1 Learning to Synthesize a 4D RGBD Light Field from a Single Image We present a machine learning algorithm that takes as input a 2D RGB image and synthesizes a 4D RGBD light field (color and depth of the scene in each ray direction). For training, we introduce the largest public light field dataset, consisting of over 3300 plenoptic camera light fields of scenes containing flowers and plants. Our synthesis pipeline consists of a convolutional neural network (CNN) that estimates scene geometry, a stage that renders a Lambertian light field using that geometry, and a second CNN that predicts occluded rays and non-Lambertian effects. Our algorithm builds on recent view synthesis methods, but is unique in predicting RGBD for each light field ray and improving unsupervised single image depth estimation by enforcing consistency of ray depths that should intersect the same scene point. Please see our supplementary video at https://youtu.be/yLCvWoQLnms 5 authors · Aug 10, 2017
1 Ray Denoising: Depth-aware Hard Negative Sampling for Multi-view 3D Object Detection Multi-view 3D object detection systems often struggle with generating precise predictions due to the challenges in estimating depth from images, increasing redundant and incorrect detections. Our paper presents Ray Denoising, an innovative method that enhances detection accuracy by strategically sampling along camera rays to construct hard negative examples. These examples, visually challenging to differentiate from true positives, compel the model to learn depth-aware features, thereby improving its capacity to distinguish between true and false positives. Ray Denoising is designed as a plug-and-play module, compatible with any DETR-style multi-view 3D detectors, and it only minimally increases training computational costs without affecting inference speed. Our comprehensive experiments, including detailed ablation studies, consistently demonstrate that Ray Denoising outperforms strong baselines across multiple datasets. It achieves a 1.9\% improvement in mean Average Precision (mAP) over the state-of-the-art StreamPETR method on the NuScenes dataset. It shows significant performance gains on the Argoverse 2 dataset, highlighting its generalization capability. The code will be available at https://github.com/LiewFeng/RayDN. 8 authors · Feb 5, 2024
- Depth-supervised NeRF: Fewer Views and Faster Training for Free A commonly observed failure mode of Neural Radiance Field (NeRF) is fitting incorrect geometries when given an insufficient number of input views. One potential reason is that standard volumetric rendering does not enforce the constraint that most of a scene's geometry consist of empty space and opaque surfaces. We formalize the above assumption through DS-NeRF (Depth-supervised Neural Radiance Fields), a loss for learning radiance fields that takes advantage of readily-available depth supervision. We leverage the fact that current NeRF pipelines require images with known camera poses that are typically estimated by running structure-from-motion (SFM). Crucially, SFM also produces sparse 3D points that can be used as "free" depth supervision during training: we add a loss to encourage the distribution of a ray's terminating depth matches a given 3D keypoint, incorporating depth uncertainty. DS-NeRF can render better images given fewer training views while training 2-3x faster. Further, we show that our loss is compatible with other recently proposed NeRF methods, demonstrating that depth is a cheap and easily digestible supervisory signal. And finally, we find that DS-NeRF can support other types of depth supervision such as scanned depth sensors and RGB-D reconstruction outputs. 4 authors · Jul 6, 2021
- LaRI: Layered Ray Intersections for Single-view 3D Geometric Reasoning We present layered ray intersections (LaRI), a new method for unseen geometry reasoning from a single image. Unlike conventional depth estimation that is limited to the visible surface, LaRI models multiple surfaces intersected by the camera rays using layered point maps. Benefiting from the compact and layered representation, LaRI enables complete, efficient, and view-aligned geometric reasoning to unify object- and scene-level tasks. We further propose to predict the ray stopping index, which identifies valid intersecting pixels and layers from LaRI's output. We build a complete training data generation pipeline for synthetic and real-world data, including 3D objects and scenes, with necessary data cleaning steps and coordination between rendering engines. As a generic method, LaRI's performance is validated in two scenarios: It yields comparable object-level results to the recent large generative model using 4% of its training data and 17% of its parameters. Meanwhile, it achieves scene-level occluded geometry reasoning in only one feed-forward. 5 authors · Apr 25
