Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeContext Matters for Image Descriptions for Accessibility: Challenges for Referenceless Evaluation Metrics
Few images on the Web receive alt-text descriptions that would make them accessible to blind and low vision (BLV) users. Image-based NLG systems have progressed to the point where they can begin to address this persistent societal problem, but these systems will not be fully successful unless we evaluate them on metrics that guide their development correctly. Here, we argue against current referenceless metrics -- those that don't rely on human-generated ground-truth descriptions -- on the grounds that they do not align with the needs of BLV users. The fundamental shortcoming of these metrics is that they do not take context into account, whereas contextual information is highly valued by BLV users. To substantiate these claims, we present a study with BLV participants who rated descriptions along a variety of dimensions. An in-depth analysis reveals that the lack of context-awareness makes current referenceless metrics inadequate for advancing image accessibility. As a proof-of-concept, we provide a contextual version of the referenceless metric CLIPScore which begins to address the disconnect to the BLV data. An accessible HTML version of this paper is available at https://elisakreiss.github.io/contextual-description-evaluation/paper/reflessmetrics.html
DocAsRef: An Empirical Study on Repurposing Reference-Based Summary Quality Metrics Reference-Freely
Automated summary quality assessment falls into two categories: reference-based and reference-free. Reference-based metrics, historically deemed more accurate due to the additional information provided by human-written references, are limited by their reliance on human input. In this paper, we hypothesize that the comparison methodologies used by some reference-based metrics to evaluate a system summary against its corresponding reference can be effectively adapted to assess it against its source document, thereby transforming these metrics into reference-free ones. Experimental results support this hypothesis. After being repurposed reference-freely, the zero-shot BERTScore using the pretrained DeBERTa-large-MNLI model of <0.5B parameters consistently outperforms its original reference-based version across various aspects on the SummEval and Newsroom datasets. It also excels in comparison to most existing reference-free metrics and closely competes with zero-shot summary evaluators based on GPT-3.5.
Data-QuestEval: A Referenceless Metric for Data-to-Text Semantic Evaluation
QuestEval is a reference-less metric used in text-to-text tasks, that compares the generated summaries directly to the source text, by automatically asking and answering questions. Its adaptation to Data-to-Text tasks is not straightforward, as it requires multimodal Question Generation and Answering systems on the considered tasks, which are seldom available. To this purpose, we propose a method to build synthetic multimodal corpora enabling to train multimodal components for a data-QuestEval metric. The resulting metric is reference-less and multimodal; it obtains state-of-the-art correlations with human judgment on the WebNLG and WikiBio benchmarks. We make data-QuestEval's code and models available for reproducibility purpose, as part of the QuestEval project.
TIGERScore: Towards Building Explainable Metric for All Text Generation Tasks
We present TIGERScore, a Trained metric that follows Instruction Guidance to perform Explainable, and Reference-free evaluation over a wide spectrum of text generation tasks. Different from other automatic evaluation methods that only provide arcane scores, TIGERScore is guided by the natural language instruction to provide error analysis to pinpoint the mistakes in the generated text. Our metric is based on LLaMA, trained on our meticulously curated instruction-tuning dataset MetricInstruct which covers 6 text generation tasks and 23 text generation datasets. The dataset consists of 48K quadruple in the form of (instruction, input, system output rightarrow error analysis). We collected the `system outputs' through diverse channels to cover different types of errors. To quantitatively assess our metric, we evaluate its correlation with human ratings on 5 held-in datasets, 2 held-out datasets and show that TIGERScore can achieve the highest overall Spearman's correlation with human ratings across these datasets and outperforms other metrics significantly. As a reference-free metric, its correlation can even surpass the best existing reference-based metrics. To further qualitatively assess the rationale generated by our metric, we conduct human evaluation on the generated explanations and found that the explanations are 70.8\% accurate. Through these experimental results, we believe TIGERScore demonstrates the possibility of building universal explainable metrics to evaluate any text generation task.
Guiding Image Captioning Models Toward More Specific Captions
Image captioning is conventionally formulated as the task of generating captions for images that match the distribution of reference image-caption pairs. However, reference captions in standard captioning datasets are short and may not uniquely identify the images they describe. These problems are further exacerbated when models are trained directly on image-alt text pairs collected from the internet. In this work, we show that it is possible to generate more specific captions with minimal changes to the training process. We implement classifier-free guidance for an autoregressive captioning model by fine-tuning it to estimate both conditional and unconditional distributions over captions. The guidance scale applied at decoding controls a trade-off between maximizing p(caption|image) and p(image|caption). Compared to standard greedy decoding, decoding with a guidance scale of 2 substantially improves reference-free metrics such as CLIPScore (0.808 vs. 0.775) and captiontoimage retrieval performance in the CLIP embedding space (recall@1 44.6% vs. 26.5%), but worsens standard reference-based captioning metrics (e.g., CIDEr 78.6 vs 126.1). We further explore the use of language models to guide the decoding process, obtaining small improvements over the Pareto frontier of reference-free vs. reference-based captioning metrics that arises from classifier-free guidance, and substantially improving the quality of captions generated from a model trained only on minimally curated web data.
Evaluating Document Simplification: On the Importance of Separately Assessing Simplicity and Meaning Preservation
Text simplification intends to make a text easier to read while preserving its core meaning. Intuitively and as shown in previous works, these two dimensions (simplification and meaning preservation) are often-times inversely correlated. An overly conservative text will fail to simplify sufficiently, whereas extreme simplification will degrade meaning preservation. Yet, popular evaluation metrics either aggregate meaning preservation and simplification into a single score (SARI, LENS), or target meaning preservation alone (BERTScore, QuestEval). Moreover, these metrics usually require a set of references and most previous work has only focused on sentence-level simplification. In this paper, we focus on the evaluation of document-level text simplification and compare existing models using distinct metrics for meaning preservation and simplification. We leverage existing metrics from similar tasks and introduce a reference-less metric variant for simplicity, showing that models are mostly biased towards either simplification or meaning preservation, seldom performing well on both dimensions. Making use of the fact that the metrics we use are all reference-less, we also investigate the performance of existing models when applied to unseen data (where reference simplifications are unavailable).
On the Evaluation Metrics for Paraphrase Generation
In this paper we revisit automatic metrics for paraphrase evaluation and obtain two findings that disobey conventional wisdom: (1) Reference-free metrics achieve better performance than their reference-based counterparts. (2) Most commonly used metrics do not align well with human annotation. Underlying reasons behind the above findings are explored through additional experiments and in-depth analyses. Based on the experiments and analyses, we propose ParaScore, a new evaluation metric for paraphrase generation. It possesses the merits of reference-based and reference-free metrics and explicitly models lexical divergence. Experimental results demonstrate that ParaScore significantly outperforms existing metrics.
QACE: Asking Questions to Evaluate an Image Caption
In this paper, we propose QACE, a new metric based on Question Answering for Caption Evaluation. QACE generates questions on the evaluated caption and checks its content by asking the questions on either the reference caption or the source image. We first develop QACE-Ref that compares the answers of the evaluated caption to its reference, and report competitive results with the state-of-the-art metrics. To go further, we propose QACE-Img, which asks the questions directly on the image, instead of reference. A Visual-QA system is necessary for QACE-Img. Unfortunately, the standard VQA models are framed as a classification among only a few thousand categories. Instead, we propose Visual-T5, an abstractive VQA system. The resulting metric, QACE-Img is multi-modal, reference-less, and explainable. Our experiments show that QACE-Img compares favorably w.r.t. other reference-less metrics. We will release the pre-trained models to compute QACE.
SWAP-NAS: Sample-Wise Activation Patterns for Ultra-fast NAS
Training-free metrics (a.k.a. zero-cost proxies) are widely used to avoid resource-intensive neural network training, especially in Neural Architecture Search (NAS). Recent studies show that existing training-free metrics have several limitations, such as limited correlation and poor generalisation across different search spaces and tasks. Hence, we propose Sample-Wise Activation Patterns and its derivative, SWAP-Score, a novel high-performance training-free metric. It measures the expressivity of networks over a batch of input samples. The SWAP-Score is strongly correlated with ground-truth performance across various search spaces and tasks, outperforming 15 existing training-free metrics on NAS-Bench-101/201/301 and TransNAS-Bench-101. The SWAP-Score can be further enhanced by regularisation, which leads to even higher correlations in cell-based search space and enables model size control during the search. For example, Spearman's rank correlation coefficient between regularised SWAP-Score and CIFAR-100 validation accuracies on NAS-Bench-201 networks is 0.90, significantly higher than 0.80 from the second-best metric, NWOT. When integrated with an evolutionary algorithm for NAS, our SWAP-NAS achieves competitive performance on CIFAR-10 and ImageNet in approximately 6 minutes and 9 minutes of GPU time respectively.
Graph-Assisted Culturally Adaptable Idiomatic Translation for Indic Languages
Translating multi-word expressions (MWEs) and idioms requires a deep understanding of the cultural nuances of both the source and target languages. This challenge is further amplified by the one-to-many nature of idiomatic translations, where a single source idiom can have multiple target-language equivalents depending on cultural references and contextual variations. Traditional static knowledge graphs (KGs) and prompt-based approaches struggle to capture these complex relationships, often leading to suboptimal translations. To address this, we propose IdiomCE, an adaptive graph neural network (GNN) based methodology that learns intricate mappings between idiomatic expressions, effectively generalizing to both seen and unseen nodes during training. Our proposed method enhances translation quality even in resource-constrained settings, facilitating improved idiomatic translation in smaller models. We evaluate our approach on multiple idiomatic translation datasets using reference-less metrics, demonstrating significant improvements in translating idioms from English to various Indian languages.
Better Automatic Evaluation of Open-Domain Dialogue Systems with Contextualized Embeddings
Despite advances in open-domain dialogue systems, automatic evaluation of such systems is still a challenging problem. Traditional reference-based metrics such as BLEU are ineffective because there could be many valid responses for a given context that share no common words with reference responses. A recent work proposed Referenced metric and Unreferenced metric Blended Evaluation Routine (RUBER) to combine a learning-based metric, which predicts relatedness between a generated response and a given query, with reference-based metric; it showed high correlation with human judgments. In this paper, we explore using contextualized word embeddings to compute more accurate relatedness scores, thus better evaluation metrics. Experiments show that our evaluation metrics outperform RUBER, which is trained on static embeddings.
