-Chat achieves strong performance against other 13B open-source models across a range of instruction-following benchmarks, and particularly excels in evaluations of multi-turn capabilities. We make all codes, datasets, and two versions of the Parrot-Ask model based on LLaMA2-13B and KuaiYii-13B available at https://github.com/kwai/KwaiYii/Parrot. 8 authors · Oct 11, 2023
- There Is No Standard Answer: Knowledge-Grounded Dialogue Generation with Adversarial Activated Multi-Reference Learning Knowledge-grounded conversation (KGC) shows excellent potential to deliver an engaging and informative response. However, existing approaches emphasize selecting one golden knowledge given a particular dialogue context, overlooking the one-to-many phenomenon in dialogue. As a result, the existing paradigm limits the diversity of knowledge selection and generation. To this end, we establish a multi-reference KGC dataset and propose a series of metrics to systematically assess the one-to-many efficacy of existing KGC models. Furthermore, to extend the hypothesis space of knowledge selection to enhance the mapping relationship between multiple knowledge and multiple responses, we devise a span-based variational model and optimize the model in a wake-sleep style with an ameliorated evidence lower bound objective to learn the one-to-many generalization. Both automatic and human evaluations demonstrate the efficacy of our approach. 4 authors · Oct 22, 2022
- Multilingual Coreference Resolution in Multiparty Dialogue Existing multiparty dialogue datasets for entity coreference resolution are nascent, and many challenges are still unaddressed. We create a large-scale dataset, Multilingual Multiparty Coref (MMC), for this task based on TV transcripts. Due to the availability of gold-quality subtitles in multiple languages, we propose reusing the annotations to create silver coreference resolution data in other languages (Chinese and Farsi) via annotation projection. On the gold (English) data, off-the-shelf models perform relatively poorly on MMC, suggesting that MMC has broader coverage of multiparty coreference than prior datasets. On the silver data, we find success both using it for data augmentation and training from scratch, which effectively simulates the zero-shot cross-lingual setting. 4 authors · Aug 2, 2022
- ConvAI3: Generating Clarifying Questions for Open-Domain Dialogue Systems (ClariQ) This document presents a detailed description of the challenge on clarifying questions for dialogue systems (ClariQ). The challenge is organized as part of the Conversational AI challenge series (ConvAI3) at Search Oriented Conversational AI (SCAI) EMNLP workshop in 2020. The main aim of the conversational systems is to return an appropriate answer in response to the user requests. However, some user requests might be ambiguous. In IR settings such a situation is handled mainly thought the diversification of the search result page. It is however much more challenging in dialogue settings with limited bandwidth. Therefore, in this challenge, we provide a common evaluation framework to evaluate mixed-initiative conversations. Participants are asked to rank clarifying questions in an information-seeking conversations. The challenge is organized in two stages where in Stage 1 we evaluate the submissions in an offline setting and single-turn conversations. Top participants of Stage 1 get the chance to have their model tested by human annotators. 5 authors · Sep 23, 2020
- Negotiative Alignment: Embracing Disagreement to Achieve Fairer Outcomes -- Insights from Urban Studies Urban assessments often compress diverse needs into single scores, which can obscure minority perspectives. We present a community-centered study in Montreal (n=35; wheelchair users, seniors, LGBTQIA2+ residents, and immigrants). Participants rated 20 streets (accessibility, inclusivity, aesthetics, practicality) and ranked 7 images on 12 interview-elicited criteria. Disagreement patterns were systematic in our sample: wheelchair users diverged most on accessibility and practicality; LGBTQIA2+ participants emphasized inclusion and liveliness; seniors prioritized security. Group discussion reduced information gaps but not value conflicts; ratings conveyed intensity, while rankings forced trade-offs. We then formalize negotiative alignment, a transparent, budget-aware bargaining procedure, and pilot it with role-played stakeholder agents plus a neutral mediator. Relative to the best base design under the same public rubric, the negotiated package increased total utility (21.10 to 24.55), raised the worst-group utility (3.20 to 3.90), improved twentieth percentile satisfaction (0.86 to 1.00; min-max normalized within the scenario), and reduced inequality (Gini 0.036 to 0.025). Treating disagreement as signal and reporting worst-group outcomes alongside totals may help planners and AI practitioners surface trade-offs and preserve minority priorities while maintaining efficiency. 3 authors · Mar 16
- RAD-Bench: Evaluating Large Language Models Capabilities in Retrieval Augmented Dialogues In real-world applications with Large Language Models (LLMs), external retrieval mechanisms - such as Search-Augmented Generation (SAG), tool utilization, and Retrieval-Augmented Generation (RAG) - are often employed to enhance the quality of augmented generations in dialogues. These approaches often come with multi-turn dialogue, where each interaction is enriched by relevant information retrieved from external sources. Existing benchmarks either assess LLMs' chat abilities in multi-turn dialogues or their use of retrieval for augmented responses in single-turn settings. However, there is a gap in evaluating LLMs' ability to leverage retrieval for more precise responses across multiple turns. To address this limitation, we introduce RAD-Bench (Retrieval Augmented Dialogue), a benchmark designed to evaluate LLMs' capabilities in multi-turn dialogues following retrievals, essential for their deployment in context-rich applications. RAD-Bench evaluates two key abilities of LLMs: Retrieval Synthesis and Retrieval Reasoning. These are measured using discriminative questions and retrieved contexts, and corresponding reference answers, assessing how effectively LLMs integrate and reason with context to maintain and enhance conversation quality over multiple turns. Our evaluation results on commonly used LLMs reveal that model performance deteriorates as additional layers of conditions or constraints are applied across conversation turns, even when accurate retrieved contexts are provided. The data and code are available at https://github.com/mtkresearch/RAD-Bench 6 authors · Sep 19, 2024
