- Consistent Modeling of Velocity Statistics and Redshift-Space Distortions in One-Loop Perturbation Theory The peculiar velocities of biased tracers of the cosmic density field contain important information about the growth of large scale structure and generate anisotropy in the observed clustering of galaxies. Using N-body data, we show that velocity expansions for halo redshift-space power spectra are converged at the percent-level at perturbative scales for most line-of-sight angles mu when the first three pairwise velocity moments are included, and that the third moment is well-approximated by a counterterm-like contribution. We compute these pairwise-velocity statistics in Fourier space using both Eulerian and Lagrangian one-loop perturbation theory using a cubic bias scheme and a complete set of counterterms and stochastic contributions. We compare the models and show that our models fit both real-space velocity statistics and redshift-space power spectra for both halos and a mock sample of galaxies at sub-percent level on perturbative scales using consistent sets of parameters, making them appealing choices for the upcoming era of spectroscopic, peculiar-velocity and kSZ surveys. 3 authors · May 1, 2020
- The Mira-Titan Universe IV. High Precision Power Spectrum Emulation Modern cosmological surveys are delivering datasets characterized by unprecedented quality and statistical completeness; this trend is expected to continue into the future as new ground- and space-based surveys come online. In order to maximally extract cosmological information from these observations, matching theoretical predictions are needed. At low redshifts, the surveys probe the nonlinear regime of structure formation where cosmological simulations are the primary means of obtaining the required information. The computational cost of sufficiently resolved large-volume simulations makes it prohibitive to run very large ensembles. Nevertheless, precision emulators built on a tractable number of high-quality simulations can be used to build very fast prediction schemes to enable a variety of cosmological inference studies. We have recently introduced the Mira-Titan Universe simulation suite designed to construct emulators for a range of cosmological probes. The suite covers the standard six cosmological parameters {omega_m,omega_b, sigma_8, h, n_s, w_0} and, in addition, includes massive neutrinos and a dynamical dark energy equation of state, {omega_{nu}, w_a}. In this paper we present the final emulator for the matter power spectrum based on 111 cosmological simulations, each covering a (2.1Gpc)^3 volume and evolving 3200^3 particles. An additional set of 1776 lower-resolution simulations and TimeRG perturbation theory results for the power spectrum are used to cover scales straddling the linear to mildly nonlinear regimes. The emulator provides predictions at the two to three percent level of accuracy over a wide range of cosmological parameters and is publicly released as part of this paper. 9 authors · Jul 25, 2022
- Non-Perturbative Hamiltonian and Higher Loop Corrections in USR Inflation Calculating the action and the interaction Hamiltonian at higher orders in cosmological perturbation theory is a cumbersome task. We employ the formalism of EFT of inflation in models of single field ultra slow-roll inflation and obtain a non-perturbative result for the Hamiltonian in terms of the Goldstone field pi. To complete the dictionary, a non-linear relation between the curvature perturbations and pi is presented. Equipped with these non-linear results, we calculate the higher order loop corrections in USR models which are employed for PBHs formation. It is shown that the loop corrections on long CMB scales increase rapidly with the number of loop L and the setup will go out of perturbative control at the four-loop level. 2 authors · Feb 13
- Precision measurement of the last bound states in H$_2$ and determination of the H + H scattering length The binding energies of the five bound rotational levels J=0-4 in the highest vibrational level v=14 in the X^1Sigma_g^+ ground electronic state of H_2 were measured in a three-step ultraviolet-laser experiment. Two-photon UV-photolysis of H_2S produced population in these high-lying bound states, that were subsequently interrogated at high precision via Doppler-free spectroscopy of the F^1Sigma_g^+ - X^1Sigma_g^+ system. A third UV-laser was used for detection through auto-ionizing resonances. The experimentally determined binding energies were found to be in excellent agreement with calculations based on non-adiabatic perturbation theory, also including relativistic and quantum electrodynamical contributions. The s-wave scattering length of the H + H system is derived from the binding energy of the last bound J=0 level via a direct semi-empirical approach, yielding a value of a_s = 0.2724(5) a_0, in good agreement with a result from a previously followed theoretical approach. The subtle effect of the malpha^4 relativity contribution to a_s was found to be significant. In a similar manner a value for the p-wave scattering volume is determined via the J=1 binding energy yielding a_p = -134.0000(6) a_0^3. The binding energy of the last bound state in H_2, the (v=14, J=4) level, is determined at 0.023(4) cm^{-1}, in good agreement with calculation. The effect of the hyperfine substructure caused by the two hydrogen atoms at large internuclear separation, giving rise to three distinct dissociation limits, is discussed. 3 authors · Feb 3
- DESI 2024 V: Full-Shape Galaxy Clustering from Galaxies and Quasars We present the measurements and cosmological implications of the galaxy two-point clustering using over 4.7 million unique galaxy and quasar redshifts in the range 0.1<z<2.1 divided into six redshift bins over a sim 7,500 square degree footprint, from the first year of observations with the Dark Energy Spectroscopic Instrument (DESI Data Release 1). By fitting the full power spectrum, we extend previous DESI DR1 baryon acoustic oscillation (BAO) measurements to include redshift-space distortions and signals from the matter-radiation equality scale. For the first time, this Full-Shape analysis is blinded at the catalogue-level to avoid confirmation bias and the systematic errors are accounted for at the two-point clustering level, which automatically propagates them into any cosmological parameter. When analysing the data in terms of compressed model-agnostic variables, we obtain a combined precision of 4.7\% on the amplitude of the redshift space distortion signal reaching similar precision with just one year of DESI data than with 20 years of observation from previous generation surveys. We analyse the data to directly constrain the cosmological parameters within the LambdaCDM model using perturbation theory and combine this information with the reconstructed DESI DR1 galaxy BAO. Using a Big Bang Nucleosynthesis Gaussian prior on the baryon density parameter, and a Gaussian prior on the spectral index, we constrain the matter density is Omega_m=0.296pm 0.010 and the Hubble constant H_0=(68.63 pm 0.79)[{rm km, s^{-1}Mpc^{-1}}]. Additionally, we measure the amplitude of clustering sigma_8=0.841 pm 0.034. The DESI DR1 results are in agreement with the LambdaCDM model based on general relativity with parameters consistent with those from Planck. The cosmological interpretation of these results in combination with external datasets are presented in a companion paper. 198 authors · Nov 18, 2024
- Growth of cancer stem cell driven tumors: staged invasion, linear determinacy, and the tumor invasion paradox We study growth of solid tumors in a partial differential equation model introduced by Hillen et al for the interaction between tumor cells (TCs) and cancer stem cells (CSCs). We find that invasion into the cancer-free state may be separated into two regimes, depending on the death rate of tumor cells. In the first, staged invasion regime, invasion into the cancer-free state is lead by tumor cells, which are then subsequently invaded at a slower speed by cancer stem cells. In the second, TC extinction regime, cancer stem cells directly invade the cancer-free state. Relying on recent results establishing front selection propagation under marginal stability assumptions, we use geometric singular perturbation theory to establish existence and selection properties of front solutions which describe both the primary and secondary invasion processes. With rigorous predictions for the invasion speeds, we are then able to heuristically predict how the total cancer mass as a function of time depends on the TC death rate, finding in some situations a tumor invasion paradox, in which increasing the TC death rate leads to an increase in the total cancer mass. Our methods give a general approach for verifying linear determinacy of spreading speeds of invasion fronts in systems with fast-slow structure. 1 authors · Oct 26, 2023
- On the Dynamics of Acceleration in First order Gradient Methods Ever since the original algorithm by Nesterov (1983), the true nature of the acceleration phenomenon has remained elusive, with various interpretations of why the method is actually faster. The diagnosis of the algorithm through the lens of Ordinary Differential Equations (ODEs) and the corresponding dynamical system formulation to explain the underlying dynamics has a rich history. In the literature, the ODEs that explain algorithms are typically derived by considering the limiting case of the algorithm maps themselves, that is, an ODE formulation follows the development of an algorithm. This obfuscates the underlying higher order principles and thus provides little evidence of the working of the algorithm. Such has been the case with Nesterov algorithm and the various analogies used to describe the acceleration phenomena, viz, momentum associated with the rolling of a Heavy-Ball down a slope, Hessian damping etc. The main focus of our work is to ideate the genesis of the Nesterov algorithm from the viewpoint of dynamical systems leading to demystifying the mathematical rigour behind the algorithm. Instead of reverse engineering ODEs from discrete algorithms, this work explores tools from the recently developed control paradigm titled Passivity and Immersion approach and the Geometric Singular Perturbation theory which are applied to arrive at the formulation of a dynamical system that explains and models the acceleration phenomena. This perspective helps to gain insights into the various terms present and the sequence of steps used in Nesterovs accelerated algorithm for the smooth strongly convex and the convex case. The framework can also be extended to derive the acceleration achieved using the triple momentum method and provides justifications for the non-convergence to the optimal solution in the Heavy-Ball method. 5 authors · Sep 22
- Tracing cosmic voids with fast simulations Context. Cosmic voids are vast underdense regions in the cosmic web that encode crucial information about structure formation, the composition of the Universe, and its expansion history. Due to their lower density, these regions are less affected by non-linear gravitational dynamics, making them suitable candidates for analysis using semi-analytic methods. Aims. We assess the accuracy of the PINOCCHIO code, a fast tool for generating dark matter halo catalogs based on Lagrangian Perturbation Theory, in modeling the statistical properties of cosmic voids. We validate this approach by comparing the resulting void statistics measured from PINOCCHIO to those obtained from N-body simulations. Methods. We generate a set of simulations using PINOCCHIO and OpenGADGET3, assuming a fiducial cosmology and varying the resolution. For a given resolution, the simulations share the same initial conditions between the different simulation codes. Snapshots are saved at multiple redshifts for each simulation and post-processed using the watershed void finder VIDE to identify cosmic voids. For each simulation code, we measure the following statistics: void size function, void ellipticity function, core density function, and the void radial density profile. We use these statistics to quantify the accuracy of PINOCCHIO relative to OpenGADGET3 in the context of cosmic voids. Results. We find agreement for all void statistics at better than 2{\sigma} between PINOCCHIO and OpenGADGET3, with no systematic difference in redshift trends. This demonstrates that the PINOCCHIO code can reliably produce void statistics with high computational efficiency compared to full N-body simulations. 6 authors · Jun 24
- Rise and Fall of Anderson Localization by Lattice Vibrations: A Time-Dependent Machine Learning Approach The intricate relationship between electrons and the crystal lattice is a linchpin in condensed matter, traditionally described by the Fr\"ohlich model encompassing the lowest-order lattice-electron coupling. Recently developed quantum acoustics, emphasizing the wave nature of lattice vibrations, has enabled the exploration of previously uncharted territories of electron-lattice interaction not accessible with conventional tools such as perturbation theory. In this context, our agenda here is two-fold. First, we showcase the application of machine learning methods to categorize various interaction regimes within the subtle interplay of electrons and the dynamical lattice landscape. Second, we shed light on a nebulous region of electron dynamics identified by the machine learning approach and then attribute it to transient localization, where strong lattice vibrations result in a momentary Anderson prison for electronic wavepackets, which are later released by the evolution of the lattice. Overall, our research illuminates the spectrum of dynamics within the Fr\"ohlich model, such as transient localization, which has been suggested as a pivotal factor contributing to the mysteries surrounding strange metals. Furthermore, this paves the way for utilizing time-dependent perspectives in machine learning techniques for designing materials with tailored electron-lattice properties. 4 authors · May 27, 2024
- Quasinormal modes in two-photon autocorrelation and the geometric-optics approximation In this work, we study the black hole light echoes in terms of the two-photon autocorrelation and explore their connection with the quasinormal modes. It is shown that the above time-domain phenomenon can be analyzed by utilizing the well-known frequency-domain relations between the quasinormal modes and characteristic parameters of null geodesics. We found that the time-domain correlator, obtained by the inverse Fourier transform, naturally acquires the echo feature, which can be attributed to a collective effect of the asymptotic poles through a weighted summation of the squared modulus of the relevant Green's functions. Specifically, the contour integral leads to a summation taking over both the overtone index and angular momentum. Moreover, the dominant contributions to the light echoes are from those in the eikonal limit, consistent with the existing findings using the geometric-optics arguments. For the Schwarzschild black holes, we demonstrate the results numerically by considering a transient spherical light source. Also, for the Kerr spacetimes, we point out a potential difference between the resulting light echoes using the geometric-optics approach and those obtained by the black hole perturbation theory. Possible astrophysical implications of the present study are addressed. 5 authors · Sep 6, 2021
