new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 3

Retrieval-Guided Reinforcement Learning for Boolean Circuit Minimization

Logic synthesis, a pivotal stage in chip design, entails optimizing chip specifications encoded in hardware description languages like Verilog into highly efficient implementations using Boolean logic gates. The process involves a sequential application of logic minimization heuristics (``synthesis recipe"), with their arrangement significantly impacting crucial metrics such as area and delay. Addressing the challenge posed by the broad spectrum of design complexities - from variations of past designs (e.g., adders and multipliers) to entirely novel configurations (e.g., innovative processor instructions) - requires a nuanced `synthesis recipe` guided by human expertise and intuition. This study conducts a thorough examination of learning and search techniques for logic synthesis, unearthing a surprising revelation: pre-trained agents, when confronted with entirely novel designs, may veer off course, detrimentally affecting the search trajectory. We present ABC-RL, a meticulously tuned alpha parameter that adeptly adjusts recommendations from pre-trained agents during the search process. Computed based on similarity scores through nearest neighbor retrieval from the training dataset, ABC-RL yields superior synthesis recipes tailored for a wide array of hardware designs. Our findings showcase substantial enhancements in the Quality-of-result (QoR) of synthesized circuits, boasting improvements of up to 24.8% compared to state-of-the-art techniques. Furthermore, ABC-RL achieves an impressive up to 9x reduction in runtime (iso-QoR) when compared to current state-of-the-art methodologies.

  • 5 authors
·
Jan 22, 2024

Yes, we CANN: Constrained Approximate Nearest Neighbors for local feature-based visual localization

Large-scale visual localization systems continue to rely on 3D point clouds built from image collections using structure-from-motion. While the 3D points in these models are represented using local image features, directly matching a query image's local features against the point cloud is challenging due to the scale of the nearest-neighbor search problem. Many recent approaches to visual localization have thus proposed a hybrid method, where first a global (per image) embedding is used to retrieve a small subset of database images, and local features of the query are matched only against those. It seems to have become common belief that global embeddings are critical for said image-retrieval in visual localization, despite the significant downside of having to compute two feature types for each query image. In this paper, we take a step back from this assumption and propose Constrained Approximate Nearest Neighbors (CANN), a joint solution of k-nearest-neighbors across both the geometry and appearance space using only local features. We first derive the theoretical foundation for k-nearest-neighbor retrieval across multiple metrics and then showcase how CANN improves visual localization. Our experiments on public localization benchmarks demonstrate that our method significantly outperforms both state-of-the-art global feature-based retrieval and approaches using local feature aggregation schemes. Moreover, it is an order of magnitude faster in both index and query time than feature aggregation schemes for these datasets. Code will be released.

  • 3 authors
·
Jun 15, 2023

Frustratingly Simple Retrieval Improves Challenging, Reasoning-Intensive Benchmarks

Retrieval-augmented Generation (RAG) has primarily been studied in limited settings, such as factoid question answering; more challenging, reasoning-intensive benchmarks have seen limited success from minimal RAG. In this work, we challenge this prevailing view on established, reasoning-intensive benchmarks: MMLU, MMLU Pro, AGI Eval, GPQA, and MATH. We identify a key missing component in prior work: a usable, web-scale datastore aligned with the breadth of pretraining data. To this end, we introduce CompactDS: a diverse, high-quality, web-scale datastore that achieves high retrieval accuracy and subsecond latency on a single-node. The key insights are (1) most web content can be filtered out without sacrificing coverage, and a compact, high-quality subset is sufficient; and (2) combining in-memory approximate nearest neighbor (ANN) retrieval and on-disk exact search balances speed and recall. Using CompactDS, we show that a minimal RAG pipeline achieves consistent accuracy improvements across all benchmarks and model sizes (8B--70B), with relative gains of 10% on MMLU, 33% on MMLU Pro, 14% on GPQA, and 19% on MATH. No single data source suffices alone, highlighting the importance of diversity of sources (web crawls, curated math, academic papers, textbooks). Finally, we show that our carefully designed in-house datastore matches or outperforms web search engines such as Google Search, as well as recently proposed, complex agent-based RAG systems--all while maintaining simplicity, reproducibility, and self-containment. We release CompactDS and our retrieval pipeline, supporting future research exploring retrieval-based AI systems.

  • 5 authors
·
Jul 1

Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation

Retrieval and ranking models are the backbone of many applications such as web search, open domain QA, or text-based recommender systems. The latency of neural ranking models at query time is largely dependent on the architecture and deliberate choices by their designers to trade-off effectiveness for higher efficiency. This focus on low query latency of a rising number of efficient ranking architectures make them feasible for production deployment. In machine learning an increasingly common approach to close the effectiveness gap of more efficient models is to apply knowledge distillation from a large teacher model to a smaller student model. We find that different ranking architectures tend to produce output scores in different magnitudes. Based on this finding, we propose a cross-architecture training procedure with a margin focused loss (Margin-MSE), that adapts knowledge distillation to the varying score output distributions of different BERT and non-BERT passage ranking architectures. We apply the teachable information as additional fine-grained labels to existing training triples of the MSMARCO-Passage collection. We evaluate our procedure of distilling knowledge from state-of-the-art concatenated BERT models to four different efficient architectures (TK, ColBERT, PreTT, and a BERT CLS dot product model). We show that across our evaluated architectures our Margin-MSE knowledge distillation significantly improves re-ranking effectiveness without compromising their efficiency. Additionally, we show our general distillation method to improve nearest neighbor based index retrieval with the BERT dot product model, offering competitive results with specialized and much more costly training methods. To benefit the community, we publish the teacher-score training files in a ready-to-use package.