- Can LLM Agents Really Debate? A Controlled Study of Multi-Agent Debate in Logical Reasoning Multi-agent debate (MAD) has recently emerged as a promising framework for improving the reasoning performance of large language models (LLMs). Yet, whether LLM agents can genuinely engage in deliberative reasoning, beyond simple ensembling or majority voting, remains unclear. We address this question through a controlled study using the Knight--Knave--Spy logic puzzle, which enables precise, step-wise evaluation of debate outcomes and processes under verifiable ground truth. We systematically set up six structural and cognitive factors, including agent team size, composition, confidence visibility, debate order, debate depth, and task difficulty, to disentangle their respective effects on collective reasoning. Our results show that intrinsic reasoning strength and group diversity are the dominant drivers of debate success, while structural parameters such as order or confidence visibility offer limited gains. Beyond outcomes, process-level analyses identify key behavioral patterns: majority pressure suppresses independent correction, effective teams overturn incorrect consensus, and rational, validity-aligned reasoning most strongly predicts improvement. These findings provide valuable insights into how and why LLM debates succeed or fail, offering guidance for designing interpretable and truth-seeking multi-agent reasoning systems. 3 authors · Nov 10
- Combating Adversarial Attacks with Multi-Agent Debate While state-of-the-art language models have achieved impressive results, they remain susceptible to inference-time adversarial attacks, such as adversarial prompts generated by red teams arXiv:2209.07858. One approach proposed to improve the general quality of language model generations is multi-agent debate, where language models self-evaluate through discussion and feedback arXiv:2305.14325. We implement multi-agent debate between current state-of-the-art language models and evaluate models' susceptibility to red team attacks in both single- and multi-agent settings. We find that multi-agent debate can reduce model toxicity when jailbroken or less capable models are forced to debate with non-jailbroken or more capable models. We also find marginal improvements through the general usage of multi-agent interactions. We further perform adversarial prompt content classification via embedding clustering, and analyze the susceptibility of different models to different types of attack topics. 3 authors · Jan 11, 2024
1 Epistemic Diversity and Knowledge Collapse in Large Language Models Large language models (LLMs) tend to generate lexically, semantically, and stylistically homogenous texts. This poses a risk of knowledge collapse, where homogenous LLMs mediate a shrinking in the range of accessible information over time. Existing works on homogenization are limited by a focus on closed-ended multiple-choice setups or fuzzy semantic features, and do not look at trends across time and cultural contexts. To overcome this, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs, which we use to perform a broad empirical study of LLM knowledge collapse. We test 27 LLMs, 155 topics covering 12 countries, and 200 prompt variations sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, nearly all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation CopeNLU · Oct 5 2
- Diversity Aware Relevance Learning for Argument Search In this work, we focus on the problem of retrieving relevant arguments for a query claim covering diverse aspects. State-of-the-art methods rely on explicit mappings between claims and premises, and thus are unable to utilize large available collections of premises without laborious and costly manual annotation. Their diversity approach relies on removing duplicates via clustering which does not directly ensure that the selected premises cover all aspects. This work introduces a new multi-step approach for the argument retrieval problem. Rather than relying on ground-truth assignments, our approach employs a machine learning model to capture semantic relationships between arguments. Beyond that, it aims to cover diverse facets of the query, instead of trying to identify duplicates explicitly. Our empirical evaluation demonstrates that our approach leads to a significant improvement in the argument retrieval task even though it requires less data. 5 authors · Nov 4, 2020
- A Mathematical Lens for Teaching Data Science Using the National Academies report, {\em Data Science for Undergraduates: Opportunities and Options}, we connect data science curricula to the more familiar pedagogy used by many mathematical scientists. We use their list of ``data acumen" components to ground a discussion, which hopes to connect data science curricula to the more familiar pedagogy used by many mathematical scientists. 1 authors · Jan 3
8 The FIGNEWS Shared Task on News Media Narratives We present an overview of the FIGNEWS shared task, organized as part of the ArabicNLP 2024 conference co-located with ACL 2024. The shared task addresses bias and propaganda annotation in multilingual news posts. We focus on the early days of the Israel War on Gaza as a case study. The task aims to foster collaboration in developing annotation guidelines for subjective tasks by creating frameworks for analyzing diverse narratives highlighting potential bias and propaganda. In a spirit of fostering and encouraging diversity, we address the problem from a multilingual perspective, namely within five languages: English, French, Arabic, Hebrew, and Hindi. A total of 17 teams participated in two annotation subtasks: bias (16 teams) and propaganda (6 teams). The teams competed in four evaluation tracks: guidelines development, annotation quality, annotation quantity, and consistency. Collectively, the teams produced 129,800 data points. Key findings and implications for the field are discussed. 8 authors · Jul 25, 2024 2
1 DMLR: Data-centric Machine Learning Research -- Past, Present and Future Drawing from discussions at the inaugural DMLR workshop at ICML 2023 and meetings prior, in this report we outline the relevance of community engagement and infrastructure development for the creation of next-generation public datasets that will advance machine learning science. We chart a path forward as a collective effort to sustain the creation and maintenance of these datasets and methods towards positive scientific, societal and business impact. 38 authors · Nov 21, 2023
- The Earth is Flat because...: Investigating LLMs' Belief towards Misinformation via Persuasive Conversation Large Language Models (LLMs) encapsulate vast amounts of knowledge but still remain vulnerable to external misinformation. Existing research mainly studied this susceptibility behavior in a single-turn setting. However, belief can change during a multi-turn conversation, especially a persuasive one. Therefore, in this study, we delve into LLMs' susceptibility to persuasive conversations, particularly on factual questions that they can answer correctly. We first curate the Farm (i.e., Fact to Misinform) dataset, which contains factual questions paired with systematically generated persuasive misinformation. Then, we develop a testing framework to track LLMs' belief changes in a persuasive dialogue. Through extensive experiments, we find that LLMs' correct beliefs on factual knowledge can be easily manipulated by various persuasive strategies. 9 authors · Dec 14, 2023