Quality Estimation with k-nearest Neighbors and Automatic Evaluation for Model-specific Quality Estimation
Providing quality scores along with Machine Translation (MT) output, so-called reference-free Quality Estimation (QE), is crucial to inform users about the reliability of the translation. We propose a model-specific, unsupervised QE approach, termed kNN-QE, that extracts information from the MT model's training data using k-nearest neighbors. Measuring the performance of model-specific QE is not straightforward, since they provide quality scores on their own MT output, thus cannot be evaluated using benchmark QE test sets containing human quality scores on premade MT output. Therefore, we propose an automatic evaluation method that uses quality scores from reference-based metrics as gold standard instead of human-generated ones. We are the first to conduct detailed analyses and conclude that this automatic method is sufficient, and the reference-based MetricX-23 is best for the task.
MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth Mover Distance
A robust evaluation metric has a profound impact on the development of text generation systems. A desirable metric compares system output against references based on their semantics rather than surface forms. In this paper we investigate strategies to encode system and reference texts to devise a metric that shows a high correlation with human judgment of text quality. We validate our new metric, namely MoverScore, on a number of text generation tasks including summarization, machine translation, image captioning, and data-to-text generation, where the outputs are produced by a variety of neural and non-neural systems. Our findings suggest that metrics combining contextualized representations with a distance measure perform the best. Such metrics also demonstrate strong generalization capability across tasks. For ease-of-use we make our metrics available as web service.
USR: An Unsupervised and Reference Free Evaluation Metric for Dialog Generation
The lack of meaningful automatic evaluation metrics for dialog has impeded open-domain dialog research. Standard language generation metrics have been shown to be ineffective for evaluating dialog models. To this end, this paper presents USR, an UnSupervised and Reference-free evaluation metric for dialog. USR is a reference-free metric that trains unsupervised models to measure several desirable qualities of dialog. USR is shown to strongly correlate with human judgment on both Topical-Chat (turn-level: 0.42, system-level: 1.0) and PersonaChat (turn-level: 0.48 and system-level: 1.0). USR additionally produces interpretable measures for several desirable properties of dialog.
KPEval: Towards Fine-grained Semantic-based Evaluation of Keyphrase Extraction and Generation Systems
Despite the significant advancements in keyphrase extraction and keyphrase generation methods, the predominant approach for evaluation only relies on exact matching with human references and disregards reference-free attributes. This scheme fails to recognize systems that generate keyphrases that are semantically equivalent to the references or keyphrases that have practical utility. To better understand the strengths and weaknesses of different keyphrase systems, we propose a comprehensive evaluation framework consisting of six critical dimensions: naturalness, faithfulness, saliency, coverage, diversity, and utility. For each dimension, we discuss the desiderata and design semantic-based metrics that align with the evaluation objectives. Rigorous meta-evaluation studies demonstrate that our evaluation strategy correlates better with human preferences compared to a range of previously used metrics. Using this framework, we re-evaluate 18 keyphrase systems and further discover that (1) the best model differs in different dimensions, with pre-trained language models achieving the best in most dimensions; (2) the utility in downstream tasks does not always correlate well with reference-based metrics; and (3) large language models exhibit a strong performance in reference-free evaluation.
On Non-interactive Evaluation of Animal Communication Translators
If you had an AI Whale-to-English translator, how could you validate whether or not it is working? Does one need to interact with the animals or rely on grounded observations such as temperature? We provide theoretical and proof-of-concept experimental evidence suggesting that interaction and even observations may not be necessary for sufficiently complex languages. One may be able to evaluate translators solely by their English outputs, offering potential advantages in terms of safety, ethics, and cost. This is an instance of machine translation quality evaluation (MTQE) without any reference translations available. A key challenge is identifying ``hallucinations,'' false translations which may appear fluent and plausible. We propose using segment-by-segment translation together with the classic NLP shuffle test to evaluate translators. The idea is to translate animal communication, turn by turn, and evaluate how often the resulting translations make more sense in order than permuted. Proof-of-concept experiments on data-scarce human languages and constructed languages demonstrate the potential utility of this evaluation methodology. These human-language experiments serve solely to validate our reference-free metric under data scarcity. It is found to correlate highly with a standard evaluation based on reference translations, which are available in our experiments. We also perform a theoretical analysis suggesting that interaction may not be necessary nor efficient in the early stages of learning to translate.
A Comprehensive Survey of Evaluation Techniques for Recommendation Systems
The effectiveness of recommendation systems is pivotal to user engagement and satisfaction in online platforms. As these recommendation systems increasingly influence user choices, their evaluation transcends mere technical performance and becomes central to business success. This paper addresses the multifaceted nature of recommendations system evaluation by introducing a comprehensive suite of metrics, each tailored to capture a distinct aspect of system performance. We discuss * Similarity Metrics: to quantify the precision of content-based filtering mechanisms and assess the accuracy of collaborative filtering techniques. * Candidate Generation Metrics: to evaluate how effectively the system identifies a broad yet relevant range of items. * Predictive Metrics: to assess the accuracy of forecasted user preferences. * Ranking Metrics: to evaluate the effectiveness of the order in which recommendations are presented. * Business Metrics: to align the performance of the recommendation system with economic objectives. Our approach emphasizes the contextual application of these metrics and their interdependencies. In this paper, we identify the strengths and limitations of current evaluation practices and highlight the nuanced trade-offs that emerge when optimizing recommendation systems across different metrics. The paper concludes by proposing a framework for selecting and interpreting these metrics to not only improve system performance but also to advance business goals. This work is to aid researchers and practitioners in critically assessing recommendation systems and fosters the development of more nuanced, effective, and economically viable personalization strategies. Our code is available at GitHub - https://github.com/aryan-jadon/Evaluation-Metrics-for-Recommendation-Systems.
Project and Forget: Solving Large-Scale Metric Constrained Problems
Given a set of dissimilarity measurements amongst data points, determining what metric representation is most "consistent" with the input measurements or the metric that best captures the relevant geometric features of the data is a key step in many machine learning algorithms. Existing methods are restricted to specific kinds of metrics or small problem sizes because of the large number of metric constraints in such problems. In this paper, we provide an active set algorithm, Project and Forget, that uses Bregman projections, to solve metric constrained problems with many (possibly exponentially) inequality constraints. We provide a theoretical analysis of Project and Forget and prove that our algorithm converges to the global optimal solution and that the L_2 distance of the current iterate to the optimal solution decays asymptotically at an exponential rate. We demonstrate that using our method we can solve large problem instances of three types of metric constrained problems: general weight correlation clustering, metric nearness, and metric learning; in each case, out-performing the state of the art methods with respect to CPU times and problem sizes.
PRD: Peer Rank and Discussion Improve Large Language Model based Evaluations
Nowadays, the quality of responses generated by different modern large language models (LLMs) are hard to evaluate and compare automatically. Recent studies suggest and predominantly use LLMs as a reference-free metric for open-ended question answering. More specifically, they use the recognized "strongest" LLM as the evaluator, which conducts pairwise comparisons of candidate models' answers and provides a ranking score. However, this intuitive method has multiple problems, such as bringing in self-enhancement (favoring its own answers) and positional bias. We draw insights and lessons from the educational domain (Cho and MacArthur, 2011; Walsh, 2014) to improve LLM-based evaluations. Specifically, we propose the (1) peer rank (PR) algorithm that takes into account each peer LLM's pairwise preferences of all answer pairs, and outputs a final ranking of models; and (2) peer discussion (PD), where we prompt two LLMs to discuss and try to reach a mutual agreement on preferences of two answers. We conduct experiments on two benchmark datasets. We find that our approaches achieve higher accuracy and align better with human judgments, respectively. Interestingly, PR can induce a relatively accurate self-ranking of models under the anonymous setting, where each model's name is unrevealed. Our work provides space to explore evaluating models that are hard to compare for humans.
Geometry-Aware Adaptation for Pretrained Models
Machine learning models -- including prominent zero-shot models -- are often trained on datasets whose labels are only a small proportion of a larger label space. Such spaces are commonly equipped with a metric that relates the labels via distances between them. We propose a simple approach to exploit this information to adapt the trained model to reliably predict new classes -- or, in the case of zero-shot prediction, to improve its performance -- without any additional training. Our technique is a drop-in replacement of the standard prediction rule, swapping argmax with the Fr\'echet mean. We provide a comprehensive theoretical analysis for this approach, studying (i) learning-theoretic results trading off label space diameter, sample complexity, and model dimension, (ii) characterizations of the full range of scenarios in which it is possible to predict any unobserved class, and (iii) an optimal active learning-like next class selection procedure to obtain optimal training classes for when it is not possible to predict the entire range of unobserved classes. Empirically, using easily-available external metrics, our proposed approach, Loki, gains up to 29.7% relative improvement over SimCLR on ImageNet and scales to hundreds of thousands of classes. When no such metric is available, Loki can use self-derived metrics from class embeddings and obtains a 10.5% improvement on pretrained zero-shot models such as CLIP.
Beyond Correlation: Interpretable Evaluation of Machine Translation Metrics
Machine Translation (MT) evaluation metrics assess translation quality automatically. Recently, researchers have employed MT metrics for various new use cases, such as data filtering and translation re-ranking. However, most MT metrics return assessments as scalar scores that are difficult to interpret, posing a challenge to making informed design choices. Moreover, MT metrics' capabilities have historically been evaluated using correlation with human judgment, which, despite its efficacy, falls short of providing intuitive insights into metric performance, especially in terms of new metric use cases. To address these issues, we introduce an interpretable evaluation framework for MT metrics. Within this framework, we evaluate metrics in two scenarios that serve as proxies for the data filtering and translation re-ranking use cases. Furthermore, by measuring the performance of MT metrics using Precision, Recall, and F-score, we offer clearer insights into their capabilities than correlation with human judgments. Finally, we raise concerns regarding the reliability of manually curated data following the Direct Assessments+Scalar Quality Metrics (DA+SQM) guidelines, reporting a notably low agreement with Multidimensional Quality Metrics (MQM) annotations.