- Defurnishing with X-Ray Vision: Joint Removal of Furniture from Panoramas and Mesh We present a pipeline for generating defurnished replicas of indoor spaces represented as textured meshes and corresponding multi-view panoramic images. To achieve this, we first segment and remove furniture from the mesh representation, extend planes, and fill holes, obtaining a simplified defurnished mesh (SDM). This SDM acts as an ``X-ray'' of the scene's underlying structure, guiding the defurnishing process. We extract Canny edges from depth and normal images rendered from the SDM. We then use these as a guide to remove the furniture from panorama images via ControlNet inpainting. This control signal ensures the availability of global geometric information that may be hidden from a particular panoramic view by the furniture being removed. The inpainted panoramas are used to texture the mesh. We show that our approach produces higher quality assets than methods that rely on neural radiance fields, which tend to produce blurry low-resolution images, or RGB-D inpainting, which is highly susceptible to hallucinations. 10 authors · Jun 5
- RayFronts: Open-Set Semantic Ray Frontiers for Online Scene Understanding and Exploration Open-set semantic mapping is crucial for open-world robots. Current mapping approaches either are limited by the depth range or only map beyond-range entities in constrained settings, where overall they fail to combine within-range and beyond-range observations. Furthermore, these methods make a trade-off between fine-grained semantics and efficiency. We introduce RayFronts, a unified representation that enables both dense and beyond-range efficient semantic mapping. RayFronts encodes task-agnostic open-set semantics to both in-range voxels and beyond-range rays encoded at map boundaries, empowering the robot to reduce search volumes significantly and make informed decisions both within & beyond sensory range, while running at 8.84 Hz on an Orin AGX. Benchmarking the within-range semantics shows that RayFronts's fine-grained image encoding provides 1.34x zero-shot 3D semantic segmentation performance while improving throughput by 16.5x. Traditionally, online mapping performance is entangled with other system components, complicating evaluation. We propose a planner-agnostic evaluation framework that captures the utility for online beyond-range search and exploration, and show RayFronts reduces search volume 2.2x more efficiently than the closest online baselines. 9 authors · Apr 9
- Geometry-Guided Ray Augmentation for Neural Surface Reconstruction with Sparse Views In this paper, we propose a novel method for 3D scene and object reconstruction from sparse multi-view images. Different from previous methods that leverage extra information such as depth or generalizable features across scenes, our approach leverages the scene properties embedded in the multi-view inputs to create precise pseudo-labels for optimization without any prior training. Specifically, we introduce a geometry-guided approach that improves surface reconstruction accuracy from sparse views by leveraging spherical harmonics to predict the novel radiance while holistically considering all color observations for a point in the scene. Also, our pipeline exploits proxy geometry and correctly handles the occlusion in generating the pseudo-labels of radiance, which previous image-warping methods fail to avoid. Our method, dubbed Ray Augmentation (RayAug), achieves superior results on DTU and Blender datasets without requiring prior training, demonstrating its effectiveness in addressing the problem of sparse view reconstruction. Our pipeline is flexible and can be integrated into other implicit neural reconstruction methods for sparse views. 4 authors · Oct 9, 2023
1 RayDF: Neural Ray-surface Distance Fields with Multi-view Consistency In this paper, we study the problem of continuous 3D shape representations. The majority of existing successful methods are coordinate-based implicit neural representations. However, they are inefficient to render novel views or recover explicit surface points. A few works start to formulate 3D shapes as ray-based neural functions, but the learned structures are inferior due to the lack of multi-view geometry consistency. To tackle these challenges, we propose a new framework called RayDF. It consists of three major components: 1) the simple ray-surface distance field, 2) the novel dual-ray visibility classifier, and 3) a multi-view consistency optimization module to drive the learned ray-surface distances to be multi-view geometry consistent. We extensively evaluate our method on three public datasets, demonstrating remarkable performance in 3D surface point reconstruction on both synthetic and challenging real-world 3D scenes, clearly surpassing existing coordinate-based and ray-based baselines. Most notably, our method achieves a 1000x faster speed than coordinate-based methods to render an 800x800 depth image, showing the superiority of our method for 3D shape representation. Our code and data are available at https://github.com/vLAR-group/RayDF 2 authors · Oct 30, 2023
