Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCharacterGPT: A Persona Reconstruction Framework for Role-Playing Agents
The recent introduction of the Assistants API highlights its potential for large language models (LLMs) in role-playing agents (RPA). However, maintaining consistent character personas remains a significant challenge due to variability in information extraction, which frequently omits critical elements such as backstory or interpersonal relationships. To address this limitation, we introduce CharacterGPT, a framework designed to dynamically reconstruct character personas through Character Persona Training (CPT). This approach incrementally updates personas by extracting traits from chapter-wise novel summaries, reflecting the progression of the narrative. Our framework is evaluated through Big Five personality evaluations and creative tasks, in which characters generate original narratives, demonstrating the efficacy of CharacterGPT in preserving persona consistency. The code and results are available at https://github.com/Jeiyoon/charactergpt
Personality as a Probe for LLM Evaluation: Method Trade-offs and Downstream Effects
Personality manipulation in large language models (LLMs) is increasingly applied in customer service and agentic scenarios, yet its mechanisms and trade-offs remain unclear. We present a systematic study of personality control using the Big Five traits, comparing in-context learning (ICL), parameter-efficient fine-tuning (PEFT), and mechanistic steering (MS). Our contributions are fourfold. First, we construct a contrastive dataset with balanced high/low trait responses, enabling effective steering vector computation and fair cross-method evaluation. Second, we introduce a unified evaluation framework based on within-run Delta analysis that disentangles, reasoning capability, agent performance, and demographic bias across MMLU, GAIA, and BBQ benchmarks. Third, we develop trait purification techniques to separate openness from conscientiousness, addressing representational overlap in trait encoding. Fourth, we propose a three-level stability framework that quantifies method-, trait-, and combination-level robustness, offering practical guidance under deployment constraints. Experiments on Gemma-2-2B-IT and LLaMA-3-8B-Instruct reveal clear trade-offs: ICL achieves strong alignment with minimal capability loss, PEFT delivers the highest alignment at the cost of degraded task performance, and MS provides lightweight runtime control with competitive effectiveness. Trait-level analysis shows openness as uniquely challenging, agreeableness as most resistant to ICL, and personality encoding consolidating around intermediate layers. Taken together, these results establish personality manipulation as a multi-level probe into behavioral representation, linking surface conditioning, parameter encoding, and activation-level steering, and positioning mechanistic steering as a lightweight alternative to fine-tuning for both deployment and interpretability.
Do LLMs Possess a Personality? Making the MBTI Test an Amazing Evaluation for Large Language Models
The field of large language models (LLMs) has made significant progress, and their knowledge storage capacity is approaching that of human beings. Furthermore, advanced techniques, such as prompt learning and reinforcement learning, are being employed to address ethical concerns and hallucination problems associated with LLMs, bringing them closer to aligning with human values. This situation naturally raises the question of whether LLMs with human-like abilities possess a human-like personality? In this paper, we aim to investigate the feasibility of using the Myers-Briggs Type Indicator (MBTI), a widespread human personality assessment tool, as an evaluation metric for LLMs. Specifically, extensive experiments will be conducted to explore: 1) the personality types of different LLMs, 2) the possibility of changing the personality types by prompt engineering, and 3) How does the training dataset affect the model's personality. Although the MBTI is not a rigorous assessment, it can still reflect the similarity between LLMs and human personality. In practice, the MBTI has the potential to serve as a rough indicator. Our codes are available at https://github.com/HarderThenHarder/transformers_tasks/tree/main/LLM/llms_mbti.
