new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 1

Online Information Acquisition: Hiring Multiple Agents

We investigate the mechanism design problem faced by a principal who hires multiple agents to gather and report costly information. Then, the principal exploits the information to make an informed decision. We model this problem as a game, where the principal announces a mechanism consisting in action recommendations and a payment function, a.k.a. scoring rule. Then, each agent chooses an effort level and receives partial information about an underlying state of nature based on the effort. Finally, the agents report the information (possibly non-truthfully), the principal takes a decision based on this information, and the agents are paid according to the scoring rule. While previous work focuses on single-agent problems, we consider multi-agents settings. This poses the challenge of coordinating the agents' efforts and aggregating correlated information. Indeed, we show that optimal mechanisms must correlate agents' efforts, which introduces externalities among the agents, and hence complex incentive compatibility constraints and equilibrium selection problems. First, we design a polynomial-time algorithm to find an optimal incentive compatible mechanism. Then, we study an online problem, where the principal repeatedly interacts with a group of unknown agents. We design a no-regret algorithm that provides mathcal{O}(T^{2/3}) regret with respect to an optimal mechanism, matching the state-of-the-art bound for single-agent settings.

  • 3 authors
·
Jul 12, 2023

Chain-of-Agents: End-to-End Agent Foundation Models via Multi-Agent Distillation and Agentic RL

Recent advances in large language models (LLMs) and multi-agent systems have demonstrated remarkable capabilities in complex problem-solving tasks such as deep research, vibe coding, and mathematical reasoning. However, most existing multi-agent systems are built upon manual prompt/workflow engineering with sophisticated agent frameworks, making them computationally inefficient, less capable, and can not benefit from data-centric learning. In this work, we introduce Chain-of-Agents (CoA), a novel paradigm of LLM reasoning that enables native end-to-end complex problem-solving in the same way as a multi-agent system (i.e., multi-turn problem solving with multiple tools and multiple agents) within one model. In chain-of-agents problem-solving, the model dynamically activates different tool agents and role-playing agents to simulate multi-agent collaboration in an end-to-end fashion. To elicit end-to-end chain-of-agents problem-solving abilities in LLMs, we introduce a multi-agent distillation framework to distill state-of-the-art multi-agent systems into chain-of-agents trajectories for agentic supervised fine-tuning. We then use agentic reinforcement learning on verifiable agentic tasks to further improve the models' capabilities on chain-of-agents problem solving. We call the resulting models Agent Foundation Models (AFMs). Our empirical studies demonstrate that AFM establishes new state-of-the-art performance across diverse benchmarks in both web agent and code agent settings. We make the entire research, including the model weights, code for training and evaluation, and the training data, fully open-sourced, which offers a solid starting point for future research on agent models and agentic RL.

Paper2Agent: Reimagining Research Papers As Interactive and Reliable AI Agents

We introduce Paper2Agent, an automated framework that converts research papers into AI agents. Paper2Agent transforms research output from passive artifacts into active systems that can accelerate downstream use, adoption, and discovery. Conventional research papers require readers to invest substantial effort to understand and adapt a paper's code, data, and methods to their own work, creating barriers to dissemination and reuse. Paper2Agent addresses this challenge by automatically converting a paper into an AI agent that acts as a knowledgeable research assistant. It systematically analyzes the paper and the associated codebase using multiple agents to construct a Model Context Protocol (MCP) server, then iteratively generates and runs tests to refine and robustify the resulting MCP. These paper MCPs can then be flexibly connected to a chat agent (e.g. Claude Code) to carry out complex scientific queries through natural language while invoking tools and workflows from the original paper. We demonstrate Paper2Agent's effectiveness in creating reliable and capable paper agents through in-depth case studies. Paper2Agent created an agent that leverages AlphaGenome to interpret genomic variants and agents based on ScanPy and TISSUE to carry out single-cell and spatial transcriptomics analyses. We validate that these paper agents can reproduce the original paper's results and can correctly carry out novel user queries. By turning static papers into dynamic, interactive AI agents, Paper2Agent introduces a new paradigm for knowledge dissemination and a foundation for the collaborative ecosystem of AI co-scientists.

GraphTracer: Graph-Guided Failure Tracing in LLM Agents for Robust Multi-Turn Deep Search

Multi-agent systems powered by Large Language Models excel at complex tasks through coordinated collaboration, yet they face high failure rates in multi-turn deep search scenarios. Existing temporal attribution methods struggle to accurately diagnose root causes, particularly when errors propagate across multiple agents. Attempts to automate failure attribution by analyzing action sequences remain ineffective due to their inability to account for information dependencies that span agents. This paper identifies two core challenges: (i) distinguishing symptoms from root causes in multi-agent error propagation, and (ii) tracing information dependencies beyond temporal order. To address these issues, we introduce GraphTracer, a framework that redefines failure attribution through information flow analysis. GraphTracer constructs Information Dependency Graphs (IDGs) to explicitly capture how agents reference and build on prior outputs. It localizes root causes by tracing through these dependency structures instead of relying on temporal sequences. GraphTracer also uses graph-aware synthetic data generation to target critical nodes, creating realistic failure scenarios. Evaluations on the Who\&When benchmark and integration into production systems demonstrate that GraphTracer-8B achieves up to 18.18\% higher attribution accuracy compared to state-of-the-art models and enables 4.8\% to 14.2\% performance improvements in deployed multi-agent frameworks, establishing a robust solution for multi-agent system debugging.

  • 8 authors
·
Oct 12 2

Very Large-Scale Multi-Agent Simulation in AgentScope

Recent advances in large language models (LLMs) have opened new avenues for applying multi-agent systems in very large-scale simulations. However, there remain several challenges when conducting multi-agent simulations with existing platforms, such as limited scalability and low efficiency, unsatisfied agent diversity, and effort-intensive management processes. To address these challenges, we develop several new features and components for AgentScope, a user-friendly multi-agent platform, enhancing its convenience and flexibility for supporting very large-scale multi-agent simulations. Specifically, we propose an actor-based distributed mechanism as the underlying technological infrastructure towards great scalability and high efficiency, and provide flexible environment support for simulating various real-world scenarios, which enables parallel execution of multiple agents, centralized workflow orchestration, and both inter-agent and agent-environment interactions among agents. Moreover, we integrate an easy-to-use configurable tool and an automatic background generation pipeline in AgentScope, simplifying the process of creating agents with diverse yet detailed background settings. Last but not least, we provide a web-based interface for conveniently monitoring and managing a large number of agents that might deploy across multiple devices. We conduct a comprehensive simulation to demonstrate the effectiveness of the proposed enhancements in AgentScope, and provide detailed observations and discussions to highlight the great potential of applying multi-agent systems in large-scale simulations. The source code is released on GitHub at https://github.com/modelscope/agentscope to inspire further research and development in large-scale multi-agent simulations.

  • 8 authors
·
Jul 25, 2024 2

Sparsity-Aware Distributed Learning for Gaussian Processes with Linear Multiple Kernel

Gaussian processes (GPs) stand as crucial tools in machine learning and signal processing, with their effectiveness hinging on kernel design and hyper-parameter optimization. This paper presents a novel GP linear multiple kernel (LMK) and a generic sparsity-aware distributed learning framework to optimize the hyper-parameters. The newly proposed grid spectral mixture product (GSMP) kernel is tailored for multi-dimensional data, effectively reducing the number of hyper-parameters while maintaining good approximation capability. We further demonstrate that the associated hyper-parameter optimization of this kernel yields sparse solutions. To exploit the inherent sparsity of the solutions, we introduce the Sparse LInear Multiple Kernel Learning (SLIM-KL) framework. The framework incorporates a quantized alternating direction method of multipliers (ADMM) scheme for collaborative learning among multiple agents, where the local optimization problem is solved using a distributed successive convex approximation (DSCA) algorithm. SLIM-KL effectively manages large-scale hyper-parameter optimization for the proposed kernel, simultaneously ensuring data privacy and minimizing communication costs. Theoretical analysis establishes convergence guarantees for the learning framework, while experiments on diverse datasets demonstrate the superior prediction performance and efficiency of our proposed methods.

  • 5 authors
·
Sep 15, 2023

PIPA: A Unified Evaluation Protocol for Diagnosing Interactive Planning Agents

The growing capabilities of large language models (LLMs) in instruction-following and context-understanding lead to the era of agents with numerous applications. Among these, task planning agents have become especially prominent in realistic scenarios involving complex internal pipelines, such as context understanding, tool management, and response generation. However, existing benchmarks predominantly evaluate agent performance based on task completion as a proxy for overall effectiveness. We hypothesize that merely improving task completion is misaligned with maximizing user satisfaction, as users interact with the entire agentic process and not only the end result. To address this gap, we propose PIPA, a unified evaluation protocol that conceptualizes the behavioral process of interactive task planning agents within a partially observable Markov Decision Process (POMDP) paradigm. The proposed protocol offers a comprehensive assessment of agent performance through a set of atomic evaluation criteria, allowing researchers and practitioners to diagnose specific strengths and weaknesses within the agent's decision-making pipeline. Our analyses show that agents excel in different behavioral stages, with user satisfaction shaped by both outcomes and intermediate behaviors. We also highlight future directions, including systems that leverage multiple agents and the limitations of user simulators in task planning.