- 3D Gaussian Ray Tracing: Fast Tracing of Particle Scenes Particle-based representations of radiance fields such as 3D Gaussian Splatting have found great success for reconstructing and re-rendering of complex scenes. Most existing methods render particles via rasterization, projecting them to screen space tiles for processing in a sorted order. This work instead considers ray tracing the particles, building a bounding volume hierarchy and casting a ray for each pixel using high-performance GPU ray tracing hardware. To efficiently handle large numbers of semi-transparent particles, we describe a specialized rendering algorithm which encapsulates particles with bounding meshes to leverage fast ray-triangle intersections, and shades batches of intersections in depth-order. The benefits of ray tracing are well-known in computer graphics: processing incoherent rays for secondary lighting effects such as shadows and reflections, rendering from highly-distorted cameras common in robotics, stochastically sampling rays, and more. With our renderer, this flexibility comes at little cost compared to rasterization. Experiments demonstrate the speed and accuracy of our approach, as well as several applications in computer graphics and vision. We further propose related improvements to the basic Gaussian representation, including a simple use of generalized kernel functions which significantly reduces particle hit counts. 9 authors · Jul 9, 2024 1
- VolRecon: Volume Rendering of Signed Ray Distance Functions for Generalizable Multi-View Reconstruction The success of the Neural Radiance Fields (NeRF) in novel view synthesis has inspired researchers to propose neural implicit scene reconstruction. However, most existing neural implicit reconstruction methods optimize per-scene parameters and therefore lack generalizability to new scenes. We introduce VolRecon, a novel generalizable implicit reconstruction method with Signed Ray Distance Function (SRDF). To reconstruct the scene with fine details and little noise, VolRecon combines projection features aggregated from multi-view features, and volume features interpolated from a coarse global feature volume. Using a ray transformer, we compute SRDF values of sampled points on a ray and then render color and depth. On DTU dataset, VolRecon outperforms SparseNeuS by about 30% in sparse view reconstruction and achieves comparable accuracy as MVSNet in full view reconstruction. Furthermore, our approach exhibits good generalization performance on the large-scale ETH3D benchmark. 5 authors · Dec 15, 2022
- RTMV: A Ray-Traced Multi-View Synthetic Dataset for Novel View Synthesis We present a large-scale synthetic dataset for novel view synthesis consisting of ~300k images rendered from nearly 2000 complex scenes using high-quality ray tracing at high resolution (1600 x 1600 pixels). The dataset is orders of magnitude larger than existing synthetic datasets for novel view synthesis, thus providing a large unified benchmark for both training and evaluation. Using 4 distinct sources of high-quality 3D meshes, the scenes of our dataset exhibit challenging variations in camera views, lighting, shape, materials, and textures. Because our dataset is too large for existing methods to process, we propose Sparse Voxel Light Field (SVLF), an efficient voxel-based light field approach for novel view synthesis that achieves comparable performance to NeRF on synthetic data, while being an order of magnitude faster to train and two orders of magnitude faster to render. SVLF achieves this speed by relying on a sparse voxel octree, careful voxel sampling (requiring only a handful of queries per ray), and reduced network structure; as well as ground truth depth maps at training time. Our dataset is generated by NViSII, a Python-based ray tracing renderer, which is designed to be simple for non-experts to use and share, flexible and powerful through its use of scripting, and able to create high-quality and physically-based rendered images. Experiments with a subset of our dataset allow us to compare standard methods like NeRF and mip-NeRF for single-scene modeling, and pixelNeRF for category-level modeling, pointing toward the need for future improvements in this area. 12 authors · May 14, 2022