- EduQG: A Multi-format Multiple Choice Dataset for the Educational Domain We introduce a high-quality dataset that contains 3,397 samples comprising (i) multiple choice questions, (ii) answers (including distractors), and (iii) their source documents, from the educational domain. Each question is phrased in two forms, normal and close. Correct answers are linked to source documents with sentence-level annotations. Thus, our versatile dataset can be used for both question and distractor generation, as well as to explore new challenges such as question format conversion. Furthermore, 903 questions are accompanied by their cognitive complexity level as per Bloom's taxonomy. All questions have been generated by educational experts rather than crowd workers to ensure they are maintaining educational and learning standards. Our analysis and experiments suggest distinguishable differences between our dataset and commonly used ones for question generation for educational purposes. We believe this new dataset can serve as a valuable resource for research and evaluation in the educational domain. The dataset and baselines will be released to support further research in question generation. 5 authors · Oct 12, 2022
2 Teacher Demonstrations in a BabyLM's Zone of Proximal Development for Contingent Multi-Turn Interaction Multi-turn dialogues between a child and a caregiver are characterized by a property called contingency - that is, prompt, direct, and meaningful exchanges between interlocutors. We introduce ContingentChat, a teacher-student framework that benchmarks and improves multi-turn contingency in a BabyLM trained on 100M words. Using a novel alignment dataset for post-training, BabyLM generates responses that are more grammatical and cohesive. Experiments with adaptive teacher decoding strategies show limited additional gains. ContingentChat demonstrates the benefits of targeted post-training for dialogue quality and indicates that contingency remains a challenging goal for BabyLMs. 8 authors · Oct 23
- GPTEval: A Survey on Assessments of ChatGPT and GPT-4 The emergence of ChatGPT has generated much speculation in the press about its potential to disrupt social and economic systems. Its astonishing language ability has aroused strong curiosity among scholars about its performance in different domains. There have been many studies evaluating the ability of ChatGPT and GPT-4 in different tasks and disciplines. However, a comprehensive review summarizing the collective assessment findings is lacking. The objective of this survey is to thoroughly analyze prior assessments of ChatGPT and GPT-4, focusing on its language and reasoning abilities, scientific knowledge, and ethical considerations. Furthermore, an examination of the existing evaluation methods is conducted, offering several recommendations for future research in evaluating large language models. 5 authors · Aug 23, 2023
1 When to Trust Context: Self-Reflective Debates for Context Reliability Large language models frequently encounter conflicts between their parametric knowledge and contextual input, often resulting in factual inconsistencies or hallucinations. We propose Self-Reflective Debate for Contextual Reliability (SR-DCR), a lightweight framework that integrates token-level self-confidence with an asymmetric multi-agent debate to adjudicate such conflicts. A critic, deprived of context, challenges a defender who argues from the given passage; a judge model evaluates the debate and determines the context's reliability. The final answer is selected by combining the verdict with model confidence. Experiments on the ClashEval benchmark demonstrate that SR-DCR consistently enhances robustness to misleading context while maintaining accuracy on trustworthy inputs, outperforming both classical debate and confidence-only baselines with minimal computational overhead. The code is available at https://github.com/smiles724/Self-Reflective-Debates. 8 authors · Jun 6 2
- a survey on GPT-3 This paper provides an introductory survey to GPT-3. We cover some of the historical development behind this technology, some of the key features of GPT-3, and discuss the machine learning model and the datasets used. We survey both academic and commercial efforts applying GPT-3 in diverse domains such as developing conversational AI chatbots, software development, creative work, domain knowledge, and business productivity. We discuss some of the challenges that GPT-3 faces such as the problems of training complexity, bias, and hallucination/incorrect answers. We also discuss the future research opportunities in this area. 2 authors · Dec 1, 2022
- CommunityLM: Probing Partisan Worldviews from Language Models As political attitudes have diverged ideologically in the United States, political speech has diverged lingusitically. The ever-widening polarization between the US political parties is accelerated by an erosion of mutual understanding between them. We aim to make these communities more comprehensible to each other with a framework that probes community-specific responses to the same survey questions using community language models CommunityLM. In our framework we identify committed partisan members for each community on Twitter and fine-tune LMs on the tweets authored by them. We then assess the worldviews of the two groups using prompt-based probing of their corresponding LMs, with prompts that elicit opinions about public figures and groups surveyed by the American National Election Studies (ANES) 2020 Exploratory Testing Survey. We compare the responses generated by the LMs to the ANES survey results, and find a level of alignment that greatly exceeds several baseline methods. Our work aims to show that we can use community LMs to query the worldview of any group of people given a sufficiently large sample of their social media discussions or media diet. 4 authors · Sep 15, 2022
- SemEval-2017 Task 8: RumourEval: Determining rumour veracity and support for rumours Media is full of false claims. Even Oxford Dictionaries named "post-truth" as the word of 2016. This makes it more important than ever to build systems that can identify the veracity of a story, and the kind of discourse there is around it. RumourEval is a SemEval shared task that aims to identify and handle rumours and reactions to them, in text. We present an annotation scheme, a large dataset covering multiple topics - each having their own families of claims and replies - and use these to pose two concrete challenges as well as the results achieved by participants on these challenges. 6 authors · Apr 19, 2017
- BianQue: Balancing the Questioning and Suggestion Ability of Health LLMs with Multi-turn Health Conversations Polished by ChatGPT Large language models (LLMs) have performed well in providing general and extensive health suggestions in single-turn conversations, exemplified by systems such as ChatGPT, ChatGLM, ChatDoctor, DoctorGLM, and etc. However, the limited information provided by users during single turn results in inadequate personalization and targeting of the generated suggestions, which requires users to independently select the useful part. It is mainly caused by the missing ability to engage in multi-turn questioning. In real-world medical consultations, doctors usually employ a series of iterative inquiries to comprehend the patient's condition thoroughly, enabling them to provide effective and personalized suggestions subsequently, which can be defined as chain of questioning (CoQ) for LLMs. To improve the CoQ of LLMs, we propose BianQue, a ChatGLM-based LLM finetuned with the self-constructed health conversation dataset BianQueCorpus that is consist of multiple turns of questioning and health suggestions polished by ChatGPT. Experimental results demonstrate that the proposed BianQue can simultaneously balance the capabilities of both questioning and health suggestions, which will help promote the research and application of LLMs in the field of proactive health. 11 authors · Oct 24, 2023
