- pfl-research: simulation framework for accelerating research in Private Federated Learning Federated learning (FL) is an emerging machine learning (ML) training paradigm where clients own their data and collaborate to train a global model, without revealing any data to the server and other participants. Researchers commonly perform experiments in a simulation environment to quickly iterate on ideas. However, existing open-source tools do not offer the efficiency required to simulate FL on larger and more realistic FL datasets. We introduce pfl-research, a fast, modular, and easy-to-use Python framework for simulating FL. It supports TensorFlow, PyTorch, and non-neural network models, and is tightly integrated with state-of-the-art privacy algorithms. We study the speed of open-source FL frameworks and show that pfl-research is 7-72times faster than alternative open-source frameworks on common cross-device setups. Such speedup will significantly boost the productivity of the FL research community and enable testing hypotheses on realistic FL datasets that were previously too resource intensive. We release a suite of benchmarks that evaluates an algorithm's overall performance on a diverse set of realistic scenarios. The code is available on GitHub at https://github.com/apple/pfl-research. 10 authors · Apr 9, 2024
- PFLlib: A Beginner-Friendly and Comprehensive Personalized Federated Learning Library and Benchmark Amid the ongoing advancements in Federated Learning (FL), a machine learning paradigm that allows collaborative learning with data privacy protection, personalized FL (pFL)has gained significant prominence as a research direction within the FL domain. Whereas traditional FL (tFL) focuses on jointly learning a global model, pFL aims to balance each client's global and personalized goals in FL settings. To foster the pFL research community, we started and built PFLlib, a comprehensive pFL library with an integrated benchmark platform. In PFLlib, we implemented 37 state-of-the-art FL algorithms (8 tFL algorithms and 29 pFL algorithms) and provided various evaluation environments with three statistically heterogeneous scenarios and 24 datasets. At present, PFLlib has gained more than 1600 stars and 300 forks on GitHub. 8 authors · Dec 8, 2023
- From the RNA world to land plants: Evolutionary insights from tRNA genes Transfer RNAs (tRNAs) are universal adaptors of the genetic code, yet their evolutionary dynamics across photosynthetic eukaryotes remain underexplored. Here, we present the largest comparative re-analysis integrating the PlantRNA database with published data to explore tRNA gene evolution. We find that tRNA gene repertoires have been deeply shaped by ecological transitions, genome architecture, and translational demands. Terrestrialization marks a major shift in tRNA evolution, characterized by the loss of selenoproteins and their dedicated selenocysteine tRNAs in land plants compared to algae. Patterns of intron prevalence, position, and structure diverged among lineages, with extensive intron loss occurring around the origin of land plants. Organellar genomes exhibit divergent trajectories: mitochondrial tRNA sets are highly labile due to recurrent gene losses, imports, and horizontal transfers, whereas plastid repertoires are comparatively stable with lineage-specific exceptions. In parallel, angiosperm nuclear tRNA genes exhibit reinforced cis-regulatory elements, consistent with increased and developmentally complex translational demands, and their copy number correlates tightly with codon usage and amino acid composition. Finally, conserved yet family-biased clustering of nuclear tRNA genes reveals contrasting organizational principles in plants versus metazoans. Together, these findings establish tRNA gene evolution as a major determinant of translational capacity and a key driver of photosynthetic diversification. 4 authors · Nov 3
- The Deepfake Detection Challenge (DFDC) Preview Dataset In this paper, we introduce a preview of the Deepfakes Detection Challenge (DFDC) dataset consisting of 5K videos featuring two facial modification algorithms. A data collection campaign has been carried out where participating actors have entered into an agreement to the use and manipulation of their likenesses in our creation of the dataset. Diversity in several axes (gender, skin-tone, age, etc.) has been considered and actors recorded videos with arbitrary backgrounds thus bringing visual variability. Finally, a set of specific metrics to evaluate the performance have been defined and two existing models for detecting deepfakes have been tested to provide a reference performance baseline. The DFDC dataset preview can be downloaded at: deepfakedetectionchallenge.ai 5 authors · Oct 19, 2019
1 RAGAR, Your Falsehood RADAR: RAG-Augmented Reasoning for Political Fact-Checking using Multimodal Large Language Models The escalating challenge of misinformation, particularly in the context of political discourse, necessitates advanced solutions for fact-checking. We introduce innovative approaches to enhance the reliability and efficiency of multimodal fact-checking through the integration of Large Language Models (LLMs) with Retrieval-augmented Generation (RAG)- based advanced reasoning techniques. This work proposes two novel methodologies, Chain of RAG (CoRAG) and Tree of RAG (ToRAG). The approaches are designed to handle multimodal claims by reasoning the next questions that need to be answered based on previous evidence. Our approaches improve the accuracy of veracity predictions and the generation of explanations over the traditional fact-checking approach of sub-question generation with chain of thought veracity prediction. By employing multimodal LLMs adept at analyzing both text and images, this research advances the capability of automated systems in identifying and countering misinformation. 5 authors · Apr 18, 2024