2 Residual Kolmogorov-Arnold Network for Enhanced Deep Learning Despite their immense success, deep convolutional neural networks (CNNs) can be difficult to optimize and costly to train due to hundreds of layers within the network depth. Conventional convolutional operations are fundamentally limited by their linear nature along with fixed activations, where many layers are needed to learn meaningful patterns in data. Because of the sheer size of these networks, this approach is simply computationally inefficient, and poses overfitting or gradient explosion risks, especially in small datasets. As a result, we introduce a "plug-in" module, called Residual Kolmogorov-Arnold Network (RKAN). Our module is highly compact, so it can be easily added into any stage (level) of traditional deep networks, where it learns to integrate supportive polynomial feature transformations to existing convolutional frameworks. RKAN offers consistent improvements over baseline models in different vision tasks and widely tested benchmarks, accomplishing cutting-edge performance on them. 3 authors · Oct 7, 2024
- A Heavy-Metal Scenario of Ultra-High-Energy Cosmic Rays The mass composition of ultra-high-energy cosmic rays is an open problem in astroparticle physics. It is usually inferred from the depth of the shower maximum (Xmax) of cosmic-ray showers, which is only ambiguously determined by modern hadronic interaction models. We examine a data-driven scenario, in which we consider the expectation value of Xmax as a free parameter. We test the novel hypothesis whether the cosmic-ray data from the Pierre Auger Observatory can be interpreted in a consistent picture, under the assumption that the mass composition of cosmic rays at the highest energies is dominated by high metallicity, resulting in pure iron nuclei at energies above ~40 EeV. We investigate the implications on astrophysical observations and hadronic interactions, and we discuss the global consistency of the data assuming this heavy-metal scenario. We conclude that the data from the Pierre Auger Observatory can be interpreted consistently if the expectation values for Xmax from modern hadronic interaction models are shifted to larger values. 5 authors · Apr 16
- FlipNeRF: Flipped Reflection Rays for Few-shot Novel View Synthesis Neural Radiance Field (NeRF) has been a mainstream in novel view synthesis with its remarkable quality of rendered images and simple architecture. Although NeRF has been developed in various directions improving continuously its performance, the necessity of a dense set of multi-view images still exists as a stumbling block to progress for practical application. In this work, we propose FlipNeRF, a novel regularization method for few-shot novel view synthesis by utilizing our proposed flipped reflection rays. The flipped reflection rays are explicitly derived from the input ray directions and estimated normal vectors, and play a role of effective additional training rays while enabling to estimate more accurate surface normals and learn the 3D geometry effectively. Since the surface normal and the scene depth are both derived from the estimated densities along a ray, the accurate surface normal leads to more exact depth estimation, which is a key factor for few-shot novel view synthesis. Furthermore, with our proposed Uncertainty-aware Emptiness Loss and Bottleneck Feature Consistency Loss, FlipNeRF is able to estimate more reliable outputs with reducing floating artifacts effectively across the different scene structures, and enhance the feature-level consistency between the pair of the rays cast toward the photo-consistent pixels without any additional feature extractor, respectively. Our FlipNeRF achieves the SOTA performance on the multiple benchmarks across all the scenarios. 3 authors · Jun 30, 2023
- DGNS: Deformable Gaussian Splatting and Dynamic Neural Surface for Monocular Dynamic 3D Reconstruction Dynamic scene reconstruction from monocular video is critical for real-world applications. This paper tackles the dual challenges of dynamic novel-view synthesis and 3D geometry reconstruction by introducing a hybrid framework: Deformable Gaussian Splatting and Dynamic Neural Surfaces (DGNS), in which both modules can leverage each other for both tasks. During training, depth maps generated by the deformable Gaussian splatting module guide the ray sampling for faster processing and provide depth supervision within the dynamic neural surface module to improve geometry reconstruction. Simultaneously, the dynamic neural surface directs the distribution of Gaussian primitives around the surface, enhancing rendering quality. To further refine depth supervision, we introduce a depth-filtering process on depth maps derived from Gaussian rasterization. Extensive experiments on public datasets demonstrate that DGNS achieves state-of-the-art performance in both novel-view synthesis and 3D reconstruction. 5 authors · Dec 5, 2024