Traits Run Deep: Enhancing Personality Assessment via Psychology-Guided LLM Representations and Multimodal Apparent Behaviors
Accurate and reliable personality assessment plays a vital role in many fields, such as emotional intelligence, mental health diagnostics, and personalized education. Unlike fleeting emotions, personality traits are stable, often subconsciously leaked through language, facial expressions, and body behaviors, with asynchronous patterns across modalities. It was hard to model personality semantics with traditional superficial features and seemed impossible to achieve effective cross-modal understanding. To address these challenges, we propose a novel personality assessment framework called \textbf{Traits Run Deep}. It employs \textbf{psychology-informed prompts} to elicit high-level personality-relevant semantic representations. Besides, it devises a \textbf{Text-Centric Trait Fusion Network} that anchors rich text semantics to align and integrate asynchronous signals from other modalities. To be specific, such fusion module includes a Chunk-Wise Projector to decrease dimensionality, a Cross-Modal Connector and a Text Feature Enhancer for effective modality fusion and an ensemble regression head to improve generalization in data-scarce situations. To our knowledge, we are the first to apply personality-specific prompts to guide large language models (LLMs) in extracting personality-aware semantics for improved representation quality. Furthermore, extracting and fusing audio-visual apparent behavior features further improves the accuracy. Experimental results on the AVI validation set have demonstrated the effectiveness of the proposed components, i.e., approximately a 45\% reduction in mean squared error (MSE). Final evaluations on the test set of the AVI Challenge 2025 confirm our method's superiority, ranking first in the Personality Assessment track. The source code will be made available at https://github.com/MSA-LMC/TraitsRunDeep.
Evaluating and Inducing Personality in Pre-trained Language Models
Standardized and quantified evaluation of machine behaviors is a crux of understanding LLMs. In this study, we draw inspiration from psychometric studies by leveraging human personality theory as a tool for studying machine behaviors. Originating as a philosophical quest for human behaviors, the study of personality delves into how individuals differ in thinking, feeling, and behaving. Toward building and understanding human-like social machines, we are motivated to ask: Can we assess machine behaviors by leveraging human psychometric tests in a principled and quantitative manner? If so, can we induce a specific personality in LLMs? To answer these questions, we introduce the Machine Personality Inventory (MPI) tool for studying machine behaviors; MPI follows standardized personality tests, built upon the Big Five Personality Factors (Big Five) theory and personality assessment inventories. By systematically evaluating LLMs with MPI, we provide the first piece of evidence demonstrating the efficacy of MPI in studying LLMs behaviors. We further devise a Personality Prompting (P^2) method to induce LLMs with specific personalities in a controllable way, capable of producing diverse and verifiable behaviors. We hope this work sheds light on future studies by adopting personality as the essential indicator for various downstream tasks, and could further motivate research into equally intriguing human-like machine behaviors.
Does Role-Playing Chatbots Capture the Character Personalities? Assessing Personality Traits for Role-Playing Chatbots
The emergence of large-scale pretrained language models has revolutionized the capabilities of new AI application, especially in the realm of crafting chatbots with distinct personas. Given the "stimulus-response" nature of chatbots, this paper unveils an innovative open-ended interview-style approach for personality assessment on role-playing chatbots, which offers a richer comprehension of their intrinsic personalities. We conduct personality assessments on 32 role-playing chatbots created by the ChatHaruhi library, across both the Big Five and MBTI dimensions, and measure their alignment with human perception. Evaluation results underscore that modern role-playing chatbots based on LLMs can effectively portray personality traits of corresponding characters, with an alignment rate of 82.8% compared with human-perceived personalities. Besides, we also suggest potential strategies for shaping chatbots' personalities. Hence, this paper serves as a cornerstone study for role-playing chatbots that intersects computational linguistics and psychology. Our resources are available at https://github.com/LC1332/Chat-Haruhi-Suzumiya
PersonaFuse: A Personality Activation-Driven Framework for Enhancing Human-LLM Interactions
Recent advancements in Large Language Models (LLMs) demonstrate remarkable capabilities across various fields. These developments have led to more direct communication between humans and LLMs in various situations, such as social companionship and psychological support. However, LLMs often exhibit limitations in emotional perception and social competence during real-world conversations. These limitations partly originate from their inability to adapt their communication style and emotional expression to different social and task contexts. In this work, we introduce PersonaFuse, a novel LLM post-training framework that enables LLMs to adapt and express different personalities for varying situations. Inspired by Trait Activation Theory and the Big Five personality model, PersonaFuse employs a Mixture-of-Expert architecture that combines persona adapters with a dynamic routing network, enabling contextual trait expression. Experimental results show that PersonaFuse substantially outperforms baseline models across multiple dimensions of social-emotional intelligence. Importantly, these gains are achieved without sacrificing general reasoning ability or model safety, which remain common limitations of direct prompting and supervised fine-tuning approaches. PersonaFuse also delivers consistent improvements in downstream human-centered applications, such as mental health counseling and review-based customer service. Finally, human preference evaluations against leading LLMs, including GPT-4o and DeepSeek, demonstrate that PersonaFuse achieves competitive response quality despite its comparatively smaller model size. These findings demonstrate that PersonaFuse~offers a theoretically grounded and practical approach for developing social-emotional enhanced LLMs, marking a significant advancement toward more human-centric AI systems.