  • 9 authors
·
May 2

From Individual to Society: A Survey on Social Simulation Driven by Large Language Model-based Agents

Traditional sociological research often relies on human participation, which, though effective, is expensive, challenging to scale, and with ethical concerns. Recent advancements in large language models (LLMs) highlight their potential to simulate human behavior, enabling the replication of individual responses and facilitating studies on many interdisciplinary studies. In this paper, we conduct a comprehensive survey of this field, illustrating the recent progress in simulation driven by LLM-empowered agents. We categorize the simulations into three types: (1) Individual Simulation, which mimics specific individuals or demographic groups; (2) Scenario Simulation, where multiple agents collaborate to achieve goals within specific contexts; and (3) Society Simulation, which models interactions within agent societies to reflect the complexity and variety of real-world dynamics. These simulations follow a progression, ranging from detailed individual modeling to large-scale societal phenomena. We provide a detailed discussion of each simulation type, including the architecture or key components of the simulation, the classification of objectives or scenarios and the evaluation method. Afterward, we summarize commonly used datasets and benchmarks. Finally, we discuss the trends across these three types of simulation. A repository for the related sources is at {https://github.com/FudanDISC/SocialAgent}.

  • 11 authors
·
Dec 4, 2024

GenMAC: Compositional Text-to-Video Generation with Multi-Agent Collaboration

Text-to-video generation models have shown significant progress in the recent years. However, they still struggle with generating complex dynamic scenes based on compositional text prompts, such as attribute binding for multiple objects, temporal dynamics associated with different objects, and interactions between objects. Our key motivation is that complex tasks can be decomposed into simpler ones, each handled by a role-specialized MLLM agent. Multiple agents can collaborate together to achieve collective intelligence for complex goals. We propose GenMAC, an iterative, multi-agent framework that enables compositional text-to-video generation. The collaborative workflow includes three stages: Design, Generation, and Redesign, with an iterative loop between the Generation and Redesign stages to progressively verify and refine the generated videos. The Redesign stage is the most challenging stage that aims to verify the generated videos, suggest corrections, and redesign the text prompts, frame-wise layouts, and guidance scales for the next iteration of generation. To avoid hallucination of a single MLLM agent, we decompose this stage to four sequentially-executed MLLM-based agents: verification agent, suggestion agent, correction agent, and output structuring agent. Furthermore, to tackle diverse scenarios of compositional text-to-video generation, we design a self-routing mechanism to adaptively select the proper correction agent from a collection of correction agents each specialized for one scenario. Extensive experiments demonstrate the effectiveness of GenMAC, achieving state-of-the art performance in compositional text-to-video generation.

  • 6 authors
·
Dec 5, 2024 2

JaxMARL: Multi-Agent RL Environments in JAX

Benchmarks play an important role in the development of machine learning algorithms. For example, research in reinforcement learning (RL) has been heavily influenced by available environments and benchmarks. However, RL environments are traditionally run on the CPU, limiting their scalability with typical academic compute. Recent advancements in JAX have enabled the wider use of hardware acceleration to overcome these computational hurdles, enabling massively parallel RL training pipelines and environments. This is particularly useful for multi-agent reinforcement learning (MARL) research. First of all, multiple agents must be considered at each environment step, adding computational burden, and secondly, the sample complexity is increased due to non-stationarity, decentralised partial observability, or other MARL challenges. In this paper, we present JaxMARL, the first open-source code base that combines ease-of-use with GPU enabled efficiency, and supports a large number of commonly used MARL environments as well as popular baseline algorithms. When considering wall clock time, our experiments show that per-run our JAX-based training pipeline is up to 12500x faster than existing approaches. This enables efficient and thorough evaluations, with the potential to alleviate the evaluation crisis of the field. We also introduce and benchmark SMAX, a vectorised, simplified version of the popular StarCraft Multi-Agent Challenge, which removes the need to run the StarCraft II game engine. This not only enables GPU acceleration, but also provides a more flexible MARL environment, unlocking the potential for self-play, meta-learning, and other future applications in MARL. We provide code at https://github.com/flairox/jaxmarl.

  • 20 authors
·
Nov 16, 2023

LLM Agent Operating System

The integration and deployment of large language model (LLM)-based intelligent agents have been fraught with challenges that compromise their efficiency and efficacy. Among these issues are sub-optimal scheduling and resource allocation of agent requests over the LLM, the difficulties in maintaining context during interactions between agent and LLM, and the complexities inherent in integrating heterogeneous agents with different capabilities and specializations. The rapid increase of agent quantity and complexity further exacerbates these issues, often leading to bottlenecks and sub-optimal utilization of resources. Inspired by these challenges, this paper presents AIOS, an LLM agent operating system, which embeds large language model into operating systems (OS). Specifically, AIOS is designed to optimize resource allocation, facilitate context switch across agents, enable concurrent execution of agents, provide tool service for agents, and maintain access control for agents. We present the architecture of such an operating system, outline the core challenges it aims to resolve, and provide the basic design and implementation of the AIOS. Our experiments on concurrent execution of multiple agents demonstrate the reliability and efficiency of our AIOS modules. Through this, we aim to not only improve the performance and efficiency of LLM agents but also to pioneer for better development and deployment of the AIOS ecosystem in the future. The project is open-source at https://github.com/agiresearch/AIOS.

  • 6 authors
·
Mar 25, 2024 4

Stochastic Self-Organization in Multi-Agent Systems

Multi-agent systems (MAS) based on Large Language Models (LLMs) have the potential to solve tasks that are beyond the reach of any single LLM. However, this potential can only be realized when the collaboration mechanism between agents is optimized. Specifically, optimizing the communication structure between agents is critical for fruitful collaboration. Most existing approaches rely on fixed topologies, pretrained graph generators, optimization over edges, or employ external LLM judges, thereby adding to the complexity. In this work, we introduce a response-conditioned framework that adapts communication on-the-fly. Agents independently generate responses to the user query and assess peer contributions using an approximation of the Shapley value. A directed acyclic graph (DAG) is then constructed to regulate the propagation of the responses among agents, which ensures stable and efficient message transmission from high-contributing agents to others. This graph is dynamically updated based on the agent responses from the previous collaboration round. Since the proposed framework enables the self-organization of agents without additional supervision or training, we refer to it as SelfOrg. The SelfOrg framework goes beyond task- and query-level optimization and takes into account the stochastic nature of agent responses. Experiments with both strong and weak LLM backends demonstrate robust performance, with significant gains in the weak regime where prior methods collapse. We also theoretically show that multiple agents increase the chance of correctness and that the correct responses naturally dominate the information flow.

  • 3 authors
·
Oct 1

MOMAland: A Set of Benchmarks for Multi-Objective Multi-Agent Reinforcement Learning

Many challenging tasks such as managing traffic systems, electricity grids, or supply chains involve complex decision-making processes that must balance multiple conflicting objectives and coordinate the actions of various independent decision-makers (DMs). One perspective for formalising and addressing such tasks is multi-objective multi-agent reinforcement learning (MOMARL). MOMARL broadens reinforcement learning (RL) to problems with multiple agents each needing to consider multiple objectives in their learning process. In reinforcement learning research, benchmarks are crucial in facilitating progress, evaluation, and reproducibility. The significance of benchmarks is underscored by the existence of numerous benchmark frameworks developed for various RL paradigms, including single-agent RL (e.g., Gymnasium), multi-agent RL (e.g., PettingZoo), and single-agent multi-objective RL (e.g., MO-Gymnasium). To support the advancement of the MOMARL field, we introduce MOMAland, the first collection of standardised environments for multi-objective multi-agent reinforcement learning. MOMAland addresses the need for comprehensive benchmarking in this emerging field, offering over 10 diverse environments that vary in the number of agents, state representations, reward structures, and utility considerations. To provide strong baselines for future research, MOMAland also includes algorithms capable of learning policies in such settings.

  • 13 authors
·
Jul 23, 2024 3

Adaptability in Multi-Agent Reinforcement Learning: A Framework and Unified Review

Multi-Agent Reinforcement Learning (MARL) has shown clear effectiveness in coordinating multiple agents across simulated benchmarks and constrained scenarios. However, its deployment in real-world multi-agent systems (MAS) remains limited, primarily due to the complex and dynamic nature of such environments. These challenges arise from multiple interacting sources of variability, including fluctuating agent populations, evolving task goals, and inconsistent execution conditions. Together, these factors demand that MARL algorithms remain effective under continuously changing system configurations and operational demands. To better capture and assess this capacity for adjustment, we introduce the concept of adaptability as a unified and practically grounded lens through which to evaluate the reliability of MARL algorithms under shifting conditions, broadly referring to any changes in the environment dynamics that may occur during learning or execution. Centred on the notion of adaptability, we propose a structured framework comprising three key dimensions: learning adaptability, policy adaptability, and scenario-driven adaptability. By adopting this adaptability perspective, we aim to support more principled assessments of MARL performance beyond narrowly defined benchmarks. Ultimately, this survey contributes to the development of algorithms that are better suited for deployment in dynamic, real-world multi-agent systems.