- MultiChallenge: A Realistic Multi-Turn Conversation Evaluation Benchmark Challenging to Frontier LLMs We present MultiChallenge, a pioneering benchmark evaluating large language models (LLMs) on conducting multi-turn conversations with human users, a crucial yet underexamined capability for their applications. MultiChallenge identifies four categories of challenges in multi-turn conversations that are not only common and realistic among current human-LLM interactions, but are also challenging to all current frontier LLMs. All 4 challenges require accurate instruction-following, context allocation, and in-context reasoning at the same time. We also develop LLM as judge with instance-level rubrics to facilitate an automatic evaluation method with fair agreement with experienced human raters. Despite achieving near-perfect scores on existing multi-turn evaluation benchmarks, all frontier models have less than 50% accuracy on MultiChallenge, with the top-performing Claude 3.5 Sonnet (June 2024) achieving just a 41.4% average accuracy. 10 authors · Jan 28
- Toxicity Detection is NOT all you Need: Measuring the Gaps to Supporting Volunteer Content Moderators Extensive efforts in automated approaches for content moderation have been focused on developing models to identify toxic, offensive, and hateful content with the aim of lightening the load for moderators. Yet, it remains uncertain whether improvements on those tasks have truly addressed moderators' needs in accomplishing their work. In this paper, we surface gaps between past research efforts that have aimed to provide automation for aspects of content moderation and the needs of volunteer content moderators, regarding identifying violations of various moderation rules. To do so, we conduct a model review on Hugging Face to reveal the availability of models to cover various moderation rules and guidelines from three exemplar forums. We further put state-of-the-art LLMs to the test, evaluating how well these models perform in flagging violations of platform rules from one particular forum. Finally, we conduct a user survey study with volunteer moderators to gain insight into their perspectives on useful moderation models. Overall, we observe a non-trivial gap, as missing developed models and LLMs exhibit moderate to low performance on a significant portion of the rules. Moderators' reports provide guides for future work on developing moderation assistant models. 6 authors · Nov 13, 2023
1 Can Language Model Moderators Improve the Health of Online Discourse? Conversational moderation of online communities is crucial to maintaining civility for a constructive environment, but it is challenging to scale and harmful to moderators. The inclusion of sophisticated natural language generation modules as a force multiplier to aid human moderators is a tantalizing prospect, but adequate evaluation approaches have so far been elusive. In this paper, we establish a systematic definition of conversational moderation effectiveness grounded on moderation literature and establish design criteria for conducting realistic yet safe evaluation. We then propose a comprehensive evaluation framework to assess models' moderation capabilities independently of human intervention. With our framework, we conduct the first known study of language models as conversational moderators, finding that appropriately prompted models that incorporate insights from social science can provide specific and fair feedback on toxic behavior but struggle to influence users to increase their levels of respect and cooperation. 11 authors · Nov 16, 2023
- Towards Deep Conversational Recommendations There has been growing interest in using neural networks and deep learning techniques to create dialogue systems. Conversational recommendation is an interesting setting for the scientific exploration of dialogue with natural language as the associated discourse involves goal-driven dialogue that often transforms naturally into more free-form chat. This paper provides two contributions. First, until now there has been no publicly available large-scale dataset consisting of real-world dialogues centered around recommendations. To address this issue and to facilitate our exploration here, we have collected ReDial, a dataset consisting of over 10,000 conversations centered around the theme of providing movie recommendations. We make this data available to the community for further research. Second, we use this dataset to explore multiple facets of conversational recommendations. In particular we explore new neural architectures, mechanisms, and methods suitable for composing conversational recommendation systems. Our dataset allows us to systematically probe model sub-components addressing different parts of the overall problem domain ranging from: sentiment analysis and cold-start recommendation generation to detailed aspects of how natural language is used in this setting in the real world. We combine such sub-components into a full-blown dialogue system and examine its behavior. 6 authors · Dec 18, 2018
- AQE: Argument Quadruplet Extraction via a Quad-Tagging Augmented Generative Approach Argument mining involves multiple sub-tasks that automatically identify argumentative elements, such as claim detection, evidence extraction, stance classification, etc. However, each subtask alone is insufficient for a thorough understanding of the argumentative structure and reasoning process. To learn a complete view of an argument essay and capture the interdependence among argumentative components, we need to know what opinions people hold (i.e., claims), why those opinions are valid (i.e., supporting evidence), which source the evidence comes from (i.e., evidence type), and how those claims react to the debating topic (i.e., stance). In this work, we for the first time propose a challenging argument quadruplet extraction task (AQE), which can provide an all-in-one extraction of four argumentative components, i.e., claims, evidence, evidence types, and stances. To support this task, we construct a large-scale and challenging dataset. However, there is no existing method that can solve the argument quadruplet extraction. To fill this gap, we propose a novel quad-tagging augmented generative approach, which leverages a quadruplet tagging module to augment the training of the generative framework. The experimental results on our dataset demonstrate the empirical superiority of our proposed approach over several strong baselines. 6 authors · May 31, 2023
- Towards Effective Counter-Responses: Aligning Human Preferences with Strategies to Combat Online Trolling Trolling in online communities typically involves disruptive behaviors such as provoking anger and manipulating discussions, leading to a polarized atmosphere and emotional distress. Robust moderation is essential for mitigating these negative impacts and maintaining a healthy and constructive community atmosphere. However, effectively addressing trolls is difficult because their behaviors vary widely and require different response strategies (RSs) to counter them. This diversity makes it challenging to choose an appropriate RS for each specific situation. To address this challenge, our research investigates whether humans have preferred strategies tailored to different types of trolling behaviors. Our findings reveal a correlation between the types of trolling encountered and the preferred RS. In this paper, we introduce a methodology for generating counter-responses to trolls by recommending appropriate RSs, supported by a dataset aligning these strategies with human preferences across various troll contexts. The experimental results demonstrate that our proposed approach guides constructive discussion and reduces the negative effects of trolls, thereby enhancing the online community environment. 6 authors · Oct 5, 2024