Probing then Editing Response Personality of Large Language Models
Large Language Models (LLMs) have demonstrated promising capabilities to generate responses that exhibit consistent personality traits. Despite the major attempts to analyze personality expression through output-based evaluations, little is known about how such traits are internally encoded within LLM parameters. In this paper, we introduce a layer-wise probing framework to systematically investigate the layer-wise capability of LLMs in encoding personality for responding. We conduct probing experiments on 11 open-source LLMs over the PersonalityEdit benchmark and find that LLMs predominantly encode personality for responding in their middle and upper layers, with instruction-tuned models demonstrating a slightly clearer separation of personality traits. Furthermore, by interpreting the trained probing hyperplane as a layer-wise boundary for each personality category, we propose a layer-wise perturbation method to edit the personality expressed by LLMs during inference. Our results show that even when the prompt explicitly specifies a particular personality, our method can still successfully alter the response personality of LLMs. Interestingly, the difficulty of converting between certain personality traits varies substantially, which aligns with the representational distances in our probing experiments. Finally, we conduct a comprehensive MMLU benchmark evaluation and time overhead analysis, demonstrating that our proposed personality editing method incurs only minimal degradation in general capabilities while maintaining low training costs and acceptable inference latency. Our code is publicly available at https://github.com/universe-sky/probing-then-editing-personality.
Spotting Out-of-Character Behavior: Atomic-Level Evaluation of Persona Fidelity in Open-Ended Generation
Ensuring persona fidelity in large language models (LLMs) is essential for maintaining coherent and engaging human-AI interactions. However, LLMs often exhibit Out-of-Character (OOC) behavior, where generated responses deviate from an assigned persona, leading to inconsistencies that affect model reliability. Existing evaluation methods typically assign single scores to entire responses, struggling to capture subtle persona misalignment, particularly in long-form text generation. To address this limitation, we propose an atomic-level evaluation framework that quantifies persona fidelity at a finer granularity. Our three key metrics measure the degree of persona alignment and consistency within and across generations. Our approach enables a more precise and realistic assessment of persona fidelity by identifying subtle deviations that real users would encounter. Through our experiments, we demonstrate that our framework effectively detects persona inconsistencies that prior methods overlook. By analyzing persona fidelity across diverse tasks and personality types, we reveal how task structure and persona desirability influence model adaptability, highlighting challenges in maintaining consistent persona expression.
Towards Personality-Aware Recommendation
In the last decade new ways of shopping online have increased the possibility of buying products and services more easily and faster than ever. In this new context, personality is a key determinant in the decision making of the consumer when shopping. The two main reasons are: firstly, a person's buying choices are influenced by psychological factors like impulsiveness, and secondly, some consumers may be more susceptible to making impulse purchases than others. To the best of our knowledge, the impact of personality factors on advertisements has been largely neglected at the level of recommender systems. This work proposes a highly innovative research which uses a personality perspective to determine the unique associations among the consumer's buying tendency and advert recommendations. As a matter of fact, the lack of a publicly available benchmark for computational advertising do not allow both the exploration of this intriguing research direction and the evaluation of state-of-the-art algorithms. We present the ADS Dataset, a publicly available benchmark for computational advertising enriched with Big-Five users' personality factors and 1,200 personal users' pictures. The proposed benchmark allows two main tasks: rating prediction over 300 real advertisements (i.e., Rich Media Ads, Image Ads, Text Ads) and click-through rate prediction. Moreover, this work carries out experiments, reviews various evaluation criteria used in the literature, and provides a library for each one of them within one integrated toolbox.