- Adversarial Image Perturbation for Privacy Protection -- A Game Theory Perspective Users like sharing personal photos with others through social media. At the same time, they might want to make automatic identification in such photos difficult or even impossible. Classic obfuscation methods such as blurring are not only unpleasant but also not as effective as one would expect. Recent studies on adversarial image perturbations (AIP) suggest that it is possible to confuse recognition systems effectively without unpleasant artifacts. However, in the presence of counter measures against AIPs, it is unclear how effective AIP would be in particular when the choice of counter measure is unknown. Game theory provides tools for studying the interaction between agents with uncertainties in the strategies. We introduce a general game theoretical framework for the user-recogniser dynamics, and present a case study that involves current state of the art AIP and person recognition techniques. We derive the optimal strategy for the user that assures an upper bound on the recognition rate independent of the recogniser's counter measure. Code is available at https://goo.gl/hgvbNK. 3 authors · Mar 28, 2017
- Perturbation Analysis of Neural Collapse Training deep neural networks for classification often includes minimizing the training loss beyond the zero training error point. In this phase of training, a "neural collapse" behavior has been observed: the variability of features (outputs of the penultimate layer) of within-class samples decreases and the mean features of different classes approach a certain tight frame structure. Recent works analyze this behavior via idealized unconstrained features models where all the minimizers exhibit exact collapse. However, with practical networks and datasets, the features typically do not reach exact collapse, e.g., because deep layers cannot arbitrarily modify intermediate features that are far from being collapsed. In this paper, we propose a richer model that can capture this phenomenon by forcing the features to stay in the vicinity of a predefined features matrix (e.g., intermediate features). We explore the model in the small vicinity case via perturbation analysis and establish results that cannot be obtained by the previously studied models. For example, we prove reduction in the within-class variability of the optimized features compared to the predefined input features (via analyzing gradient flow on the "central-path" with minimal assumptions), analyze the minimizers in the near-collapse regime, and provide insights on the effect of regularization hyperparameters on the closeness to collapse. We support our theory with experiments in practical deep learning settings. 3 authors · Oct 29, 2022
- Constructor Theory of Information We present a theory of information expressed solely in terms of which transformations of physical systems are possible and which are impossible - i.e. in constructor-theoretic terms. Although it includes conjectured laws of physics that are directly about information, independently of the details of particular physical instantiations, it does not regard information as an a priori mathematical or logical concept, but as something whose nature and properties are determined by the laws of physics alone. It does not suffer from the circularity at the foundations of existing information theory (namely that information and distinguishability are each defined in terms of the other). It explains the relationship between classical and quantum information, and reveals the single, constructor-theoretic property underlying the most distinctive phenomena associated with the latter, including the lack of in-principle distinguishability of some states, the impossibility of cloning, the existence of pairs of variables that cannot simultaneously have sharp values, the fact that measurement processes can be both deterministic and unpredictable, the irreducible perturbation caused by measurement, and entanglement (locally inaccessible information). 2 authors · May 21, 2014
- CellCLIP -- Learning Perturbation Effects in Cell Painting via Text-Guided Contrastive Learning High-content screening (HCS) assays based on high-throughput microscopy techniques such as Cell Painting have enabled the interrogation of cells' morphological responses to perturbations at an unprecedented scale. The collection of such data promises to facilitate a better understanding of the relationships between different perturbations and their effects on cellular state. Towards achieving this goal, recent advances in cross-modal contrastive learning could, in theory, be leveraged to learn a unified latent space that aligns perturbations with their corresponding morphological effects. However, the application of such methods to HCS data is not straightforward due to substantial differences in the semantics of Cell Painting images compared to natural images, and the difficulty of representing different classes of perturbations (e.g., small molecule vs CRISPR gene knockout) in a single latent space. In response to these challenges, here we introduce CellCLIP, a cross-modal contrastive learning framework for HCS data. CellCLIP leverages pre-trained image encoders coupled with a novel channel encoding scheme to better capture relationships between different microscopy channels in image embeddings, along with natural language encoders for representing perturbations. Our framework outperforms current open-source models, demonstrating the best performance in both cross-modal retrieval and biologically meaningful downstream tasks while also achieving significant reductions in computation time. 4 authors · May 16
- Differential Privacy of Quantum and Quantum-Inspired-Classical Recommendation Algorithms We analyze the DP (differential privacy) properties of the quantum recommendation algorithm and the quantum-inspired-classical recommendation algorithm. We discover that the quantum recommendation algorithm is a privacy curating mechanism on its own, requiring no external noise, which is different from traditional differential privacy mechanisms. In our analysis, a novel perturbation method tailored for SVD (singular value decomposition) and low-rank matrix approximation problems is introduced. Using the perturbation method and random matrix theory, we are able to derive that both the quantum and quantum-inspired-classical algorithms are big(mathcal{O}big(frac 1nbig),,, mathcal{O}big(1{min{m,n}}big)big)-DP under some reasonable restrictions, where m and n are numbers of users and products in the input preference database respectively. Nevertheless, a comparison shows that the quantum algorithm has better privacy preserving potential than the classical one. 2 authors · Feb 7
- Lectures in Quantum Gravity Formulating a quantum theory of gravity lies at the heart of fundamental theoretical physics. This collection of lecture notes encompasses a selection of topics that were covered in six mini-courses at the Nordita PhD school "Towards Quantum Gravity". The scope was to provide a coherent picture, from its foundation to forefront research, emphasizing connections between different areas. The lectures begin with perturbative quantum gravity and effective field theory. Subsequently, two ultraviolet-complete approaches are presented: asymptotically safe gravity and string theory. Finally, elements of quantum effects in black hole spacetimes are discussed. 6 authors · Dec 11, 2024
- Relative Oscillation Theory for Jacobi Matrices Extended We present a comprehensive treatment of relative oscillation theory for finite Jacobi matrices. We show that the difference of the number of eigenvalues of two Jacobi matrices in an interval equals the number of weighted sign-changes of the Wronskian of suitable solutions of the two underlying difference equations. Until now only the case of perturbations of the main diagonal was known. We extend the known results to arbitrary perturbations, allow any (half-)open and closed spectral intervals, simplify the proof, and establish the comparison theorem. 1 authors · Jul 16, 2012
- Ground State Preparation via Dynamical Cooling Quantum algorithms for probing ground-state properties of quantum systems require good initial states. Projection-based methods such as eigenvalue filtering rely on inputs that have a significant overlap with the low-energy subspace, which can be challenging for large, strongly-correlated systems. This issue has motivated the study of physically-inspired dynamical approaches such as thermodynamic cooling. In this work, we introduce a ground-state preparation algorithm based on the simulation of quantum dynamics. Our main insight is to transform the Hamiltonian by a shifted sign function via quantum signal processing, effectively mapping eigenvalues into positive and negative subspaces separated by a large gap. This automatically ensures that all states within each subspace conserve energy with respect to the transformed Hamiltonian. Subsequent time-evolution with a perturbed Hamiltonian induces transitions to lower-energy states while preventing unwanted jumps to higher energy states. The approach does not rely on a priori knowledge of energy gaps and requires no additional qubits to model a bath. Furthermore, it makes mathcal{O}(d^{,3/2}/epsilon) queries to the time-evolution operator of the system and mathcal{O}(d^{,3/2}) queries to a block-encoding of the perturbation, for d cooling steps and an epsilon-accurate energy resolution. Our results provide a framework for combining quantum signal processing and Hamiltonian simulation to design heuristic quantum algorithms for ground-state preparation. 4 authors · Apr 8, 2024
- Calculation of prompt diphoton production cross sections at Tevatron and LHC energies A fully differential calculation in perturbative quantum chromodynamics is presented for the production of massive photon pairs at hadron colliders. All next-to-leading order perturbative contributions from quark-antiquark, gluon-(anti)quark, and gluon-gluon subprocesses are included, as well as all-orders resummation of initial-state gluon radiation valid at next-to-next-to-leading logarithmic accuracy. The region of phase space is specified in which the calculation is most reliable. Good agreement is demonstrated with data from the Fermilab Tevatron, and predictions are made for more detailed tests with CDF and DO data. Predictions are shown for distributions of diphoton pairs produced at the energy of the Large Hadron Collider (LHC). Distributions of the diphoton pairs from the decay of a Higgs boson are contrasted with those produced from QCD processes at the LHC, showing that enhanced sensitivity to the signal can be obtained with judicious selection of events. 4 authors · Apr 2, 2007
- Understanding Deep Networks via Extremal Perturbations and Smooth Masks The problem of attribution is concerned with identifying the parts of an input that are responsible for a model's output. An important family of attribution methods is based on measuring the effect of perturbations applied to the input. In this paper, we discuss some of the shortcomings of existing approaches to perturbation analysis and address them by introducing the concept of extremal perturbations, which are theoretically grounded and interpretable. We also introduce a number of technical innovations to compute extremal perturbations, including a new area constraint and a parametric family of smooth perturbations, which allow us to remove all tunable hyper-parameters from the optimization problem. We analyze the effect of perturbations as a function of their area, demonstrating excellent sensitivity to the spatial properties of the deep neural network under stimulation. We also extend perturbation analysis to the intermediate layers of a network. This application allows us to identify the salient channels necessary for classification, which, when visualized using feature inversion, can be used to elucidate model behavior. Lastly, we introduce TorchRay, an interpretability library built on PyTorch. 3 authors · Oct 18, 2019
- A Comprehensive Perturbative Formalism for Phase Mixing in Perturbed Disks. II. Phase Spirals in an Inhomogeneous Disk Galaxy with a Non-responsive Dark Matter Halo We develop a linear perturbative formalism to compute the response of an inhomogeneous stellar disk embedded in a non-responsive dark matter halo to perturbations like bars, spiral arms and satellite galaxy encounters. Without self-gravity to reinforce it, the response of a Fourier mode phase mixes away due to an intrinsic spread in the vertical (Omega_z), radial (Omega_r) and azimuthal (Omega_phi) frequencies, giving rise to local phase-space spirals. Collisional diffusion due to scattering of stars by structures like giant molecular clouds causes super-exponential damping of the phase-spiral amplitude. The z-v_z phase-spiral is 1-armed (2-armed) for vertically anti-symmetric (symmetric) bending (breathing) modes. Only transient perturbations with timescales (tau_{P}) comparable to the vertical oscillation period (tau_z sim 1/Omega_z) trigger z-v_z phase-spirals. Each (n,l,m) mode of the response to impulsive (tau_{P}<tau=1/(nOmega_z+lOmega_r+mOmega_phi)) perturbations is power law (sim tau_{P}/tau) suppressed, but that to adiabatic (tau_{P}>tau) perturbations is exponentially weak (sim left[-left(tau_{mathrm{P}/tauright)^alpharight]}) except resonant (tauto infty) modes. Slower (tau_{P}>tau_z) perturbations, e.g., distant encounters with satellite galaxies, induce stronger bending modes. If the Gaia phase-spiral was triggered by a satellite, Sagittarius is the leading contender as it dominates the Solar neighborhood response of the Milky Way disk to satellite encounters. However, survival against collisional damping necessitates that the impact occurred within sim 0.6-0.7 Gyr ago. We discuss how the detailed galactic potential dictates the phase-spiral shape: phase mixing occurs slower and phase-spirals are less wound in the outer disk and in presence of an ambient halo. 3 authors · Feb 28, 2023