  • 5 authors
·
Oct 6, 2020

Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix Factorization

Efficient k-nearest neighbor search is a fundamental task, foundational for many problems in NLP. When the similarity is measured by dot-product between dual-encoder vectors or ell_2-distance, there already exist many scalable and efficient search methods. But not so when similarity is measured by more accurate and expensive black-box neural similarity models, such as cross-encoders, which jointly encode the query and candidate neighbor. The cross-encoders' high computational cost typically limits their use to reranking candidates retrieved by a cheaper model, such as dual encoder or TF-IDF. However, the accuracy of such a two-stage approach is upper-bounded by the recall of the initial candidate set, and potentially requires additional training to align the auxiliary retrieval model with the cross-encoder model. In this paper, we present an approach that avoids the use of a dual-encoder for retrieval, relying solely on the cross-encoder. Retrieval is made efficient with CUR decomposition, a matrix decomposition approach that approximates all pairwise cross-encoder distances from a small subset of rows and columns of the distance matrix. Indexing items using our approach is computationally cheaper than training an auxiliary dual-encoder model through distillation. Empirically, for k > 10, our approach provides test-time recall-vs-computational cost trade-offs superior to the current widely-used methods that re-rank items retrieved using a dual-encoder or TF-IDF.

  • 5 authors
·
Oct 22, 2022

Beyond Nearest Neighbors: Semantic Compression and Graph-Augmented Retrieval for Enhanced Vector Search

Vector databases typically rely on approximate nearest neighbor (ANN) search to retrieve the top-k closest vectors to a query in embedding space. While effective, this approach often yields semantically redundant results, missing the diversity and contextual richness required by applications such as retrieval-augmented generation (RAG), multi-hop QA, and memory-augmented agents. We introduce a new retrieval paradigm: semantic compression, which aims to select a compact, representative set of vectors that captures the broader semantic structure around a query. We formalize this objective using principles from submodular optimization and information geometry, and show that it generalizes traditional top-k retrieval by prioritizing coverage and diversity. To operationalize this idea, we propose graph-augmented vector retrieval, which overlays semantic graphs (e.g., kNN or knowledge-based links) atop vector spaces to enable multi-hop, context-aware search. We theoretically analyze the limitations of proximity-based retrieval under high-dimensional concentration and highlight how graph structures can improve semantic coverage. Our work outlines a foundation for meaning-centric vector search systems, emphasizing hybrid indexing, diversity-aware querying, and structured semantic retrieval. We make our implementation publicly available to foster future research in this area.

  • 2 authors
·
Jul 25

Why do Nearest Neighbor Language Models Work?

Language models (LMs) compute the probability of a text by sequentially computing a representation of an already-seen context and using this representation to predict the next word. Currently, most LMs calculate these representations through a neural network consuming the immediate previous context. However recently, retrieval-augmented LMs have shown to improve over standard neural LMs, by accessing information retrieved from a large datastore, in addition to their standard, parametric, next-word prediction. In this paper, we set out to understand why retrieval-augmented language models, and specifically why k-nearest neighbor language models (kNN-LMs) perform better than standard parametric LMs, even when the k-nearest neighbor component retrieves examples from the same training set that the LM was originally trained on. To this end, we perform a careful analysis of the various dimensions over which kNN-LM diverges from standard LMs, and investigate these dimensions one by one. Empirically, we identify three main reasons why kNN-LM performs better than standard LMs: using a different input representation for predicting the next tokens, approximate kNN search, and the importance of softmax temperature for the kNN distribution. Further, we incorporate these insights into the model architecture or the training procedure of the standard parametric LM, improving its results without the need for an explicit retrieval component. The code is available at https://github.com/frankxu2004/knnlm-why.

  • 3 authors
·
Jan 7, 2023

Benchmarking Filtered Approximate Nearest Neighbor Search Algorithms on Transformer-based Embedding Vectors

Advances in embedding models for text, image, audio, and video drive progress across multiple domains, including retrieval-augmented generation, recommendation systems, vehicle/person reidentification, and face recognition. Many applications in these domains require an efficient method to retrieve items that are close to a given query in the embedding space while satisfying a filter condition based on the item's attributes, a problem known as Filtered Approximate Nearest Neighbor Search (FANNS). In this work, we present a comprehensive survey and taxonomy of FANNS methods and analyze how they are benchmarked in the literature. By doing so, we identify a key challenge in the current FANNS landscape: the lack of diverse and realistic datasets, particularly ones derived from the latest transformer-based text embedding models. To address this, we introduce a novel dataset consisting of embedding vectors for the abstracts of over 2.7 million research articles from the arXiv repository, accompanied by 11 real-world attributes such as authors and categories. We benchmark a wide range of FANNS methods on our novel dataset and find that each method has distinct strengths and limitations; no single approach performs best across all scenarios. ACORN, for example, supports various filter types and performs reliably across dataset scales but is often outperformed by more specialized methods. SeRF shows excellent performance for range filtering on ordered attributes but cannot handle categorical attributes. Filtered-DiskANN and UNG excel on the medium-scale dataset but fail on the large-scale dataset, highlighting the challenge posed by transformer-based embeddings, which are often more than an order of magnitude larger than earlier embeddings. We conclude that no universally best method exists.