Improving Personality Consistency in Conversation by Persona Extending
Endowing chatbots with a consistent personality plays a vital role for agents to deliver human-like interactions. However, existing personalized approaches commonly generate responses in light of static predefined personas depicted with textual description, which may severely restrict the interactivity of human and the chatbot, especially when the agent needs to answer the query excluded in the predefined personas, which is so-called out-of-predefined persona problem (named OOP for simplicity). To alleviate the problem, in this paper we propose a novel retrieval-to-prediction paradigm consisting of two subcomponents, namely, (1) Persona Retrieval Model (PRM), it retrieves a persona from a global collection based on a Natural Language Inference (NLI) model, the inferred persona is consistent with the predefined personas; and (2) Posterior-scored Transformer (PS-Transformer), it adopts a persona posterior distribution that further considers the actual personas used in the ground response, maximally mitigating the gap between training and inferring. Furthermore, we present a dataset called IT-ConvAI2 that first highlights the OOP problem in personalized dialogue. Extensive experiments on both IT-ConvAI2 and ConvAI2 demonstrate that our proposed model yields considerable improvements in both automatic metrics and human evaluations.
PersonaLLM: Investigating the Ability of Large Language Models to Express Personality Traits
Despite the many use cases for large language models (LLMs) in creating personalized chatbots, there has been limited research on evaluating the extent to which the behaviors of personalized LLMs accurately and consistently reflect specific personality traits. We consider studying the behavior of LLM-based agents which we refer to as LLM personas and present a case study with GPT-3.5 and GPT-4 to investigate whether LLMs can generate content that aligns with their assigned personality profiles. To this end, we simulate distinct LLM personas based on the Big Five personality model, have them complete the 44-item Big Five Inventory (BFI) personality test and a story writing task, and then assess their essays with automatic and human evaluations. Results show that LLM personas' self-reported BFI scores are consistent with their designated personality types, with large effect sizes observed across five traits. Additionally, LLM personas' writings have emerging representative linguistic patterns for personality traits when compared with a human writing corpus. Furthermore, human evaluation shows that humans can perceive some personality traits with an accuracy of up to 80\%. Interestingly, the accuracy drops significantly when the annotators were informed of the AI's authorship.
The Personality Illusion: Revealing Dissociation Between Self-Reports & Behavior in LLMs
Personality traits have long been studied as predictors of human behavior. Recent advances in Large Language Models (LLMs) suggest similar patterns may emerge in artificial systems, with advanced LLMs displaying consistent behavioral tendencies resembling human traits like agreeableness and self-regulation. Understanding these patterns is crucial, yet prior work primarily relied on simplified self-reports and heuristic prompting, with little behavioral validation. In this study, we systematically characterize LLM personality across three dimensions: (1) the dynamic emergence and evolution of trait profiles throughout training stages; (2) the predictive validity of self-reported traits in behavioral tasks; and (3) the impact of targeted interventions, such as persona injection, on both self-reports and behavior. Our findings reveal that instructional alignment (e.g., RLHF, instruction tuning) significantly stabilizes trait expression and strengthens trait correlations in ways that mirror human data. However, these self-reported traits do not reliably predict behavior, and observed associations often diverge from human patterns. While persona injection successfully steers self-reports in the intended direction, it exerts little or inconsistent effect on actual behavior. By distinguishing surface-level trait expression from behavioral consistency, our findings challenge assumptions about LLM personality and underscore the need for deeper evaluation in alignment and interpretability.