CLIPScore: A Reference-free Evaluation Metric for Image Captioning
Image captioning has conventionally relied on reference-based automatic evaluations, where machine captions are compared against captions written by humans. This is in contrast to the reference-free manner in which humans assess caption quality. In this paper, we report the surprising empirical finding that CLIP (Radford et al., 2021), a cross-modal model pretrained on 400M image+caption pairs from the web, can be used for robust automatic evaluation of image captioning without the need for references. Experiments spanning several corpora demonstrate that our new reference-free metric, CLIPScore, achieves the highest correlation with human judgements, outperforming existing reference-based metrics like CIDEr and SPICE. Information gain experiments demonstrate that CLIPScore, with its tight focus on image-text compatibility, is complementary to existing reference-based metrics that emphasize text-text similarities. Thus, we also present a reference-augmented version, RefCLIPScore, which achieves even higher correlation. Beyond literal description tasks, several case studies reveal domains where CLIPScore performs well (clip-art images, alt-text rating), but also where it is relatively weaker in comparison to reference-based metrics, e.g., news captions that require richer contextual knowledge.
Learning an Unreferenced Metric for Online Dialogue Evaluation
Evaluating the quality of a dialogue interaction between two agents is a difficult task, especially in open-domain chit-chat style dialogue. There have been recent efforts to develop automatic dialogue evaluation metrics, but most of them do not generalize to unseen datasets and/or need a human-generated reference response during inference, making it infeasible for online evaluation. Here, we propose an unreferenced automated evaluation metric that uses large pre-trained language models to extract latent representations of utterances, and leverages the temporal transitions that exist between them. We show that our model achieves higher correlation with human annotations in an online setting, while not requiring true responses for comparison during inference.
Guardians of the Machine Translation Meta-Evaluation: Sentinel Metrics Fall In!
Annually, at the Conference of Machine Translation (WMT), the Metrics Shared Task organizers conduct the meta-evaluation of Machine Translation (MT) metrics, ranking them according to their correlation with human judgments. Their results guide researchers toward enhancing the next generation of metrics and MT systems. With the recent introduction of neural metrics, the field has witnessed notable advancements. Nevertheless, the inherent opacity of these metrics has posed substantial challenges to the meta-evaluation process. This work highlights two issues with the meta-evaluation framework currently employed in WMT, and assesses their impact on the metrics rankings. To do this, we introduce the concept of sentinel metrics, which are designed explicitly to scrutinize the meta-evaluation process's accuracy, robustness, and fairness. By employing sentinel metrics, we aim to validate our findings, and shed light on and monitor the potential biases or inconsistencies in the rankings. We discover that the present meta-evaluation framework favors two categories of metrics: i) those explicitly trained to mimic human quality assessments, and ii) continuous metrics. Finally, we raise concerns regarding the evaluation capabilities of state-of-the-art metrics, emphasizing that they might be basing their assessments on spurious correlations found in their training data.
Puzzle Similarity: A Perceptually-guided No-Reference Metric for Artifact Detection in 3D Scene Reconstructions
Modern reconstruction techniques can effectively model complex 3D scenes from sparse 2D views. However, automatically assessing the quality of novel views and identifying artifacts is challenging due to the lack of ground truth images and the limitations of no-reference image metrics in predicting detailed artifact maps. The absence of such quality metrics hinders accurate predictions of the quality of generated views and limits the adoption of post-processing techniques, such as inpainting, to enhance reconstruction quality. In this work, we propose a new no-reference metric, Puzzle Similarity, which is designed to localize artifacts in novel views. Our approach utilizes image patch statistics from the input views to establish a scene-specific distribution that is later used to identify poorly reconstructed regions in the novel views. We test and evaluate our method in the context of 3D reconstruction; to this end, we collected a novel dataset of human quality assessment in unseen reconstructed views. Through this dataset, we demonstrate that our method can not only successfully localize artifacts in novel views, correlating with human assessment, but do so without direct references. Surprisingly, our metric outperforms both no-reference metrics and popular full-reference image metrics. We can leverage our new metric to enhance applications like automatic image restoration, guided acquisition, or 3D reconstruction from sparse inputs.
Training-free Neural Architecture Search for RNNs and Transformers
Neural architecture search (NAS) has allowed for the automatic creation of new and effective neural network architectures, offering an alternative to the laborious process of manually designing complex architectures. However, traditional NAS algorithms are slow and require immense amounts of computing power. Recent research has investigated training-free NAS metrics for image classification architectures, drastically speeding up search algorithms. In this paper, we investigate training-free NAS metrics for recurrent neural network (RNN) and BERT-based transformer architectures, targeted towards language modeling tasks. First, we develop a new training-free metric, named hidden covariance, that predicts the trained performance of an RNN architecture and significantly outperforms existing training-free metrics. We experimentally evaluate the effectiveness of the hidden covariance metric on the NAS-Bench-NLP benchmark. Second, we find that the current search space paradigm for transformer architectures is not optimized for training-free neural architecture search. Instead, a simple qualitative analysis can effectively shrink the search space to the best performing architectures. This conclusion is based on our investigation of existing training-free metrics and new metrics developed from recent transformer pruning literature, evaluated on our own benchmark of trained BERT architectures. Ultimately, our analysis shows that the architecture search space and the training-free metric must be developed together in order to achieve effective results.
Towards Optimizing and Evaluating a Retrieval Augmented QA Chatbot using LLMs with Human in the Loop
Large Language Models have found application in various mundane and repetitive tasks including Human Resource (HR) support. We worked with the domain experts of SAP SE to develop an HR support chatbot as an efficient and effective tool for addressing employee inquiries. We inserted a human-in-the-loop in various parts of the development cycles such as dataset collection, prompt optimization, and evaluation of generated output. By enhancing the LLM-driven chatbot's response quality and exploring alternative retrieval methods, we have created an efficient, scalable, and flexible tool for HR professionals to address employee inquiries effectively. Our experiments and evaluation conclude that GPT-4 outperforms other models and can overcome inconsistencies in data through internal reasoning capabilities. Additionally, through expert analysis, we infer that reference-free evaluation metrics such as G-Eval and Prometheus demonstrate reliability closely aligned with that of human evaluation.
Towards Multiple References Era -- Addressing Data Leakage and Limited Reference Diversity in NLG Evaluation
N-gram matching-based evaluation metrics, such as BLEU and chrF, are widely utilized across a range of natural language generation (NLG) tasks. However, recent studies have revealed a weak correlation between these matching-based metrics and human evaluations, especially when compared with neural-based metrics like BLEURT. In this paper, we conjecture that the performance bottleneck in matching-based metrics may be caused by the limited diversity of references. To address this issue, we propose to utilize multiple references to enhance the consistency between these metrics and human evaluations. Within the WMT Metrics benchmarks, we observe that the multi-references F200spBLEU surpasses the conventional single-reference one by an accuracy improvement of 7.2\%. Remarkably, it also exceeds the neural-based BERTscore by an accuracy enhancement of 3.9\%. Moreover, we observe that the data leakage issue in large language models (LLMs) can be mitigated to a large extent by our multi-reference metric. We release the code and data at https://github.com/SefaZeng/LLM-Ref
Holistic Evaluation for Interleaved Text-and-Image Generation
Interleaved text-and-image generation has been an intriguing research direction, where the models are required to generate both images and text pieces in an arbitrary order. Despite the emerging advancements in interleaved generation, the progress in its evaluation still significantly lags behind. Existing evaluation benchmarks do not support arbitrarily interleaved images and text for both inputs and outputs, and they only cover a limited number of domains and use cases. Also, current works predominantly use similarity-based metrics which fall short in assessing the quality in open-ended scenarios. To this end, we introduce InterleavedBench, the first benchmark carefully curated for the evaluation of interleaved text-and-image generation. InterleavedBench features a rich array of tasks to cover diverse real-world use cases. In addition, we present InterleavedEval, a strong reference-free metric powered by GPT-4o to deliver accurate and explainable evaluation. We carefully define five essential evaluation aspects for InterleavedEval, including text quality, perceptual quality, image coherence, text-image coherence, and helpfulness, to ensure a comprehensive and fine-grained assessment. Through extensive experiments and rigorous human evaluation, we show that our benchmark and metric can effectively evaluate the existing models with a strong correlation with human judgments surpassing previous reference-based metrics. We also provide substantial findings and insights to foster future research in interleaved generation and its evaluation.
G-Eval: NLG Evaluation using GPT-4 with Better Human Alignment
The quality of texts generated by natural language generation (NLG) systems is hard to measure automatically. Conventional reference-based metrics, such as BLEU and ROUGE, have been shown to have relatively low correlation with human judgments, especially for tasks that require creativity and diversity. Recent studies suggest using large language models (LLMs) as reference-free metrics for NLG evaluation, which have the benefit of being applicable to new tasks that lack human references. However, these LLM-based evaluators still have lower human correspondence than medium-size neural evaluators. In this work, we present G-Eval, a framework of using large language models with chain-of-thoughts (CoT) and a form-filling paradigm, to assess the quality of NLG outputs. We experiment with two generation tasks, text summarization and dialogue generation. We show that G-Eval with GPT-4 as the backbone model achieves a Spearman correlation of 0.514 with human on summarization task, outperforming all previous methods by a large margin. We also propose preliminary analysis on the behavior of LLM-based evaluators, and highlight the potential issue of LLM-based evaluators having a bias towards the LLM-generated texts. The code is at https://github.com/nlpyang/geval
Reliability Crisis of Reference-free Metrics for Grammatical Error Correction
Reference-free evaluation metrics for grammatical error correction (GEC) have achieved high correlation with human judgments. However, these metrics are not designed to evaluate adversarial systems that aim to obtain unjustifiably high scores. The existence of such systems undermines the reliability of automatic evaluation, as it can mislead users in selecting appropriate GEC systems. In this study, we propose adversarial attack strategies for four reference-free metrics: SOME, Scribendi, IMPARA, and LLM-based metrics, and demonstrate that our adversarial systems outperform the current state-of-the-art. These findings highlight the need for more robust evaluation methods.
The illusion of a perfect metric: Why evaluating AI's words is harder than it looks
Evaluating Natural Language Generation (NLG) is crucial for the practical adoption of AI, but has been a longstanding research challenge. While human evaluation is considered the de-facto standard, it is expensive and lacks scalability. Practical applications have driven the development of various automatic evaluation metrics (AEM), designed to compare the model output with human-written references, generating a score which approximates human judgment. Over time, AEMs have evolved from simple lexical comparisons, to semantic similarity models and, more recently, to LLM-based evaluators. However, it seems that no single metric has emerged as a definitive solution, resulting in studies using different ones without fully considering the implications. This paper aims to show this by conducting a thorough examination of the methodologies of existing metrics, their documented strengths and limitations, validation methods, and correlations with human judgment. We identify several key challenges: metrics often capture only specific aspects of text quality, their effectiveness varies by task and dataset, validation practices remain unstructured, and correlations with human judgment are inconsistent. Importantly, we find that these challenges persist in the most recent type of metric, LLM-as-a-Judge, as well as in the evaluation of Retrieval Augmented Generation (RAG), an increasingly relevant task in academia and industry. Our findings challenge the quest for the 'perfect metric'. We propose selecting metrics based on task-specific needs and leveraging complementary evaluations and advocate that new metrics should focus on enhanced validation methodologies.