1 Exploring the Integration Strategies of Retriever and Large Language Models The integration of retrieved passages and large language models (LLMs), such as ChatGPTs, has significantly contributed to improving open-domain question answering. However, there is still a lack of exploration regarding the optimal approach for incorporating retrieved passages into the answer generation process. This paper aims to fill this gap by investigating different methods of combining retrieved passages with LLMs to enhance answer generation. We begin by examining the limitations of a commonly-used concatenation approach. Surprisingly, this approach often results in generating "unknown" outputs, even when the correct document is among the top-k retrieved passages. To address this issue, we explore four alternative strategies for integrating the retrieved passages with the LLMs. These strategies include two single-round methods that utilize chain-of-thought reasoning and two multi-round strategies that incorporate feedback loops. Through comprehensive analyses and experiments, we provide insightful observations on how to effectively leverage retrieved passages to enhance the answer generation capability of LLMs. 7 authors · Aug 24, 2023
12 Position: The Current AI Conference Model is Unsustainable! Diagnosing the Crisis of Centralized AI Conference Artificial Intelligence (AI) conferences are essential for advancing research, sharing knowledge, and fostering academic community. However, their rapid expansion has rendered the centralized conference model increasingly unsustainable. This paper offers a data-driven diagnosis of a structural crisis that threatens the foundational goals of scientific dissemination, equity, and community well-being. We identify four key areas of strain: (1) scientifically, with per-author publication rates more than doubling over the past decade to over 4.5 papers annually; (2) environmentally, with the carbon footprint of a single conference exceeding the daily emissions of its host city; (3) psychologically, with 71% of online community discourse reflecting negative sentiment and 35% referencing mental health concerns; and (4) logistically, with attendance at top conferences such as NeurIPS 2024 beginning to outpace venue capacity. These pressures point to a system that is misaligned with its core mission. In response, we propose the Community-Federated Conference (CFC) model, which separates peer review, presentation, and networking into globally coordinated but locally organized components, offering a more sustainable, inclusive, and resilient path forward for AI research. 6 authors · Aug 6 2
1 FediverseSharing: A Novel Dataset on Cross-Platform Interaction Dynamics between Threads and Mastodon Users Traditional social media platforms, once envisioned as digital town squares, face growing criticism over corporate control, content moderation, and privacy concerns. Events such as Twitter's acquisition(now X) and major policy changes have driven users toward alternative platforms like Mastodon and Threads. However, this diversification has led to user dispersion and fragmented discussions across isolated social media platforms. To address these issues, federation protocols like ActivityPub have been adopted, with Mastodon leading efforts to build decentralized yet interconnected networks. In March 2024, Threads joined this federation by introducing its Fediverse Sharing service, which enables interactions such as posts, replies, and likes between Threads and Mastodon users as if on a unified platform. Building on this development, we introduce FediverseSharing, the first dataset capturing interactions between 20,000+ Threads users and 20,000+ Mastodon users over a ten-month period. This dataset serves as a foundation for studying cross-platform interactions and the impact of federation as previously two separate platforms integrate. 6 authors · Feb 25
- Creative Problem Solving in Large Language and Vision Models -- What Would it Take? We advocate for a strong integration of Computational Creativity (CC) with research in large language and vision models (LLVMs) to address a key limitation of these models, i.e., creative problem solving. We present preliminary experiments showing how CC principles can be applied to address this limitation. Our goal is to foster discussions on creative problem solving in LLVMs and CC at prestigious ML venues. Our code is available at: https://github.com/lnairGT/creative-problem-solving-LLMs 3 authors · May 2, 2024
- DocTalk: Scalable Graph-based Dialogue Synthesis for Enhancing LLM Conversational Capabilities Large Language Models (LLMs) are increasingly employed in multi-turn conversational tasks, yet their pre-training data predominantly consists of continuous prose, creating a potential mismatch between required capabilities and training paradigms. We introduce a novel approach to address this discrepancy by synthesizing conversational data from existing text corpora. We present a pipeline that transforms a cluster of multiple related documents into an extended multi-turn, multi-topic information-seeking dialogue. Applying our pipeline to Wikipedia articles, we curate DocTalk, a multi-turn pre-training dialogue corpus consisting of over 730k long conversations. We hypothesize that exposure to such synthesized conversational structures during pre-training can enhance the fundamental multi-turn capabilities of LLMs, such as context memory and understanding. Empirically, we show that incorporating DocTalk during pre-training results in up to 40% gain in context memory and understanding, without compromising base performance. DocTalk is available at https://huggingface.co/datasets/AmazonScience/DocTalk. 9 authors · Jul 8
- Are Large Language Models Consistent over Value-laden Questions? Large language models (LLMs) appear to bias their survey answers toward certain values. Nonetheless, some argue that LLMs are too inconsistent to simulate particular values. Are they? To answer, we first define value consistency as the similarity of answers across (1) paraphrases of one question, (2) related questions under one topic, (3) multiple-choice and open-ended use-cases of one question, and (4) multilingual translations of a question to English, Chinese, German, and Japanese. We apply these measures to a few large (>=34b), open LLMs including llama-3, as well as gpt-4o, using eight thousand questions spanning more than 300 topics. Unlike prior work, we find that models are relatively consistent across paraphrases, use-cases, translations, and within a topic. Still, some inconsistencies remain. Models are more consistent on uncontroversial topics (e.g., in the U.S., "Thanksgiving") than on controversial ones ("euthanasia"). Base models are both more consistent compared to fine-tuned models and are uniform in their consistency across topics, while fine-tuned models are more inconsistent about some topics ("euthanasia") than others ("women's rights") like our human subjects (n=165). 3 authors · Jul 3, 2024