FairEval: Evaluating Fairness in LLM-Based Recommendations with Personality Awareness
Recent advances in Large Language Models (LLMs) have enabled their application to recommender systems (RecLLMs), yet concerns remain regarding fairness across demographic and psychological user dimensions. We introduce FairEval, a novel evaluation framework to systematically assess fairness in LLM-based recommendations. FairEval integrates personality traits with eight sensitive demographic attributes,including gender, race, and age, enabling a comprehensive assessment of user-level bias. We evaluate models, including ChatGPT 4o and Gemini 1.5 Flash, on music and movie recommendations. FairEval's fairness metric, PAFS, achieves scores up to 0.9969 for ChatGPT 4o and 0.9997 for Gemini 1.5 Flash, with disparities reaching 34.79 percent. These results highlight the importance of robustness in prompt sensitivity and support more inclusive recommendation systems.
TSST: A Benchmark and Evaluation Models for Text Speech-Style Transfer
Text style is highly abstract, as it encompasses various aspects of a speaker's characteristics, habits, logical thinking, and the content they express. However, previous text-style transfer tasks have primarily focused on data-driven approaches, lacking in-depth analysis and research from the perspectives of linguistics and cognitive science. In this paper, we introduce a novel task called Text Speech-Style Transfer (TSST). The main objective is to further explore topics related to human cognition, such as personality and emotion, based on the capabilities of existing LLMs. Considering the objective of our task and the distinctive characteristics of oral speech in real-life scenarios, we trained multi-dimension (i.e. filler words, vividness, interactivity, emotionality) evaluation models for the TSST and validated their correlation with human assessments. We thoroughly analyze the performance of several large language models (LLMs) and identify areas where further improvement is needed. Moreover, driven by our evaluation models, we have released a new corpus that improves the capabilities of LLMs in generating text with speech-style characteristics. In summary, we present the TSST task, a new benchmark for style transfer and emphasizing human-oriented evaluation, exploring and advancing the performance of current LLMs.
Measure what Matters: Psychometric Evaluation of AI with Situational Judgment Tests
AI psychometrics evaluates AI systems in roles that traditionally require emotional judgment and ethical consideration. Prior work often reuses human trait inventories (Big Five, \hexaco) or ad hoc personas, limiting behavioral realism and domain relevance. We propose a framework that (1) uses situational judgment tests (SJTs) from realistic scenarios to probe domain-specific competencies; (2) integrates industrial-organizational and personality psychology to design sophisticated personas which include behavioral and psychological descriptors, life history, and social and emotional functions; and (3) employs structured generation with population demographic priors and memoir inspired narratives, encoded with Pydantic schemas. In a law enforcement assistant case study, we construct a rich dataset of personas drawn across 8 persona archetypes and SJTs across 11 attributes, and analyze behaviors across subpopulation and scenario slices. The dataset spans 8,500 personas, 4,000 SJTs, and 300,000 responses. We will release the dataset and all code to the public.
SAC: A Framework for Measuring and Inducing Personality Traits in LLMs with Dynamic Intensity Control
Large language models (LLMs) have gained significant traction across a wide range of fields in recent years. There is also a growing expectation for them to display human-like personalities during interactions. To meet this expectation, numerous studies have proposed methods for modelling LLM personalities through psychometric evaluations. However, most existing models face two major limitations: they rely on the Big Five (OCEAN) framework, which only provides coarse personality dimensions, and they lack mechanisms for controlling trait intensity. In this paper, we address this gap by extending the Machine Personality Inventory (MPI), which originally used the Big Five model, to incorporate the 16 Personality Factor (16PF) model, allowing expressive control over sixteen distinct traits. We also developed a structured framework known as Specific Attribute Control (SAC) for evaluating and dynamically inducing trait intensity in LLMs. Our method introduces adjective-based semantic anchoring to guide trait intensity expression and leverages behavioural questions across five intensity factors: Frequency, Depth, Threshold, Effort, and Willingness. Through experimentation, we find that modelling intensity as a continuous spectrum yields substantially more consistent and controllable personality expression compared to binary trait toggling. Moreover, we observe that changes in target trait intensity systematically influence closely related traits in psychologically coherent directions, suggesting that LLMs internalize multi-dimensional personality structures rather than treating traits in isolation. Our work opens new pathways for controlled and nuanced human-machine interactions in domains such as healthcare, education, and interviewing processes, bringing us one step closer to truly human-like social machines.
