1 A Dataset for Exploring Stellar Activity in Astrometric Measurements from SDO Images of the Sun We present a dataset for investigating the impact of stellar activity on astrometric measurements using NASA's Solar Dynamics Observatory (SDO) images of the Sun. The sensitivity of astrometry for detecting exoplanets is limited by stellar activity (e.g. starspots), which causes the measured "center of flux" of the star to deviate from the true, geometric, center, producing false positive detections. We analyze Helioseismic and Magnetic Imager continuum image data obtained from SDO between July 2015 and December 2022 to examine this "astrometric jitter" phenomenon for the Sun. We employ data processing procedures to clean the images and compute the time series of the sunspot-induced shift between the center of flux and the geometric center. The resulting time series show quasiperiodic variations up to 0.05% of the Sun's radius at its rotation period. 3 authors · Oct 18, 2023
- Strongly-Interacting Bosons in a Two-Dimensional Quasicrystal Lattice Quasicrystals exhibit exotic properties inherited from the self-similarity of their long-range ordered, yet aperiodic, structure. The recent realization of optical quasicrystal lattices paves the way to the study of correlated Bose fluids in such structures, but the regime of strong interactions remains largely unexplored, both theoretically and experimentally. Here, we determine the quantum phase diagram of two-dimensional correlated bosons in an eightfold quasicrystal potential. Using large-scale quantum Monte Carlo calculations, we demonstrate a superfluid-to-Bose glass transition and determine the critical line. Moreover, we show that strong interactions stabilize Mott insulator phases, some of which have spontaneously broken eightfold symmetry. Our results are directly relevant to current generation experiments and, in particular, drive prospects to the observation of the still elusive Bose glass phase in two dimensions and exotic Mott phases. 3 authors · Oct 15, 2020
- On the higher-order smallest ring star network of Chialvo neurons under diffusive couplings We put forward the dynamical study of a novel higher-order small network of Chialvo neurons arranged in a ring-star topology, with the neurons interacting via linear diffusive couplings. This model is perceived to imitate the nonlinear dynamical properties exhibited by a realistic nervous system where the neurons transfer information through higher-order multi-body interactions. We first analyze our model using the tools from nonlinear dynamics literature: fixed point analysis, Jacobian matrix, and bifurcation patterns. We observe the coexistence of chaotic attractors, and also an intriguing route to chaos starting from a fixed point, to period-doubling, to cyclic quasiperiodic closed invariant curves, to ultimately chaos. We numerically observe the existence of codimension-1 bifurcation patterns: saddle-node, period-doubling, and Neimark Sacker. We also qualitatively study the typical phase portraits of the system and numerically quantify chaos and complexity using the 0-1 test and sample entropy measure respectively. Finally, we study the collective behavior of the neurons in terms of two synchronization measures: the cross-correlation coefficient, and the Kuramoto order parameter. 4 authors · May 9, 2024
- Multiwavelength Variability Analysis of the Blazar PKS 0727-11: A sim168 Days Quasi-periodic Oscillation in Gamma-ray We performed variability analysis of the multiwavelength light curves for the flat-spectrum radio quasar PKS 0727-11. Using the generalized Lomb-Scargle periodogram, we identified a possible quasi-periodic oscillation (QPO) of sim 168.6 days (persisted for 6 cycles, with a significance of 3.8sigma) in the gamma-ray light curve during the flare period (MJD 54687-55738). It is the first time that periodic variations have been detected in this source, and further supported by other methods: weighted wavelet z-transform, phase dispersion minimization, REDFIT, autoregressive integrated moving average model, and structure function analysis. Cross-correlation analysis shows that there is a strong correlation between multi-band light variations, indicating that gamma-ray and radio flares may originate from the same disturbance, and the distance between the emission regions of gamma-ray and radio flares is calculated based on the time lag. We demonstrate that QPO arising from the non-ballistic helical jet motion driven by the orbital motion in a supermassive binary black hole is a plausible physical explanation. In this scenario, the estimated mass of the primary black hole is Msim3.66times10^8-5.79times10^{9}M_odot. 5 authors · Feb 22
- M dwarfs quasi-periodic pulsations at a time resolution of 1 s Quasi-periodic pulsations (QPPs) of Sun and stars are challenging for stellar flare models. The white light stellar QPPs in the periodicity region of tens of second are unexplored yet. On the basis of observations with the 6-m telescope BTA in U-band of flaring dM-stars EV Lac, Wolf 359, Wolf 424, V577 Mon and UV Ceti we found 13 new QPPs. This composes 30% occurrence among 44 worked flares. These QPPs were found to have periods ranging from 6 to 107 seconds and were detected using both Fourier transform and empirical mode decomposition methods. The observed QPPs were categorized by the evolution of their oscillation envelope and fractional flux amplitudes. There are shown the statistically significant correlations of the QPP period with the duration, the equivalent duration and the amplitude of a flare, and the correlation between the QPP amplitude and flare amplitude. 4 authors · Dec 10, 2024
- Conditional Generation of Periodic Signals with Fourier-Based Decoder Periodic signals play an important role in daily lives. Although conventional sequential models have shown remarkable success in various fields, they still come short in modeling periodicity; they either collapse, diverge or ignore details. In this paper, we introduce a novel framework inspired by Fourier series to generate periodic signals. We first decompose the given signals into multiple sines and cosines and then conditionally generate periodic signals with the output components. We have shown our model efficacy on three tasks: reconstruction, imputation and conditional generation. Our model outperforms baselines in all tasks and shows more stable and refined results. 4 authors · Oct 24, 2021