- Graph vs. Sequence: An Empirical Study on Knowledge Forms for Knowledge-Grounded Dialogue Knowledge-grounded dialogue is a task of generating an informative response based on both the dialogue history and external knowledge source. In general, there are two forms of knowledge: manually annotated knowledge graphs and knowledge text from website. From various evaluation viewpoints, each type of knowledge has advantages and downsides. To further distinguish the principles and determinants from the intricate factors, we conduct a thorough experiment and study on the task to answer three essential questions. The questions involve the choice of appropriate knowledge form, the degree of mutual effects between knowledge and the model selection, and the few-shot performance of knowledge. Supported by statistical shreds of evidence, we offer conclusive solutions and sensible suggestions for directions and standards of future research. 4 authors · Dec 12, 2023
- Mind the Gap Between Conversations for Improved Long-Term Dialogue Generation Knowing how to end and resume conversations over time is a natural part of communication, allowing for discussions to span weeks, months, or years. The duration of gaps between conversations dictates which topics are relevant and which questions to ask, and dialogue systems which do not explicitly model time may generate responses that are unnatural. In this work we explore the idea of making dialogue models aware of time, and present GapChat, a multi-session dialogue dataset in which the time between each session varies. While the dataset is constructed in real-time, progress on events in speakers' lives is simulated in order to create realistic dialogues occurring across a long timespan. We expose time information to the model and compare different representations of time and event progress. In human evaluation we show that time-aware models perform better in metrics that judge the relevance of the chosen topics and the information gained from the conversation. 3 authors · Oct 23, 2023
- KGConv, a Conversational Corpus grounded in Wikidata We present KGConv, a large, conversational corpus of 71k conversations where each question-answer pair is grounded in a Wikidata fact. Conversations contain on average 8.6 questions and for each Wikidata fact, we provide multiple variants (12 on average) of the corresponding question using templates, human annotations, hand-crafted rules and a question rewriting neural model. We provide baselines for the task of Knowledge-Based, Conversational Question Generation. KGConv can further be used for other generation and analysis tasks such as single-turn question generation from Wikidata triples, question rewriting, question answering from conversation or from knowledge graphs and quiz generation. 4 authors · Aug 29, 2023
2 SHARE: Shared Memory-Aware Open-Domain Long-Term Dialogue Dataset Constructed from Movie Script Shared memories between two individuals strengthen their bond and are crucial for facilitating their ongoing conversations. This study aims to make long-term dialogue more engaging by leveraging these shared memories. To this end, we introduce a new long-term dialogue dataset named SHARE, constructed from movie scripts, which are a rich source of shared memories among various relationships. Our dialogue dataset contains the summaries of persona information and events of two individuals, as explicitly revealed in their conversation, along with implicitly extractable shared memories. We also introduce EPISODE, a long-term dialogue framework based on SHARE that utilizes shared experiences between individuals. Through experiments using SHARE, we demonstrate that shared memories between two individuals make long-term dialogues more engaging and sustainable, and that EPISODE effectively manages shared memories during dialogue. Our new dataset is publicly available at https://anonymous.4open.science/r/SHARE-AA1E/SHARE.json. 3 authors · Oct 27, 2024
1 SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases and Relations from Scientific Publications We describe the SemEval task of extracting keyphrases and relations between them from scientific documents, which is crucial for understanding which publications describe which processes, tasks and materials. Although this was a new task, we had a total of 26 submissions across 3 evaluation scenarios. We expect the task and the findings reported in this paper to be relevant for researchers working on understanding scientific content, as well as the broader knowledge base population and information extraction communities. 5 authors · Apr 10, 2017
- DualTalk: Dual-Speaker Interaction for 3D Talking Head Conversations In face-to-face conversations, individuals need to switch between speaking and listening roles seamlessly. Existing 3D talking head generation models focus solely on speaking or listening, neglecting the natural dynamics of interactive conversation, which leads to unnatural interactions and awkward transitions. To address this issue, we propose a new task -- multi-round dual-speaker interaction for 3D talking head generation -- which requires models to handle and generate both speaking and listening behaviors in continuous conversation. To solve this task, we introduce DualTalk, a novel unified framework that integrates the dynamic behaviors of speakers and listeners to simulate realistic and coherent dialogue interactions. This framework not only synthesizes lifelike talking heads when speaking but also generates continuous and vivid non-verbal feedback when listening, effectively capturing the interplay between the roles. We also create a new dataset featuring 50 hours of multi-round conversations with over 1,000 characters, where participants continuously switch between speaking and listening roles. Extensive experiments demonstrate that our method significantly enhances the naturalness and expressiveness of 3D talking heads in dual-speaker conversations. We recommend watching the supplementary video: https://ziqiaopeng.github.io/dualtalk. 7 authors · May 23
- Disagreement as a way to study misinformation and its effects Misinformation - false or misleading information - is considered a significant societal concern due to its associated "misinformation effects," such as political polarization, erosion of trust in institutions, problematic behavior, and public health challenges. However, the prevailing concept is misaligned with what is studied. While misinformation focuses on instances of information about factual matters, the broad spectrum of effects often manifests at a societal level and is shaped by a wide range of interdependent factors such as identity, values, opinions, epistemologies, and disagreements. Unsurprisingly, misinformation effects can occur without the prevalence of misinformation, and misinformation does not necessarily increase the effects studied. Here, we propose using disagreement - conflicting attitudes and beliefs between individuals and communities - as a way to study misinformation effects because it addresses the identified conceptual limitations of misinformation. Furthermore, unlike misinformation, disagreement does not require researchers to determine whether a given information is false or misleading. Thus, it can be studied and, more importantly, measured without the need to make a normative judgment about a given information, even when the specific topic is entirely removed, as we show in a longitudinal disagreement measurement. We demonstrate that disagreement, as a holistic concept, provides better explanations for the occurrence of misinformation effects, enhances precision in developing appropriate interventions, and offers a promising approach for evaluating them through quantification. Finally, we show how disagreement addresses current misinformation research questions and conclude with recommendations for research practice. 2 authors · Aug 15, 2024