  • 5 authors
·
Jul 29

Deep Multi-View Enhancement Hashing for Image Retrieval

Hashing is an efficient method for nearest neighbor search in large-scale data space by embedding high-dimensional feature descriptors into a similarity preserving Hamming space with a low dimension. However, large-scale high-speed retrieval through binary code has a certain degree of reduction in retrieval accuracy compared to traditional retrieval methods. We have noticed that multi-view methods can well preserve the diverse characteristics of data. Therefore, we try to introduce the multi-view deep neural network into the hash learning field, and design an efficient and innovative retrieval model, which has achieved a significant improvement in retrieval performance. In this paper, we propose a supervised multi-view hash model which can enhance the multi-view information through neural networks. This is a completely new hash learning method that combines multi-view and deep learning methods. The proposed method utilizes an effective view stability evaluation method to actively explore the relationship among views, which will affect the optimization direction of the entire network. We have also designed a variety of multi-data fusion methods in the Hamming space to preserve the advantages of both convolution and multi-view. In order to avoid excessive computing resources on the enhancement procedure during retrieval, we set up a separate structure called memory network which participates in training together. The proposed method is systematically evaluated on the CIFAR-10, NUS-WIDE and MS-COCO datasets, and the results show that our method significantly outperforms the state-of-the-art single-view and multi-view hashing methods.

  • 4 authors
·
Feb 1, 2020

Relevance Filtering for Embedding-based Retrieval

In embedding-based retrieval, Approximate Nearest Neighbor (ANN) search enables efficient retrieval of similar items from large-scale datasets. While maximizing recall of relevant items is usually the goal of retrieval systems, a low precision may lead to a poor search experience. Unlike lexical retrieval, which inherently limits the size of the retrieved set through keyword matching, dense retrieval via ANN search has no natural cutoff. Moreover, the cosine similarity scores of embedding vectors are often optimized via contrastive or ranking losses, which make them difficult to interpret. Consequently, relying on top-K or cosine-similarity cutoff is often insufficient to filter out irrelevant results effectively. This issue is prominent in product search, where the number of relevant products is often small. This paper introduces a novel relevance filtering component (called "Cosine Adapter") for embedding-based retrieval to address this challenge. Our approach maps raw cosine similarity scores to interpretable scores using a query-dependent mapping function. We then apply a global threshold on the mapped scores to filter out irrelevant results. We are able to significantly increase the precision of the retrieved set, at the expense of a small loss of recall. The effectiveness of our approach is demonstrated through experiments on both public MS MARCO dataset and internal Walmart product search data. Furthermore, online A/B testing on the Walmart site validates the practical value of our approach in real-world e-commerce settings.

  • 7 authors
·
Aug 9, 2024

FRAG: Toward Federated Vector Database Management for Collaborative and Secure Retrieval-Augmented Generation

This paper introduces Federated Retrieval-Augmented Generation (FRAG), a novel database management paradigm tailored for the growing needs of retrieval-augmented generation (RAG) systems, which are increasingly powered by large-language models (LLMs). FRAG enables mutually-distrusted parties to collaboratively perform Approximate k-Nearest Neighbor (ANN) searches on encrypted query vectors and encrypted data stored in distributed vector databases, all while ensuring that no party can gain any knowledge about the queries or data of others. Achieving this paradigm presents two key challenges: (i) ensuring strong security guarantees, such as Indistinguishability under Chosen-Plaintext Attack (IND-CPA), under practical assumptions (e.g., we avoid overly optimistic assumptions like non-collusion among parties); and (ii) maintaining performance overheads comparable to traditional, non-federated RAG systems. To address these challenges, FRAG employs a single-key homomorphic encryption protocol that simplifies key management across mutually-distrusted parties. Additionally, FRAG introduces a multiplicative caching technique to efficiently encrypt floating-point numbers, significantly improving computational performance in large-scale federated environments. We provide a rigorous security proof using standard cryptographic reductions and demonstrate the practical scalability and efficiency of FRAG through extensive experiments on both benchmark and real-world datasets.

  • 1 authors
·
Oct 17, 2024

kNN-Embed: Locally Smoothed Embedding Mixtures For Multi-interest Candidate Retrieval

Candidate generation is the first stage in recommendation systems, where a light-weight system is used to retrieve potentially relevant items for an input user. These candidate items are then ranked and pruned in later stages of recommender systems using a more complex ranking model. Since candidate generation is the top of the recommendation funnel, it is important to retrieve a high-recall candidate set to feed into downstream ranking models. A common approach for candidate generation is to leverage approximate nearest neighbor (ANN) search from a single dense query embedding; however, this approach this can yield a low-diversity result set with many near duplicates. As users often have multiple interests, candidate retrieval should ideally return a diverse set of candidates reflective of the user's multiple interests. To this end, we introduce kNN-Embed, a general approach to improving diversity in dense ANN-based retrieval. kNN-Embed represents each user as a smoothed mixture over learned item clusters that represent distinct `interests' of the user. By querying each of a user's mixture component in proportion to their mixture weights, we retrieve a high-diversity set of candidates reflecting elements from each of a user's interests. We experimentally compare kNN-Embed to standard ANN candidate retrieval, and show significant improvements in overall recall and improved diversity across three datasets. Accompanying this work, we open source a large Twitter follow-graph dataset, to spur further research in graph-mining and representation learning for recommender systems.