  • 6 authors
·
Jul 14

CoSDH: Communication-Efficient Collaborative Perception via Supply-Demand Awareness and Intermediate-Late Hybridization

Multi-agent collaborative perception enhances perceptual capabilities by utilizing information from multiple agents and is considered a fundamental solution to the problem of weak single-vehicle perception in autonomous driving. However, existing collaborative perception methods face a dilemma between communication efficiency and perception accuracy. To address this issue, we propose a novel communication-efficient collaborative perception framework based on supply-demand awareness and intermediate-late hybridization, dubbed as \mymethodname. By modeling the supply-demand relationship between agents, the framework refines the selection of collaboration regions, reducing unnecessary communication cost while maintaining accuracy. In addition, we innovatively introduce the intermediate-late hybrid collaboration mode, where late-stage collaboration compensates for the performance degradation in collaborative perception under low communication bandwidth. Extensive experiments on multiple datasets, including both simulated and real-world scenarios, demonstrate that \mymethodname~ achieves state-of-the-art detection accuracy and optimal bandwidth trade-offs, delivering superior detection precision under real communication bandwidths, thus proving its effectiveness and practical applicability. The code will be released at https://github.com/Xu2729/CoSDH.

  • 4 authors
·
Mar 5

Magentic Marketplace: An Open-Source Environment for Studying Agentic Markets

As LLM agents advance, they are increasingly mediating economic decisions, ranging from product discovery to transactions, on behalf of users. Such applications promise benefits but also raise many questions about agent accountability and value for users. Addressing these questions requires understanding how agents behave in realistic market conditions. However, previous research has largely evaluated agents in constrained settings, such as single-task marketplaces (e.g., negotiation) or structured two-agent interactions. Real-world markets are fundamentally different: they require agents to handle diverse economic activities and coordinate within large, dynamic ecosystems where multiple agents with opaque behaviors may engage in open-ended dialogues. To bridge this gap, we investigate two-sided agentic marketplaces where Assistant agents represent consumers and Service agents represent competing businesses. To study these interactions safely, we develop Magentic-Marketplace-- a simulated environment where Assistants and Services can operate. This environment enables us to study key market dynamics: the utility agents achieve, behavioral biases, vulnerability to manipulation, and how search mechanisms shape market outcomes. Our experiments show that frontier models can approach optimal welfare-- but only under ideal search conditions. Performance degrades sharply with scale, and all models exhibit severe first-proposal bias, creating 10-30x advantages for response speed over quality. These findings reveal how behaviors emerge across market conditions, informing the design of fair and efficient agentic marketplaces.

VS-Bench: Evaluating VLMs for Strategic Reasoning and Decision-Making in Multi-Agent Environments

Recent advancements in Vision Language Models (VLMs) have expanded their capabilities to interactive agent tasks, yet existing benchmarks remain limited to single-agent or text-only environments. In contrast, real-world scenarios often involve multiple agents interacting within rich visual and linguistic contexts, posing challenges with both multimodal observations and strategic interactions. To bridge this gap, we introduce Visual Strategic Bench (VS-Bench), a multimodal benchmark that evaluates VLMs for strategic reasoning and decision-making in multi-agent environments. VS-Bench comprises eight vision-grounded environments spanning cooperative, competitive, and mixed-motive interactions, designed to assess agents' ability to predict others' future moves and optimize for long-term objectives. We consider two complementary evaluation dimensions, including offline evaluation of strategic reasoning by next-action prediction accuracy and online evaluation of decision-making by normalized episode return. Extensive experiments of fourteen leading VLMs reveal a significant gap between current models and optimal performance, with the best models attaining 47.8% prediction accuracy and 24.3% normalized return. We further conduct in-depth analyses on multimodal observations, test-time scaling, social behaviors, and failure cases of VLM agents. By standardizing the evaluation and highlighting the limitations of existing models, we envision VS-Bench as a foundation for future research on strategic multimodal agents. Code and data are available at https://vs-bench.github.io.

  • 8 authors
·
Jun 2 3

CoDynTrust: Robust Asynchronous Collaborative Perception via Dynamic Feature Trust Modulus

Collaborative perception, fusing information from multiple agents, can extend perception range so as to improve perception performance. However, temporal asynchrony in real-world environments, caused by communication delays, clock misalignment, or sampling configuration differences, can lead to information mismatches. If this is not well handled, then the collaborative performance is patchy, and what's worse safety accidents may occur. To tackle this challenge, we propose CoDynTrust, an uncertainty-encoded asynchronous fusion perception framework that is robust to the information mismatches caused by temporal asynchrony. CoDynTrust generates dynamic feature trust modulus (DFTM) for each region of interest by modeling aleatoric and epistemic uncertainty as well as selectively suppressing or retaining single-vehicle features, thereby mitigating information mismatches. We then design a multi-scale fusion module to handle multi-scale feature maps processed by DFTM. Compared to existing works that also consider asynchronous collaborative perception, CoDynTrust combats various low-quality information in temporally asynchronous scenarios and allows uncertainty to be propagated to downstream tasks such as planning and control. Experimental results demonstrate that CoDynTrust significantly reduces performance degradation caused by temporal asynchrony across multiple datasets, achieving state-of-the-art detection performance even with temporal asynchrony. The code is available at https://github.com/CrazyShout/CoDynTrust.

  • 7 authors
·
Feb 12

R-ACP: Real-Time Adaptive Collaborative Perception Leveraging Robust Task-Oriented Communications

Collaborative perception enhances sensing in multirobot and vehicular networks by fusing information from multiple agents, improving perception accuracy and sensing range. However, mobility and non-rigid sensor mounts introduce extrinsic calibration errors, necessitating online calibration, further complicated by limited overlap in sensing regions. Moreover, maintaining fresh information is crucial for timely and accurate sensing. To address calibration errors and ensure timely and accurate perception, we propose a robust task-oriented communication strategy to optimize online self-calibration and efficient feature sharing for Real-time Adaptive Collaborative Perception (R-ACP). Specifically, we first formulate an Age of Perceived Targets (AoPT) minimization problem to capture data timeliness of multi-view streaming. Then, in the calibration phase, we introduce a channel-aware self-calibration technique based on reidentification (Re-ID), which adaptively compresses key features according to channel capacities, effectively addressing calibration issues via spatial and temporal cross-camera correlations. In the streaming phase, we tackle the trade-off between bandwidth and inference accuracy by leveraging an Information Bottleneck (IB) based encoding method to adjust video compression rates based on task relevance, thereby reducing communication overhead and latency. Finally, we design a priority-aware network to filter corrupted features to mitigate performance degradation from packet corruption. Extensive studies demonstrate that our framework outperforms five baselines, improving multiple object detection accuracy (MODA) by 25.49% and reducing communication costs by 51.36% under severely poor channel conditions. Code will be made publicly available: github.com/fangzr/R-ACP.

  • 7 authors
·
Oct 5, 2024

Com-DDPG: A Multiagent Reinforcement Learning-based Offloading Strategy for Mobile Edge Computing

The development of mobile services has impacted a variety of computation-intensive and time-sensitive applications, such as recommendation systems and daily payment methods. However, computing task competition involving limited resources increases the task processing latency and energy consumption of mobile devices, as well as time constraints. Mobile edge computing (MEC) has been widely used to address these problems. However, there are limitations to existing methods used during computation offloading. On the one hand, they focus on independent tasks rather than dependent tasks. The challenges of task dependency in the real world, especially task segmentation and integration, remain to be addressed. On the other hand, the multiuser scenarios related to resource allocation and the mutex access problem must be considered. In this paper, we propose a novel offloading approach, Com-DDPG, for MEC using multiagent reinforcement learning to enhance the offloading performance. First, we discuss the task dependency model, task priority model, energy consumption model, and average latency from the perspective of server clusters and multidependence on mobile tasks. Our method based on these models is introduced to formalize communication behavior among multiple agents; then, reinforcement learning is executed as an offloading strategy to obtain the results. Because of the incomplete state information, long short-term memory (LSTM) is employed as a decision-making tool to assess the internal state. Moreover, to optimize and support effective action, we consider using a bidirectional recurrent neural network (BRNN) to learn and enhance features obtained from agents' communication. Finally, we simulate experiments on the Alibaba cluster dataset. The results show that our method is better than other baselines in terms of energy consumption, load status and latency.

  • 5 authors
·
Dec 9, 2020

Dynamic and Static Context-aware LSTM for Multi-agent Motion Prediction

Multi-agent motion prediction is challenging because it aims to foresee the future trajectories of multiple agents (e.g. pedestrians) simultaneously in a complicated scene. Existing work addressed this challenge by either learning social spatial interactions represented by the positions of a group of pedestrians, while ignoring their temporal coherence (i.e. dependencies between different long trajectories), or by understanding the complicated scene layout (e.g. scene segmentation) to ensure safe navigation. However, unlike previous work that isolated the spatial interaction, temporal coherence, and scene layout, this paper designs a new mechanism, i.e., Dynamic and Static Context-aware Motion Predictor (DSCMP), to integrates these rich information into the long-short-term-memory (LSTM). It has three appealing benefits. (1) DSCMP models the dynamic interactions between agents by learning both their spatial positions and temporal coherence, as well as understanding the contextual scene layout.(2) Different from previous LSTM models that predict motions by propagating hidden features frame by frame, limiting the capacity to learn correlations between long trajectories, we carefully design a differentiable queue mechanism in DSCMP, which is able to explicitly memorize and learn the correlations between long trajectories. (3) DSCMP captures the context of scene by inferring latent variable, which enables multimodal predictions with meaningful semantic scene layout. Extensive experiments show that DSCMP outperforms state-of-the-art methods by large margins, such as 9.05\% and 7.62\% relative improvements on the ETH-UCY and SDD datasets respectively.