- Flow Perturbation to Accelerate Unbiased Sampling of Boltzmann distribution Flow-based generative models have been employed for sampling the Boltzmann distribution, but their application to high-dimensional systems is hindered by the significant computational cost of obtaining the Jacobian of the flow. To overcome this challenge, we introduce the flow perturbation method, which incorporates optimized stochastic perturbations into the flow. By reweighting trajectories generated by the perturbed flow, our method achieves unbiased sampling of the Boltzmann distribution with orders of magnitude speedup compared to both brute force Jacobian calculations and the Hutchinson estimator. Notably, it accurately sampled the Chignolin protein with all atomic Cartesian coordinates explicitly represented, which, to our best knowledge, is the largest molecule ever Boltzmann sampled in such detail using generative models. 2 authors · Jul 15, 2024
- Inhomogeneous confinement and chiral symmetry breaking induced by imaginary angular velocity We investigate detailed properties of imaginary rotating matter with gluons and quarks at high temperature. Previously, we showed that imaginary rotation induces perturbative confinement of gluons at the rotation center. We perturbatively calculate the Polyakov loop potential and find inhomogeneous confinement above a certain threshold of imaginary angular velocity. We also evaluate the quark contribution to the Polyakov loop potential and confirm that spontaneous chiral symmetry breaking occurs in the perturbatively confined phase. 3 authors · Apr 1, 2024
- Causality and Renormalization in Finite-Time-Path Out-of-Equilibrium φ^3 QFT Our aim is to contribute to quantum field theory (QFT) formalisms useful for descriptions of short time phenomena, dominant especially in heavy ion collisions. We formulate out-of-equilibrium QFT within the finite-time-path formalism (FTP) and renormalization theory (RT). The potential conflict of FTP and RT is investigated in g phi^3 QFT, by using the retarded/advanced (R/A) basis of Green functions and dimensional renormalization (DR). For example, vertices immediately after (in time) divergent self-energy loops do not conserve energy, as integrals diverge. We "repair" them, while keeping d<4, to obtain energy conservation at those vertices. Already in the S-matrix theory, the renormalized, finite part of Feynman self-energy Sigma_{F}(p_0) does not vanish when |p_0|rightarrowinfty and cannot be split to retarded and advanced parts. In the Glaser--Epstein approach, the causality is repaired in the composite object G_F(p_0)Sigma_{F}(p_0). In the FTP approach, after repairing the vertices, the corresponding composite objects are G_R(p_0)Sigma_{R}(p_0) and Sigma_{A}(p_0)G_A(p_0). In the limit drightarrow 4, one obtains causal QFT. The tadpole contribution splits into diverging and finite parts. The diverging, constant component is eliminated by the renormalization condition langle 0|phi|0rangle =0 of the S-matrix theory. The finite, oscillating energy-nonconserving tadpole contributions vanish in the limit trightarrow infty . 2 authors · Dec 31, 2019
- Bootstrability in Line-Defect CFT with Improved Truncation Methods We study the conformal bootstrap of 1D CFTs on the straight Maldacena-Wilson line in 4D {cal N}=4 super-Yang-Mills theory. We introduce an improved truncation scheme with an 'OPE tail' approximation and use it to reproduce the 'bootstrability' results of Cavagli\`a et al. for the OPE-coefficients squared of the first three unprotected operators. For example, for the first OPE-coefficient squared at 't Hooft coupling (4pi)^2, linear-functional methods with two sum rules from integrated correlators give the rigorous result 0.294014873 pm 4.88 cdot 10^{-8}, whereas our methods give with machine-precision computations 0.294014228 pm 6.77 cdot 10^{-7}. For our numerical searches, we benchmark the Reinforcement Learning Soft Actor-Critic algorithm against an Interior Point Method algorithm (IPOPT) and comment on the merits of each algorithm. 5 authors · Jun 27, 2023
1 QTRAJ 1.0: A Lindblad equation solver for heavy-quarkonium dynamics We introduce an open-source package called QTraj that solves the Lindblad equation for heavy-quarkonium dynamics using the quantum trajectories algorithm. The package allows users to simulate the suppression of heavy-quarkonium states using externally-supplied input from 3+1D hydrodynamics simulations. The code uses a split-step pseudo-spectral method for updating the wave-function between jumps, which is implemented using the open-source multi-threaded FFTW3 package. This allows one to have manifestly unitary evolution when using real-valued potentials. In this paper, we provide detailed documentation of QTraj 1.0, installation instructions, and present various tests and benchmarks of the code. 7 authors · Jul 13, 2021
- Out of equilibrium Phase Diagram of the Quantum Random Energy Model In this paper we study the out-of-equilibrium phase diagram of the quantum version of Derrida's Random Energy Model, which is the simplest model of mean-field spin glasses. We interpret its corresponding quantum dynamics in Fock space as a one-particle problem in very high dimension to which we apply different theoretical methods tailored for high-dimensional lattices: the Forward-Scattering Approximation, a mapping to the Rosenzweig-Porter model, and the cavity method. Our results indicate the existence of two transition lines and three distinct dynamical phases: a completely many-body localized phase at low energy, a fully ergodic phase at high energy, and a multifractal "bad metal" phase at intermediate energy. In the latter, eigenfunctions occupy a diverging volume, yet an exponentially vanishing fraction of the total Hilbert space. We discuss the limitations of our approximations and the relationship with previous studies. 5 authors · Sep 21, 2020
- Predication of novel effects in rotational nuclei at high speed The study of high-speed rotating matter is a crucial research topic in physics due to the emergence of novel phenomena. In this paper, we combined cranking covariant density functional theory (CDFT) with a similar renormalization group approach to decompose the Hamiltonian from the cranking CDFT into different Hermit components, including the non-relativistic term, the dynamical term, the spin-orbit coupling, and the Darwin term. Especially, we obtained the rotational term, the term relating to Zeeman effect-like, and the spin-rotation coupling due to consideration of rotation and spatial component of vector potential. By exploring these operators, we aim to identify novel phenomena that may occur in rotating nuclei. Signature splitting, Zeeman effect-like, spin-rotation coupling, and spin current are among the potential novelties that may arise in rotating nuclei. Additionally, we investigated the observability of these phenomena and their dependence on various factors such as nuclear deformation, rotational angular velocity, and strength of magnetic field. 1 authors · Sep 1, 2023
- Understanding Gradient Descent through the Training Jacobian We examine the geometry of neural network training using the Jacobian of trained network parameters with respect to their initial values. Our analysis reveals low-dimensional structure in the training process which is dependent on the input data but largely independent of the labels. We find that the singular value spectrum of the Jacobian matrix consists of three distinctive regions: a "chaotic" region of values orders of magnitude greater than one, a large "bulk" region of values extremely close to one, and a "stable" region of values less than one. Along each bulk direction, the left and right singular vectors are nearly identical, indicating that perturbations to the initialization are carried through training almost unchanged. These perturbations have virtually no effect on the network's output in-distribution, yet do have an effect far out-of-distribution. While the Jacobian applies only locally around a single initialization, we find substantial overlap in bulk subspaces for different random seeds. Our code is available at https://github.com/EleutherAI/training-jacobian 2 authors · Dec 9, 2024
- PAH Emission Spectra and Band Ratios for Arbitrary Radiation Fields with the Single Photon Approximation We present a new method for generating emission spectra from polycyclic aromatic hydrocarbons (PAHs) in arbitrary radiation fields. We utilize the single-photon limit for PAH heating and emission to treat individual photon absorptions as independent events. This allows the construction of a set of single-photon emission "basis spectra" that can be scaled to produce an output emission spectrum given any input heating spectrum. We find that this method produces agreement with PAH emission spectra computed accounting for multi-photon effects to within simeq10% in the 3-20~{rm mu m} wavelength range for radiation fields with intensity U<100. We use this framework to explore the dependence of PAH band ratios on the radiation field spectrum across grain sizes, finding in particular a strong dependence of the 3.3 to 11.2~mum band ratio on radiation field hardness. A Python-based tool and a set of basis spectra that can be used to generate these emission spectra are made publicly available. 2 authors · Oct 19
- Optimally truncated WKB approximation for the highly oscillatory stationary 1D Schrödinger equation We discuss the numerical solution of initial value problems for varepsilon^2,varphi''+a(x),varphi=0 in the highly oscillatory regime, i.e., with a(x)>0 and 0<varepsilonll 1. We analyze and implement an approximate solution based on the well-known WKB-ansatz. The resulting approximation error is of magnitude O(varepsilon^{N}) where N refers to the truncation order of the underlying asymptotic series. When the optimal truncation order N_{opt} is chosen, the error behaves like O(varepsilon^{-2}exp(-cvarepsilon^{-1})) with some c>0. 4 authors · Oct 2, 2023
- FiniteFieldSolve: Exactly Solving Large Linear Systems in High-Energy Theory Large linear systems play an important role in high-energy theory, appearing in amplitude bootstraps and during integral reduction. This paper introduces FiniteFieldSolve, a general-purpose toolkit for exactly solving large linear systems over the rationals. The solver interfaces directly with Mathematica, is straightforward to install, and seamlessly replaces Mathematica's native solvers. In testing, FiniteFieldSolve is approximately two orders of magnitude faster than Mathematica and uses an order of magnitude less memory. The package also compares favorably against other public solvers in FiniteFieldSolve's intended use cases. As the name of the package suggests, solutions are obtained via well-known finite field methods. These methods suffer from introducing an inordinate number of modulo (or integer division) operations with respect to different primes. By automatically recompiling itself for each prime, FiniteFieldSolve converts the division operations into much faster combinations of instructions, dramatically improving performance. The technique of compiling the prime can be applied to any finite field solver, where the time savings will be solver dependent. The operation of the package is illustrated through a detailed example of an amplitude bootstrap. 1 authors · Nov 2, 2023
- Nuclear Structure with Discrete Non-Orthogonal Shell-Model : new frontiers We present developments and applications for the diagonalization of shell-model hamiltonians in a discrete non-orthogonal basis (DNO-SM). The method, and its actual numerical implementation CARINA, based on mean-field and beyond-mean field techniques has already been applied in previous studies and is focused on basis states selection optimization. The method is benchmarked against a full set of sd shell exact diagonalizations, and is applied for the first time to the heavy deformed ^{254}No nucleus. 2 authors · Mar 2, 2022
- MATH-Perturb: Benchmarking LLMs' Math Reasoning Abilities against Hard Perturbations Large language models have demonstrated impressive performance on challenging mathematical reasoning tasks, which has triggered the discussion of whether the performance is achieved by true reasoning capability or memorization. To investigate this question, prior work has constructed mathematical benchmarks when questions undergo simple perturbations -- modifications that still preserve the underlying reasoning patterns of the solutions. However, no work has explored hard perturbations, which fundamentally change the nature of the problem so that the original solution steps do not apply. To bridge the gap, we construct MATH-P-Simple and MATH-P-Hard via simple perturbation and hard perturbation, respectively. Each consists of 279 perturbed math problems derived from level-5 (hardest) problems in the MATH dataset (Hendrycksmath et. al., 2021). We observe significant performance drops on MATH-P-Hard across various models, including o1-mini (-16.49%) and gemini-2.0-flash-thinking (-12.9%). We also raise concerns about a novel form of memorization where models blindly apply learned problem-solving skills without assessing their applicability to modified contexts. This issue is amplified when using original problems for in-context learning. We call for research efforts to address this challenge, which is critical for developing more robust and reliable reasoning models. 18 authors · Feb 10
1 Completely Discretized, Finite Quantum Mechanics I propose a version of quantum mechanics featuring a discrete and finite number of states that is plausibly a model of the real world. The model is based on standard unitary quantum theory of a closed system with a finite-dimensional Hilbert space. Given certain simple conditions on the spectrum of the Hamiltonian, Schr\"odinger evolution is periodic, and it is straightforward to replace continuous time with a discrete version, with the result that the system only visits a discrete and finite set of state vectors. The biggest challenges to the viability of such a model come from cosmological considerations. The theory may have implications for questions of mathematical realism and finitism. 1 authors · Jul 21, 2023
- Non-trivial saddles in microscopic description of black holes Non-trivial gravitational saddles have played a key role in the island proposal for the black hole information paradox. It is worth asking if non-trivial saddles exist in microscopic descriptions of black holes. We show this to be the case for 1/8 BPS black holes in N = 8 String Theory in a duality frame, where all charges are Ramond Ramond. The saddles are in the Coulomb branch, where they describe marginally stable bound states of the constituent branes, and correspond to vacua of the BFSS model. The non-perturbative suppression scale is determined by the binding energy. 2 authors · Dec 7, 2023
- Mean-field underdamped Langevin dynamics and its spacetime discretization We propose a new method called the N-particle underdamped Langevin algorithm for optimizing a special class of non-linear functionals defined over the space of probability measures. Examples of problems with this formulation include training mean-field neural networks, maximum mean discrepancy minimization and kernel Stein discrepancy minimization. Our algorithm is based on a novel spacetime discretization of the mean-field underdamped Langevin dynamics, for which we provide a new, fast mixing guarantee. In addition, we demonstrate that our algorithm converges globally in total variation distance, bridging the theoretical gap between the dynamics and its practical implementation. 2 authors · Dec 26, 2023