- F$^3$Loc: Fusion and Filtering for Floorplan Localization In this paper we propose an efficient data-driven solution to self-localization within a floorplan. Floorplan data is readily available, long-term persistent and inherently robust to changes in the visual appearance. Our method does not require retraining per map and location or demand a large database of images of the area of interest. We propose a novel probabilistic model consisting of an observation and a novel temporal filtering module. Operating internally with an efficient ray-based representation, the observation module consists of a single and a multiview module to predict horizontal depth from images and fuses their results to benefit from advantages offered by either methodology. Our method operates on conventional consumer hardware and overcomes a common limitation of competing methods that often demand upright images. Our full system meets real-time requirements, while outperforming the state-of-the-art by a significant margin. 4 authors · Mar 5, 2024
1 OutCast: Outdoor Single-image Relighting with Cast Shadows We propose a relighting method for outdoor images. Our method mainly focuses on predicting cast shadows in arbitrary novel lighting directions from a single image while also accounting for shading and global effects such the sun light color and clouds. Previous solutions for this problem rely on reconstructing occluder geometry, e.g. using multi-view stereo, which requires many images of the scene. Instead, in this work we make use of a noisy off-the-shelf single-image depth map estimation as a source of geometry. Whilst this can be a good guide for some lighting effects, the resulting depth map quality is insufficient for directly ray-tracing the shadows. Addressing this, we propose a learned image space ray-marching layer that converts the approximate depth map into a deep 3D representation that is fused into occlusion queries using a learned traversal. Our proposed method achieves, for the first time, state-of-the-art relighting results, with only a single image as input. For supplementary material visit our project page at: https://dgriffiths.uk/outcast. 3 authors · Apr 20, 2022
- Neural Point-based Volumetric Avatar: Surface-guided Neural Points for Efficient and Photorealistic Volumetric Head Avatar Rendering photorealistic and dynamically moving human heads is crucial for ensuring a pleasant and immersive experience in AR/VR and video conferencing applications. However, existing methods often struggle to model challenging facial regions (e.g., mouth interior, eyes, hair/beard), resulting in unrealistic and blurry results. In this paper, we propose {\fullname} ({\name}), a method that adopts the neural point representation as well as the neural volume rendering process and discards the predefined connectivity and hard correspondence imposed by mesh-based approaches. Specifically, the neural points are strategically constrained around the surface of the target expression via a high-resolution UV displacement map, achieving increased modeling capacity and more accurate control. We introduce three technical innovations to improve the rendering and training efficiency: a patch-wise depth-guided (shading point) sampling strategy, a lightweight radiance decoding process, and a Grid-Error-Patch (GEP) ray sampling strategy during training. By design, our {\name} is better equipped to handle topologically changing regions and thin structures while also ensuring accurate expression control when animating avatars. Experiments conducted on three subjects from the Multiface dataset demonstrate the effectiveness of our designs, outperforming previous state-of-the-art methods, especially in handling challenging facial regions. 6 authors · Jul 10, 2023
14 SPARK: Multi-Vision Sensor Perception and Reasoning Benchmark for Large-scale Vision-Language Models Large-scale Vision-Language Models (LVLMs) have significantly advanced with text-aligned vision inputs. They have made remarkable progress in computer vision tasks by aligning text modality with vision inputs. There are also endeavors to incorporate multi-vision sensors beyond RGB, including thermal, depth, and medical X-ray images. However, we observe that current LVLMs view images taken from multi-vision sensors as if they were in the same RGB domain without considering the physical characteristics of multi-vision sensors. They fail to convey the fundamental multi-vision sensor information from the dataset and the corresponding contextual knowledge properly. Consequently, alignment between the information from the actual physical environment and the text is not achieved correctly, making it difficult to answer complex sensor-related questions that consider the