  • 4 authors
·
Aug 3, 2020

HyperAgent: Leveraging Hypergraphs for Topology Optimization in Multi-Agent Communication

Recent advances in large language model-powered multi-agent systems have demonstrated remarkable collective intelligence through effective communication. However, existing approaches face two primary challenges: (i) Ineffective group collaboration modeling, as they rely on pairwise edge representations in graph structures, limiting their ability to capture relationships among multiple agents; and (ii) Limited task-adaptiveness in communication topology design, leading to excessive communication cost for simple tasks and insufficient coordination for complex scenarios. These issues restrict the scalability and practical deployment of adaptive collaboration frameworks. To address these challenges, we propose HyperAgent, a hypergraph-based framework that optimizes communication topologies and effectively captures group collaboration patterns using direct hyperedge representations. Unlike edge-based approaches, HyperAgent uses hyperedges to link multiple agents within the same subtask and employs hypergraph convolutional layers to achieve one-step information aggregation in collaboration groups. Additionally, it incorporates a variational autoencoder framework with sparsity regularization to dynamically adjust hypergraph topologies based on task complexity. Experiments highlight the superiority of HyperAgent in both performance and efficiency. For instance, on GSM8K, HyperAgent achieves 95.07\% accuracy while reducing token consumption by 25.33\%, demonstrating the potential of hypergraph-based optimization for multi-agent communication.

  • 8 authors
·
Oct 12 2

SLA Management in Reconfigurable Multi-Agent RAG: A Systems Approach to Question Answering

Retrieval Augmented Generation (RAG) enables Large Language Models (LLMs) to generalize to new information by decoupling reasoning capabilities from static knowledge bases. Traditional RAG enhancements have explored vertical scaling -- assigning subtasks to specialized modules -- and horizontal scaling -- replicating tasks across multiple agents -- to improve performance. However, real-world applications impose diverse Service Level Agreements (SLAs) and Quality of Service (QoS) requirements, involving trade-offs among objectives such as reducing cost, ensuring answer quality, and adhering to specific operational constraints. In this work, we present a systems-oriented approach to multi-agent RAG tailored for real-world Question Answering (QA) applications. By integrating task-specific non-functional requirements -- such as answer quality, cost, and latency -- into the system, we enable dynamic reconfiguration to meet diverse SLAs. Our method maps these Service Level Objectives (SLOs) to system-level parameters, allowing the generation of optimal results within specified resource constraints. We conduct a case study in the QA domain, demonstrating how dynamic re-orchestration of a multi-agent RAG system can effectively manage the trade-off between answer quality and cost. By adjusting the system based on query intent and operational conditions, we systematically balance performance and resource utilization. This approach allows the system to meet SLOs for various query types, showcasing its practicality for real-world applications.

  • 3 authors
·
Dec 6, 2024

V2XPnP: Vehicle-to-Everything Spatio-Temporal Fusion for Multi-Agent Perception and Prediction

Vehicle-to-everything (V2X) technologies offer a promising paradigm to mitigate the limitations of constrained observability in single-vehicle systems. Prior work primarily focuses on single-frame cooperative perception, which fuses agents' information across different spatial locations but ignores temporal cues and temporal tasks (e.g., temporal perception and prediction). In this paper, we focus on the spatio-temporal fusion in V2X scenarios and design one-step and multi-step communication strategies (when to transmit) as well as examine their integration with three fusion strategies - early, late, and intermediate (what to transmit), providing comprehensive benchmarks with 11 fusion models (how to fuse). Furthermore, we propose V2XPnP, a novel intermediate fusion framework within one-step communication for end-to-end perception and prediction. Our framework employs a unified Transformer-based architecture to effectively model complex spatio-temporal relationships across multiple agents, frames, and high-definition map. Moreover, we introduce the V2XPnP Sequential Dataset that supports all V2X collaboration modes and addresses the limitations of existing real-world datasets, which are restricted to single-frame or single-mode cooperation. Extensive experiments demonstrate our framework outperforms state-of-the-art methods in both perception and prediction tasks. The codebase and dataset will be released to facilitate future V2X research.

  • 14 authors
·
Dec 2, 2024

Training Language Models to Critique With Multi-agent Feedback

Critique ability, a meta-cognitive capability of humans, presents significant challenges for LLMs to improve. Recent works primarily rely on supervised fine-tuning (SFT) using critiques generated by a single LLM like GPT-4. However, these model-generated critiques often exhibit flaws due to the inherent complexity of the critique. Consequently, fine-tuning LLMs on such flawed critiques typically limits the model's performance and propagates these flaws into the learned model. To overcome these challenges, this paper proposes a novel data generation pipeline, named MultiCritique, that improves the critique ability of LLMs by utilizing multi-agent feedback in both the SFT and reinforcement learning (RL) stages. First, our data generation pipeline aggregates high-quality critiques from multiple agents instead of a single model, with crucial information as input for simplifying the critique. Furthermore, our pipeline improves the preference accuracy of critique quality through multi-agent feedback, facilitating the effectiveness of RL in improving the critique ability of LLMs. Based on our proposed MultiCritique data generation pipeline, we construct the MultiCritiqueDataset for the SFT and RL fine-tuning stages. Extensive experimental results on two benchmarks demonstrate: 1) the superior quality of our constructed SFT dataset compared to existing critique datasets; 2) additional improvements to the critique ability of LLMs brought by the RL stage. Notably, our fine-tuned 7B model significantly surpasses other advanced 7B-13B open-source models, approaching the performance of advanced 70B LLMs and GPT-4. Codes, datasets and model weights will be publicly available.

  • 9 authors
·
Oct 20, 2024

RCDN: Towards Robust Camera-Insensitivity Collaborative Perception via Dynamic Feature-based 3D Neural Modeling

Collaborative perception is dedicated to tackling the constraints of single-agent perception, such as occlusions, based on the multiple agents' multi-view sensor inputs. However, most existing works assume an ideal condition that all agents' multi-view cameras are continuously available. In reality, cameras may be highly noisy, obscured or even failed during the collaboration. In this work, we introduce a new robust camera-insensitivity problem: how to overcome the issues caused by the failed camera perspectives, while stabilizing high collaborative performance with low calibration cost? To address above problems, we propose RCDN, a Robust Camera-insensitivity collaborative perception with a novel Dynamic feature-based 3D Neural modeling mechanism. The key intuition of RCDN is to construct collaborative neural rendering field representations to recover failed perceptual messages sent by multiple agents. To better model collaborative neural rendering field, RCDN first establishes a geometry BEV feature based time-invariant static field with other agents via fast hash grid modeling. Based on the static background field, the proposed time-varying dynamic field can model corresponding motion vectors for foregrounds with appropriate positions. To validate RCDN, we create OPV2V-N, a new large-scale dataset with manual labelling under different camera failed scenarios. Extensive experiments conducted on OPV2V-N show that RCDN can be ported to other baselines and improve their robustness in extreme camera-insensitivity settings.

  • 6 authors
·
May 27, 2024

Collaborative Multi-Object Tracking with Conformal Uncertainty Propagation

Object detection and multiple object tracking (MOT) are essential components of self-driving systems. Accurate detection and uncertainty quantification are both critical for onboard modules, such as perception, prediction, and planning, to improve the safety and robustness of autonomous vehicles. Collaborative object detection (COD) has been proposed to improve detection accuracy and reduce uncertainty by leveraging the viewpoints of multiple agents. However, little attention has been paid to how to leverage the uncertainty quantification from COD to enhance MOT performance. In this paper, as the first attempt to address this challenge, we design an uncertainty propagation framework called MOT-CUP. Our framework first quantifies the uncertainty of COD through direct modeling and conformal prediction, and propagates this uncertainty information into the motion prediction and association steps. MOT-CUP is designed to work with different collaborative object detectors and baseline MOT algorithms. We evaluate MOT-CUP on V2X-Sim, a comprehensive collaborative perception dataset, and demonstrate a 2% improvement in accuracy and a 2.67X reduction in uncertainty compared to the baselines, e.g. SORT and ByteTrack. In scenarios characterized by high occlusion levels, our MOT-CUP demonstrates a noteworthy 4.01% improvement in accuracy. MOT-CUP demonstrates the importance of uncertainty quantification in both COD and MOT, and provides the first attempt to improve the accuracy and reduce the uncertainty in MOT based on COD through uncertainty propagation. Our code is public on https://coperception.github.io/MOT-CUP/.