- Conformal Bootstrap with Reinforcement Learning We introduce the use of reinforcement-learning (RL) techniques to the conformal-bootstrap programme. We demonstrate that suitable soft Actor-Critic RL algorithms can perform efficient, relatively cheap high-dimensional searches in the space of scaling dimensions and OPE-squared coefficients that produce sensible results for tens of CFT data from a single crossing equation. In this paper we test this approach in well-known 2D CFTs, with particular focus on the Ising and tri-critical Ising models and the free compactified boson CFT. We present results of as high as 36-dimensional searches, whose sole input is the expected number of operators per spin in a truncation of the conformal-block decomposition of the crossing equations. Our study of 2D CFTs uses only the global so(2,2) part of the conformal algebra, and our methods are equally applicable to higher-dimensional CFTs. When combined with other, already available, numerical and analytical methods, we expect our approach to yield an exciting new window into the non-perturbative structure of arbitrary (unitary or non-unitary) CFTs. 3 authors · Aug 20, 2021
- BPS and near-BPS black holes in AdS_5 and their spectrum in N=4 SYM We study quantum corrections in the gravitational path integral around nearly 1/16-BPS black holes in asymptotically AdS_5 times S^5 space, dual to heavy states in 4D N=4 super Yang-Mills. The analysis provides a gravitational explanation of why 1/16-BPS black holes exhibit an exact degeneracy at large N and why all such states have the same charges, confirming the belief that the superconformal index precisely counts the entropy of extremal black holes. We show the presence of a gap of order N^{-2} between the 1/16-BPS black holes and the lightest near-BPS black holes within the same charge sector. This is the first example of such a gap for black holes states within the context of AdS_5 holography. We also derive the spectrum of near-BPS states that lie above this gap. Our computation relies on finding the correct version of the N=2 super-Schwarzian theory which captures the breaking of the SU(1, 1|1) symmetry when the black hole has finite temperature and non-zero chemical potential. Finally, we comment on possible stringy and non-perturbative corrections that can affect the black hole spectrum. 4 authors · Mar 2, 2022
- e^+ e^- to μ^+ μ^- in the Asymptotically Safe Standard Model We study the electron-positron to muon--anti-muon cross-section in the asymptotically safe Standard Model. In particular, we include the graviton contributions to the scattering amplitude, which is computed from momentum-dependent time-like one-particle-irreducible correlation functions. Specifically, we employ reconstruction techniques for the graviton spectral functions. We find that the full asymptotically safe quantum cross section decreases in the ultraviolet with the centre-of-mass energy, and is compatible with unitarity bounds. Importantly, our findings provide non-trivial evidence for the unitarity of the asymptotically safe Standard Model. 4 authors · Dec 18, 2024
- Nonintrusive approximation of parametrized limits of matrix power algorithms -- application to matrix inverses and log-determinants We consider in this work quantities that can be obtained as limits of powers of parametrized matrices, for instance the inverse matrix or the logarithm of the determinant. Under the assumption of affine dependence in the parameters, we use the Empirical Interpolation Method (EIM) to derive an approximation for powers of these matrices, from which we derive a nonintrusive approximation for the aforementioned limits. We derive upper bounds of the error made by the obtained formula. Finally, numerical comparisons with classical intrusive and nonintrusive approximation techniques are provided: in the considered test-cases, our algorithm performs well compared to the nonintrusive ones. 4 authors · Oct 6, 2017
- Efficient Implementation of Gaussian Process Regression Accelerated Saddle Point Searches with Application to Molecular Reactions The task of locating first order saddle points on high-dimensional surfaces describing the variation of energy as a function of atomic coordinates is an essential step for identifying the mechanism and estimating the rate of thermally activated events within the harmonic approximation of transition state theory. When combined directly with electronic structure calculations, the number of energy and atomic force evaluations needed for convergence is a primary issue. Here, we describe an efficient implementation of Gaussian process regression (GPR) acceleration of the minimum mode following method where a dimer is used to estimate the lowest eigenmode of the Hessian. A surrogate energy surface is constructed and updated after each electronic structure calculation. The method is applied to a test set of 500 molecular reactions previously generated by Hermez and coworkers [J. Chem. Theory Comput. 18, 6974 (2022)]. An order of magnitude reduction in the number of electronic structure calculations needed to reach the saddle point configurations is obtained by using the GPR compared to the dimer method. Despite the wide range in stiffness of the molecular degrees of freedom, the calculations are carried out using Cartesian coordinates and are found to require similar number of electronic structure calculations as an elaborate internal coordinate method implemented in the Sella software package. The present implementation of the GPR surrogate model in C++ is efficient enough for the wall time of the saddle point searches to be reduced in 3 out of 4 cases even though the calculations are carried out at a low Hartree-Fock level. 5 authors · May 18
- Trace formulae for Schrodinger operators on metric graphs with applications to recovering matching conditions The paper is a continuation of the study started in Yorzh1. Schrodinger operators on finite compact metric graphs are considered under the assumption that the matching conditions at the graph vertices are of delta type. Either an infinite series of trace formulae (provided that edge potentials are infinitely smooth) or a finite number of such formulae (in the cases of L_1 and C^M edge potentials) are obtained which link together two different quantum graphs under the assumption that their spectra coincide. Applications are given to the problem of recovering matching conditions for a quantum graph based on its spectrum. 2 authors · Mar 29, 2014
- Driving Enhanced Exciton Transfer by Automatic Differentiation We model and study the processes of excitation, absorption, and transfer in various networks. The model consists of a harmonic oscillator representing a single-mode radiation field, a qubit acting as an antenna, a network through which the excitation propagates, and a qubit at the end serving as a sink. We investigate how off-resonant excitations can be optimally absorbed and transmitted through the network. Three strategies are considered: optimising network energies, adjusting the couplings between the radiation field, the antenna, and the network, or introducing and optimising driving fields at the start and end of the network. These strategies are tested on three different types of network with increasing complexity: nearest-neighbour and star configurations, and one associated with the Fenna-Matthews-Olson complex. The results show that, among the various strategies, the introduction of driving fields is the most effective, leading to a significant increase in the probability of reaching the sink in a given time. This result remains stable across networks of varying dimensionalities and types, and the driving process requires only a few parameters to be effective. 6 authors · Nov 26, 2024
- Holographic Thermodynamics at Finite Baryon Density: Some Exact Results We use the AdS/CFT correspondence to study the thermodynamics of massive N=2 supersymmetric hypermultiplets coupled to N=4 supersymmetric SU(Nc) Yang-Mills theory in the limits of large Nc and large 't Hooft coupling. In particular, we study the theory at finite baryon number density. At zero temperature, we present an exact expression for the hypermultiplets' leading-order contribution to the free energy, and in the supergravity description we clarify which D-brane configuration is appropriate for any given value of the chemical potential. We find a second-order phase transition when the chemical potential equals the mass. At finite temperature, we present an exact expression for the hypermultiplets' leading-order contribution to the free energy at zero mass. 2 authors · Sep 5, 2007
- Quantum Monte Carlo simulations in the restricted Hilbert space of Rydberg atom arrays Rydberg atom arrays have emerged as a powerful platform to simulate a number of exotic quantum ground states and phase transitions. To verify these capabilities numerically, we develop a versatile quantum Monte Carlo sampling technique which operates in the reduced Hilbert space generated by enforcing the constraint of a Rydberg blockade. We use the framework of stochastic series expansion and show that in the restricted space, the configuration space of operator strings can be understood as a hard rod gas in d+1 dimensions. We use this mapping to develop cluster algorithms which can be visualized as various non-local movements of rods. We study the efficiency of each of our updates individually and collectively. To elucidate the utility of the algorithm, we show that it can efficiently generate the phase diagram of a Rydberg atom array, to temperatures much smaller than all energy scales involved, on a Kagom\'e link lattice. This is of broad interest as the presence of a Z_2 spin liquid has been hypothesized recently. 1 authors · Sep 1, 2023
- Quantum Thermalization via Travelling Waves Isolated quantum many-body systems which thermalize under their own dynamics are expected to act as their own thermal baths, thereby bringing their local subsystems to thermal equilibrium. Here we show that the infinite-dimensional limit of a quantum lattice model, as described by Dynamical Mean-Field theory (DMFT), provides a natural framework to understand this self-consistent thermalization process. Using the Fermi-Hubbard model as working example, we demonstrate that the emergence of a self-consistent bath thermalising the system is characterized by a sharp thermalization front, moving balistically and separating the initial condition from the long-time thermal fixed point. We characterize the full DMFT dynamics through an effective temperature for which we derive a travelling-wave equation of the Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) type. This equation allows to predict the asymptotic shape of the front and its velocity, which match perfectly the full DMFT numerics. Our results provide a new angle to understand the onset of quantum thermalisation in closed isolated systems. 3 authors · May 30, 2024
- Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation The theory of open quantum systems lays the foundations for a substantial part of modern research in quantum science and engineering. Rooted in the dimensionality of their extended Hilbert spaces, the high computational complexity of simulating open quantum systems calls for the development of strategies to approximate their dynamics. In this paper, we present an approach for tackling open quantum system dynamics. Using an exact probabilistic formulation of quantum physics based on positive operator-valued measure (POVM), we compactly represent quantum states with autoregressive transformer neural networks; such networks bring significant algorithmic flexibility due to efficient exact sampling and tractable density. We further introduce the concept of String States to partially restore the symmetry of the autoregressive transformer neural network and improve the description of local correlations. Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator using a forward-backward trapezoid method and find the steady state via a variational formulation. Our approach is benchmarked on prototypical one and two-dimensional systems, finding results which closely track the exact solution and achieve higher accuracy than alternative approaches based on using Markov chain Monte Carlo to sample restricted Boltzmann machines. Our work provides general methods for understanding quantum dynamics in various contexts, as well as techniques for solving high-dimensional probabilistic differential equations in classical setups. 4 authors · Sep 11, 2020
- rd-spiral: An open-source Python library for learning 2D reaction-diffusion dynamics through pseudo-spectral method We introduce rd-spiral, an open-source Python library for simulating 2D reaction-diffusion systems using pseudo-spectral methods. The framework combines FFT-based spatial discretization with adaptive Dormand-Prince time integration, achieving exponential convergence while maintaining pedagogical clarity. We analyze three dynamical regimes: stable spirals, spatiotemporal chaos, and pattern decay, revealing extreme non-Gaussian statistics (kurtosis >96) in stable states. Information-theoretic metrics show 10.7% reduction in activator-inhibitor coupling during turbulence versus 6.5% in stable regimes. The solver handles stiffness ratios >6:1 with features including automated equilibrium classification and checkpointing. Effect sizes (delta=0.37--0.78) distinguish regimes, with asymmetric field sensitivities to perturbations. By balancing computational rigor with educational transparency, rd-spiral bridges theoretical and practical nonlinear dynamics. 3 authors · Jun 25
- Solving High Frequency and Multi-Scale PDEs with Gaussian Processes Machine learning based solvers have garnered much attention in physical simulation and scientific computing, with a prominent example, physics-informed neural networks (PINNs). However, PINNs often struggle to solve high-frequency and multi-scale PDEs, which can be due to spectral bias during neural network training. To address this problem, we resort to the Gaussian process (GP) framework. To flexibly capture the dominant frequencies, we model the power spectrum of the PDE solution with a student t mixture or Gaussian mixture. We apply the inverse Fourier transform to obtain the covariance function (by Wiener-Khinchin theorem). The covariance derived from the Gaussian mixture spectrum corresponds to the known spectral mixture kernel. Next, we estimate the mixture weights in the log domain, which we show is equivalent to placing a Jeffreys prior. It automatically induces sparsity, prunes excessive frequencies, and adjusts the remaining toward the ground truth. Third, to enable efficient and scalable computation on massive collocation points, which are critical to capture high frequencies, we place the collocation points on a grid, and multiply our covariance function at each input dimension. We use the GP conditional mean to predict the solution and its derivatives so as to fit the boundary condition and the equation itself. As a result, we can derive a Kronecker product structure in the covariance matrix. We use Kronecker product properties and multilinear algebra to promote computational efficiency and scalability, without low-rank approximations. We show the advantage of our method in systematic experiments. The code is released at https://github.com/xuangu-fang/Gaussian-Process-Slover-for-High-Freq-PDE. 6 authors · Nov 8, 2023