physical environment. In this paper, we aim to establish a multi-vision Sensor Perception And Reasoning benchmarK called SPARK that can reduce the fundamental multi-vision sensor information gap between images and multi-vision sensors. We generated 6,248 vision-language test samples automatically to investigate multi-vision sensory perception and multi-vision sensory reasoning on physical sensor knowledge proficiency across different formats, covering different types of sensor-related questions. We utilized these samples to assess ten leading LVLMs. The results showed that most models displayed deficiencies in multi-vision sensory reasoning to varying extents. Codes and data are available at https://github.com/top-yun/SPARK 4 authors · Aug 21, 2024 3
5 Geo4D: Leveraging Video Generators for Geometric 4D Scene Reconstruction We introduce Geo4D, a method to repurpose video diffusion models for monocular 3D reconstruction of dynamic scenes. By leveraging the strong dynamic prior captured by such video models, Geo4D can be trained using only synthetic data while generalizing well to real data in a zero-shot manner. Geo4D predicts several complementary geometric modalities, namely point, depth, and ray maps. It uses a new multi-modal alignment algorithm to align and fuse these modalities, as well as multiple sliding windows, at inference time, thus obtaining robust and accurate 4D reconstruction of long videos. Extensive experiments across multiple benchmarks show that Geo4D significantly surpasses state-of-the-art video depth estimation methods, including recent methods such as MonST3R, which are also designed to handle dynamic scenes. 5 authors · Apr 10 2
20 Are Vision-Language Models Truly Understanding Multi-vision Sensor? Large-scale Vision-Language Models (VLMs) have advanced by aligning vision inputs with text, significantly improving performance in computer vision tasks. Moreover, for VLMs to be effectively utilized in real-world applications, an understanding of diverse multi-vision sensor data, such as thermal, depth, and X-ray information, is essential. However, we find that current VLMs process multi-vision sensor images without deep understanding of sensor information, disregarding each sensor's unique physical properties. This limitation restricts their capacity to interpret and respond to complex questions requiring multi-vision sensor reasoning. To address this, we propose a novel Multi-vision Sensor Perception and Reasoning (MS-PR) benchmark, assessing VLMs on their capacity for sensor-specific reasoning. Moreover, we introduce Diverse Negative Attributes (DNA) optimization to enable VLMs to perform deep reasoning on multi-vision sensor tasks, helping to bridge the core information gap between images and sensor data. Extensive experimental results validate that the proposed DNA method can significantly improve the multi-vision sensor reasoning for VLMs. 6 authors · Dec 30, 2024 2
- MapAnything: Universal Feed-Forward Metric 3D Reconstruction We introduce MapAnything, a unified transformer-based feed-forward model that ingests one or more images along with optional geometric inputs such as camera intrinsics, poses, depth, or partial reconstructions, and then directly regresses the metric 3D scene geometry and cameras. MapAnything leverages a factored representation of multi-view scene geometry, i.e., a collection of depth maps, local ray maps, camera poses, and a metric scale factor that effectively upgrades local reconstructions into a globally consistent metric frame. Standardizing the supervision and training across diverse datasets, along with flexible input augmentation, enables MapAnything to address a broad range of 3D vision tasks in a single feed-forward pass, including uncalibrated structure-from-motion, calibrated multi-view stereo, monocular depth estimation, camera localization, depth completion, and more. We provide extensive experimental analyses and model ablations demonstrating that MapAnything outperforms or matches specialist feed-forward models while offering more efficient joint training behavior, thus paving the way toward a universal 3D reconstruction backbone. 17 authors · Sep 16