  • 7 authors
·
Mar 24, 2023

MindAgent: Emergent Gaming Interaction

Large Language Models (LLMs) have the capacity of performing complex scheduling in a multi-agent system and can coordinate these agents into completing sophisticated tasks that require extensive collaboration. However, despite the introduction of numerous gaming frameworks, the community has insufficient benchmarks towards building general multi-agents collaboration infrastructure that encompass both LLM and human-NPCs collaborations. In this work, we propose a novel infrastructure - MindAgent - to evaluate planning and coordination emergent capabilities for gaming interaction. In particular, our infrastructure leverages existing gaming framework, to i) require understanding of the coordinator for a multi-agent system, ii) collaborate with human players via un-finetuned proper instructions, and iii) establish an in-context learning on few-shot prompt with feedback. Furthermore, we introduce CUISINEWORLD, a new gaming scenario and related benchmark that dispatch a multi-agent collaboration efficiency and supervise multiple agents playing the game simultaneously. We conduct comprehensive evaluations with new auto-metric CoS for calculating the collaboration efficiency. Finally, our infrastructure can be deployed into real-world gaming scenarios in a customized VR version of CUISINEWORLD and adapted in existing broader Minecraft gaming domain. We hope our findings on LLMs and the new infrastructure for general-purpose scheduling and coordination can help shed light on how such skills can be obtained by learning from large language corpora.

  • 11 authors
·
Sep 18, 2023 1

EnvX: Agentize Everything with Agentic AI

The widespread availability of open-source repositories has led to a vast collection of reusable software components, yet their utilization remains manual, error-prone, and disconnected. Developers must navigate documentation, understand APIs, and write integration code, creating significant barriers to efficient software reuse. To address this, we present EnvX, a framework that leverages Agentic AI to agentize GitHub repositories, transforming them into intelligent, autonomous agents capable of natural language interaction and inter-agent collaboration. Unlike existing approaches that treat repositories as static code resources, EnvX reimagines them as active agents through a three-phase process: (1) TODO-guided environment initialization, which sets up the necessary dependencies, data, and validation datasets; (2) human-aligned agentic automation, allowing repository-specific agents to autonomously perform real-world tasks; and (3) Agent-to-Agent (A2A) protocol, enabling multiple agents to collaborate. By combining large language model capabilities with structured tool integration, EnvX automates not just code generation, but the entire process of understanding, initializing, and operationalizing repository functionality. We evaluate EnvX on the GitTaskBench benchmark, using 18 repositories across domains such as image processing, speech recognition, document analysis, and video manipulation. Our results show that EnvX achieves a 74.07% execution completion rate and 51.85% task pass rate, outperforming existing frameworks. Case studies further demonstrate EnvX's ability to enable multi-repository collaboration via the A2A protocol. This work marks a shift from treating repositories as passive code resources to intelligent, interactive agents, fostering greater accessibility and collaboration within the open-source ecosystem.

Co-MTP: A Cooperative Trajectory Prediction Framework with Multi-Temporal Fusion for Autonomous Driving

Vehicle-to-everything technologies (V2X) have become an ideal paradigm to extend the perception range and see through the occlusion. Exiting efforts focus on single-frame cooperative perception, however, how to capture the temporal cue between frames with V2X to facilitate the prediction task even the planning task is still underexplored. In this paper, we introduce the Co-MTP, a general cooperative trajectory prediction framework with multi-temporal fusion for autonomous driving, which leverages the V2X system to fully capture the interaction among agents in both history and future domains to benefit the planning. In the history domain, V2X can complement the incomplete history trajectory in single-vehicle perception, and we design a heterogeneous graph transformer to learn the fusion of the history feature from multiple agents and capture the history interaction. Moreover, the goal of prediction is to support future planning. Thus, in the future domain, V2X can provide the prediction results of surrounding objects, and we further extend the graph transformer to capture the future interaction among the ego planning and the other vehicles' intentions and obtain the final future scenario state under a certain planning action. We evaluate the Co-MTP framework on the real-world dataset V2X-Seq, and the results show that Co-MTP achieves state-of-the-art performance and that both history and future fusion can greatly benefit prediction.

  • 6 authors
·
Feb 23

Latent Reward: LLM-Empowered Credit Assignment in Episodic Reinforcement Learning

Reinforcement learning (RL) often encounters delayed and sparse feedback in real-world applications, even with only episodic rewards. Previous approaches have made some progress in reward redistribution for credit assignment but still face challenges, including training difficulties due to redundancy and ambiguous attributions stemming from overlooking the multifaceted nature of mission performance evaluation. Hopefully, Large Language Model (LLM) encompasses fruitful decision-making knowledge and provides a plausible tool for reward redistribution. Even so, deploying LLM in this case is non-trivial due to the misalignment between linguistic knowledge and the symbolic form requirement, together with inherent randomness and hallucinations in inference. To tackle these issues, we introduce LaRe, a novel LLM-empowered symbolic-based decision-making framework, to improve credit assignment. Key to LaRe is the concept of the Latent Reward, which works as a multi-dimensional performance evaluation, enabling more interpretable goal attainment from various perspectives and facilitating more effective reward redistribution. We examine that semantically generated code from LLM can bridge linguistic knowledge and symbolic latent rewards, as it is executable for symbolic objects. Meanwhile, we design latent reward self-verification to increase the stability and reliability of LLM inference. Theoretically, reward-irrelevant redundancy elimination in the latent reward benefits RL performance from more accurate reward estimation. Extensive experimental results witness that LaRe (i) achieves superior temporal credit assignment to SOTA methods, (ii) excels in allocating contributions among multiple agents, and (iii) outperforms policies trained with ground truth rewards for certain tasks.

  • 7 authors
·
Dec 15, 2024

Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate

Modern large language models (LLMs) like ChatGPT have shown remarkable performance on general language tasks but still struggle on complex reasoning tasks, which drives the research on cognitive behaviors of LLMs to explore human-like problem-solving strategies. Along this direction, one representative strategy is self-reflection, which asks an LLM to refine the solution with the feedback generated by itself iteratively. However, our study shows that such reflection-style methods suffer from the Degeneration-of-Thought (DoT) problem: once the LLM has established confidence in its solutions, it is unable to generate novel thoughts later through reflection even if its initial stance is incorrect. To address the DoT problem, we propose a Multi-Agent Debate (MAD) framework, in which multiple agents express their arguments in the state of "tit for tat" and a judge manages the debate process to obtain a final solution. Clearly, our MAD framework encourages divergent thinking in LLMs which would be helpful for tasks that require deep levels of contemplation. Experiment results on two challenging datasets, commonsense machine translation and counter-intuitive arithmetic reasoning, demonstrate the effectiveness of our MAD framework. Extensive analyses suggest that the adaptive break of debate and the modest level of "tit for tat" state are required for MAD to obtain good performance. Moreover, we find that LLMs might not be a fair judge if different LLMs are used for agents. Codes: https://github.com/Skytliang/Multi-Agents-Debate

  • 9 authors
·
May 30, 2023

GameFormer: Game-theoretic Modeling and Learning of Transformer-based Interactive Prediction and Planning for Autonomous Driving

Autonomous vehicles operating in complex real-world environments require accurate predictions of interactive behaviors between traffic participants. This paper tackles the interaction prediction problem by formulating it with hierarchical game theory and proposing the GameFormer model for its implementation. The model incorporates a Transformer encoder, which effectively models the relationships between scene elements, alongside a novel hierarchical Transformer decoder structure. At each decoding level, the decoder utilizes the prediction outcomes from the previous level, in addition to the shared environmental context, to iteratively refine the interaction process. Moreover, we propose a learning process that regulates an agent's behavior at the current level to respond to other agents' behaviors from the preceding level. Through comprehensive experiments on large-scale real-world driving datasets, we demonstrate the state-of-the-art accuracy of our model on the Waymo interaction prediction task. Additionally, we validate the model's capacity to jointly reason about the motion plan of the ego agent and the behaviors of multiple agents in both open-loop and closed-loop planning tests, outperforming various baseline methods. Furthermore, we evaluate the efficacy of our model on the nuPlan planning benchmark, where it achieves leading performance.

  • 3 authors
·
Mar 10, 2023

Dynamic population-based meta-learning for multi-agent communication with natural language

In this work, our goal is to train agents that can coordinate with seen, unseen as well as human partners in a multi-agent communication environment involving natural language. Previous work using a single set of agents has shown great progress in generalizing to known partners, however it struggles when coordinating with unfamiliar agents. To mitigate that, recent work explored the use of population-based approaches, where multiple agents interact with each other with the goal of learning more generic protocols. These methods, while able to result in good coordination between unseen partners, still only achieve so in cases of simple languages, thus failing to adapt to human partners using natural language. We attribute this to the use of static populations and instead propose a dynamic population-based meta-learning approach that builds such a population in an iterative manner. We perform a holistic evaluation of our method on two different referential games, and show that our agents outperform all prior work when communicating with seen partners and humans. Furthermore, we analyze the natural language generation skills of our agents, where we find that our agents also outperform strong baselines. Finally, we test the robustness of our agents when communicating with out-of-population agents and carefully test the importance of each component of our method through ablation studies.