  • 6 authors
·
May 12, 2022

Improving Tool Retrieval by Leveraging Large Language Models for Query Generation

Using tools by Large Language Models (LLMs) is a promising avenue to extend their reach beyond language or conversational settings. The number of tools can scale to thousands as they enable accessing sensory information, fetching updated factual knowledge, or taking actions in the real world. In such settings, in-context learning by providing a short list of relevant tools in the prompt is a viable approach. To retrieve relevant tools, various approaches have been suggested, ranging from simple frequency-based matching to dense embedding-based semantic retrieval. However, such approaches lack the contextual and common-sense understanding required to retrieve the right tools for complex user requests. Rather than increasing the complexity of the retrieval component itself, we propose leveraging LLM understanding to generate a retrieval query. Then, the generated query is embedded and used to find the most relevant tools via a nearest-neighbor search. We investigate three approaches for query generation: zero-shot prompting, supervised fine-tuning on tool descriptions, and alignment learning by iteratively optimizing a reward metric measuring retrieval performance. By conducting extensive experiments on a dataset covering complex and multi-tool scenarios, we show that leveraging LLMs for query generation improves the retrieval for in-domain (seen tools) and out-of-domain (unseen tools) settings.

  • 5 authors
·
Nov 16, 2024

RetrievalAttention: Accelerating Long-Context LLM Inference via Vector Retrieval

Transformer-based large Language Models (LLMs) become increasingly important in various domains. However, the quadratic time complexity of attention operation poses a significant challenge for scaling to longer contexts due to the extremely high inference latency and GPU memory consumption for caching key-value (KV) vectors. This paper proposes RetrievalAttention, a training-free approach to accelerate attention computation. To leverage the dynamic sparse property of attention, RetrievalAttention builds approximate nearest neighbor search (ANNS) indexes upon KV vectors in CPU memory and retrieves the most relevant ones via vector search during generation. Due to the out-of-distribution (OOD) between query vectors and key vectors, off-the-shelf ANNS indexes still need to scan O(N) (usually 30% of all keys) data for accurate retrieval, which fails to exploit the high sparsity. RetrievalAttention first identifies the OOD challenge of ANNS-based attention, and addresses it via an attention-aware vector search algorithm that can adapt to queries and only access 1--3% of data, thus achieving a sub-linear time complexity. RetrievalAttention greatly reduces the inference cost of long-context LLM with much lower GPU memory requirements while maintaining the model accuracy. Especially, RetrievalAttention only needs 16GB GPU memory for serving 128K tokens in LLMs with 8B parameters, which is capable of generating one token in 0.188 seconds on a single NVIDIA RTX4090 (24GB).

  • 14 authors
·
Sep 16, 2024 2

Learning Discrete Representations via Constrained Clustering for Effective and Efficient Dense Retrieval

Dense Retrieval (DR) has achieved state-of-the-art first-stage ranking effectiveness. However, the efficiency of most existing DR models is limited by the large memory cost of storing dense vectors and the time-consuming nearest neighbor search (NNS) in vector space. Therefore, we present RepCONC, a novel retrieval model that learns discrete Representations via CONstrained Clustering. RepCONC jointly trains dual-encoders and the Product Quantization (PQ) method to learn discrete document representations and enables fast approximate NNS with compact indexes. It models quantization as a constrained clustering process, which requires the document embeddings to be uniformly clustered around the quantization centroids and supports end-to-end optimization of the quantization method and dual-encoders. We theoretically demonstrate the importance of the uniform clustering constraint in RepCONC and derive an efficient approximate solution for constrained clustering by reducing it to an instance of the optimal transport problem. Besides constrained clustering, RepCONC further adopts a vector-based inverted file system (IVF) to support highly efficient vector search on CPUs. Extensive experiments on two popular ad-hoc retrieval benchmarks show that RepCONC achieves better ranking effectiveness than competitive vector quantization baselines under different compression ratio settings. It also substantially outperforms a wide range of existing retrieval models in terms of retrieval effectiveness, memory efficiency, and time efficiency.