- Solving High-Dimensional PDEs with Latent Spectral Models Deep models have achieved impressive progress in solving partial differential equations (PDEs). A burgeoning paradigm is learning neural operators to approximate the input-output mappings of PDEs. While previous deep models have explored the multiscale architectures and various operator designs, they are limited to learning the operators as a whole in the coordinate space. In real physical science problems, PDEs are complex coupled equations with numerical solvers relying on discretization into high-dimensional coordinate space, which cannot be precisely approximated by a single operator nor efficiently learned due to the curse of dimensionality. We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs. Going beyond the coordinate space, LSM enables an attention-based hierarchical projection network to reduce the high-dimensional data into a compact latent space in linear time. Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space that approximates complex input-output mappings via learning multiple basis operators, enjoying nice theoretical guarantees for convergence and approximation. Experimentally, LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks covering both solid and fluid physics. Code is available at https://github.com/thuml/Latent-Spectral-Models. 5 authors · Jan 29, 2023
- The probabilistic world Physics is based on probabilities as fundamental entities of a mathematical description. Expectation values of observables are computed according to the classical statistical rule. The overall probability distribution for one world covers all times. The quantum formalism arises once one focuses on the evolution of the time-local probabilistic information. Wave functions or the density matrix allow the formulation of a general linear evolution law for classical statistics. The quantum formalism for classical statistics is a powerful tool which allows us to implement for generalized Ising models the momentum observable with the associated Fourier representation. The association of operators to observables permits the computation of expectation values in terms of the density matrix by the usual quantum rule. We show that probabilistic cellular automata are quantum systems in a formulation with discrete time steps and real wave functions. With a complex structure the evolution operator for automata can be expressed in terms of a Hamiltonian involving fermionic creation and annihilation operators. The time-local probabilistic information amounts to a subsystem of the overall probabilistic system which is correlated with its environment consisting of the past and future. Such subsystems typically involve probabilistic observables for which only a probability distribution for their possible measurement values is available. Incomplete statistics does not permit to compute classical correlation functions for arbitrary subsystem-observables. Bell's inequalities are not generally applicable. 1 authors · Nov 4, 2020
- Eigenvalues restricted by Lyapunov exponent of eigenstates We point out that the Lyapunov exponent of the eigenstate places restrictions on the eigenvalue. Consequently, with regard to non-Hermitian systems, even without any symmetry, the non-conservative Hamiltonians can exhibit real spectra as long as Lyapunov exponents of eigenstates inhibit imaginary parts of eigenvalues. Our findings open up a new route to study non-Hermitian physics. 2 authors · Jun 20, 2022
- Automatic Perturbation Analysis for Scalable Certified Robustness and Beyond Linear relaxation based perturbation analysis (LiRPA) for neural networks, which computes provable linear bounds of output neurons given a certain amount of input perturbation, has become a core component in robustness verification and certified defense. The majority of LiRPA-based methods focus on simple feed-forward networks and need particular manual derivations and implementations when extended to other architectures. In this paper, we develop an automatic framework to enable perturbation analysis on any neural network structures, by generalizing existing LiRPA algorithms such as CROWN to operate on general computational graphs. The flexibility, differentiability and ease of use of our framework allow us to obtain state-of-the-art results on LiRPA based certified defense on fairly complicated networks like DenseNet, ResNeXt and Transformer that are not supported by prior works. Our framework also enables loss fusion, a technique that significantly reduces the computational complexity of LiRPA for certified defense. For the first time, we demonstrate LiRPA based certified defense on Tiny ImageNet and Downscaled ImageNet where previous approaches cannot scale to due to the relatively large number of classes. Our work also yields an open-source library for the community to apply LiRPA to areas beyond certified defense without much LiRPA expertise, e.g., we create a neural network with a probably flat optimization landscape by applying LiRPA to network parameters. Our opensource library is available at https://github.com/KaidiXu/auto_LiRPA. 9 authors · Feb 28, 2020
- Dynamical Cosmological Constant The dynamical realisation of the equation of state p +rho =0 is studied. A non-pathological dynamics for the perturbations of such a system mimicking a dynamical cosmological constant (DCC) requires to go beyond the perfect fluid paradigm. It is shown that an anisotropic stress must be always present. The Hamiltonian of the system in isolation resembles the one of a Pais-Uhlenbeck oscillator and linear stability requires that it cannot be positive definite. The dynamics of linear cosmological perturbations in a DCC dominated Universe is studied in detail showing that when DCC is minimally coupled to gravity no dramatic instability is present. In contrast to what happens in a cosmological constant dominated Universe, the non-relativistic matter contrast is no longer constant and exhibits an oscillator behaviour at small scales while it grows weakly at large scales. In the gravitational waves sector, at small scales, the amplitude is still suppressed as the inverse power of the scale factor while it grows logarithmically at large scales. Also the vector modes propagate, though no growing mode is found. 2 authors · Mar 5
- High-order finite element method for atomic structure calculations We introduce featom, an open source code that implements a high-order finite element solver for the radial Schr\"odinger, Dirac, and Kohn-Sham equations. The formulation accommodates various mesh types, such as uniform or exponential, and the convergence can be systematically controlled by increasing the number and/or polynomial order of the finite element basis functions. The Dirac equation is solved using a squared Hamiltonian approach to eliminate spurious states. To address the slow convergence of the kappa=pm1 states due to divergent derivatives at the origin, we incorporate known asymptotic forms into the solutions. We achieve a high level of accuracy (10^{-8} Hartree) for total energies and eigenvalues of heavy atoms such as uranium in both Schr\"odinger and Dirac Kohn-Sham solutions. We provide detailed convergence studies and computational parameters required to attain commonly required accuracies. Finally, we compare our results with known analytic results as well as the results of other methods. In particular, we calculate benchmark results for atomic numbers (Z) from 1 to 92, verifying current benchmarks. We demonstrate significant speedup compared to the state-of-the-art shooting solver dftatom. An efficient, modular Fortran 2008 implementation, is provided under an open source, permissive license, including examples and tests, wherein particular emphasis is placed on the independence (no global variables), reusability, and generality of the individual routines. 8 authors · Jul 11, 2023
- More on the Weak Gravity Conjecture via Convexity of Charged Operators The Weak Gravity Conjecture has recently been re-formulated in terms of a particle with non-negative self-binding energy. Because of the dual conformal field theory (CFT) formulation in the anti-de Sitter space the conformal dimension Delta (Q) of the lowest-dimension operator with charge Q under some global U(1) symmetry must be a convex function of Q. This property has been conjectured to hold for any (unitary) conformal field theory and generalized to larger global symmetry groups. Here we refine and further test the convex charge conjecture via semiclassical computations for fixed charge sectors of different theories in different dimensions. We analyze the convexity properties of the leading and next-to-leading order terms stemming from the semiclassical computation, de facto, extending previous tests beyond the leading perturbative contributions and to arbitrary charges. In particular, the leading contribution is sufficient to test convexity in the semiclassical computations. We also consider intriguing cases in which the models feature a transition from real to complex conformal dimensions either as a function of the charge or number of matter fields. As a relevant example of the first kind, we investigate the O(N) model in 4+epsilon dimensions. As an example of the second type we consider the U(N)times U(M) model in 4-epsilon dimensions. Both models display a rich dynamics where, by changing the number of matter fields and/or charge, one can achieve dramatically different physical regimes. We discover that whenever a complex conformal dimension appears, the real part satisfies the convexity property. 5 authors · Sep 10, 2021
- On the asymptotic density of states in solvable models of strings We present a closed formula for the asymptotic density of states for a class of solvable superstring models on curved backgrounds. The result accounts for the effects of the curvature of the target space in a concise way. 1 authors · Jun 12, 2024
- Physics-Informed Neural Networks for One-Dimensional Quantum Well Problems We implement physics-informed neural networks (PINNs) to solve the time-independent Schr\"odinger equation for three canonical one-dimensional quantum potentials: an infinite square well, a finite square well, and a finite barrier. The PINN models incorporate trial wavefunctions that exactly satisfy boundary conditions (Dirichlet zeros at domain boundaries), and they optimize a loss functional combining the PDE residual with a normalization constraint. For the infinite well, the ground-state energy is known (E = pi^2 in dimensionless units) and held fixed in training, whereas for the finite well and barrier, the eigenenergy is treated as a trainable parameter. We use fully-connected neural networks with smooth activation functions to represent the wavefunction and demonstrate that PINNs can learn the ground-state eigenfunctions and eigenvalues for these quantum systems. The results show that the PINN-predicted wavefunctions closely match analytical solutions or expected behaviors, and the learned eigenenergies converge to known values. We present training logs and convergence of the energy parameter, as well as figures comparing the PINN solutions to exact results. The discussion addresses the performance of PINNs relative to traditional numerical methods, highlighting challenges such as convergence to the correct eigenvalue, sensitivity to initialization, and the difficulty of modeling discontinuous potentials. We also discuss the importance of the normalization term to resolve the scaling ambiguity of the wavefunction. Finally, we conclude that PINNs are a viable approach for quantum eigenvalue problems, and we outline future directions including extensions to higher-dimensional and time-dependent Schr\"odinger equations. 1 authors · Apr 7
- Robustifying State-space Models for Long Sequences via Approximate Diagonalization State-space models (SSMs) have recently emerged as a framework for learning long-range sequence tasks. An example is the structured state-space sequence (S4) layer, which uses the diagonal-plus-low-rank structure of the HiPPO initialization framework. However, the complicated structure of the S4 layer poses challenges; and, in an effort to address these challenges, models such as S4D and S5 have considered a purely diagonal structure. This choice simplifies the implementation, improves computational efficiency, and allows channel communication. However, diagonalizing the HiPPO framework is itself an ill-posed problem. In this paper, we propose a general solution for this and related ill-posed diagonalization problems in machine learning. We introduce a generic, backward-stable "perturb-then-diagonalize" (PTD) methodology, which is based on the pseudospectral theory of non-normal operators, and which may be interpreted as the approximate diagonalization of the non-normal matrices defining SSMs. Based on this, we introduce the S4-PTD and S5-PTD models. Through theoretical analysis of the transfer functions of different initialization schemes, we demonstrate that the S4-PTD/S5-PTD initialization strongly converges to the HiPPO framework, while the S4D/S5 initialization only achieves weak convergences. As a result, our new models show resilience to Fourier-mode noise-perturbed inputs, a crucial property not achieved by the S4D/S5 models. In addition to improved robustness, our S5-PTD model averages 87.6% accuracy on the Long-Range Arena benchmark, demonstrating that the PTD methodology helps to improve the accuracy of deep learning models. 5 authors · Oct 2, 2023
- QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules Supervised machine learning approaches have been increasingly used in accelerating electronic structure prediction as surrogates of first-principle computational methods, such as density functional theory (DFT). While numerous quantum chemistry datasets focus on chemical properties and atomic forces, the ability to achieve accurate and efficient prediction of the Hamiltonian matrix is highly desired, as it is the most important and fundamental physical quantity that determines the quantum states of physical systems and chemical properties. In this work, we generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 999 or 2998 molecular dynamics trajectories and 130,831 stable molecular geometries, based on the QM9 dataset. By designing benchmark tasks with various molecules, we show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules. Both the QH9 dataset and the baseline models are provided to the community through an open-source benchmark, which can be highly valuable for developing machine learning methods and accelerating molecular and materials design for scientific and technological applications. Our benchmark is publicly available at https://github.com/divelab/AIRS/tree/main/OpenDFT/QHBench. 7 authors · Jun 15, 2023