  • 3 authors
·
Oct 27, 2021

Multi-Agent Inverse Q-Learning from Demonstrations

When reward functions are hand-designed, deep reinforcement learning algorithms often suffer from reward misspecification, causing them to learn suboptimal policies in terms of the intended task objectives. In the single-agent case, inverse reinforcement learning (IRL) techniques attempt to address this issue by inferring the reward function from expert demonstrations. However, in multi-agent problems, misalignment between the learned and true objectives is exacerbated due to increased environment non-stationarity and variance that scales with multiple agents. As such, in multi-agent general-sum games, multi-agent IRL algorithms have difficulty balancing cooperative and competitive objectives. To address these issues, we propose Multi-Agent Marginal Q-Learning from Demonstrations (MAMQL), a novel sample-efficient framework for multi-agent IRL. For each agent, MAMQL learns a critic marginalized over the other agents' policies, allowing for a well-motivated use of Boltzmann policies in the multi-agent context. We identify a connection between optimal marginalized critics and single-agent soft-Q IRL, allowing us to apply a direct, simple optimization criterion from the single-agent domain. Across our experiments on three different simulated domains, MAMQL significantly outperforms previous multi-agent methods in average reward, sample efficiency, and reward recovery by often more than 2-5x. We make our code available at https://sites.google.com/view/mamql .

  • 5 authors
·
Mar 6

CoDiff: Conditional Diffusion Model for Collaborative 3D Object Detection

Collaborative 3D object detection holds significant importance in the field of autonomous driving, as it greatly enhances the perception capabilities of each individual agent by facilitating information exchange among multiple agents. However, in practice, due to pose estimation errors and time delays, the fusion of information across agents often results in feature representations with spatial and temporal noise, leading to detection errors. Diffusion models naturally have the ability to denoise noisy samples to the ideal data, which motivates us to explore the use of diffusion models to address the noise problem between multi-agent systems. In this work, we propose CoDiff, a novel robust collaborative perception framework that leverages the potential of diffusion models to generate more comprehensive and clearer feature representations. To the best of our knowledge, this is the first work to apply diffusion models to multi-agent collaborative perception. Specifically, we project high-dimensional feature map into the latent space of a powerful pre-trained autoencoder. Within this space, individual agent information serves as a condition to guide the diffusion model's sampling. This process denoises coarse feature maps and progressively refines the fused features. Experimental study on both simulated and real-world datasets demonstrates that the proposed framework CoDiff consistently outperforms existing relevant methods in terms of the collaborative object detection performance, and exhibits highly desired robustness when the pose and delay information of agents is with high-level noise. The code is released at https://github.com/HuangZhe885/CoDiff

  • 4 authors
·
Feb 16

RG-Attn: Radian Glue Attention for Multi-modality Multi-agent Cooperative Perception

Cooperative perception offers an optimal solution to overcome the perception limitations of single-agent systems by leveraging Vehicle-to-Everything (V2X) communication for data sharing and fusion across multiple agents. However, most existing approaches focus on single-modality data exchange, limiting the potential of both homogeneous and heterogeneous fusion across agents. This overlooks the opportunity to utilize multi-modality data per agent, restricting the system's performance. In the automotive industry, manufacturers adopt diverse sensor configurations, resulting in heterogeneous combinations of sensor modalities across agents. To harness the potential of every possible data source for optimal performance, we design a robust LiDAR and camera cross-modality fusion module, Radian-Glue-Attention (RG-Attn), applicable to both intra-agent cross-modality fusion and inter-agent cross-modality fusion scenarios, owing to the convenient coordinate conversion by transformation matrix and the unified sampling/inversion mechanism. We also propose two different architectures, named Paint-To-Puzzle (PTP) and Co-Sketching-Co-Coloring (CoS-CoCo), for conducting cooperative perception. PTP aims for maximum precision performance and achieves smaller data packet size by limiting cross-agent fusion to a single instance, but requiring all participants to be equipped with LiDAR. In contrast, CoS-CoCo supports agents with any configuration-LiDAR-only, camera-only, or LiDAR-camera-both, presenting more generalization ability. Our approach achieves state-of-the-art (SOTA) performance on both real and simulated cooperative perception datasets. The code is now available at GitHub.

  • 5 authors
·
Jan 28

An Extensible Framework for Open Heterogeneous Collaborative Perception

Collaborative perception aims to mitigate the limitations of single-agent perception, such as occlusions, by facilitating data exchange among multiple agents. However, most current works consider a homogeneous scenario where all agents use identity sensors and perception models. In reality, heterogeneous agent types may continually emerge and inevitably face a domain gap when collaborating with existing agents. In this paper, we introduce a new open heterogeneous problem: how to accommodate continually emerging new heterogeneous agent types into collaborative perception, while ensuring high perception performance and low integration cost? To address this problem, we propose HEterogeneous ALliance (HEAL), a novel extensible collaborative perception framework. HEAL first establishes a unified feature space with initial agents via a novel multi-scale foreground-aware Pyramid Fusion network. When heterogeneous new agents emerge with previously unseen modalities or models, we align them to the established unified space with an innovative backward alignment. This step only involves individual training on the new agent type, thus presenting extremely low training costs and high extensibility. To enrich agents' data heterogeneity, we bring OPV2V-H, a new large-scale dataset with more diverse sensor types. Extensive experiments on OPV2V-H and DAIR-V2X datasets show that HEAL surpasses SOTA methods in performance while reducing the training parameters by 91.5% when integrating 3 new agent types. We further implement a comprehensive codebase at: https://github.com/yifanlu0227/HEAL

  • 6 authors
·
Jan 25, 2024

Recent Advancements in Deep Learning Applications and Methods for Autonomous Navigation: A Comprehensive Review

This review article is an attempt to survey all recent AI based techniques used to deal with major functions in This review paper presents a comprehensive overview of end-to-end deep learning frameworks used in the context of autonomous navigation, including obstacle detection, scene perception, path planning, and control. The paper aims to bridge the gap between autonomous navigation and deep learning by analyzing recent research studies and evaluating the implementation and testing of deep learning methods. It emphasizes the importance of navigation for mobile robots, autonomous vehicles, and unmanned aerial vehicles, while also acknowledging the challenges due to environmental complexity, uncertainty, obstacles, dynamic environments, and the need to plan paths for multiple agents. The review highlights the rapid growth of deep learning in engineering data science and its development of innovative navigation methods. It discusses recent interdisciplinary work related to this field and provides a brief perspective on the limitations, challenges, and potential areas of growth for deep learning methods in autonomous navigation. Finally, the paper summarizes the findings and practices at different stages, correlating existing and future methods, their applicability, scalability, and limitations. The review provides a valuable resource for researchers and practitioners working in the field of autonomous navigation and deep learning.

  • 2 authors
·
Feb 21, 2023

Group Think: Multiple Concurrent Reasoning Agents Collaborating at Token Level Granularity

Recent advances in large language models (LLMs) have demonstrated the power of reasoning through self-generated chains of thought. Multiple reasoning agents can collaborate to raise joint reasoning quality above individual outcomes. However, such agents typically interact in a turn-based manner, trading increased latency for improved quality. In this paper, we propose Group Think--a single LLM that acts as multiple concurrent reasoning agents, or thinkers. With shared visibility into each other's partial generation progress, Group Think introduces a new concurrent-reasoning paradigm in which multiple reasoning trajectories adapt dynamically to one another at the token level. For example, a reasoning thread may shift its generation mid-sentence upon detecting that another thread is better positioned to continue. This fine-grained, token-level collaboration enables Group Think to reduce redundant reasoning and improve quality while achieving significantly lower latency. Moreover, its concurrent nature allows for efficient utilization of idle computational resources, making it especially suitable for edge inference, where very small batch size often underutilizes local~GPUs. We give a simple and generalizable modification that enables any existing LLM to perform Group Think on a local GPU. We also present an evaluation strategy to benchmark reasoning latency and empirically demonstrate latency improvements using open-source LLMs that were not explicitly trained for Group Think. We hope this work paves the way for future LLMs to exhibit more sophisticated and more efficient collaborative behavior for higher quality generation.

  • 7 authors
·
May 16 2

Chain of Agents: Large Language Models Collaborating on Long-Context Tasks

Addressing the challenge of effectively processing long contexts has become a critical issue for Large Language Models (LLMs). Two common strategies have emerged: 1) reducing the input length, such as retrieving relevant chunks by Retrieval-Augmented Generation (RAG), and 2) expanding the context window limit of LLMs. However, both strategies have drawbacks: input reduction has no guarantee of covering the part with needed information, while window extension struggles with focusing on the pertinent information for solving the task. To mitigate these limitations, we propose Chain-of-Agents (CoA), a novel framework that harnesses multi-agent collaboration through natural language to enable information aggregation and context reasoning across various LLMs over long-context tasks. CoA consists of multiple worker agents who sequentially communicate to handle different segmented portions of the text, followed by a manager agent who synthesizes these contributions into a coherent final output. CoA processes the entire input by interleaving reading and reasoning, and it mitigates long context focus issues by assigning each agent a short context. We perform comprehensive evaluation of CoA on a wide range of long-context tasks in question answering, summarization, and code completion, demonstrating significant improvements by up to 10% over strong baselines of RAG, Full-Context, and multi-agent LLMs.