  • 6 authors
·
Oct 12, 2021

Memory Decoder: A Pretrained, Plug-and-Play Memory for Large Language Models

Large Language Models (LLMs) have shown strong abilities in general language tasks, yet adapting them to specific domains remains a challenge. Current method like Domain Adaptive Pretraining (DAPT) requires costly full-parameter training and suffers from catastrophic forgetting. Meanwhile, Retrieval-Augmented Generation (RAG) introduces substantial inference latency due to expensive nearest-neighbor searches and longer context. This paper introduces Memory Decoder, a plug-and-play pretrained memory that enables efficient domain adaptation without changing the original model's parameters. Memory Decoder employs a small transformer decoder that learns to imitate the behavior of an external non-parametric retriever. Once trained, Memory Decoder can be seamlessly integrated with any pretrained language model that shares the same tokenizer, requiring no model-specific modifications. Experimental results demonstrate that Memory Decoder enables effective adaptation of various Qwen and Llama models to three distinct specialized domains: biomedicine, finance, and law, reducing perplexity by an average of 6.17 points. Overall, Memory Decoder introduces a novel paradigm centered on a specially pretrained memory component designed for domain-specific adaptation. This memory architecture can be integrated in a plug-and-play manner, consistently enhancing performance across multiple models within the target domain.

  • 7 authors
·
Aug 13 2

Efficiently Teaching an Effective Dense Retriever with Balanced Topic Aware Sampling

A vital step towards the widespread adoption of neural retrieval models is their resource efficiency throughout the training, indexing and query workflows. The neural IR community made great advancements in training effective dual-encoder dense retrieval (DR) models recently. A dense text retrieval model uses a single vector representation per query and passage to score a match, which enables low-latency first stage retrieval with a nearest neighbor search. Increasingly common, training approaches require enormous compute power, as they either conduct negative passage sampling out of a continuously updating refreshing index or require very large batch sizes for in-batch negative sampling. Instead of relying on more compute capability, we introduce an efficient topic-aware query and balanced margin sampling technique, called TAS-Balanced. We cluster queries once before training and sample queries out of a cluster per batch. We train our lightweight 6-layer DR model with a novel dual-teacher supervision that combines pairwise and in-batch negative teachers. Our method is trainable on a single consumer-grade GPU in under 48 hours (as opposed to a common configuration of 8x V100s). We show that our TAS-Balanced training method achieves state-of-the-art low-latency (64ms per query) results on two TREC Deep Learning Track query sets. Evaluated on NDCG@10, we outperform BM25 by 44%, a plainly trained DR by 19%, docT5query by 11%, and the previous best DR model by 5%. Additionally, TAS-Balanced produces the first dense retriever that outperforms every other method on recall at any cutoff on TREC-DL and allows more resource intensive re-ranking models to operate on fewer passages to improve results further.

  • 5 authors
·
Apr 14, 2021

Regulatory Compliance through Doc2Doc Information Retrieval: A case study in EU/UK legislation where text similarity has limitations

Major scandals in corporate history have urged the need for regulatory compliance, where organizations need to ensure that their controls (processes) comply with relevant laws, regulations, and policies. However, keeping track of the constantly changing legislation is difficult, thus organizations are increasingly adopting Regulatory Technology (RegTech) to facilitate the process. To this end, we introduce regulatory information retrieval (REG-IR), an application of document-to-document information retrieval (DOC2DOC IR), where the query is an entire document making the task more challenging than traditional IR where the queries are short. Furthermore, we compile and release two datasets based on the relationships between EU directives and UK legislation. We experiment on these datasets using a typical two-step pipeline approach comprising a pre-fetcher and a neural re-ranker. Experimenting with various pre-fetchers from BM25 to k nearest neighbors over representations from several BERT models, we show that fine-tuning a BERT model on an in-domain classification task produces the best representations for IR. We also show that neural re-rankers under-perform due to contradicting supervision, i.e., similar query-document pairs with opposite labels. Thus, they are biased towards the pre-fetcher's score. Interestingly, applying a date filter further improves the performance, showcasing the importance of the time dimension.

  • 5 authors
·
Jan 26, 2021

TabR: Unlocking the Power of Retrieval-Augmented Tabular Deep Learning

Deep learning (DL) models for tabular data problems are receiving increasingly more attention, while the algorithms based on gradient-boosted decision trees (GBDT) remain a strong go-to solution. Following the recent trends in other domains, such as natural language processing and computer vision, several retrieval-augmented tabular DL models have been recently proposed. For a given target object, a retrieval-based model retrieves other relevant objects, such as the nearest neighbors, from the available (training) data and uses their features or even labels to make a better prediction. However, we show that the existing retrieval-based tabular DL solutions provide only minor, if any, benefits over the properly tuned simple retrieval-free baselines. Thus, it remains unclear whether the retrieval-based approach is a worthy direction for tabular DL. In this work, we give a strong positive answer to this question. We start by incrementally augmenting a simple feed-forward architecture with an attention-like retrieval component similar to those of many (tabular) retrieval-based models. Then, we highlight several details of the attention mechanism that turn out to have a massive impact on the performance on tabular data problems, but that were not explored in prior work. As a result, we design TabR -- a simple retrieval-based tabular DL model which, on a set of public benchmarks, demonstrates the best average performance among tabular DL models, becomes the new state-of-the-art on several datasets, and even outperforms GBDT models on the recently proposed ``GBDT-friendly'' benchmark (see the first figure).