- SplatPose: Geometry-Aware 6-DoF Pose Estimation from Single RGB Image via 3D Gaussian Splatting 6-DoF pose estimation is a fundamental task in computer vision with wide-ranging applications in augmented reality and robotics. Existing single RGB-based methods often compromise accuracy due to their reliance on initial pose estimates and susceptibility to rotational ambiguity, while approaches requiring depth sensors or multi-view setups incur significant deployment costs. To address these limitations, we introduce SplatPose, a novel framework that synergizes 3D Gaussian Splatting (3DGS) with a dual-branch neural architecture to achieve high-precision pose estimation using only a single RGB image. Central to our approach is the Dual-Attention Ray Scoring Network (DARS-Net), which innovatively decouples positional and angular alignment through geometry-domain attention mechanisms, explicitly modeling directional dependencies to mitigate rotational ambiguity. Additionally, a coarse-to-fine optimization pipeline progressively refines pose estimates by aligning dense 2D features between query images and 3DGS-synthesized views, effectively correcting feature misalignment and depth errors from sparse ray sampling. Experiments on three benchmark datasets demonstrate that SplatPose achieves state-of-the-art 6-DoF pose estimation accuracy in single RGB settings, rivaling approaches that depend on depth or multi-view images. 6 authors · Mar 7
- ReTR: Modeling Rendering Via Transformer for Generalizable Neural Surface Reconstruction Generalizable neural surface reconstruction techniques have attracted great attention in recent years. However, they encounter limitations of low confidence depth distribution and inaccurate surface reasoning due to the oversimplified volume rendering process employed. In this paper, we present Reconstruction TRansformer (ReTR), a novel framework that leverages the transformer architecture to redesign the rendering process, enabling complex render interaction modeling. It introduces a learnable meta-ray token and utilizes the cross-attention mechanism to simulate the interaction of rendering process with sampled points and render the observed color. Meanwhile, by operating within a high-dimensional feature space rather than the color space, ReTR mitigates sensitivity to projected colors in source views. Such improvements result in accurate surface assessment with high confidence. We demonstrate the effectiveness of our approach on various datasets, showcasing how our method outperforms the current state-of-the-art approaches in terms of reconstruction quality and generalization ability. Our code is available at https://github.com/YixunLiang/ReTR. 3 authors · May 30, 2023
- 3DPPE: 3D Point Positional Encoding for Multi-Camera 3D Object Detection Transformers Transformer-based methods have swept the benchmarks on 2D and 3D detection on images. Because tokenization before the attention mechanism drops the spatial information, positional encoding becomes critical for those methods. Recent works found that encodings based on samples of the 3D viewing rays can significantly improve the quality of multi-camera 3D object detection. We hypothesize that 3D point locations can provide more information than rays. Therefore, we introduce 3D point positional encoding, 3DPPE, to the 3D detection Transformer decoder. Although 3D measurements are not available at the inference time of monocular 3D object detection, 3DPPE uses predicted depth to approximate the real point positions. Our hybriddepth module combines direct and categorical depth to estimate the refined depth of each pixel. Despite the approximation, 3DPPE achieves 46.0 mAP and 51.4 NDS on the competitive nuScenes dataset, significantly outperforming encodings based on ray samples. We make the codes available at https://github.com/drilistbox/3DPPE. 4 authors · Nov 26, 2022
- NDC-Scene: Boost Monocular 3D Semantic Scene Completion in Normalized Device Coordinates Space Monocular 3D Semantic Scene Completion (SSC) has garnered significant attention in recent years due to its potential to predict complex semantics and geometry shapes from a single image, requiring no 3D inputs. In this paper, we identify several critical issues in current state-of-the-art methods, including the Feature Ambiguity of projected 2D features in the ray to the 3D space, the Pose Ambiguity of the 3D convolution, and the Computation Imbalance in the 3D convolution across different depth levels. To address these problems, we devise a novel Normalized Device Coordinates scene completion network (NDC-Scene) that directly extends the 2D feature map to a Normalized Device Coordinates (NDC) space, rather than to the world space directly, through progressive restoration of the dimension of depth with deconvolution operations. Experiment results demonstrate that transferring the majority of computation from the target 3D space to the proposed normalized device coordinates space benefits monocular SSC tasks. Additionally, we design a Depth-Adaptive Dual Decoder to simultaneously upsample and fuse the 2D and 3D feature maps, further improving overall performance. Our extensive experiments confirm that the proposed method consistently outperforms state-of-the-art methods on both outdoor SemanticKITTI and indoor NYUv2 datasets. Our code are available at https://github.com/Jiawei-Yao0812/NDCScene. 7 authors · Sep 25, 2023