  • 6 authors
·
Jun 4, 2024

Agents Are All You Need for LLM Unlearning

Information removal or suppression in large language models (LLMs) is a desired functionality, useful in AI regulation, legal compliance, safety, and privacy. LLM unlearning methods aim to remove information on demand from LLMs. Current LLM unlearning methods struggle to balance the unlearning efficacy and utility due to the competing nature of these objectives. Keeping the unlearning process computationally feasible without assuming access to the model weights is an overlooked area. In this work we show that agents might be all we need for effective and practical inference-time LLM unlearning. We present the first agentic LLM unlearning (ALU) method, a multi-agent, retrain-free, model-agnostic approach to LLM unlearning that achieves effective unlearning while preserving the utility. Our ALU framework unlearns by involving multiple LLM agents, each designed for a specific step in the unlearning process, without the need to update model weights for any of the agents in the framework. Users can easily request any set of unlearning instances in any sequence, and ALU seamlessly adapts in real time. This is facilitated without requiring any changes in the underlying LLM model. Through extensive experiments on established benchmarks (TOFU, WMDP, WPU) and jailbreaking techniques (many shot, target masking, other languages), we demonstrate that ALU consistently stands out as the most robust inference-time LLM unlearning framework among current state-of-the-art methods while incurring time cost that remains effectively constant regardless of the number of unlearning targets. We further highlight ALU's superior performance compared to existing methods when evaluated at scale. Specifically, ALU is assessed on up to 1000 unlearning targets, exceeding the evaluation scope of all previously proposed LLM unlearning methods.

  • 2 authors
·
Feb 1

Cultural Evolution of Cooperation among LLM Agents

Large language models (LLMs) provide a compelling foundation for building generally-capable AI agents. These agents may soon be deployed at scale in the real world, representing the interests of individual humans (e.g., AI assistants) or groups of humans (e.g., AI-accelerated corporations). At present, relatively little is known about the dynamics of multiple LLM agents interacting over many generations of iterative deployment. In this paper, we examine whether a "society" of LLM agents can learn mutually beneficial social norms in the face of incentives to defect, a distinctive feature of human sociality that is arguably crucial to the success of civilization. In particular, we study the evolution of indirect reciprocity across generations of LLM agents playing a classic iterated Donor Game in which agents can observe the recent behavior of their peers. We find that the evolution of cooperation differs markedly across base models, with societies of Claude 3.5 Sonnet agents achieving significantly higher average scores than Gemini 1.5 Flash, which, in turn, outperforms GPT-4o. Further, Claude 3.5 Sonnet can make use of an additional mechanism for costly punishment to achieve yet higher scores, while Gemini 1.5 Flash and GPT-4o fail to do so. For each model class, we also observe variation in emergent behavior across random seeds, suggesting an understudied sensitive dependence on initial conditions. We suggest that our evaluation regime could inspire an inexpensive and informative new class of LLM benchmarks, focussed on the implications of LLM agent deployment for the cooperative infrastructure of society.

  • 2 authors
·
Dec 13, 2024

CSR-Bench: Benchmarking LLM Agents in Deployment of Computer Science Research Repositories

The increasing complexity of computer science research projects demands more effective tools for deploying code repositories. Large Language Models (LLMs), such as Anthropic Claude and Meta Llama, have demonstrated significant advancements across various fields of computer science research, including the automation of diverse software engineering tasks. To evaluate the effectiveness of LLMs in handling complex code development tasks of research projects, particularly for NLP/CV/AI/ML/DM topics, we introduce CSR-Bench, a benchmark for Computer Science Research projects. This benchmark assesses LLMs from various aspects including accuracy, efficiency, and deployment script quality, aiming to explore their potential in conducting computer science research autonomously. We also introduce a novel framework, CSR-Agents, that utilizes multiple LLM agents to automate the deployment of GitHub code repositories of computer science research projects. Specifically, by checking instructions from markdown files and interpreting repository structures, the model generates and iteratively improves bash commands that set up the experimental environments and deploy the code to conduct research tasks. Preliminary results from CSR-Bench indicate that LLM agents can significantly enhance the workflow of repository deployment, thereby boosting developer productivity and improving the management of developmental workflows.

  • 5 authors
·
Feb 9

VIKI-R: Coordinating Embodied Multi-Agent Cooperation via Reinforcement Learning

Coordinating multiple embodied agents in dynamic environments remains a core challenge in artificial intelligence, requiring both perception-driven reasoning and scalable cooperation strategies. While recent works have leveraged large language models (LLMs) for multi-agent planning, a few have begun to explore vision-language models (VLMs) for visual reasoning. However, these VLM-based approaches remain limited in their support for diverse embodiment types. In this work, we introduce VIKI-Bench, the first hierarchical benchmark tailored for embodied multi-agent cooperation, featuring three structured levels: agent activation, task planning, and trajectory perception. VIKI-Bench includes diverse robot embodiments, multi-view visual observations, and structured supervision signals to evaluate reasoning grounded in visual inputs. To demonstrate the utility of VIKI-Bench, we propose VIKI-R, a two-stage framework that fine-tunes a pretrained vision-language model (VLM) using Chain-of-Thought annotated demonstrations, followed by reinforcement learning under multi-level reward signals. Our extensive experiments show that VIKI-R significantly outperforms baselines method across all task levels. Furthermore, we show that reinforcement learning enables the emergence of compositional cooperation patterns among heterogeneous agents. Together, VIKI-Bench and VIKI-R offer a unified testbed and method for advancing multi-agent, visual-driven cooperation in embodied AI systems.

  • 9 authors
·
Jun 10 2

Automated Movie Generation via Multi-Agent CoT Planning

Existing long-form video generation frameworks lack automated planning, requiring manual input for storylines, scenes, cinematography, and character interactions, resulting in high costs and inefficiencies. To address these challenges, we present MovieAgent, an automated movie generation via multi-agent Chain of Thought (CoT) planning. MovieAgent offers two key advantages: 1) We firstly explore and define the paradigm of automated movie/long-video generation. Given a script and character bank, our MovieAgent can generates multi-scene, multi-shot long-form videos with a coherent narrative, while ensuring character consistency, synchronized subtitles, and stable audio throughout the film. 2) MovieAgent introduces a hierarchical CoT-based reasoning process to automatically structure scenes, camera settings, and cinematography, significantly reducing human effort. By employing multiple LLM agents to simulate the roles of a director, screenwriter, storyboard artist, and location manager, MovieAgent streamlines the production pipeline. Experiments demonstrate that MovieAgent achieves new state-of-the-art results in script faithfulness, character consistency, and narrative coherence. Our hierarchical framework takes a step forward and provides new insights into fully automated movie generation. The code and project website are available at: https://github.com/showlab/MovieAgent and https://weijiawu.github.io/MovieAgent.

  • 3 authors
·
Mar 10 2

Experimenting with Multi-Agent Software Development: Towards a Unified Platform

Large language models are redefining software engineering by implementing AI-powered techniques throughout the whole software development process, including requirement gathering, software architecture, code generation, testing, and deployment. However, it is still difficult to develop a cohesive platform that consistently produces the best outcomes across all stages. The objective of this study is to develop a unified platform that utilizes multiple artificial intelligence agents to automate the process of transforming user requirements into well-organized deliverables. These deliverables include user stories, prioritization, and UML sequence diagrams, along with the modular approach to APIs, unit tests, and end-to-end tests. Additionally, the platform will organize tasks, perform security and compliance, and suggest design patterns and improvements for non-functional requirements. We allow users to control and manage each phase according to their preferences. In addition, the platform provides security and compliance checks following European standards and proposes design optimizations. We use multiple models, such as GPT-3.5, GPT-4, and Llama3 to enable to generation of modular code as per user choice. The research also highlights the limitations and future research discussions to overall improve the software development life cycle. The source code for our uniform platform is hosted on GitHub, enabling additional experimentation and supporting both research and practical uses. \end

  • 6 authors
·
Jun 8, 2024

MedAgent-Pro: Towards Multi-modal Evidence-based Medical Diagnosis via Reasoning Agentic Workflow

Developing reliable AI systems to assist human clinicians in multi-modal medical diagnosis has long been a key objective for researchers. Recently, Multi-modal Large Language Models (MLLMs) have gained significant attention and achieved success across various domains. With strong reasoning capabilities and the ability to perform diverse tasks based on user instructions, they hold great potential for enhancing medical diagnosis. However, directly applying MLLMs to the medical domain still presents challenges. They lack detailed perception of visual inputs, limiting their ability to perform quantitative image analysis, which is crucial for medical diagnostics. Additionally, MLLMs often exhibit hallucinations and inconsistencies in reasoning, whereas clinical diagnoses must adhere strictly to established criteria. To address these challenges, we propose MedAgent-Pro, an evidence-based reasoning agentic system designed to achieve reliable, explainable, and precise medical diagnoses. This is accomplished through a hierarchical workflow: at the task level, knowledge-based reasoning generate reliable diagnostic plans for specific diseases following retrieved clinical criteria. While at the case level, multiple tool agents process multi-modal inputs, analyze different indicators according to the plan, and provide a final diagnosis based on both quantitative and qualitative evidence. Comprehensive experiments on both 2D and 3D medical diagnosis tasks demonstrate the superiority and effectiveness of MedAgent-Pro, while case studies further highlight its reliability and interpretability. The code is available at https://github.com/jinlab-imvr/MedAgent-Pro.