- Twitter Topic Classification Social media platforms host discussions about a wide variety of topics that arise everyday. Making sense of all the content and organising it into categories is an arduous task. A common way to deal with this issue is relying on topic modeling, but topics discovered using this technique are difficult to interpret and can differ from corpus to corpus. In this paper, we present a new task based on tweet topic classification and release two associated datasets. Given a wide range of topics covering the most important discussion points in social media, we provide training and testing data from recent time periods that can be used to evaluate tweet classification models. Moreover, we perform a quantitative evaluation and analysis of current general- and domain-specific language models on the task, which provide more insights on the challenges and nature of the task. 6 authors · Sep 20, 2022
2 IAM: A Comprehensive and Large-Scale Dataset for Integrated Argument Mining Tasks Traditionally, a debate usually requires a manual preparation process, including reading plenty of articles, selecting the claims, identifying the stances of the claims, seeking the evidence for the claims, etc. As the AI debate attracts more attention these years, it is worth exploring the methods to automate the tedious process involved in the debating system. In this work, we introduce a comprehensive and large dataset named IAM, which can be applied to a series of argument mining tasks, including claim extraction, stance classification, evidence extraction, etc. Our dataset is collected from over 1k articles related to 123 topics. Near 70k sentences in the dataset are fully annotated based on their argument properties (e.g., claims, stances, evidence, etc.). We further propose two new integrated argument mining tasks associated with the debate preparation process: (1) claim extraction with stance classification (CESC) and (2) claim-evidence pair extraction (CEPE). We adopt a pipeline approach and an end-to-end method for each integrated task separately. Promising experimental results are reported to show the values and challenges of our proposed tasks, and motivate future research on argument mining. 6 authors · Mar 23, 2022
6 Can Community Notes Replace Professional Fact-Checkers? Two commonly-employed strategies to combat the rise of misinformation on social media are (i) fact-checking by professional organisations and (ii) community moderation by platform users. Policy changes by Twitter/X and, more recently, Meta, signal a shift away from partnerships with fact-checking organisations and towards an increased reliance on crowdsourced community notes. However, the extent and nature of dependencies between fact-checking and helpful community notes remain unclear. To address these questions, we use language models to annotate a large corpus of Twitter/X community notes with attributes such as topic, cited sources, and whether they refute claims tied to broader misinformation narratives. Our analysis reveals that community notes cite fact-checking sources up to five times more than previously reported. Fact-checking is especially crucial for notes on posts linked to broader narratives, which are twice as likely to reference fact-checking sources compared to other sources. In conclusion, our results show that successful community moderation heavily relies on professional fact-checking. 4 authors · Feb 19 2
- This Thing Called Fairness: Disciplinary Confusion Realizing a Value in Technology The explosion in the use of software in important sociotechnical systems has renewed focus on the study of the way technical constructs reflect policies, norms, and human values. This effort requires the engagement of scholars and practitioners from many disciplines. And yet, these disciplines often conceptualize the operative values very differently while referring to them using the same vocabulary. The resulting conflation of ideas confuses discussions about values in technology at disciplinary boundaries. In the service of improving this situation, this paper examines the value of shared vocabularies, analytics, and other tools that facilitate conversations about values in light of these disciplinary specific conceptualizations, the role such tools play in furthering research and practice, outlines different conceptions of "fairness" deployed in discussions about computer systems, and provides an analytic tool for interdisciplinary discussions and collaborations around the concept of fairness. We use a case study of risk assessments in criminal justice applications to both motivate our effort--describing how conflation of different concepts under the banner of "fairness" led to unproductive confusion--and illustrate the value of the fairness analytic by demonstrating how the rigorous analysis it enables can assist in identifying key areas of theoretical, political, and practical misunderstanding or disagreement, and where desired support alignment or collaboration in the absence of consensus. 4 authors · Sep 25, 2019
- Towards conversational assistants for health applications: using ChatGPT to generate conversations about heart failure We explore the potential of ChatGPT (3.5-turbo and 4) to generate conversations focused on self-care strategies for African-American heart failure patients -- a domain with limited specialized datasets. To simulate patient-health educator dialogues, we employed four prompting strategies: domain, African American Vernacular English (AAVE), Social Determinants of Health (SDOH), and SDOH-informed reasoning. Conversations were generated across key self-care domains of food, exercise, and fluid intake, with varying turn lengths (5, 10, 15) and incorporated patient-specific SDOH attributes such as age, gender, neighborhood, and socioeconomic status. Our findings show that effective prompt design is essential. While incorporating SDOH and reasoning improves dialogue quality, ChatGPT still lacks the empathy and engagement needed for meaningful healthcare communication. 8 authors · May 6