Automatically Select Emotion for Response via Personality-affected Emotion Transition
To provide consistent emotional interaction with users, dialog systems should be capable to automatically select appropriate emotions for responses like humans. However, most existing works focus on rendering specified emotions in responses or empathetically respond to the emotion of users, yet the individual difference in emotion expression is overlooked. This may lead to inconsistent emotional expressions and disinterest users. To tackle this issue, we propose to equip the dialog system with personality and enable it to automatically select emotions in responses by simulating the emotion transition of humans in conversation. In detail, the emotion of the dialog system is transitioned from its preceding emotion in context. The transition is triggered by the preceding dialog context and affected by the specified personality trait. To achieve this, we first model the emotion transition in the dialog system as the variation between the preceding emotion and the response emotion in the Valence-Arousal-Dominance (VAD) emotion space. Then, we design neural networks to encode the preceding dialog context and the specified personality traits to compose the variation. Finally, the emotion for response is selected from the sum of the preceding emotion and the variation. We construct a dialog dataset with emotion and personality labels and conduct emotion prediction tasks for evaluation. Experimental results validate the effectiveness of the personality-affected emotion transition.
Dynamic Generation of Personalities with Large Language Models
In the realm of mimicking human deliberation, large language models (LLMs) show promising performance, thereby amplifying the importance of this research area. Deliberation is influenced by both logic and personality. However, previous studies predominantly focused on the logic of LLMs, neglecting the exploration of personality aspects. In this work, we introduce Dynamic Personality Generation (DPG), a dynamic personality generation method based on Hypernetworks. Initially, we embed the Big Five personality theory into GPT-4 to form a personality assessment machine, enabling it to evaluate characters' personality traits from dialogues automatically. We propose a new metric to assess personality generation capability based on this evaluation method. Then, we use this personality assessment machine to evaluate dialogues in script data, resulting in a personality-dialogue dataset. Finally, we fine-tune DPG on the personality-dialogue dataset. Experiments prove that DPG's personality generation capability is stronger after fine-tuning on this dataset than traditional fine-tuning methods, surpassing prompt-based GPT-4.
Global urban visual perception varies across demographics and personalities
Understanding people's preferences is crucial for urban planning, yet current approaches often combine responses from multi-cultural populations, obscuring demographic differences and risking amplifying biases. We conducted a large-scale urban visual perception survey of streetscapes worldwide using street view imagery, examining how demographics -- including gender, age, income, education, race and ethnicity, and, for the first time, personality traits -- shape perceptions among 1,000 participants with balanced demographics from five countries and 45 nationalities. This dataset, Street Perception Evaluation Considering Socioeconomics (SPECS), reveals demographic- and personality-based differences across six traditional indicators (safe, lively, wealthy, beautiful, boring, depressing) and four new ones (live nearby, walk, cycle, green). Location-based sentiments further shape these preferences. Machine learning models trained on existing global datasets tend to overestimate positive indicators and underestimate negative ones compared to human responses, underscoring the need for local context. Our study aspires to rectify the myopic treatment of street perception, which rarely considers demographics or personality traits.