  • 4 authors
·
Mar 21 2

Communication Learning in Multi-Agent Systems from Graph Modeling Perspective

In numerous artificial intelligence applications, the collaborative efforts of multiple intelligent agents are imperative for the successful attainment of target objectives. To enhance coordination among these agents, a distributed communication framework is often employed. However, indiscriminate information sharing among all agents can be resource-intensive, and the adoption of manually pre-defined communication architectures imposes constraints on inter-agent communication, thus limiting the potential for effective collaboration. Moreover, the communication framework often remains static during inference, which may result in sustained high resource consumption, as in most cases, only key decisions necessitate information sharing among agents. In this study, we introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph. We formulate this problem as the task of determining the communication graph while enabling the architecture parameters to update normally, thus necessitating a bi-level optimization process. Utilizing continuous relaxation of the graph representation and incorporating attention units, our proposed approach, CommFormer, efficiently optimizes the communication graph and concurrently refines architectural parameters through gradient descent in an end-to-end manner. Additionally, we introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time, based on current observations, thus improving decision-making efficiency. Extensive experiments on a variety of cooperative tasks substantiate the robustness of our model across diverse cooperative scenarios, where agents are able to develop more coordinated and sophisticated strategies regardless of changes in the number of agents.

  • 4 authors
·
Nov 1, 2024

MetaGPT: Meta Programming for Multi-Agent Collaborative Framework

Recently, remarkable progress has been made in automated task-solving through the use of multi-agent driven by large language models (LLMs). However, existing LLM-based multi-agent works primarily focus on solving simple dialogue tasks, and complex tasks are rarely studied, mainly due to the LLM hallucination problem. This type of hallucination becomes cascading when naively chaining multiple intelligent agents, resulting in a failure to effectively address complex problems. Therefore, we introduce MetaGPT, an innovative framework that incorporates efficient human workflows as a meta programming approach into LLM-based multi-agent collaboration. Specifically, MetaGPT encodes Standardized Operating Procedures (SOPs) into prompts to enhance structured coordination. Subsequently, it mandates modular outputs, empowering agents with domain expertise comparable to human professionals, to validate outputs and minimize compounded errors. In this way, MetaGPT leverages the assembly line paradigm to assign diverse roles to various agents, thereby establishing a framework that can effectively and cohesively deconstruct complex multi-agent collaborative problems. Our experiments on collaborative software engineering benchmarks demonstrate that MetaGPT generates more coherent and correct solutions compared to existing chat-based multi-agent systems. This highlights the potential of integrating human domain knowledge into multi-agent systems, thereby creating new opportunities to tackle complex real-world challenges. The GitHub repository of this project is publicly available on:https://github.com/geekan/MetaGPT.

  • 13 authors
·
Aug 1, 2023

Escalation Risks from Language Models in Military and Diplomatic Decision-Making

Governments are increasingly considering integrating autonomous AI agents in high-stakes military and foreign-policy decision-making, especially with the emergence of advanced generative AI models like GPT-4. Our work aims to scrutinize the behavior of multiple AI agents in simulated wargames, specifically focusing on their predilection to take escalatory actions that may exacerbate multilateral conflicts. Drawing on political science and international relations literature about escalation dynamics, we design a novel wargame simulation and scoring framework to assess the escalation risks of actions taken by these agents in different scenarios. Contrary to prior studies, our research provides both qualitative and quantitative insights and focuses on large language models (LLMs). We find that all five studied off-the-shelf LLMs show forms of escalation and difficult-to-predict escalation patterns. We observe that models tend to develop arms-race dynamics, leading to greater conflict, and in rare cases, even to the deployment of nuclear weapons. Qualitatively, we also collect the models' reported reasonings for chosen actions and observe worrying justifications based on deterrence and first-strike tactics. Given the high stakes of military and foreign-policy contexts, we recommend further examination and cautious consideration before deploying autonomous language model agents for strategic military or diplomatic decision-making.

  • 6 authors
·
Jan 7, 2024

Dynamic LLM-Agent Network: An LLM-agent Collaboration Framework with Agent Team Optimization

Large language model (LLM) agents have been shown effective on a wide range of tasks, and by ensembling multiple LLM agents, their performances could be further improved. Existing approaches employ a fixed set of agents to interact with each other in a static architecture, which limits their generalizability to various tasks and requires strong human prior in designing these agents. In this work, we propose to construct a strategic team of agents communicating in a dynamic interaction architecture based on the task query. Specifically, we build a framework named Dynamic LLM-Agent Network (DyLAN) for LLM-agent collaboration on complicated tasks like reasoning and code generation. DyLAN enables agents to interact for multiple rounds in a dynamic architecture with inference-time agent selection and an early-stopping mechanism to improve performance and efficiency. We further design an automatic agent team optimization algorithm based on an unsupervised metric termed Agent Importance Score, enabling the selection of best agents based on the contribution each agent makes. Empirically, we demonstrate that DyLAN performs well in both reasoning and code generation tasks with reasonable computational cost. DyLAN achieves 13.0% and 13.3% improvement on MATH and HumanEval, respectively, compared to a single execution on GPT-35-turbo. On specific subjects of MMLU, agent team optimization in DyLAN increases accuracy by up to 25.0%.

  • 5 authors
·
Oct 3, 2023

Enhancing Financial Question Answering with a Multi-Agent Reflection Framework

While Large Language Models (LLMs) have shown impressive capabilities in numerous Natural Language Processing (NLP) tasks, they still struggle with financial question answering (QA), particularly when numerical reasoning is required. Recently, LLM-based multi-agent frameworks have demonstrated remarkable effectiveness in multi-step reasoning, which is crucial for financial QA tasks as it involves extracting relevant information from tables and text and then performing numerical reasoning on the extracted data to infer answers. In this study, we propose a multi-agent framework incorporating a critic agent that reflects on the reasoning steps and final answers for each question. Additionally, we enhance our system by adding multiple critic agents, each focusing on a specific aspect of the answer. Our results indicate that this framework significantly improves performance compared to single-agent reasoning, with an average performance increase of 15% for the LLaMA3-8B model and 5% for the LLaMA3-70B model. Furthermore, our framework performs on par with, and in some cases surpasses, larger single-agent LLMs such as LLaMA3.1-405B and GPT-4o-mini, though it falls slightly short compared to Claude-3.5 Sonnet. Overall, our framework presents an effective solution to enhance open-source LLMs for financial QA tasks, offering a cost-effective alternative to larger models like Claude-3.5 Sonnet.

  • 2 authors
·
Oct 29, 2024

LLaMP: Large Language Model Made Powerful for High-fidelity Materials Knowledge Retrieval and Distillation

Reducing hallucination of Large Language Models (LLMs) is imperative for use in the sciences where reproducibility is crucial. However, LLMs inherently lack long-term memory, making it a nontrivial, ad hoc, and inevitably biased task to fine-tune them on domain-specific literature and data. Here we introduce LLaMP, a multimodal retrieval-augmented generation (RAG) framework of multiple data-aware reasoning-and-acting (ReAct) agents that dynamically interact with computational and experimental data on Materials Project (MP). Without fine-tuning, LLaMP demonstrates an ability to comprehend and integrate various modalities of materials science concepts, fetch relevant data stores on the fly, process higher-order data (such as crystal structures and elastic tensors), and summarize multi-step procedures for solid-state synthesis. We show that LLaMP effectively corrects errors in GPT-3.5's intrinsic knowledge, reducing a 5.21% MAPE on frequently-documented bandgaps and a significant 1103.54% MAPE on formation energies -- errors that GPT-3.5 seems to derive from mixed data sources. Additionally, LLaMP substantially reduces the hallucinated volumetric strain in a diamond cubic silicon structure from 66.3% to 0. The proposed framework offers an intuitive and nearly hallucination-free approach to exploring materials informatics and establishes a pathway for knowledge distillation and fine-tuning other language models. We envision the framework as a valuable component for scientific hypotheses and a foundation for future autonomous laboratories where multiple LLM agents communicate and cooperate with robotics to drive material synthesis and chemical reactions without hard-coded human logic and intervention.

  • 3 authors
·
Jan 30, 2024

On Differentially Private Federated Linear Contextual Bandits

We consider cross-silo federated linear contextual bandit (LCB) problem under differential privacy, where multiple silos (agents) interact with the local users and communicate via a central server to realize collaboration while without sacrificing each user's privacy. We identify three issues in the state-of-the-art: (i) failure of claimed privacy protection and (ii) incorrect regret bound due to noise miscalculation and (iii) ungrounded communication cost. To resolve these issues, we take a two-step principled approach. First, we design an algorithmic framework consisting of a generic federated LCB algorithm and flexible privacy protocols. Then, leveraging the proposed framework, we study federated LCBs under two different privacy constraints. We first establish privacy and regret guarantees under silo-level local differential privacy, which fix the issues present in state-of-the-art algorithm. To further improve the regret performance, we next consider shuffle model of differential privacy, under which we show that our algorithm can achieve nearly ``optimal'' regret without a trusted server. We accomplish this via two different schemes -- one relies on a new result on privacy amplification via shuffling for DP mechanisms and another one leverages the integration of a shuffle protocol for vector sum into the tree-based mechanism, both of which might be of independent interest. Finally, we support our theoretical results with numerical evaluations over contextual bandit instances generated from both synthetic and real-life data.

  • 2 authors
·
Feb 27, 2023