- Spectral properties of bottomonium at high temperature: a systematic investigation We investigate spectral features of bottomonium at high temperature, in particular the thermal mass shift and width of ground state S-wave and P-wave state. We employ and compare a range of methods for determining these features from lattice NRQCD correlators, including direct correlator analyses (multi-exponential fits and moments of spectral functions), linear methods (Backus-Gilbert, Tikhonov and HLT methods), and Bayesian methods for spectral function reconstruction (MEM and BR). We comment on the reliability and limitations of the various methods. 14 authors · Mar 21
- Limits and Powers of Koopman Learning Dynamical systems provide a comprehensive way to study complex and changing behaviors across various sciences. Many modern systems are too complicated to analyze directly or we do not have access to models, driving significant interest in learning methods. Koopman operators have emerged as a dominant approach because they allow the study of nonlinear dynamics using linear techniques by solving an infinite-dimensional spectral problem. However, current algorithms face challenges such as lack of convergence, hindering practical progress. This paper addresses a fundamental open question: When can we robustly learn the spectral properties of Koopman operators from trajectory data of dynamical systems, and when can we not? Understanding these boundaries is crucial for analysis, applications, and designing algorithms. We establish a foundational approach that combines computational analysis and ergodic theory, revealing the first fundamental barriers -- universal for any algorithm -- associated with system geometry and complexity, regardless of data quality and quantity. For instance, we demonstrate well-behaved smooth dynamical systems on tori where non-trivial eigenfunctions of the Koopman operator cannot be determined by any sequence of (even randomized) algorithms, even with unlimited training data. Additionally, we identify when learning is possible and introduce optimal algorithms with verification that overcome issues in standard methods. These results pave the way for a sharp classification theory of data-driven dynamical systems based on how many limits are needed to solve a problem. These limits characterize all previous methods, presenting a unified view. Our framework systematically determines when and how Koopman spectral properties can be learned. 3 authors · Jul 8, 2024
- The Open Catalyst 2020 (OC20) Dataset and Community Challenges Catalyst discovery and optimization is key to solving many societal and energy challenges including solar fuels synthesis, long-term energy storage, and renewable fertilizer production. Despite considerable effort by the catalysis community to apply machine learning models to the computational catalyst discovery process, it remains an open challenge to build models that can generalize across both elemental compositions of surfaces and adsorbate identity/configurations, perhaps because datasets have been smaller in catalysis than related fields. To address this we developed the OC20 dataset, consisting of 1,281,040 Density Functional Theory (DFT) relaxations (~264,890,000 single point evaluations) across a wide swath of materials, surfaces, and adsorbates (nitrogen, carbon, and oxygen chemistries). We supplemented this dataset with randomly perturbed structures, short timescale molecular dynamics, and electronic structure analyses. The dataset comprises three central tasks indicative of day-to-day catalyst modeling and comes with pre-defined train/validation/test splits to facilitate direct comparisons with future model development efforts. We applied three state-of-the-art graph neural network models (CGCNN, SchNet, Dimenet++) to each of these tasks as baseline demonstrations for the community to build on. In almost every task, no upper limit on model size was identified, suggesting that even larger models are likely to improve on initial results. The dataset and baseline models are both provided as open resources, as well as a public leader board to encourage community contributions to solve these important tasks. 17 authors · Oct 19, 2020
- Quasinormal modes and absorption cross-section of a Bardeen black hole surrounded by perfect fluid dark matter in four dimensions In this paper we study quasinormal modes and absorption cross sections for the (1+3)-dimensional Bardeen black hole surrounded by perfect fluid dark matter. Studies of the massless scalar field is already done in Sun:2023slzl. Hence, in this paper we will focus on the massive scalar field perturbations and massless Dirac field perturbations. To compute the quasinormal modes we use the semi-analytical 3rd-order WKB method, which has been shown to be one of the best approaches when the effective potential is adequate and when n < ell and n < lambda. We have also utilized the P\"oschl-Teller method to compare the valus obtained using the WKB approach. We have computed quasinormal frequencies by varying various parameters of the theory such as the mass of the scalar field mu, dark matter parameter alpha and the magnetic charge g. We have summarized our solutions in tables and figures for clarity. As for the absorption cross section, we used third order WKB approach to compute reflection, transmission coefficients and partial absorption cross sections. Graphs are presented to demonstrate the behavior of the above quantities when the dark matter parameter and mass of the massive scalar field are varied. 4 authors · Apr 7
3 Exact Coset Sampling for Quantum Lattice Algorithms We give a simple, fully correct, and assumption-light replacement for the contested "domain-extension" in Step 9 of a recent windowed-QFT lattice algorithm with complex-Gaussian windows~chen2024quantum. The published Step~9 suffers from a periodicity/support mismatch. We present a pair-shift difference construction that coherently cancels all unknown offsets, produces an exact uniform CRT-coset state over Z_{P}, and then uses the QFT to enforce the intended modular linear relation. The unitary is reversible, uses poly(log M_2) gates, and preserves the algorithm's asymptotics. Project Page: https://github.com/yifanzhang-pro/quantum-lattice. 1 authors · Sep 15 2
- Radiating Love: adiabatic tidal fluxes and modes up to next-to-next-to-leading post-Newtonian order We present the analytic evaluation of the gravitational energy and of the angular momentum flux with tidal effects for inspiraling compact binaries, at next-to-next-to-leading post-Newtoian (2PN) order, within the effective field theory diagrammatic approach. We first compute the stress-energy tensor for a binary system, that requires the evaluation of two-point Feynman integrals, up to two loops. Then, we extract the multipole moments of the system, which we present for generic orbits in center-of-mass coordinates, and which are needed for the evaluation of the total gravitational energy and the angular momentum flux, for generic orbits. Finally, we provide the expression of gauge invariant quantities such as the fluxes, and the mode amplitudes and phase of the emitted gravitational wave, for circular orbits. Our findings are useful to update earlier theoretical studies as well as related phenomenological analyses, and waveform models 4 authors · Dec 2, 2024
- Generalizing Neural Wave Functions Recent neural network-based wave functions have achieved state-of-the-art accuracies in modeling ab-initio ground-state potential energy surface. However, these networks can only solve different spatial arrangements of the same set of atoms. To overcome this limitation, we present Graph-learned orbital embeddings (Globe), a neural network-based reparametrization method that can adapt neural wave functions to different molecules. Globe learns representations of local electronic structures that generalize across molecules via spatial message passing by connecting molecular orbitals to covalent bonds. Further, we propose a size-consistent wave function Ansatz, the Molecular orbital network (Moon), tailored to jointly solve Schr\"odinger equations of different molecules. In our experiments, we find Moon converging in 4.5 times fewer steps to similar accuracy as previous methods or to lower energies given the same time. Further, our analysis shows that Moon's energy estimate scales additively with increased system sizes, unlike previous work where we observe divergence. In both computational chemistry and machine learning, we are the first to demonstrate that a single wave function can solve the Schr\"odinger equation of molecules with different atoms jointly. 2 authors · Feb 8, 2023
- Path-Integral Approach to Quantum Acoustics A path-integral approach to quantum acoustics is developed here. In contrast to the commonly utilized particle perspective, this emerging field brings forth a long neglected but essential wave paradigm for lattice vibrations. Within the coherent state picture, we formulate a non-Markovian, stochastic master equation that captures the exact dynamics of any system with coupling linear in the bath coordinates and nonlinear in the system coordinates. We further demonstrate the capability of the presented master equation by applying the corresponding procedure to the eminent Fr\"ohlich model. In general, we establish a solid foundation for quantum acoustics as a kindred framework to quantum optics, while paving the way for deeper first-principle explorations of non-perturbative system dynamics driven by lattice vibrations. 4 authors · May 1
- Predicting Many Properties of a Quantum System from Very Few Measurements Predicting properties of complex, large-scale quantum systems is essential for developing quantum technologies. We present an efficient method for constructing an approximate classical description of a quantum state using very few measurements of the state. This description, called a classical shadow, can be used to predict many different properties: order log M measurements suffice to accurately predict M different functions of the state with high success probability. The number of measurements is independent of the system size, and saturates information-theoretic lower bounds. Moreover, target properties to predict can be selected after the measurements are completed. We support our theoretical findings with extensive numerical experiments. We apply classical shadows to predict quantum fidelities, entanglement entropies, two-point correlation functions, expectation values of local observables, and the energy variance of many-body local Hamiltonians. The numerical results highlight the advantages of classical shadows relative to previously known methods. 3 authors · Feb 18, 2020
- Specializations of partial differential equations for Feynman integrals Starting from the Mellin-Barnes integral representation of a Feynman integral depending on set of kinematic variables z_i, we derive a system of partial differential equations w.r.t.\ new variables x_j, which parameterize the differentiable constraints z_i=y_i(x_j). In our algorithm, the powers of propagators can be considered as arbitrary parameters. Our algorithm can also be used for the reduction of multiple hypergeometric sums to sums of lower dimension, finding special values and reduction equations of hypergeometric functions in a singular locus of continuous variables, or finding systems of partial differential equations for master integrals with arbitrary powers of propagators. As an illustration, we produce a differential equation of fourth order in one variable for the one-loop two-point Feynman diagram with two different masses and arbitrary propagator powers. 3 authors · Jul 18, 2022
- Holographic quantum criticality from multi-trace deformations We explore the consequences of multi-trace deformations in applications of gauge-gravity duality to condensed matter physics. We find that they introduce a powerful new "knob" that can implement spontaneous symmetry breaking, and can be used to construct a new type of holographic superconductor. This knob can be tuned to drive the critical temperature to zero, leading to a new quantum critical point. We calculate nontrivial critical exponents, and show that fluctuations of the order parameter are `locally' quantum critical in the disordered phase. Most notably the dynamical critical exponent is determined by the dimension of an operator at the critical point. We argue that the results are robust against quantum corrections and discuss various generalizations. 3 authors · Aug 9, 2010
- An efficient Asymptotic-Preserving scheme for the Boltzmann mixture with disparate mass In this paper, we develop and implement an efficient asymptotic-preserving (AP) scheme to solve the gas mixture of Boltzmann equations under the disparate mass scaling relevant to the so-called "epochal relaxation" phenomenon. The disparity in molecular masses, ranging across several orders of magnitude, leads to significant challenges in both the evaluation of collision operators and the designing of time-stepping schemes to capture the multi-scale nature of the dynamics. A direct implementation of the spectral method faces prohibitive computational costs as the mass ratio increases due to the need to resolve vastly different thermal velocities. Unlike [I. M. Gamba, S. Jin, and L. Liu, Commun. Math. Sci., 17 (2019), pp. 1257-1289], we propose an alternative approach based on proper truncation of asymptotic expansions of the collision operators, which significantly reduces the computational complexity and works well for small varepsilon. By incorporating the separation of three time scales in the model's relaxation process [P. Degond and B. Lucquin-Desreux, Math. Models Methods Appl. Sci., 6 (1996), pp. 405-436], we design an AP scheme that captures the specific dynamics of the disparate mass model while maintaining computational efficiency. Numerical experiments demonstrate the effectiveness of the proposed scheme in handling large mass ratios of heavy and light species, as well as capturing the epochal relaxation phenomenon. 3 authors · Nov 20, 2024