MetaMetrics: Calibrating Metrics For Generation Tasks Using Human Preferences
Understanding the quality of a performance evaluation metric is crucial for ensuring that model outputs align with human preferences. However, it remains unclear how well each metric captures the diverse aspects of these preferences, as metrics often excel in one particular area but not across all dimensions. To address this, it is essential to systematically calibrate metrics to specific aspects of human preference, catering to the unique characteristics of each aspect. We introduce MetaMetrics, a calibrated meta-metric designed to evaluate generation tasks across different modalities in a supervised manner. MetaMetrics optimizes the combination of existing metrics to enhance their alignment with human preferences. Our metric demonstrates flexibility and effectiveness in both language and vision downstream tasks, showing significant benefits across various multilingual and multi-domain scenarios. MetaMetrics aligns closely with human preferences and is highly extendable and easily integrable into any application. This makes MetaMetrics a powerful tool for improving the evaluation of generation tasks, ensuring that metrics are more representative of human judgment across diverse contexts.
LUNA: A Framework for Language Understanding and Naturalness Assessment
The evaluation of Natural Language Generation (NLG) models has gained increased attention, urging the development of metrics that evaluate various aspects of generated text. LUNA addresses this challenge by introducing a unified interface for 20 NLG evaluation metrics. These metrics are categorized based on their reference-dependence and the type of text representation they employ, from string-based n-gram overlap to the utilization of static embeddings and pre-trained language models. The straightforward design of LUNA allows for easy extension with novel metrics, requiring just a few lines of code. LUNA offers a user-friendly tool for evaluating generated texts.
EffEval: A Comprehensive Evaluation of Efficiency for MT Evaluation Metrics
Efficiency is a key property to foster inclusiveness and reduce environmental costs, especially in an era of LLMs. In this work, we provide a comprehensive evaluation of efficiency for MT evaluation metrics. Our approach involves replacing computation-intensive transformers with lighter alternatives and employing linear and quadratic approximations for alignment algorithms on top of LLM representations. We evaluate six (reference-free and reference-based) metrics across three MT datasets and examine 16 lightweight transformers. In addition, we look into the training efficiency of metrics like COMET by utilizing adapters. Our results indicate that (a) TinyBERT provides the optimal balance between quality and efficiency, (b) CPU speed-ups are more substantial than those on GPU; (c) WMD approximations yield no efficiency gains while reducing quality and (d) adapters enhance training efficiency (regarding backward pass speed and memory requirements) as well as, in some cases, metric quality. These findings can help to strike a balance between evaluation speed and quality, which is essential for effective NLG systems. Furthermore, our research contributes to the ongoing efforts to optimize NLG evaluation metrics with minimal impact on performance. To our knowledge, ours is the most comprehensive analysis of different aspects of efficiency for MT metrics conducted so far.
HaRiM^+: Evaluating Summary Quality with Hallucination Risk
One of the challenges of developing a summarization model arises from the difficulty in measuring the factual inconsistency of the generated text. In this study, we reinterpret the decoder overconfidence-regularizing objective suggested in (Miao et al., 2021) as a hallucination risk measurement to better estimate the quality of generated summaries. We propose a reference-free metric, HaRiM+, which only requires an off-the-shelf summarization model to compute the hallucination risk based on token likelihoods. Deploying it requires no additional training of models or ad-hoc modules, which usually need alignment to human judgments. For summary-quality estimation, HaRiM+ records state-of-the-art correlation to human judgment on three summary-quality annotation sets: FRANK, QAGS, and SummEval. We hope that our work, which merits the use of summarization models, facilitates the progress of both automated evaluation and generation of summary.
Not All Errors are Equal: Learning Text Generation Metrics using Stratified Error Synthesis
Is it possible to build a general and automatic natural language generation (NLG) evaluation metric? Existing learned metrics either perform unsatisfactorily or are restricted to tasks where large human rating data is already available. We introduce SESCORE, a model-based metric that is highly correlated with human judgements without requiring human annotation, by utilizing a novel, iterative error synthesis and severity scoring pipeline. This pipeline applies a series of plausible errors to raw text and assigns severity labels by simulating human judgements with entailment. We evaluate SESCORE against existing metrics by comparing how their scores correlate with human ratings. SESCORE outperforms all prior unsupervised metrics on multiple diverse NLG tasks including machine translation, image captioning, and WebNLG text generation. For WMT 20/21 En-De and Zh-En, SESCORE improve the average Kendall correlation with human judgement from 0.154 to 0.195. SESCORE even achieves comparable performance to the best supervised metric COMET, despite receiving no human-annotated training data.
LaajMeter: A Framework for LaaJ Evaluation
Large Language Models (LLMs) are increasingly used as evaluators in natural language processing tasks, a paradigm known as LLM-as-a-Judge (LaaJ). While effective in general domains, LaaJs pose significant challenges in domain-specific contexts, where annotated data is scarce and expert evaluation is costly. In such cases, meta-evaluation is often performed using metrics that have not been validated for the specific domain in which they are applied. As a result, it becomes difficult to determine which metrics effectively identify LaaJ quality, and further, what threshold indicates sufficient evaluator performance. In this work, we introduce LaaJMeter, a simulation-based framework for controlled meta-evaluation of LaaJs. LaaJMeter enables engineers to generate synthetic data representing virtual models and judges, allowing systematic analysis of evaluation metrics under realistic conditions. This helps practitioners validate and refine LaaJs for specific evaluation tasks: they can test whether their metrics correctly distinguish between better and worse (virtual) LaaJs, and estimate appropriate thresholds for evaluator adequacy. We demonstrate the utility of LaaJMeter in a code translation task involving a legacy programming language, showing how different metrics vary in sensitivity to evaluator quality. Our results highlight the limitations of common metrics and the importance of principled metric selection. LaaJMeter provides a scalable and extensible solution for assessing LaaJs in low-resource settings, contributing to the broader effort to ensure trustworthy and reproducible evaluation in NLP.
The Inside Story: Towards Better Understanding of Machine Translation Neural Evaluation Metrics
Neural metrics for machine translation evaluation, such as COMET, exhibit significant improvements in their correlation with human judgments, as compared to traditional metrics based on lexical overlap, such as BLEU. Yet, neural metrics are, to a great extent, "black boxes" returning a single sentence-level score without transparency about the decision-making process. In this work, we develop and compare several neural explainability methods and demonstrate their effectiveness for interpreting state-of-the-art fine-tuned neural metrics. Our study reveals that these metrics leverage token-level information that can be directly attributed to translation errors, as assessed through comparison of token-level neural saliency maps with Multidimensional Quality Metrics (MQM) annotations and with synthetically-generated critical translation errors. To ease future research, we release our code at: https://github.com/Unbabel/COMET/tree/explainable-metrics.
COMET-poly: Machine Translation Metric Grounded in Other Candidates
Automated metrics for machine translation attempt to replicate human judgment. Unlike humans, who often assess a translation in the context of multiple alternatives, these metrics typically consider only the source sentence and a single translation. This discrepancy in the evaluation setup may negatively impact the performance of automated metrics. We propose two automated metrics that incorporate additional information beyond the single translation. COMET-polycand uses alternative translations of the same source sentence to compare and contrast with the translation at hand, thereby providing a more informed assessment of its quality. COMET-polyic, inspired by retrieval-based in-context learning, takes in translations of similar source texts along with their human-labeled quality scores to guide the evaluation. We find that including a single additional translation in COMET-polycand improves the segment-level metric performance (0.079 to 0.118 Kendall's tau-b correlation), with further gains when more translations are added. Incorporating retrieved examples in COMET-polyic yields similar improvements (0.079 to 0.116 Kendall's tau-b correlation). We release our models publicly.
RQUGE: Reference-Free Metric for Evaluating Question Generation by Answering the Question
Existing metrics for evaluating the quality of automatically generated questions such as BLEU, ROUGE, BERTScore, and BLEURT compare the reference and predicted questions, providing a high score when there is a considerable lexical overlap or semantic similarity between the candidate and the reference questions. This approach has two major shortcomings. First, we need expensive human-provided reference questions. Second, it penalises valid questions that may not have high lexical or semantic similarity to the reference questions. In this paper, we propose a new metric, RQUGE, based on the answerability of the candidate question given the context. The metric consists of a question-answering and a span scorer modules, using pre-trained models from existing literature, thus it can be used without any further training. We demonstrate that RQUGE has a higher correlation with human judgment without relying on the reference question. Additionally, RQUGE is shown to be more robust to several adversarial corruptions. Furthermore, we illustrate that we can significantly improve the performance of QA models on out-of-domain datasets by fine-tuning on synthetic data generated by a question generation model and re-ranked by RQUGE.
Redefining Retrieval Evaluation in the Era of LLMs
Traditional Information Retrieval (IR) metrics, such as nDCG, MAP, and MRR, assume that human users sequentially examine documents with diminishing attention to lower ranks. This assumption breaks down in Retrieval Augmented Generation (RAG) systems, where search results are consumed by Large Language Models (LLMs), which, unlike humans, process all retrieved documents as a whole rather than sequentially. Additionally, traditional IR metrics do not account for related but irrelevant documents that actively degrade generation quality, rather than merely being ignored. Due to these two major misalignments, namely human vs. machine position discount and human relevance vs. machine utility, classical IR metrics do not accurately predict RAG performance. We introduce a utility-based annotation schema that quantifies both the positive contribution of relevant passages and the negative impact of distracting ones. Building on this foundation, we propose UDCG (Utility and Distraction-aware Cumulative Gain), a metric using an LLM-oriented positional discount to directly optimize the correlation with the end-to-end answer accuracy. Experiments on five datasets and six LLMs demonstrate that UDCG improves correlation by up to 36% compared to traditional metrics. Our work provides a critical step toward aligning IR evaluation with LLM consumers and enables more reliable assessment of RAG components
'Tis but Thy Name: Semantic Question Answering Evaluation with 11M Names for 1M Entities
Classic lexical-matching-based QA metrics are slowly being phased out because they punish succinct or informative outputs just because those answers were not provided as ground truth. Recently proposed neural metrics can evaluate semantic similarity but were trained on small textual similarity datasets grafted from foreign domains. We introduce the Wiki Entity Similarity (WES) dataset, an 11M example, domain targeted, semantic entity similarity dataset that is generated from link texts in Wikipedia. WES is tailored to QA evaluation: the examples are entities and phrases and grouped into semantic clusters to simulate multiple ground-truth labels. Human annotators consistently agree with WES labels, and a basic cross encoder metric is better than four classic metrics at predicting human judgments of correctness.