Assessing and Understanding Creativity in Large Language Models
In the field of natural language processing, the rapid development of large language model (LLM) has attracted more and more attention. LLMs have shown a high level of creativity in various tasks, but the methods for assessing such creativity are inadequate. The assessment of LLM creativity needs to consider differences from humans, requiring multi-dimensional measurement while balancing accuracy and efficiency. This paper aims to establish an efficient framework for assessing the level of creativity in LLMs. By adapting the modified Torrance Tests of Creative Thinking, the research evaluates the creative performance of various LLMs across 7 tasks, emphasizing 4 criteria including Fluency, Flexibility, Originality, and Elaboration. In this context, we develop a comprehensive dataset of 700 questions for testing and an LLM-based evaluation method. In addition, this study presents a novel analysis of LLMs' responses to diverse prompts and role-play situations. We found that the creativity of LLMs primarily falls short in originality, while excelling in elaboration. Besides, the use of prompts and the role-play settings of the model significantly influence creativity. Additionally, the experimental results also indicate that collaboration among multiple LLMs can enhance originality. Notably, our findings reveal a consensus between human evaluations and LLMs regarding the personality traits that influence creativity. The findings underscore the significant impact of LLM design on creativity and bridges artificial intelligence and human creativity, offering insights into LLMs' creativity and potential applications.
LLM Agents for Psychology: A Study on Gamified Assessments
Psychological measurement is essential for mental health, self-understanding, and personal development. Traditional methods, such as self-report scales and psychologist interviews, often face challenges with engagement and accessibility. While game-based and LLM-based tools have been explored to improve user interest and automate assessment, they struggle to balance engagement with generalizability. In this work, we propose PsychoGAT (Psychological Game AgenTs) to achieve a generic gamification of psychological assessment. The main insight is that powerful LLMs can function both as adept psychologists and innovative game designers. By incorporating LLM agents into designated roles and carefully managing their interactions, PsychoGAT can transform any standardized scales into personalized and engaging interactive fiction games. To validate the proposed method, we conduct psychometric evaluations to assess its effectiveness and employ human evaluators to examine the generated content across various psychological constructs, including depression, cognitive distortions, and personality traits. Results demonstrate that PsychoGAT serves as an effective assessment tool, achieving statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity. Moreover, human evaluations confirm PsychoGAT's enhancements in content coherence, interactivity, interest, immersion, and satisfaction.
H2HTalk: Evaluating Large Language Models as Emotional Companion
As digital emotional support needs grow, Large Language Model companions offer promising authentic, always-available empathy, though rigorous evaluation lags behind model advancement. We present Heart-to-Heart Talk (H2HTalk), a benchmark assessing companions across personality development and empathetic interaction, balancing emotional intelligence with linguistic fluency. H2HTalk features 4,650 curated scenarios spanning dialogue, recollection, and itinerary planning that mirror real-world support conversations, substantially exceeding previous datasets in scale and diversity. We incorporate a Secure Attachment Persona (SAP) module implementing attachment-theory principles for safer interactions. Benchmarking 50 LLMs with our unified protocol reveals that long-horizon planning and memory retention remain key challenges, with models struggling when user needs are implicit or evolve mid-conversation. H2HTalk establishes the first comprehensive benchmark for emotionally intelligent companions. We release all materials to advance development of LLMs capable of providing meaningful and safe psychological support.
The Power of Personality: A Human Simulation Perspective to Investigate Large Language Model Agents
Large language models (LLMs) excel in both closed tasks (including problem-solving, and code generation) and open tasks (including creative writing), yet existing explanations for their capabilities lack connections to real-world human intelligence. To fill this gap, this paper systematically investigates LLM intelligence through the lens of ``human simulation'', addressing three core questions: (1) How do personality traits affect problem-solving in closed tasks? (2) How do traits shape creativity in open tasks? (3) How does single-agent performance influence multi-agent collaboration? By assigning Big Five personality traits to LLM agents and evaluating their performance in single- and multi-agent settings, we reveal that specific traits significantly influence reasoning accuracy (closed tasks) and creative output (open tasks). Furthermore, multi-agent systems exhibit collective intelligence distinct from individual capabilities, driven by distinguishing combinations of personalities. We demonstrate that LLMs inherently simulate human behavior through next-token prediction, mirroring human language, decision-making, and collaborative dynamics.