  • 6 authors
·
Jul 26, 2023

MultiClaimNet: A Massively Multilingual Dataset of Fact-Checked Claim Clusters

In the context of fact-checking, claims are often repeated across various platforms and in different languages, which can benefit from a process that reduces this redundancy. While retrieving previously fact-checked claims has been investigated as a solution, the growing number of unverified claims and expanding size of fact-checked databases calls for alternative, more efficient solutions. A promising solution is to group claims that discuss the same underlying facts into clusters to improve claim retrieval and validation. However, research on claim clustering is hindered by the lack of suitable datasets. To bridge this gap, we introduce MultiClaimNet, a collection of three multilingual claim cluster datasets containing claims in 86 languages across diverse topics. Claim clusters are formed automatically from claim-matching pairs with limited manual intervention. We leverage two existing claim-matching datasets to form the smaller datasets within MultiClaimNet. To build the larger dataset, we propose and validate an approach involving retrieval of approximate nearest neighbors to form candidate claim pairs and an automated annotation of claim similarity using large language models. This larger dataset contains 85.3K fact-checked claims written in 78 languages. We further conduct extensive experiments using various clustering techniques and sentence embedding models to establish baseline performance. Our datasets and findings provide a strong foundation for scalable claim clustering, contributing to efficient fact-checking pipelines.

  • 3 authors
·
Mar 28

Permissive Information-Flow Analysis for Large Language Models

Large Language Models (LLMs) are rapidly becoming commodity components of larger software systems. This poses natural security and privacy problems: poisoned data retrieved from one component can change the model's behavior and compromise the entire system, including coercing the model to spread confidential data to untrusted components. One promising approach is to tackle this problem at the system level via dynamic information flow (aka taint) tracking. Unfortunately, the traditional approach of propagating the most restrictive input label to the output is too conservative for applications where LLMs operate on inputs retrieved from diverse sources. In this paper, we propose a novel, more permissive approach to propagate information flow labels through LLM queries. The key idea behind our approach is to propagate only the labels of the samples that were influential in generating the model output and to eliminate the labels of unnecessary input. We implement and investigate the effectiveness of two variations of this approach, based on (i) prompt-based retrieval augmentation, and (ii) a k-nearest-neighbors language model. We compare these with the baseline of an introspection-based influence estimator that directly asks the language model to predict the output label. The results obtained highlight the superiority of our prompt-based label propagator, which improves the label in more than 85% of the cases in an LLM agent setting. These findings underscore the practicality of permissive label propagation for retrieval augmentation.

  • 10 authors
·
Oct 3, 2024

The Impacts of Data, Ordering, and Intrinsic Dimensionality on Recall in Hierarchical Navigable Small Worlds

Vector search systems, pivotal in AI applications, often rely on the Hierarchical Navigable Small Worlds (HNSW) algorithm. However, the behaviour of HNSW under real-world scenarios using vectors generated with deep learning models remains under-explored. Existing Approximate Nearest Neighbours (ANN) benchmarks and research typically has an over-reliance on simplistic datasets like MNIST or SIFT1M and fail to reflect the complexity of current use-cases. Our investigation focuses on HNSW's efficacy across a spectrum of datasets, including synthetic vectors tailored to mimic specific intrinsic dimensionalities, widely-used retrieval benchmarks with popular embedding models, and proprietary e-commerce image data with CLIP models. We survey the most popular HNSW vector databases and collate their default parameters to provide a realistic fixed parameterisation for the duration of the paper. We discover that the recall of approximate HNSW search, in comparison to exact K Nearest Neighbours (KNN) search, is linked to the vector space's intrinsic dimensionality and significantly influenced by the data insertion sequence. Our methodology highlights how insertion order, informed by measurable properties such as the pointwise Local Intrinsic Dimensionality (LID) or known categories, can shift recall by up to 12 percentage points. We also observe that running popular benchmark datasets with HNSW instead of KNN can shift rankings by up to three positions for some models. This work underscores the need for more nuanced benchmarks and design considerations in developing robust vector search systems using approximate vector search algorithms. This study presents a number of scenarios with varying real world applicability which aim to better increase understanding and future development of ANN algorithms and embedding

  • 2 authors
·
May 28, 2024

Efficient Inverted Indexes for Approximate Retrieval over Learned Sparse Representations

Learned sparse representations form an attractive class of contextual embeddings for text retrieval. That is so because they are effective models of relevance and are interpretable by design. Despite their apparent compatibility with inverted indexes, however, retrieval over sparse embeddings remains challenging. That is due to the distributional differences between learned embeddings and term frequency-based lexical models of relevance such as BM25. Recognizing this challenge, a great deal of research has gone into, among other things, designing retrieval algorithms tailored to the properties of learned sparse representations, including approximate retrieval systems. In fact, this task featured prominently in the latest BigANN Challenge at NeurIPS 2023, where approximate algorithms were evaluated on a large benchmark dataset by throughput and recall. In this work, we propose a novel organization of the inverted index that enables fast yet effective approximate retrieval over learned sparse embeddings. Our approach organizes inverted lists into geometrically-cohesive blocks, each equipped with a summary vector. During query processing, we quickly determine if a block must be evaluated using the summaries. As we show experimentally, single-threaded query processing using our method, Seismic, reaches sub-millisecond per-query latency on various sparse embeddings of the MS MARCO dataset while maintaining high recall. Our results indicate that Seismic is one to two orders of magnitude faster than state-of-the-art inverted index-based solutions and further outperforms the winning (graph-based) submissions to the BigANN Challenge by a significant margin.