Exploring the Use of Large Language Models for Reference-Free Text Quality Evaluation: An Empirical Study
Evaluating the quality of generated text is a challenging task in NLP, due to the inherent complexity and diversity of text. Recently, large language models (LLMs) have garnered significant attention due to their impressive performance in various tasks. Therefore, we present this paper to investigate the effectiveness of LLMs, especially ChatGPT, and explore ways to optimize their use in assessing text quality. We compared three kinds of reference-free evaluation methods. The experimental results prove that ChatGPT is capable of evaluating text quality effectively from various perspectives without reference and demonstrates superior performance than most existing automatic metrics. In particular, the Explicit Score, which utilizes ChatGPT to generate a numeric score measuring text quality, is the most effective and reliable method among the three exploited approaches. However, directly comparing the quality of two texts may lead to suboptimal results. We believe this paper will provide valuable insights for evaluating text quality with LLMs and have released the used data.
Towards Fine-Grained Text-to-3D Quality Assessment: A Benchmark and A Two-Stage Rank-Learning Metric
Recent advances in Text-to-3D (T23D) generative models have enabled the synthesis of diverse, high-fidelity 3D assets from textual prompts. However, existing challenges restrict the development of reliable T23D quality assessment (T23DQA). First, existing benchmarks are outdated, fragmented, and coarse-grained, making fine-grained metric training infeasible. Moreover, current objective metrics exhibit inherent design limitations, resulting in non-representative feature extraction and diminished metric robustness. To address these limitations, we introduce T23D-CompBench, a comprehensive benchmark for compositional T23D generation. We define five components with twelve sub-components for compositional prompts, which are used to generate 3,600 textured meshes from ten state-of-the-art generative models. A large-scale subjective experiment is conducted to collect 129,600 reliable human ratings across different perspectives. Based on T23D-CompBench, we further propose Rank2Score, an effective evaluator with two-stage training for T23DQA. Rank2Score enhances pairwise training via supervised contrastive regression and curriculum learning in the first stage, and subsequently refines predictions using mean opinion scores to achieve closer alignment with human judgments in the second stage. Extensive experiments and downstream applications demonstrate that Rank2Score consistently outperforms existing metrics across multiple dimensions and can additionally serve as a reward function to optimize generative models. The project is available at https://cbysjtu.github.io/Rank2Score/.
BLEU might be Guilty but References are not Innocent
The quality of automatic metrics for machine translation has been increasingly called into question, especially for high-quality systems. This paper demonstrates that, while choice of metric is important, the nature of the references is also critical. We study different methods to collect references and compare their value in automated evaluation by reporting correlation with human evaluation for a variety of systems and metrics. Motivated by the finding that typical references exhibit poor diversity, concentrating around translationese language, we develop a paraphrasing task for linguists to perform on existing reference translations, which counteracts this bias. Our method yields higher correlation with human judgment not only for the submissions of WMT 2019 English to German, but also for Back-translation and APE augmented MT output, which have been shown to have low correlation with automatic metrics using standard references. We demonstrate that our methodology improves correlation with all modern evaluation metrics we look at, including embedding-based methods. To complete this picture, we reveal that multi-reference BLEU does not improve the correlation for high quality output, and present an alternative multi-reference formulation that is more effective.
A Meta-Evaluation of Style and Attribute Transfer Metrics
LLMs make it easy to rewrite text in any style, be it more polite, persuasive, or more positive. We present a large-scale study of evaluation metrics for style and attribute transfer with a focus on content preservation; meaning content not attributed to the style shift is preserved. The de facto evaluation approach uses lexical or semantic similarity metrics often between source sentences and rewrites. While these metrics are not designed to distinguish between style or content differences, empirical meta-evaluation shows a reasonable correlation to human judgment. In fact, recent works find that LLMs prompted as evaluators are only comparable to semantic similarity metrics, even though intuitively, the LLM approach should better fit the task. To investigate this discrepancy, we benchmark 8 metrics for evaluating content preservation on existing datasets and additionally construct a new test set that better aligns with the meta-evaluation aim. Indeed, we then find that the empirical conclusion aligns with the intuition: content preservation metrics for style/attribute transfer must be conditional on the style shift. To support this, we propose a new efficient zero-shot evaluation method using the likelihood of the next token. We hope our meta-evaluation can foster more research on evaluating content preservation metrics, and also to ensure fair evaluation of methods for conducting style transfer.
TRUE: Re-evaluating Factual Consistency Evaluation
Grounded text generation systems often generate text that contains factual inconsistencies, hindering their real-world applicability. Automatic factual consistency evaluation may help alleviate this limitation by accelerating evaluation cycles, filtering inconsistent outputs and augmenting training data. While attracting increasing attention, such evaluation metrics are usually developed and evaluated in silo for a single task or dataset, slowing their adoption. Moreover, previous meta-evaluation protocols focused on system-level correlations with human annotations, which leave the example-level accuracy of such metrics unclear. In this work, we introduce TRUE: a comprehensive survey and assessment of factual consistency metrics on a standardized collection of existing texts from diverse tasks, manually annotated for factual consistency. Our standardization enables an example-level meta-evaluation protocol that is more actionable and interpretable than previously reported correlations, yielding clearer quality measures. Across diverse state-of-the-art metrics and 11 datasets we find that large-scale NLI and question generation-and-answering-based approaches achieve strong and complementary results. We recommend those methods as a starting point for model and metric developers, and hope TRUE will foster progress towards even better evaluation methods.
RuMedBench: A Russian Medical Language Understanding Benchmark
The paper describes the open Russian medical language understanding benchmark covering several task types (classification, question answering, natural language inference, named entity recognition) on a number of novel text sets. Given the sensitive nature of the data in healthcare, such a benchmark partially closes the problem of Russian medical dataset absence. We prepare the unified format labeling, data split, and evaluation metrics for new tasks. The remaining tasks are from existing datasets with a few modifications. A single-number metric expresses a model's ability to cope with the benchmark. Moreover, we implement several baseline models, from simple ones to neural networks with transformer architecture, and release the code. Expectedly, the more advanced models yield better performance, but even a simple model is enough for a decent result in some tasks. Furthermore, for all tasks, we provide a human evaluation. Interestingly the models outperform humans in the large-scale classification tasks. However, the advantage of natural intelligence remains in the tasks requiring more knowledge and reasoning.
How Expressive are Graph Neural Networks in Recommendation?
Graph Neural Networks (GNNs) have demonstrated superior performance on various graph learning tasks, including recommendation, where they leverage user-item collaborative filtering signals in graphs. However, theoretical formulations of their capability are scarce, despite their empirical effectiveness in state-of-the-art recommender models. Recently, research has explored the expressiveness of GNNs in general, demonstrating that message passing GNNs are at most as powerful as the Weisfeiler-Lehman test, and that GNNs combined with random node initialization are universal. Nevertheless, the concept of "expressiveness" for GNNs remains vaguely defined. Most existing works adopt the graph isomorphism test as the metric of expressiveness, but this graph-level task may not effectively assess a model's ability in recommendation, where the objective is to distinguish nodes of different closeness. In this paper, we provide a comprehensive theoretical analysis of the expressiveness of GNNs in recommendation, considering three levels of expressiveness metrics: graph isomorphism (graph-level), node automorphism (node-level), and topological closeness (link-level). We propose the topological closeness metric to evaluate GNNs' ability to capture the structural distance between nodes, which aligns closely with the objective of recommendation. To validate the effectiveness of this new metric in evaluating recommendation performance, we introduce a learning-less GNN algorithm that is optimal on the new metric and can be optimal on the node-level metric with suitable modification. We conduct extensive experiments comparing the proposed algorithm against various types of state-of-the-art GNN models to explore the explainability of the new metric in the recommendation task. For reproducibility, implementation codes are available at https://github.com/HKUDS/GTE.
Neural Architecture Search: Two Constant Shared Weights Initialisations
In the last decade, zero-cost metrics have gained prominence in neural architecture search (NAS) due to their ability to evaluate architectures without training. These metrics are significantly faster and less computationally expensive than traditional NAS methods and provide insights into neural architectures' internal workings. This paper introduces epsinas, a novel zero-cost NAS metric that assesses architecture potential using two constant shared weight initialisations and the statistics of their outputs. We show that the dispersion of raw outputs, normalised by their average magnitude, strongly correlates with trained accuracy. This effect holds across image classification and language tasks on NAS-Bench-101, NAS-Bench-201, and NAS-Bench-NLP. Our method requires no data labels, operates on a single minibatch, and eliminates the need for gradient computation, making it independent of training hyperparameters, loss metrics, and human annotations. It evaluates a network in a fraction of a GPU second and integrates seamlessly into existing NAS frameworks. The code supporting this study can be found on GitHub at https://github.com/egracheva/epsinas.
Holistic Evaluation of Language Models
Language models (LMs) are becoming the foundation for almost all major language technologies, but their capabilities, limitations, and risks are not well understood. We present Holistic Evaluation of Language Models (HELM) to improve the transparency of language models. First, we taxonomize the vast space of potential scenarios (i.e. use cases) and metrics (i.e. desiderata) that are of interest for LMs. Then we select a broad subset based on coverage and feasibility, noting what's missing or underrepresented (e.g. question answering for neglected English dialects, metrics for trustworthiness). Second, we adopt a multi-metric approach: We measure 7 metrics (accuracy, calibration, robustness, fairness, bias, toxicity, and efficiency) for each of 16 core scenarios when possible (87.5% of the time). This ensures metrics beyond accuracy don't fall to the wayside, and that trade-offs are clearly exposed. We also perform 7 targeted evaluations, based on 26 targeted scenarios, to analyze specific aspects (e.g. reasoning, disinformation). Third, we conduct a large-scale evaluation of 30 prominent language models (spanning open, limited-access, and closed models) on all 42 scenarios, 21 of which were not previously used in mainstream LM evaluation. Prior to HELM, models on average were evaluated on just 17.9% of the core HELM scenarios, with some prominent models not sharing a single scenario in common. We improve this to 96.0%: now all 30 models have been densely benchmarked on the same core scenarios and metrics under standardized conditions. Our evaluation surfaces 25 top-level findings. For full transparency, we release all raw model prompts and completions publicly for further analysis, as well as a general modular toolkit. We intend for HELM to be a living benchmark for the community, continuously updated with new scenarios, metrics, and models.