OpenToM: A Comprehensive Benchmark for Evaluating Theory-of-Mind Reasoning Capabilities of Large Language Models
Neural Theory-of-Mind (N-ToM), machine's ability to understand and keep track of the mental states of others, is pivotal in developing socially intelligent agents. However, prevalent N-ToM benchmarks have several shortcomings, including the presence of ambiguous and artificial narratives, absence of personality traits and preferences, a lack of questions addressing characters' psychological mental states, and limited diversity in the questions posed. In response to these issues, we construct OpenToM, a new benchmark for assessing N-ToM with (1) longer and clearer narrative stories, (2) characters with explicit personality traits, (3) actions that are triggered by character intentions, and (4) questions designed to challenge LLMs' capabilities of modeling characters' mental states of both the physical and psychological world. Using OpenToM, we reveal that state-of-the-art LLMs thrive at modeling certain aspects of mental states in the physical world but fall short when tracking characters' mental states in the psychological world.
Orca: Enhancing Role-Playing Abilities of Large Language Models by Integrating Personality Traits
Large language models has catalyzed the development of personalized dialogue systems, numerous role-playing conversational agents have emerged. While previous research predominantly focused on enhancing the model's capability to follow instructions by designing character profiles, neglecting the psychological factors that drive human conversations. In this paper, we propose Orca, a framework for data processing and training LLMs of custom characters by integrating personality traits. Orca comprises four stages: (1) Personality traits inferring, leverage LLMs to infer user's BigFive personality trait reports and scores. (2) Data Augment, simulate user's profile, background story, and psychological activities. (3) Dataset construction, personality-conditioned instruction prompting (PCIP) to stimulate LLMs. (4) Modeling and Training, personality-conditioned instruction tuning (PTIT and PSIT), using the generated data to enhance existing open-source LLMs. We introduce OrcaBench, the first benchmark for evaluating the quality of content generated by LLMs on social platforms across multiple scales. Our experiments demonstrate that our proposed model achieves superior performance on this benchmark, demonstrating its excellence and effectiveness in perceiving personality traits that significantly improve role-playing abilities. Our Code is available at https://github.com/Aipura/Orca.
MDPE: A Multimodal Deception Dataset with Personality and Emotional Characteristics
Deception detection has garnered increasing attention in recent years due to the significant growth of digital media and heightened ethical and security concerns. It has been extensively studied using multimodal methods, including video, audio, and text. In addition, individual differences in deception production and detection are believed to play a crucial role.Although some studies have utilized individual information such as personality traits to enhance the performance of deception detection, current systems remain limited, partly due to a lack of sufficient datasets for evaluating performance. To address this issue, we introduce a multimodal deception dataset MDPE. Besides deception features, this dataset also includes individual differences information in personality and emotional expression characteristics. It can explore the impact of individual differences on deception behavior. It comprises over 104 hours of deception and emotional videos from 193 subjects. Furthermore, we conducted numerous experiments to provide valuable insights for future deception detection research. MDPE not only supports deception detection, but also provides conditions for tasks such as personality recognition and emotion recognition, and can even study the relationships between them. We believe that MDPE will become a valuable resource for promoting research in the field of affective computing.
Social-MAE: A Transformer-Based Multimodal Autoencoder for Face and Voice
Human social behaviors are inherently multimodal necessitating the development of powerful audiovisual models for their perception. In this paper, we present Social-MAE, our pre-trained audiovisual Masked Autoencoder based on an extended version of Contrastive Audio-Visual Masked Auto-Encoder (CAV-MAE), which is pre-trained on audiovisual social data. Specifically, we modify CAV-MAE to receive a larger number of frames as input and pre-train it on a large dataset of human social interaction (VoxCeleb2) in a self-supervised manner. We demonstrate the effectiveness of this model by finetuning and evaluating the model on different social and affective downstream tasks, namely, emotion recognition, laughter detection and apparent personality estimation. The model achieves state-of-the-art results on multimodal emotion recognition and laughter recognition and competitive results for apparent personality estimation, demonstrating the effectiveness of in-domain self-supervised pre-training. Code and model weight are available here https://github.com/HuBohy/SocialMAE.