1 Grad DFT: a software library for machine learning enhanced density functional theory Density functional theory (DFT) stands as a cornerstone method in computational quantum chemistry and materials science due to its remarkable versatility and scalability. Yet, it suffers from limitations in accuracy, particularly when dealing with strongly correlated systems. To address these shortcomings, recent work has begun to explore how machine learning can expand the capabilities of DFT; an endeavor with many open questions and technical challenges. In this work, we present Grad DFT: a fully differentiable JAX-based DFT library, enabling quick prototyping and experimentation with machine learning-enhanced exchange-correlation energy functionals. Grad DFT employs a pioneering parametrization of exchange-correlation functionals constructed using a weighted sum of energy densities, where the weights are determined using neural networks. Moreover, Grad DFT encompasses a comprehensive suite of auxiliary functions, notably featuring a just-in-time compilable and fully differentiable self-consistent iterative procedure. To support training and benchmarking efforts, we additionally compile a curated dataset of experimental dissociation energies of dimers, half of which contain transition metal atoms characterized by strong electronic correlations. The software library is tested against experimental results to study the generalization capabilities of a neural functional across potential energy surfaces and atomic species, as well as the effect of training data noise on the resulting model accuracy. 5 authors · Sep 22, 2023
- Incomplete RG: Hawking-Page transition, C-theorem and relevant scalar deformations of global AdS We discuss relevant scalar deformations of a holographic theory with a compact boundary. An example of such a theory would be the global AdS_4 with its spatially compact boundary S^2. To introduce a relevant deformation, we choose to turn on a time-independent and spatially homogeneous non-normalizable scalar operator with m^2 = -2. The finite size of a compact boundary cuts down the RG flow at a finite length scale leading to an incomplete RG flow to IR. We discuss a version of {\it incomplete} C-theorem and an {\it incomplete} attractor like mechanism. We discuss the implication of our results for entanglement entropy and geometric quantities like scalar curvature, volume and mass scale of fundamental excitation of the how these quantities increase or decrease (often monotonically) with the strength of the deformation. Thermal physics of a holographic theory defined on a compact boundary is more interesting than its non-compact counterpart. It is well known that with a compact boundary, there is a possibility of a first order Hawking-Page transition dual to a de-confinement phase transition. From a gravity perspective, a relevant deformation dumps negative energy inside the bulk, increasing the effective cosmological constant (Lambda) of the AdS. Dumping more negative energy in the bulk would make the HP transition harder and the corresponding HP transition temperature would increase. However, we have found the size of the BH at the transition temperature decreases. 3 authors · Dec 14, 2021
- Transition-Based Constrained DFT for the Robust and Reliable Treatment of Excitations in Supramolecular Systems Despite the variety of available computational approaches, state-of-the-art methods for calculating excitation energies such as time-dependent density functional theory (TDDFT), are computationally demanding and thus limited to moderate system sizes. Here, we introduce a new variation of constrained DFT (CDFT), wherein the constraint corresponds to a particular transition (T), or combination of transitions, between occupied and virtual orbitals, rather than a region of the simulation space as in traditional CDFT. We compare T-CDFT with TDDFT and DeltaSCF results for the low lying excited states (S_{1} and T_{1}) of a set of gas phase acene molecules and OLED emitters, as well as with reference results from the literature. At the PBE level of theory, T-CDFT outperforms DeltaSCF for both classes of molecules, while also proving to be more robust. For the local excitations seen in the acenes, T-CDFT and TDDFT perform equally well. For the charge-transfer (CT)-like excitations seen in the OLED molecules, T-CDFT also performs well, in contrast to the severe energy underestimation seen with TDDFT. In other words, T-CDFT is equally applicable to both local excitations and CT states, providing more reliable excitation energies at a much lower computational cost than TDDFT. T-CDFT is designed for large systems and has been implemented in the linear scaling BigDFT code. It is therefore ideally suited for exploring the effects of explicit environments on excitation energies, paving the way for future simulations of excited states in complex realistic morphologies, such as those which occur in OLED materials. 4 authors · Jun 2, 2021
- Learning Feynman integrals from differential equations with neural networks We present a new approach for evaluating Feynman integrals numerically. We apply the recently-proposed framework of physics-informed deep learning to train neural networks to approximate the solution to the differential equations satisfied by the Feynman integrals. This approach relies neither on a canonical form of the differential equations, which is often a bottleneck for the analytical techniques, nor on the availability of a large dataset, and after training yields essentially instantaneous evaluation times. We provide a proof-of-concept implementation within the PyTorch framework, and apply it to a number of one- and two-loop examples, achieving a mean magnitude of relative difference of around 1% at two loops in the physical phase space with network training times on the order of an hour on a laptop GPU. 3 authors · Dec 4, 2023
1 Light Schrödinger Bridge Despite the recent advances in the field of computational Schr\"odinger Bridges (SB), most existing SB solvers are still heavy-weighted and require complex optimization of several neural networks. It turns out that there is no principal solver which plays the role of simple-yet-effective baseline for SB just like, e.g., k-means method in clustering, logistic regression in classification or Sinkhorn algorithm in discrete optimal transport. We address this issue and propose a novel fast and simple SB solver. Our development is a smart combination of two ideas which recently appeared in the field: (a) parameterization of the Schr\"odinger potentials with sum-exp quadratic functions and (b) viewing the log-Schr\"odinger potentials as the energy functions. We show that combined together these ideas yield a lightweight, simulation-free and theoretically justified SB solver with a simple straightforward optimization objective. As a result, it allows solving SB in moderate dimensions in a matter of minutes on CPU without a painful hyperparameter selection. Our light solver resembles the Gaussian mixture model which is widely used for density estimation. Inspired by this similarity, we also prove an important theoretical result showing that our light solver is a universal approximator of SBs. Furthemore, we conduct the analysis of the generalization error of our light solver. The code for our solver can be found at https://github.com/ngushchin/LightSB 3 authors · Oct 2, 2023
- Spacetime Neural Network for High Dimensional Quantum Dynamics We develop a spacetime neural network method with second order optimization for solving quantum dynamics from the high dimensional Schr\"{o}dinger equation. In contrast to the standard iterative first order optimization and the time-dependent variational principle, our approach utilizes the implicit mid-point method and generates the solution for all spatial and temporal values simultaneously after optimization. We demonstrate the method in the Schr\"{o}dinger equation with a self-normalized autoregressive spacetime neural network construction. Future explorations for solving different high dimensional differential equations are discussed. 6 authors · Aug 4, 2021
- Linear statistics for Coulomb gases: higher order cumulants We consider N classical particles interacting via the Coulomb potential in spatial dimension d and in the presence of an external trap, at equilibrium at inverse temperature beta. In the large N limit, the particles are confined within a droplet of finite size. We study smooth linear statistics, i.e. the fluctuations of sums of the form {cal L}_N = sum_{i=1}^N f({bf x}_i), where {bf x}_i's are the positions of the particles and where f({bf x}_i) is a sufficiently regular function. There exists at present standard results for the first and second moments of {cal L}_N in the large N limit, as well as associated Central Limit Theorems in general dimension and for a wide class of confining potentials. Here we obtain explicit expressions for the higher order cumulants of {cal L}_N at large N, when the function f({bf x})=f(|{bf x}|) and the confining potential are both rotationnally invariant. A remarkable feature of our results is that these higher cumulants depend only on the value of f'(|{bf x}|) and its higher order derivatives evaluated exactly at the boundary of the droplet, which in this case is a d-dimensional sphere. In the particular two-dimensional case d=2 at the special value beta=2, a connection to the Ginibre ensemble allows us to derive these results in an alternative way using the tools of determinantal point processes. Finally we also obtain the large deviation form of the full probability distribution function of {cal L}_N. 4 authors · Oct 25, 2023
- 6D (2,0) Bootstrap with soft-Actor-Critic We study numerically the 6D (2,0) superconformal bootstrap using the soft-Actor-Critic (SAC) algorithm as a stochastic optimizer. We focus on the four-point functions of scalar superconformal primaries in the energy-momentum multiplet. Starting from the supergravity limit, we perform searches for adiabatically varied central charges and derive two curves for a collection of 80 CFT data (70 of these data correspond to unprotected long multiplets and 10 to protected short multiplets). We conjecture that the two curves capture the A- and D-series (2,0) theories. Our results are competitive when compared to the existing bounds coming from standard numerical bootstrap methods, and data obtained using the OPE inversion formula. With this paper we are also releasing our Python implementation of the SAC algorithm, BootSTOP. The paper discusses the main functionality features of this package. 4 authors · Sep 6, 2022
- Probing Off-diagonal Eigenstate Thermalization with Tensor Networks Energy filter methods in combination with quantum simulation can efficiently access the properties of quantum many-body systems at finite energy densities [Lu et al. PRX Quantum 2, 020321 (2021)]. Classically simulating this algorithm with tensor networks can be used to investigate the microcanonical properties of large spin chains, as recently shown in [Yang et al. Phys. Rev. B 106, 024307 (2022)]. Here we extend this strategy to explore the properties of off-diagonal matrix elements of observables in the energy eigenbasis, fundamentally connected to the thermalization behavior and the eigenstate thermalization hypothesis. We test the method on integrable and non-integrable spin chains of up to 60 sites, much larger than accessible with exact diagonalization. Our results allow us to explore the scaling of the off-diagonal functions with the size and energy difference, and to establish quantitative differences between integrable and non-integrable cases. 4 authors · Dec 1, 2023
- Light Scalar Fields Foster Production of Primordial Black Holes Scalar fields are ubiquitous in theories of high-energy physics. In the context of cosmic inflation, this suggests the existence of spectator fields, which provide a subdominant source of energy density. We show that spectator fields boost the inflationary production of primordial black holes, with single-field ultra-slow roll evolution supplanted by a phase of evolution along the spectator direction, and primordial perturbations amplified by the resulting multifield dynamics. This generic mechanism is largely free from the severe fine-tuning that afflicts single-field inflationary PBH models. 6 authors · Apr 17
- Solving physics-based initial value problems with unsupervised machine learning Initial value problems -- a system of ordinary differential equations and corresponding initial conditions -- can be used to describe many physical phenomena including those arise in classical mechanics. We have developed a novel approach to solve physics-based initial value problems using unsupervised machine learning. We propose a deep learning framework that models the dynamics of a variety of mechanical systems through neural networks. Our framework is flexible, allowing us to solve non-linear, coupled, and chaotic dynamical systems. We demonstrate the effectiveness of our approach on systems including a free particle, a particle in a gravitational field, a classical pendulum, and the H\'enon--Heiles system (a pair of coupled harmonic oscillators with a non-linear perturbation, used in celestial mechanics). Our results show that deep neural networks can successfully approximate solutions to these problems, producing trajectories which conserve physical properties such as energy and those with stationary action. We note that probabilistic activation functions, as defined in this paper, are required to learn any solutions of initial value problems in their strictest sense, and we introduce coupled neural networks to learn solutions of coupled systems. 3 authors · Jul 25, 2024
- Metallic AdS/CFT We use the AdS/CFT correspondence to compute the conductivity of massive N=2 hypermultiplet fields at finite baryon number density in an N=4 SU(N_c) super-Yang-Mills theory plasma in the large N_c, large 't Hooft coupling limit. The finite baryon density provides charge carriers analogous to electrons in a metal. An external electric field then induces a finite current which we determine directly. Our result for the conductivity is good for all values of the mass, external field and density, modulo statements about the yet-incomplete phase diagram. In the appropriate limits it agrees with known results obtained from analyzing small fluctuations around equilibrium. For large mass, where we expect a good quasi-particle description, we compute the drag force on the charge carriers and find that the answer is unchanged from the zero density case. Our method easily generalizes to a wide class of systems of probe branes in various backgrounds. 2 authors · May 25, 2007
- Schrödinger-Poisson systems with a general critical nonlinearity We consider a Schr\"odinger-Poisson system involving a general nonlinearity at critical growth and we prove the existence of positive solutions. The Ambrosetti-Rabinowitz condition is not required. We also study the asymptotics of solutions with respect to a parameter. 3 authors · Jan 6, 2015