Evaluation of HTR models without Ground Truth Material
The evaluation of Handwritten Text Recognition (HTR) models during their development is straightforward: because HTR is a supervised problem, the usual data split into training, validation, and test data sets allows the evaluation of models in terms of accuracy or error rates. However, the evaluation process becomes tricky as soon as we switch from development to application. A compilation of a new (and forcibly smaller) ground truth (GT) from a sample of the data that we want to apply the model on and the subsequent evaluation of models thereon only provides hints about the quality of the recognised text, as do confidence scores (if available) the models return. Moreover, if we have several models at hand, we face a model selection problem since we want to obtain the best possible result during the application phase. This calls for GT-free metrics to select the best model, which is why we (re-)introduce and compare different metrics, from simple, lexicon-based to more elaborate ones using standard language models and masked language models (MLM). We show that MLM-based evaluation can compete with lexicon-based methods, with the advantage that large and multilingual transformers are readily available, thus making compiling lexical resources for other metrics superfluous.
LFOSum: Summarizing Long-form Opinions with Large Language Models
Online reviews play a pivotal role in influencing consumer decisions across various domains, from purchasing products to selecting hotels or restaurants. However, the sheer volume of reviews -- often containing repetitive or irrelevant content -- leads to information overload, making it challenging for users to extract meaningful insights. Traditional opinion summarization models face challenges in handling long inputs and large volumes of reviews, while newer Large Language Model (LLM) approaches often fail to generate accurate and faithful summaries. To address those challenges, this paper introduces (1) a new dataset of long-form user reviews, each entity comprising over a thousand reviews, (2) two training-free LLM-based summarization approaches that scale to long inputs, and (3) automatic evaluation metrics. Our dataset of user reviews is paired with in-depth and unbiased critical summaries by domain experts, serving as a reference for evaluation. Additionally, our novel reference-free evaluation metrics provide a more granular, context-sensitive assessment of summary faithfulness. We benchmark several open-source and closed-source LLMs using our methods. Our evaluation reveals that LLMs still face challenges in balancing sentiment and format adherence in long-form summaries, though open-source models can narrow the gap when relevant information is retrieved in a focused manner.
CodeScore: Evaluating Code Generation by Learning Code Execution
A proper code evaluation metric (CEM) profoundly impacts the evolution of code generation, which is an important research field in NLP and software engineering. Prevailing match-based CEMs (e.g., BLEU, Accuracy, and CodeBLEU) suffer from two significant drawbacks. 1. They primarily measure the surface differences between codes without considering their functional equivalence. However, functional equivalence is pivotal in evaluating the effectiveness of code generation, as different codes can perform identical operations. 2. They are predominantly designed for the Ref-only input format. However, code evaluation necessitates versatility in input formats. Aside from Ref-only, there are NL-only and Ref\&NL formats, which existing match-based CEMs cannot effectively accommodate. In this paper, we propose CodeScore, a large language model (LLM)-based CEM, which estimates the functional correctness of generated code on three input types. To acquire CodeScore, we present UniCE, a unified code generation learning framework, for LLMs to learn code execution (i.e., learning PassRatio and Executability of generated code) with unified input. Extensive experimental results on multiple code evaluation datasets demonstrate that CodeScore absolutely improves up to 58.87% correlation with functional correctness compared to other CEMs, achieves state-of-the-art performance, and effectively handles three input formats.
Democratizing LLMs: An Exploration of Cost-Performance Trade-offs in Self-Refined Open-Source Models
The dominance of proprietary LLMs has led to restricted access and raised information privacy concerns. High-performing open-source alternatives are crucial for information-sensitive and high-volume applications but often lag behind in performance. To address this gap, we propose (1) A untargeted variant of iterative self-critique and self-refinement devoid of external influence. (2) A novel ranking metric - Performance, Refinement, and Inference Cost Score (PeRFICS) - to find the optimal model for a given task considering refined performance and cost. Our experiments show that SoTA open source models of varying sizes from 7B - 65B, on average, improve 8.2% from their baseline performance. Strikingly, even models with extremely small memory footprints, such as Vicuna-7B, show a 11.74% improvement overall and up to a 25.39% improvement in high-creativity, open ended tasks on the Vicuna benchmark. Vicuna-13B takes it a step further and outperforms ChatGPT post-refinement. This work has profound implications for resource-constrained and information-sensitive environments seeking to leverage LLMs without incurring prohibitive costs, compromising on performance and privacy. The domain-agnostic self-refinement process coupled with our novel ranking metric facilitates informed decision-making in model selection, thereby reducing costs and democratizing access to high-performing language models, as evidenced by case studies.
FineD-Eval: Fine-grained Automatic Dialogue-Level Evaluation
Recent model-based reference-free metrics for open-domain dialogue evaluation exhibit promising correlations with human judgment. However, they either perform turn-level evaluation or look at a single dialogue quality dimension. One would expect a good evaluation metric to assess multiple quality dimensions at the dialogue level. To this end, we are motivated to propose a multi-dimensional dialogue-level metric, which consists of three sub-metrics with each targeting a specific dimension. The sub-metrics are trained with novel self-supervised objectives and exhibit strong correlations with human judgment for their respective dimensions. Moreover, we explore two approaches to combine the sub-metrics: metric ensemble and multitask learning. Both approaches yield a holistic metric that significantly outperforms individual sub-metrics. Compared to the existing state-of-the-art metric, the combined metrics achieve around 16% relative improvement on average across three high-quality dialogue-level evaluation benchmarks.
GLEU Without Tuning
The GLEU metric was proposed for evaluating grammatical error corrections using n-gram overlap with a set of reference sentences, as opposed to precision/recall of specific annotated errors (Napoles et al., 2015). This paper describes improvements made to the GLEU metric that address problems that arise when using an increasing number of reference sets. Unlike the originally presented metric, the modified metric does not require tuning. We recommend that this version be used instead of the original version.
Map-free Visual Relocalization: Metric Pose Relative to a Single Image
Can we relocalize in a scene represented by a single reference image? Standard visual relocalization requires hundreds of images and scale calibration to build a scene-specific 3D map. In contrast, we propose Map-free Relocalization, i.e., using only one photo of a scene to enable instant, metric scaled relocalization. Existing datasets are not suitable to benchmark map-free relocalization, due to their focus on large scenes or their limited variability. Thus, we have constructed a new dataset of 655 small places of interest, such as sculptures, murals and fountains, collected worldwide. Each place comes with a reference image to serve as a relocalization anchor, and dozens of query images with known, metric camera poses. The dataset features changing conditions, stark viewpoint changes, high variability across places, and queries with low to no visual overlap with the reference image. We identify two viable families of existing methods to provide baseline results: relative pose regression, and feature matching combined with single-image depth prediction. While these methods show reasonable performance on some favorable scenes in our dataset, map-free relocalization proves to be a challenge that requires new, innovative solutions.
The CAP Principle for LLM Serving: A Survey of Long-Context Large Language Model Serving
We survey the large language model (LLM) serving area to understand the intricate dynamics between cost-efficiency and accuracy, which is magnified by the growing need for longer contextual understanding when deploying models at a massive scale. Our findings reveal that works in this space optimize along three distinct but conflicting goals: improving serving context length (C), improving serving accuracy (A), and improving serving performance (P). Drawing inspiration from the CAP theorem in databases, we propose a CAP principle for LLM serving, which suggests that any optimization can improve at most two of these three goals simultaneously. Our survey categorizes existing works within this framework. We find the definition and continuity of user-perceived measurement metrics are crucial in determining whether a goal has been met, akin to prior CAP databases in the wild. We recognize the CAP principle for LLM serving as a guiding principle, rather than a formal theorem, to inform designers of the inherent and dynamic trade-offs in serving models. As serving accuracy and performance have been extensively studied, this survey focuses on works that extend serving context length and address the resulting challenges.
Session-level Normalization and Click-through Data Enhancement for Session-based Evaluation
Since a user usually has to issue a sequence of queries and examine multiple documents to resolve a complex information need in a search session, researchers have paid much attention to evaluating search systems at the session level rather than the single-query level. Most existing session-level metrics evaluate each query separately and then aggregate the query-level scores using a session-level weighting function. The assumptions behind these metrics are that all queries in the session should be involved, and their orders are fixed. However, if a search system could make the user satisfied with her first few queries, she may not need any subsequent queries. Besides, in most real-world search scenarios, due to a lack of explicit feedback from real users, we can only leverage some implicit feedback, such as users' clicks, as relevance labels for offline evaluation. Such implicit feedback might be different from the real relevance in a search session as some documents may be omitted in the previous query but identified in the later reformulations. To address the above issues, we make two assumptions about session-based evaluation, which explicitly describe an ideal session-search system and how to enhance click-through data in computing session-level evaluation metrics. Based on our assumptions, we design a session-level metric called Normalized U-Measure (NUM). NUM evaluates a session as a whole and utilizes an ideal session to normalize the result of the actual session. Besides, it infers session-level relevance labels based on implicit feedback. Experiments on two public datasets demonstrate the effectiveness of NUM by comparing it with existing session-based metrics in terms of correlation with user satisfaction and intuitiveness. We also conduct ablation studies to explore whether these assumptions hold.