- Talk2Ref: A Dataset for Reference Prediction from Scientific Talks Scientific talks are a growing medium for disseminating research, and automatically identifying relevant literature that grounds or enriches a talk would be highly valuable for researchers and students alike. We introduce Reference Prediction from Talks (RPT), a new task that maps long, and unstructured scientific presentations to relevant papers. To support research on RPT, we present Talk2Ref, the first large-scale dataset of its kind, containing 6,279 talks and 43,429 cited papers (26 per talk on average), where relevance is approximated by the papers cited in the talk's corresponding source publication. We establish strong baselines by evaluating state-of-the-art text embedding models in zero-shot retrieval scenarios, and propose a dual-encoder architecture trained on Talk2Ref. We further explore strategies for handling long transcripts, as well as training for domain adaptation. Our results show that fine-tuning on Talk2Ref significantly improves citation prediction performance, demonstrating both the challenges of the task and the effectiveness of our dataset for learning semantic representations from spoken scientific content. The dataset and trained models are released under an open license to foster future research on integrating spoken scientific communication into citation recommendation systems. 3 authors · Oct 28
- The Second Conversational Intelligence Challenge (ConvAI2) We describe the setting and results of the ConvAI2 NeurIPS competition that aims to further the state-of-the-art in open-domain chatbots. Some key takeaways from the competition are: (i) pretrained Transformer variants are currently the best performing models on this task, (ii) but to improve performance on multi-turn conversations with humans, future systems must go beyond single word metrics like perplexity to measure the performance across sequences of utterances (conversations) -- in terms of repetition, consistency and balance of dialogue acts (e.g. how many questions asked vs. answered). 17 authors · Jan 31, 2019
1 On the Conversational Persuasiveness of Large Language Models: A Randomized Controlled Trial The development and popularization of large language models (LLMs) have raised concerns that they will be used to create tailor-made, convincing arguments to push false or misleading narratives online. Early work has found that language models can generate content perceived as at least on par and often more persuasive than human-written messages. However, there is still limited knowledge about LLMs' persuasive capabilities in direct conversations with human counterparts and how personalization can improve their performance. In this pre-registered study, we analyze the effect of AI-driven persuasion in a controlled, harmless setting. We create a web-based platform where participants engage in short, multiple-round debates with a live opponent. Each participant is randomly assigned to one of four treatment conditions, corresponding to a two-by-two factorial design: (1) Games are either played between two humans or between a human and an LLM; (2) Personalization might or might not be enabled, granting one of the two players access to basic sociodemographic information about their opponent. We found that participants who debated GPT-4 with access to their personal information had 81.7% (p < 0.01; N=820 unique participants) higher odds of increased agreement with their opponents compared to participants who debated humans. Without personalization, GPT-4 still outperforms humans, but the effect is lower and statistically non-significant (p=0.31). Overall, our results suggest that concerns around personalization are meaningful and have important implications for the governance of social media and the design of new online environments. 4 authors · Mar 21, 2024
1 QMSum: A New Benchmark for Query-based Multi-domain Meeting Summarization Meetings are a key component of human collaboration. As increasing numbers of meetings are recorded and transcribed, meeting summaries have become essential to remind those who may or may not have attended the meetings about the key decisions made and the tasks to be completed. However, it is hard to create a single short summary that covers all the content of a long meeting involving multiple people and topics. In order to satisfy the needs of different types of users, we define a new query-based multi-domain meeting summarization task, where models have to select and summarize relevant spans of meetings in response to a query, and we introduce QMSum, a new benchmark for this task. QMSum consists of 1,808 query-summary pairs over 232 meetings in multiple domains. Besides, we investigate a locate-then-summarize method and evaluate a set of strong summarization baselines on the task. Experimental results and manual analysis reveal that QMSum presents significant challenges in long meeting summarization for future research. Dataset is available at https://github.com/Yale-LILY/QMSum. 11 authors · Apr 13, 2021
- How Far Can We Extract Diverse Perspectives from Large Language Models? Collecting diverse human opinions is costly and challenging. This leads to a recent trend in exploiting large language models (LLMs) for generating diverse data for potential scalable and efficient solutions. However, the extent to which LLMs can generate diverse perspectives on subjective topics is still unclear. In this study, we explore LLMs' capacity of generating diverse perspectives and rationales on subjective topics such as social norms and argumentative texts. We introduce the problem of extracting maximum diversity from LLMs. Motivated by how humans form opinions based on values, we propose a criteria-based prompting technique to ground diverse opinions. To see how far we can extract diverse perspectives from LLMs, or called diversity coverage, we employ a step-by-step recall prompting to generate more outputs from the model iteratively. Our methods, applied to various tasks, show that LLMs can indeed produce diverse opinions according to the degree of task subjectivity. We also find that LLM's performance of extracting maximum diversity is on par with human. 4 authors · Nov 16, 2023
- MultiWOZ 2.1: A Consolidated Multi-Domain Dialogue Dataset with State Corrections and State Tracking Baselines MultiWOZ 2.0 (Budzianowski et al., 2018) is a recently released multi-domain dialogue dataset spanning 7 distinct domains and containing over 10,000 dialogues. Though immensely useful and one of the largest resources of its kind to-date, MultiWOZ 2.0 has a few shortcomings. Firstly, there is substantial noise in the dialogue state annotations and dialogue utterances which negatively impact the performance of state-tracking models. Secondly, follow-up work (Lee et al., 2019) has augmented the original dataset with user dialogue acts. This leads to multiple co-existent versions of the same dataset with minor modifications. In this work we tackle the aforementioned issues by introducing MultiWOZ 2.1. To fix the noisy state annotations, we use crowdsourced workers to re-annotate state and utterances based on the original utterances in the dataset. This correction process results in changes to over 32% of state annotations across 40% of the dialogue turns. In addition, we fix 146 dialogue utterances by canonicalizing slot values in the utterances to the values in the dataset ontology. To address the second problem, we combined the contributions of the follow-up works into MultiWOZ 2.1. Hence, our dataset also includes user dialogue acts as well as multiple slot descriptions per dialogue state slot. We then benchmark a number of state-of-the-art dialogue state tracking models on the MultiWOZ 2.1 dataset and show the joint state tracking performance on the corrected state annotations. We are publicly releasing MultiWOZ 2.1 to the community, hoping that this dataset resource will allow for more effective models across various dialogue subproblems to be built in the future. 10 authors · Jul 2, 2019