- The Virtual Quantum Optics Laboratory We present a web-based software tool, the Virtual Quantum Optics Laboratory (VQOL), that may be used for designing and executing realistic simulations of quantum optics experiments. A graphical user interface allows one to rapidly build and configure a variety of different optical experiments, while the runtime environment provides unique capabilities for visualization and analysis. All standard linear optical components are available as well as sources of thermal, coherent, and entangled Gaussian states. A unique aspect of VQOL is the introduction of non-Gaussian measurements using detectors modeled as deterministic devices that "click" when the amplitude of the light falls above a given threshold. We describe the underlying theoretical models and provide several illustrative examples. We find that VQOL provides a a faithful representation of many experimental quantum optics phenomena and may serve as both a useful instructional tool for students as well as a valuable research tool for practitioners. 5 authors · May 15, 2021
2 Adaptive Pruning for Increased Robustness and Reduced Computational Overhead in Gaussian Process Accelerated Saddle Point Searches Gaussian process (GP) regression provides a strategy for accelerating saddle point searches on high-dimensional energy surfaces by reducing the number of times the energy and its derivatives with respect to atomic coordinates need to be evaluated. The computational overhead in the hyperparameter optimization can, however, be large and make the approach inefficient. Failures can also occur if the search ventures too far into regions that are not represented well enough by the GP model. Here, these challenges are resolved by using geometry-aware optimal transport measures and an active pruning strategy using a summation over Wasserstein-1 distances for each atom-type in farthest-point sampling, selecting a fixed-size subset of geometrically diverse configurations to avoid rapidly increasing cost of GP updates as more observations are made. Stability is enhanced by permutation-invariant metric that provides a reliable trust radius for early-stopping and a logarithmic barrier penalty for the growth of the signal variance. These physically motivated algorithmic changes prove their efficacy by reducing to less than a half the mean computational time on a set of 238 challenging configurations from a previously published data set of chemical reactions. With these improvements, the GP approach is established as, a robust and scalable algorithm for accelerating saddle point searches when the evaluation of the energy and atomic forces requires significant computational effort. 2 authors · Oct 7 2
- Solving Conformal Field Theories with Artificial Intelligence In this paper we deploy for the first time Reinforcement-Learning algorithms in the context of the conformal-bootstrap programme to obtain numerical solutions of conformal field theories (CFTs). As an illustration, we use a soft Actor-Critic algorithm and find approximate solutions to the truncated crossing equations of two-dimensional CFTs, successfully identifying well-known theories like the 2D Ising model and the 2D CFT of a compactified scalar. Our methods can perform efficient high-dimensional searches that can be used to study arbitrary (unitary or non-unitary) CFTs in any spacetime dimension. 3 authors · Aug 19, 2021
1 Gaussian Process Priors for Systems of Linear Partial Differential Equations with Constant Coefficients Partial differential equations (PDEs) are important tools to model physical systems, and including them into machine learning models is an important way of incorporating physical knowledge. Given any system of linear PDEs with constant coefficients, we propose a family of Gaussian process (GP) priors, which we call EPGP, such that all realizations are exact solutions of this system. We apply the Ehrenpreis-Palamodov fundamental principle, which works like a non-linear Fourier transform, to construct GP kernels mirroring standard spectral methods for GPs. Our approach can infer probable solutions of linear PDE systems from any data such as noisy measurements, or pointwise defined initial and boundary conditions. Constructing EPGP-priors is algorithmic, generally applicable, and comes with a sparse version (S-EPGP) that learns the relevant spectral frequencies and works better for big data sets. We demonstrate our approach on three families of systems of PDE, the heat equation, wave equation, and Maxwell's equations, where we improve upon the state of the art in computation time and precision, in some experiments by several orders of magnitude. 3 authors · Dec 29, 2022
- Classical Glasses, Black Holes, and Strange Quantum Liquids From the dynamics of a broad class of classical mean-field glass models one may obtain a quantum model with finite zero-temperature entropy, a quantum transition at zero temperature, and a time-reparametrization (quasi-)invariance in the dynamical equations for correlations. The low eigenvalue spectrum of the resulting quantum model is directly related to the structure and exploration of metastable states in the landscape of the original classical glass model. This mapping reveals deep connections between classical glasses and the properties of SYK-like models. 4 authors · Jun 21, 2019
- Bootstrap Embedding on a Quantum Computer We extend molecular bootstrap embedding to make it appropriate for implementation on a quantum computer. This enables solution of the electronic structure problem of a large molecule as an optimization problem for a composite Lagrangian governing fragments of the total system, in such a way that fragment solutions can harness the capabilities of quantum computers. By employing state-of-art quantum subroutines including the quantum SWAP test and quantum amplitude amplification, we show how a quadratic speedup can be obtained over the classical algorithm, in principle. Utilization of quantum computation also allows the algorithm to match -- at little additional computational cost -- full density matrices at fragment boundaries, instead of being limited to 1-RDMs. Current quantum computers are small, but quantum bootstrap embedding provides a potentially generalizable strategy for harnessing such small machines through quantum fragment matching. 7 authors · Jan 4, 2023
- Intensity statistics inside an open wave-chaotic cavity with broken time-reversal invariance Using the supersymmetric method of random matrix theory within the Heidelberg approach framework we provide statistical description of stationary intensity sampled in locations inside an open wave-chaotic cavity, assuming that the time-reversal invariance inside the cavity is fully broken. In particular, we show that when incoming waves are fed via a finite number M of open channels the probability density {cal P}(I) for the single-point intensity I decays as a power law for large intensities: {cal P}(I)sim I^{-(M+2)}, provided there is no internal losses. This behaviour is in marked difference with the Rayleigh law {cal P}(I)sim exp(-I/I) which turns out to be valid only in the limit Mto infty. We also find the joint probability density of intensities I_1, ldots, I_L in L>1 observation points, and then extract the corresponding statistics for the maximal intensity in the observation pattern. For Lto infty the resulting limiting extreme value statistics (EVS) turns out to be different from the classical EVS distributions. 2 authors · May 21, 2023
1 Applications of Machine Learning to Lattice Quantum Field Theory There is great potential to apply machine learning in the area of numerical lattice quantum field theory, but full exploitation of that potential will require new strategies. In this white paper for the Snowmass community planning process, we discuss the unique requirements of machine learning for lattice quantum field theory research and outline what is needed to enable exploration and deployment of this approach in the future. 11 authors · Feb 10, 2022
- Old Quantum Mechanics by Bohr and Sommerfeld from a Modern Perspective We review Bohr's atomic model and its extension by Sommerfeld from a mathematical perspective of wave mechanics. The derivation of quantization rules and energy levels is revisited using semiclassical methods. Sommerfeld-type integrals are evaluated by elementary techniques, and connections with the Schr\"{o}dinger and Dirac equations are established. Historical developments and key transitions from classical to quantum theory are discussed to clarify the structure and significance of the old quantum mechanics. 2 authors · May 31
- Modeling Temperature, Frequency, and Strain Effects on the Linear Electro-Optic Coefficients of Ferroelectric Oxides An electro-optic modulator offers the function of modulating the propagation of light in a material with electric field and enables seamless connection between electronics-based computing and photonics-based communication. The search for materials with large electro-optic coefficients and low optical loss is critical to increase the efficiency and minimize the size of electro-optic devices. We present a semi-empirical method to compute the electro-optic coefficients of ferroelectric materials by combining first-principles density-functional theory calculations with Landau-Devonshire phenomenological modeling. We apply the method to study the electro-optic constants, also called Pockels coefficients, of three paradigmatic ferroelectric oxides: BaTiO3, LiNbO3, and LiTaO3. We present their temperature-, frequency- and strain-dependent electro-optic tensors calculated using our method. The predicted electro-optic constants agree with the experimental results, where available, and provide benchmarks for experimental verification. 5 authors · Jun 5, 2021
- Improving thermal state preparation of Sachdev-Ye-Kitaev model with reinforcement learning on quantum hardware The Sachdev-Ye-Kitaev (SYK) model, known for its strong quantum correlations and chaotic behavior, serves as a key platform for quantum gravity studies. However, variationally preparing thermal states on near-term quantum processors for large systems (N>12, where N is the number of Majorana fermions) presents a significant challenge due to the rapid growth in the complexity of parameterized quantum circuits. This paper addresses this challenge by integrating reinforcement learning (RL) with convolutional neural networks, employing an iterative approach to optimize the quantum circuit and its parameters. The refinement process is guided by a composite reward signal derived from entropy and the expectation values of the SYK Hamiltonian. This approach reduces the number of CNOT gates by two orders of magnitude for systems Ngeq12 compared to traditional methods like first-order Trotterization. We demonstrate the effectiveness of the RL framework in both noiseless and noisy quantum hardware environments, maintaining high accuracy in thermal state preparation. This work advances a scalable, RL-based framework with applications for quantum gravity studies and out-of-time-ordered thermal correlators computation in quantum many-body systems on near-term quantum hardware. The code is available at https://github.com/Aqasch/solving_SYK_model_with_RL. 1 authors · Jan 20
- Interference in Fuzzy Dark Matter Filaments: Idealised Models and Statistics Fuzzy (wave) dark matter (FDM), the dynamical model underlying an ultralight bosonic dark matter species, produces a rich set of non-gravitational signatures that distinguishes it markedly from the phenomenologically related warm (particle) dark matter (WDM) scenario. The emergence of extended interference fringes hosted by cosmic filaments is one such phenomenon reported by cosmological simulations, and a detailed understanding of such may strengthen existing limits on the boson mass but also break the degeneracy with WDM, and provide a unique fingerprint of interference in cosmology. In this paper, we provide initial steps towards this goal. In particular, we show in a bottom-up approach, how the presence of interference in an idealised filament population can lead to a non-suppressive feature in the matter power spectrum -- an observation supported by fully-cosmological FDM simulations. To this end, we build on a theoretically motivated and numerically observed steady-state approximation for filaments and express the equilibrium dynamics of such in an expansion of FDM eigenstates. We optimise the size of the expansion by incorporating classical phase-space information. Ellipsoidal collapse considerations are used to construct a fuzzy filament mass function which, together with the reconstructed FDM wave function, allow us to efficiently compute the one-filament power spectrum. We showcase our non-perturbative interference model for a selection of boson masses and confirm our approach is able to produce the matter power boost observed in fully-cosmological FDM simulations. More precisely, we find an excess in correlation between the spatial scale associated with the FDM ground state and the quantum pressure scale. We speculate about applications of this effect in data analysis. 5 authors · Dec 14, 2024
- Graviton stimulated emission in squeezed vacuum states We study the dynamics of gravitons in a squeezed vacuum state in a thermal radiation background. Unlike traditional treatments that rely on the Boltzmann equation, we employ the Heisenberg equation and average it over general quantum states. In contrast to the usual Boltzmann-based descriptions, our approach captures the subtleties arising from quantum coherence in different number eigenstates, which is essential for soft graviton modes in the squeezed vacuum state. Our new method successfully reproduces the previous one-loop results within the in-in formalism when the expansion parameter is small and deviates significantly as the parameter increases, indicating that our results extend beyond the one-loop in-in formalism. We examine the implications of graviton emission effects stimulated by quantum coherence in both flat and expanding backgrounds. In the flat background, it is found that backreaction of radiation on the spacetime dynamics is crucial for significant stimulated emission. In the expanding background, to avoid the subtleties associated with superhorizon modes, we investigate the effect of emission within the horizon immediately after reheating and find a significant effect. We examined the IR graviton evolution from a symmetry perspective and propose a regularization prescription to eliminate the secular growth problem. 2 authors · Apr 8
- Aharonov-Bohm effects on the GUP framework Modifying the fundamental commutation relation of quantum mechanics to reflect the influence of gravity is an important approach to reconcile the contradiction between quantum field theory and general relativity. In the past two decades, researchers have conducted extensive research on geometric phase problems in non-commutative spaces, but few have mentioned the correction of geometric phase problems using the Generalized Uncertainty Principle (GUP). This paper is the first to study the phase correction of Aharonov-Bohm (AB) effect by GUP. 1 authors · Oct 12, 2024