Machine Translation Meta Evaluation through Translation Accuracy Challenge Sets
Recent machine translation (MT) metrics calibrate their effectiveness by correlating with human judgement but without any insights about their behaviour across different error types. Challenge sets are used to probe specific dimensions of metric behaviour but there are very few such datasets and they either focus on a limited number of phenomena or a limited number of language pairs. We introduce ACES, a contrastive challenge set spanning 146 language pairs, aimed at discovering whether metrics can identify 68 translation accuracy errors. These phenomena range from simple alterations at the word/character level to more complex errors based on discourse and real-world knowledge. We conduct a large-scale study by benchmarking ACES on 50 metrics submitted to the WMT 2022 and 2023 metrics shared tasks. We benchmark metric performance, assess their incremental performance over successive campaigns, and measure their sensitivity to a range of linguistic phenomena. We also investigate claims that Large Language Models (LLMs) are effective as MT evaluators by evaluating on ACES. Our results demonstrate that different metric families struggle with different phenomena and that LLM-based methods fail to demonstrate reliable performance. Our analyses indicate that most metrics ignore the source sentence, tend to prefer surface-level overlap and end up incorporating properties of base models which are not always beneficial. We expand ACES to include error span annotations, denoted as SPAN-ACES and we use this dataset to evaluate span-based error metrics showing these metrics also need considerable improvement. Finally, we provide a set of recommendations for building better MT metrics, including focusing on error labels instead of scores, ensembling, designing strategies to explicitly focus on the source sentence, focusing on semantic content and choosing the right base model for representations.
Evaluating Sample Utility for Data Selection by Mimicking Model Weights
Foundation models rely on large-scale web-crawled datasets, which frequently contain noisy data, biases, and irrelevant content. Existing data selection techniques typically use human heuristics, downstream evaluation datasets, or specialized scoring models, and can overlook samples' utility in the training process. Instead, we propose a new approach, Mimic Score, a data quality metric that uses a pretrained reference model as a guide to assess the usefulness of data samples for training a new model. It relies on the alignment between the gradient of the new model parameters and the vector pointing toward the reference model in weight space. Samples that misalign with this direction are considered low-value and can be filtered out. Motivated by the Mimic score, we develop Grad-Mimic, a data selection framework that identifies and prioritizes useful samples, automating the selection process to create effective filters. Empirically, using Mimic scores to guide model training results in consistent performance gains across six image datasets and enhances the performance of CLIP models. Moreover, Mimic scores and their associated filters improve upon existing filtering methods and offer accurate estimation of dataset quality.
Towards GAN Benchmarks Which Require Generalization
For many evaluation metrics commonly used as benchmarks for unconditional image generation, trivially memorizing the training set attains a better score than models which are considered state-of-the-art; we consider this problematic. We clarify a necessary condition for an evaluation metric not to behave this way: estimating the function must require a large sample from the model. In search of such a metric, we turn to neural network divergences (NNDs), which are defined in terms of a neural network trained to distinguish between distributions. The resulting benchmarks cannot be "won" by training set memorization, while still being perceptually correlated and computable only from samples. We survey past work on using NNDs for evaluation and implement an example black-box metric based on these ideas. Through experimental validation we show that it can effectively measure diversity, sample quality, and generalization.
DiscoX: Benchmarking Discourse-Level Translation task in Expert Domains
The evaluation of discourse-level translation in expert domains remains inadequate, despite its centrality to knowledge dissemination and cross-lingual scholarly communication. While these translations demand discourse-level coherence and strict terminological precision, current evaluation methods predominantly focus on segment-level accuracy and fluency. To address this limitation, we introduce DiscoX, a new benchmark for discourse-level and expert-level Chinese-English translation. It comprises 200 professionally-curated texts from 7 domains, with an average length exceeding 1700 tokens. To evaluate performance on DiscoX, we also develop Metric-S, a reference-free system that provides fine-grained automatic assessments across accuracy, fluency, and appropriateness. Metric-S demonstrates strong consistency with human judgments, significantly outperforming existing metrics. Our experiments reveal a remarkable performance gap: even the most advanced LLMs still trail human experts on these tasks. This finding validates the difficulty of DiscoX and underscores the challenges that remain in achieving professional-grade machine translation. The proposed benchmark and evaluation system provide a robust framework for more rigorous evaluation, facilitating future advancements in LLM-based translation.
Quality and Quantity of Machine Translation References for Automated Metrics
Automatic machine translation metrics often use human translations to determine the quality of system translations. Common wisdom in the field dictates that the human references should be of very high quality. However, there are no cost-benefit analyses that could be used to guide practitioners who plan to collect references for machine translation evaluation. We find that higher-quality references lead to better metric correlations with humans at the segment-level. Having up to 7 references per segment and taking their average helps all metrics. Interestingly, the references from vendors of different qualities can be mixed together and improve metric success. Higher quality references, however, cost more to create and we frame this as an optimization problem: given a specific budget, what references should be collected to maximize metric success. These findings can be used by evaluators of shared tasks when references need to be created under a certain budget.
DITING: A Multi-Agent Evaluation Framework for Benchmarking Web Novel Translation
Large language models (LLMs) have substantially advanced machine translation (MT), yet their effectiveness in translating web novels remains unclear. Existing benchmarks rely on surface-level metrics that fail to capture the distinctive traits of this genre. To address these gaps, we introduce DITING, the first comprehensive evaluation framework for web novel translation, assessing narrative and cultural fidelity across six dimensions: idiom translation, lexical ambiguity, terminology localization, tense consistency, zero-pronoun resolution, and cultural safety, supported by over 18K expert-annotated Chinese-English sentence pairs. We further propose AgentEval, a reasoning-driven multi-agent evaluation framework that simulates expert deliberation to assess translation quality beyond lexical overlap, achieving the highest correlation with human judgments among seven tested automatic metrics. To enable metric comparison, we develop MetricAlign, a meta-evaluation dataset of 300 sentence pairs annotated with error labels and scalar quality scores. Comprehensive evaluation of fourteen open, closed, and commercial models reveals that Chinese-trained LLMs surpass larger foreign counterparts, and that DeepSeek-V3 delivers the most faithful and stylistically coherent translations. Our work establishes a new paradigm for exploring LLM-based web novel translation and provides public resources to advance future research.
FrugalScore: Learning Cheaper, Lighter and Faster Evaluation Metricsfor Automatic Text Generation
Fast and reliable evaluation metrics are key to R&D progress. While traditional natural language generation metrics are fast, they are not very reliable. Conversely, new metrics based on large pretrained language models are much more reliable, but require significant computational resources. In this paper, we propose FrugalScore, an approach to learn a fixed, low cost version of any expensive NLG metric, while retaining most of its original performance. Experiments with BERTScore and MoverScore on summarization and translation show that FrugalScore is on par with the original metrics (and sometimes better), while having several orders of magnitude less parameters and running several times faster. On average over all learned metrics, tasks, and variants, FrugalScore retains 96.8% of the performance, runs 24 times faster, and has 35 times less parameters than the original metrics. We make our trained metrics publicly available, to benefit the entire NLP community and in particular researchers and practitioners with limited resources.
Compression, Transduction, and Creation: A Unified Framework for Evaluating Natural Language Generation
Natural language generation (NLG) spans a broad range of tasks, each of which serves for specific objectives and desires different properties of generated text. The complexity makes automatic evaluation of NLG particularly challenging. Previous work has typically focused on a single task and developed individual evaluation metrics based on specific intuitions. In this paper, we propose a unifying perspective that facilitates the design of metrics for a wide range of language generation tasks and quality aspects. Based on the nature of information change from input to output, we classify NLG tasks into compression (e.g., summarization), transduction (e.g., text rewriting), and creation (e.g., dialog). The information alignment, or overlap, between input, context, and output text plays a common central role in characterizing the generation. Using the uniform concept of information alignment, we develop a family of interpretable metrics for various NLG tasks and aspects, often without need of gold reference data. To operationalize the metrics, we train self-supervised models to approximate information alignment as a prediction task. Experiments show the uniformly designed metrics achieve stronger or comparable correlations with human judgement compared to state-of-the-art metrics in each of diverse tasks, including text summarization, style transfer, and knowledge-grounded dialog. With information alignment as the intermediate representation, we deliver a composable library for easy NLG evaluation and future metric design.
How Good is Zero-Shot MT Evaluation for Low Resource Indian Languages?
While machine translation evaluation has been studied primarily for high-resource languages, there has been a recent interest in evaluation for low-resource languages due to the increasing availability of data and models. In this paper, we focus on a zero-shot evaluation setting focusing on low-resource Indian languages, namely Assamese, Kannada, Maithili, and Punjabi. We collect sufficient Multi-Dimensional Quality Metrics (MQM) and Direct Assessment (DA) annotations to create test sets and meta-evaluate a plethora of automatic evaluation metrics. We observe that even for learned metrics, which are known to exhibit zero-shot performance, the Kendall Tau and Pearson correlations with human annotations are only as high as 0.32 and 0.45. Synthetic data approaches show mixed results and overall do not help close the gap by much for these languages. This indicates that there is still a long way to go for low-resource evaluation.
Hierarchical Catalogue Generation for Literature Review: A Benchmark
Scientific literature review generation aims to extract and organize important information from an abundant collection of reference papers and produces corresponding reviews while lacking a clear and logical hierarchy. We observe that a high-quality catalogue-guided generation process can effectively alleviate this problem. Therefore, we present an atomic and challenging task named Hierarchical Catalogue Generation for Literature Review as the first step for review generation, which aims to produce a hierarchical catalogue of a review paper given various references. We construct a novel English Hierarchical Catalogues of Literature Reviews Dataset with 7.6k literature review catalogues and 389k reference papers. To accurately assess the model performance, we design two evaluation metrics for informativeness and similarity to ground truth from semantics and structure.Our extensive analyses verify the high quality of our dataset and the effectiveness of our evaluation metrics. We further benchmark diverse experiments on state-of-the-art summarization models like BART and large language models like ChatGPT to evaluate their capabilities. We further discuss potential directions for this task to motivate future research.
Learning to Revise References for Faithful Summarization
In real-world scenarios with naturally occurring datasets, reference summaries are noisy and may contain information that cannot be inferred from the source text. On large news corpora, removing low quality samples has been shown to reduce model hallucinations. Yet, for smaller, and/or noisier corpora, filtering is detrimental to performance. To improve reference quality while retaining all data, we propose a new approach: to selectively re-write unsupported reference sentences to better reflect source data. We automatically generate a synthetic dataset of positive and negative revisions by corrupting supported sentences and learn to revise reference sentences with contrastive learning. The intensity of revisions is treated as a controllable attribute so that, at inference, diverse candidates can be over-generated-then-rescored to balance faithfulness and abstraction. To test our methods, we extract noisy references from publicly available MIMIC-III discharge summaries for the task of hospital-course summarization, and vary the data on which models are trained. According to metrics and human evaluation, models trained on revised clinical references are much more faithful, informative, and fluent than models trained on original or filtered data.