  • 4 authors
·
Apr 29, 2024

A Deep Look into Neural Ranking Models for Information Retrieval

Ranking models lie at the heart of research on information retrieval (IR). During the past decades, different techniques have been proposed for constructing ranking models, from traditional heuristic methods, probabilistic methods, to modern machine learning methods. Recently, with the advance of deep learning technology, we have witnessed a growing body of work in applying shallow or deep neural networks to the ranking problem in IR, referred to as neural ranking models in this paper. The power of neural ranking models lies in the ability to learn from the raw text inputs for the ranking problem to avoid many limitations of hand-crafted features. Neural networks have sufficient capacity to model complicated tasks, which is needed to handle the complexity of relevance estimation in ranking. Since there have been a large variety of neural ranking models proposed, we believe it is the right time to summarize the current status, learn from existing methodologies, and gain some insights for future development. In contrast to existing reviews, in this survey, we will take a deep look into the neural ranking models from different dimensions to analyze their underlying assumptions, major design principles, and learning strategies. We compare these models through benchmark tasks to obtain a comprehensive empirical understanding of the existing techniques. We will also discuss what is missing in the current literature and what are the promising and desired future directions.

  • 9 authors
·
Mar 16, 2019

Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs

We present a new approach for the approximate K-nearest neighbor search based on navigable small world graphs with controllable hierarchy (Hierarchical NSW, HNSW). The proposed solution is fully graph-based, without any need for additional search structures, which are typically used at the coarse search stage of the most proximity graph techniques. Hierarchical NSW incrementally builds a multi-layer structure consisting from hierarchical set of proximity graphs (layers) for nested subsets of the stored elements. The maximum layer in which an element is present is selected randomly with an exponentially decaying probability distribution. This allows producing graphs similar to the previously studied Navigable Small World (NSW) structures while additionally having the links separated by their characteristic distance scales. Starting search from the upper layer together with utilizing the scale separation boosts the performance compared to NSW and allows a logarithmic complexity scaling. Additional employment of a heuristic for selecting proximity graph neighbors significantly increases performance at high recall and in case of highly clustered data. Performance evaluation has demonstrated that the proposed general metric space search index is able to strongly outperform previous opensource state-of-the-art vector-only approaches. Similarity of the algorithm to the skip list structure allows straightforward balanced distributed implementation.

  • 2 authors
·
Mar 30, 2016

On the Theoretical Limitations of Embedding-Based Retrieval

Vector embeddings have been tasked with an ever-increasing set of retrieval tasks over the years, with a nascent rise in using them for reasoning, instruction-following, coding, and more. These new benchmarks push embeddings to work for any query and any notion of relevance that could be given. While prior works have pointed out theoretical limitations of vector embeddings, there is a common assumption that these difficulties are exclusively due to unrealistic queries, and those that are not can be overcome with better training data and larger models. In this work, we demonstrate that we may encounter these theoretical limitations in realistic settings with extremely simple queries. We connect known results in learning theory, showing that the number of top-k subsets of documents capable of being returned as the result of some query is limited by the dimension of the embedding. We empirically show that this holds true even if we restrict to k=2, and directly optimize on the test set with free parameterized embeddings. We then create a realistic dataset called LIMIT that stress tests models based on these theoretical results, and observe that even state-of-the-art models fail on this dataset despite the simple nature of the task. Our work shows the limits of embedding models under the existing single vector paradigm and calls for future research to develop methods that can resolve this fundamental limitation.

  • 4 authors
·
Aug 28 1

Autoregressive Search Engines: Generating Substrings as Document Identifiers

Knowledge-intensive language tasks require NLP systems to both provide the correct answer and retrieve supporting evidence for it in a given corpus. Autoregressive language models are emerging as the de-facto standard for generating answers, with newer and more powerful systems emerging at an astonishing pace. In this paper we argue that all this (and future) progress can be directly applied to the retrieval problem with minimal intervention to the models' architecture. Previous work has explored ways to partition the search space into hierarchical structures and retrieve documents by autoregressively generating their unique identifier. In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers. This setup allows us to use an autoregressive model to generate and score distinctive ngrams, that are then mapped to full passages through an efficient data structure. Empirically, we show this not only outperforms prior autoregressive approaches but also leads to an average improvement of at least 10 points over more established retrieval solutions for passage-level retrieval on the KILT benchmark, establishing new state-of-the-art downstream performance on some datasets, while using a considerably lighter memory footprint than competing systems. Code and pre-trained models at https://github.com/facebookresearch/SEAL.

  • 6 authors
·
Apr 22, 2022

Dense Text Retrieval based on Pretrained Language Models: A Survey

Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user's queries in natural language. From classic retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn the text representation and model the relevance matching. The recent success of pretrained language models (PLMs) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is referred to as dense retrieval, since it employs dense vectors (a.k.a., embeddings) to represent the texts. Considering the rapid progress on dense retrieval, in this survey, we systematically review the recent advances on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related work by four major aspects, including architecture, training, indexing and integration, and summarize the mainstream techniques for each aspect. We thoroughly survey the literature, and include 300+ related reference papers on dense retrieval. To support our survey, we create a website for providing useful resources, and release a code repertory and toolkit for implementing dense retrieval models. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval.

  • 4 authors
·
Nov 27, 2022

Resources for Brewing BEIR: Reproducible Reference Models and an Official Leaderboard

BEIR is a benchmark dataset for zero-shot evaluation of information retrieval models across 18 different domain/task combinations. In recent years, we have witnessed the growing popularity of a representation learning approach to building retrieval models, typically using pretrained transformers in a supervised setting. This naturally begs the question: How effective are these models when presented with queries and documents that differ from the training data? Examples include searching in different domains (e.g., medical or legal text) and with different types of queries (e.g., keywords vs. well-formed questions). While BEIR was designed to answer these questions, our work addresses two shortcomings that prevent the benchmark from achieving its full potential: First, the sophistication of modern neural methods and the complexity of current software infrastructure create barriers to entry for newcomers. To this end, we provide reproducible reference implementations that cover the two main classes of approaches: learned dense and sparse models. Second, there does not exist a single authoritative nexus for reporting the effectiveness of different models on BEIR, which has led to difficulty in comparing different methods. To remedy this, we present an official self-service BEIR leaderboard that provides fair and consistent comparisons of retrieval models. By addressing both shortcomings, our work facilitates future explorations in a range of interesting research questions that BEIR enables.

  • 6 authors
·
Jun 12, 2023

In-Context Pretraining: Language Modeling Beyond Document Boundaries

Large language models (LMs) are currently trained to predict tokens given document prefixes, enabling them to directly perform long-form generation and prompting-style tasks which can be reduced to document completion. Existing pretraining pipelines train LMs by concatenating random sets of short documents to create input contexts but the prior documents provide no signal for predicting the next document. We instead present In-Context Pretraining, a new approach where language models are pretrained on a sequence of related documents, thereby explicitly encouraging them to read and reason across document boundaries. We can do In-Context Pretraining by simply changing the document ordering so that each context contains related documents, and directly applying existing pretraining pipelines. However, this document sorting problem is challenging. There are billions of documents and we would like the sort to maximize contextual similarity for every document without repeating any data. To do this, we introduce approximate algorithms for finding related documents with efficient nearest neighbor search and constructing coherent input contexts with a graph traversal algorithm. Our experiments show In-Context Pretraining offers a simple and scalable approach to significantly enhance LMs'performance: we see notable improvements in tasks that require more complex contextual reasoning, including in-context learning (+8%), reading comprehension (+15%), faithfulness to previous contexts (+16%), long-context reasoning (+5%), and retrieval augmentation (+9%).

  • 10 authors
·
Oct 16, 2023 3

Improving Query Representations for Dense Retrieval with Pseudo Relevance Feedback: A Reproducibility Study

Pseudo-Relevance Feedback (PRF) utilises the relevance signals from the top-k passages from the first round of retrieval to perform a second round of retrieval aiming to improve search effectiveness. A recent research direction has been the study and development of PRF methods for deep language models based rankers, and in particular in the context of dense retrievers. Dense retrievers, compared to more complex neural rankers, provide a trade-off between effectiveness, which is often reduced compared to more complex neural rankers, and query latency, which also is reduced making the retrieval pipeline more efficient. The introduction of PRF methods for dense retrievers has been motivated as an attempt to further improve their effectiveness. In this paper, we reproduce and study a recent method for PRF with dense retrievers, called ANCE-PRF. This method concatenates the query text and that of the top-k feedback passages to form a new query input, which is then encoded into a dense representation using a newly trained query encoder based on the original dense retriever used for the first round of retrieval. While the method can potentially be applied to any of the existing dense retrievers, prior work has studied it only in the context of the ANCE dense retriever. We study the reproducibility of ANCE-PRF in terms of both its training (encoding of the PRF signal) and inference (ranking) steps. We further extend the empirical analysis provided in the original work to investigate the effect of the hyper-parameters that govern the training process and the robustness of the method across these different settings. Finally, we contribute a study of the generalisability of the ANCE-PRF method when dense retrievers other than ANCE are used for the first round of retrieval and for encoding the PRF signal.

  • 6 authors
·
Dec 12, 2021

How Does Generative Retrieval Scale to Millions of Passages?

Popularized by the Differentiable Search Index, the emerging paradigm of generative retrieval re-frames the classic information retrieval problem into a sequence-to-sequence modeling task, forgoing external indices and encoding an entire document corpus within a single Transformer. Although many different approaches have been proposed to improve the effectiveness of generative retrieval, they have only been evaluated on document corpora on the order of 100k in size. We conduct the first empirical study of generative retrieval techniques across various corpus scales, ultimately scaling up to the entire MS MARCO passage ranking task with a corpus of 8.8M passages and evaluating model sizes up to 11B parameters. We uncover several findings about scaling generative retrieval to millions of passages; notably, the central importance of using synthetic queries as document representations during indexing, the ineffectiveness of existing proposed architecture modifications when accounting for compute cost, and the limits of naively scaling model parameters with respect to retrieval performance. While we find that generative retrieval is competitive with state-of-the-art dual encoders on small corpora, scaling to millions of passages remains an important and unsolved challenge. We believe these findings will be valuable for the community to clarify the current state of generative retrieval, highlight the unique challenges, and inspire new research directions.

  • 8 authors
·
May 19, 2023