Semantic Answer Similarity for Evaluating Question Answering Models
The evaluation of question answering models compares ground-truth annotations with model predictions. However, as of today, this comparison is mostly lexical-based and therefore misses out on answers that have no lexical overlap but are still semantically similar, thus treating correct answers as false. This underestimation of the true performance of models hinders user acceptance in applications and complicates a fair comparison of different models. Therefore, there is a need for an evaluation metric that is based on semantics instead of pure string similarity. In this short paper, we present SAS, a cross-encoder-based metric for the estimation of semantic answer similarity, and compare it to seven existing metrics. To this end, we create an English and a German three-way annotated evaluation dataset containing pairs of answers along with human judgment of their semantic similarity, which we release along with an implementation of the SAS metric and the experiments. We find that semantic similarity metrics based on recent transformer models correlate much better with human judgment than traditional lexical similarity metrics on our two newly created datasets and one dataset from related work.
SuSana Distancia is all you need: Enforcing class separability in metric learning via two novel distance-based loss functions for few-shot image classification
Few-shot learning is a challenging area of research that aims to learn new concepts with only a few labeled samples of data. Recent works based on metric-learning approaches leverage the meta-learning approach, which is encompassed by episodic tasks that make use a support (training) and query set (test) with the objective of learning a similarity comparison metric between those sets. Due to the lack of data, the learning process of the embedding network becomes an important part of the few-shot task. Previous works have addressed this problem using metric learning approaches, but the properties of the underlying latent space and the separability of the difference classes on it was not entirely enforced. In this work, we propose two different loss functions which consider the importance of the embedding vectors by looking at the intra-class and inter-class distance between the few data. The first loss function is the Proto-Triplet Loss, which is based on the original triplet loss with the modifications needed to better work on few-shot scenarios. The second loss function, which we dub ICNN loss is based on an inter and intra class nearest neighbors score, which help us to assess the quality of embeddings obtained from the trained network. Our results, obtained from a extensive experimental setup show a significant improvement in accuracy in the miniImagenNet benchmark compared to other metric-based few-shot learning methods by a margin of 2%, demonstrating the capability of these loss functions to allow the network to generalize better to previously unseen classes. In our experiments, we demonstrate competitive generalization capabilities to other domains, such as the Caltech CUB, Dogs and Cars datasets compared with the state of the art.
Unsupervised Evaluation of Interactive Dialog with DialoGPT
It is important to define meaningful and interpretable automatic evaluation metrics for open-domain dialog research. Standard language generation metrics have been shown to be ineffective for dialog. This paper introduces the FED metric (fine-grained evaluation of dialog), an automatic evaluation metric which uses DialoGPT, without any fine-tuning or supervision. It also introduces the FED dataset which is constructed by annotating a set of human-system and human-human conversations with eighteen fine-grained dialog qualities. The FED metric (1) does not rely on a ground-truth response, (2) does not require training data and (3) measures fine-grained dialog qualities at both the turn and whole dialog levels. FED attains moderate to strong correlation with human judgement at both levels.
OpenMEVA: A Benchmark for Evaluating Open-ended Story Generation Metrics
Automatic metrics are essential for developing natural language generation (NLG) models, particularly for open-ended language generation tasks such as story generation. However, existing automatic metrics are observed to correlate poorly with human evaluation. The lack of standardized benchmark datasets makes it difficult to fully evaluate the capabilities of a metric and fairly compare different metrics. Therefore, we propose OpenMEVA, a benchmark for evaluating open-ended story generation metrics. OpenMEVA provides a comprehensive test suite to assess the capabilities of metrics, including (a) the correlation with human judgments, (b) the generalization to different model outputs and datasets, (c) the ability to judge story coherence, and (d) the robustness to perturbations. To this end, OpenMEVA includes both manually annotated stories and auto-constructed test examples. We evaluate existing metrics on OpenMEVA and observe that they have poor correlation with human judgments, fail to recognize discourse-level incoherence, and lack inferential knowledge (e.g., causal order between events), the generalization ability and robustness. Our study presents insights for developing NLG models and metrics in further research.
SPECS: Specificity-Enhanced CLIP-Score for Long Image Caption Evaluation
As interest grows in generating long, detailed image captions, standard evaluation metrics become increasingly unreliable. N-gram-based metrics though efficient, fail to capture semantic correctness. Representational Similarity (RS) metrics, designed to address this, initially saw limited use due to high computational costs, while today, despite advances in hardware, they remain unpopular due to low correlation to human judgments. Meanwhile, metrics based on large language models (LLMs) show strong correlation with human judgments, but remain too expensive for iterative use during model development. We introduce SPECS (Specificity-Enhanced CLIPScore), a reference-free RS metric tailored to long image captioning. SPECS modifies CLIP with a new objective that emphasizes specificity: rewarding correct details and penalizing incorrect ones. We show that SPECS matches the performance of open-source LLM-based metrics in correlation to human judgments, while being far more efficient. This makes it a practical alternative for iterative checkpoint evaluation during image captioning model development.Our code can be found at https://github.com/mbzuai-nlp/SPECS.
A Review and Efficient Implementation of Scene Graph Generation Metrics
Scene graph generation has emerged as a prominent research field in computer vision, witnessing significant advancements in the recent years. However, despite these strides, precise and thorough definitions for the metrics used to evaluate scene graph generation models are lacking. In this paper, we address this gap in the literature by providing a review and precise definition of commonly used metrics in scene graph generation. Our comprehensive examination clarifies the underlying principles of these metrics and can serve as a reference or introduction to scene graph metrics. Furthermore, to facilitate the usage of these metrics, we introduce a standalone Python package called SGBench that efficiently implements all defined metrics, ensuring their accessibility to the research community. Additionally, we present a scene graph benchmarking web service, that enables researchers to compare scene graph generation methods and increase visibility of new methods in a central place. All of our code can be found at https://lorjul.github.io/sgbench/.
Automatic Metrics in Natural Language Generation: A Survey of Current Evaluation Practices
Automatic metrics are extensively used to evaluate natural language processing systems. However, there has been increasing focus on how they are used and reported by practitioners within the field. In this paper, we have conducted a survey on the use of automatic metrics, focusing particularly on natural language generation (NLG) tasks. We inspect which metrics are used as well as why they are chosen and how their use is reported. Our findings from this survey reveal significant shortcomings, including inappropriate metric usage, lack of implementation details and missing correlations with human judgements. We conclude with recommendations that we believe authors should follow to enable more rigour within the field.
O(n)-invariant Riemannian metrics on SPD matrices
Symmetric Positive Definite (SPD) matrices are ubiquitous in data analysis under the form of covariance matrices or correlation matrices. Several O(n)-invariant Riemannian metrics were defined on the SPD cone, in particular the kernel metrics introduced by Hiai and Petz. The class of kernel metrics interpolates between many classical O(n)-invariant metrics and it satisfies key results of stability and completeness. However, it does not contain all the classical O(n)-invariant metrics. Therefore in this work, we investigate super-classes of kernel metrics and we study which key results remain true. We also introduce an additional key result called cometric-stability, a crucial property to implement geodesics with a Hamiltonian formulation. Our method to build intermediate embedded classes between O(n)-invariant metrics and kernel metrics is to give a characterization of the whole class of O(n)-invariant metrics on SPD matrices and to specify requirements on metrics one by one until we reach kernel metrics. As a secondary contribution, we synthesize the literature on the main O(n)-invariant metrics, we provide the complete formula of the sectional curvature of the affine-invariant metric and the formula of the geodesic parallel transport between commuting matrices for the Bures-Wasserstein metric.
OpinioRAG: Towards Generating User-Centric Opinion Highlights from Large-scale Online Reviews
We study the problem of opinion highlights generation from large volumes of user reviews, often exceeding thousands per entity, where existing methods either fail to scale or produce generic, one-size-fits-all summaries that overlook personalized needs. To tackle this, we introduce OpinioRAG, a scalable, training-free framework that combines RAG-based evidence retrieval with LLMs to efficiently produce tailored summaries. Additionally, we propose novel reference-free verification metrics designed for sentiment-rich domains, where accurately capturing opinions and sentiment alignment is essential. These metrics offer a fine-grained, context-sensitive assessment of factual consistency. To facilitate evaluation, we contribute the first large-scale dataset of long-form user reviews, comprising entities with over a thousand reviews each, paired with unbiased expert summaries and manually annotated queries. Through extensive experiments, we identify key challenges, provide actionable insights into improving systems, pave the way for future research, and position OpinioRAG as a robust framework for generating accurate, relevant, and structured summaries at scale.
Speech vs. Transcript: Does It Matter for Human Annotators in Speech Summarization?
Reference summaries for abstractive speech summarization require human annotation, which can be performed by listening to an audio recording or by reading textual transcripts of the recording. In this paper, we examine whether summaries based on annotators listening to the recordings differ from those based on annotators reading transcripts. Using existing intrinsic evaluation based on human evaluation, automatic metrics, LLM-based evaluation, and a retrieval-based reference-free method. We find that summaries are indeed different based on the source modality, and that speech-based summaries are more factually consistent and information-selective than transcript-based summaries. Meanwhile, transcript-based summaries are impacted by recognition errors in the source, and expert-written summaries are more informative and reliable. We make all the collected data and analysis code public(https://github.com/cmu-mlsp/interview_humanssum) to facilitate the reproduction of our work and advance research in this area.
Reranking-based Generation for Unbiased Perspective Summarization
Generating unbiased summaries in real-world settings such as political perspective summarization remains a crucial application of Large Language Models (LLMs). Yet, existing evaluation frameworks rely on traditional metrics for measuring key attributes such as coverage and faithfulness without verifying their applicability, and efforts to develop improved summarizers are still nascent. We address these gaps by (1) identifying reliable metrics for measuring perspective summary quality, and (2) investigating the efficacy of LLM-based methods beyond zero-shot inference. Namely, we build a test set for benchmarking metric reliability using human annotations and show that traditional metrics underperform compared to language model-based metrics, which prove to be strong evaluators. Using these metrics, we show that reranking-based methods yield strong results, and preference tuning with synthetically generated and reranking-labeled data further boosts performance. Our findings aim to contribute to the reliable evaluation and development of perspective summarization methods.
Text Quality-Based Pruning for Efficient Training of Language Models
In recent times training Language Models (LMs) have relied on computationally heavy training over massive datasets which makes this training process extremely laborious. In this paper we propose a novel method for numerically evaluating text quality in large unlabelled NLP datasets in a model agnostic manner to assign the text instances a "quality score". By proposing the text quality metric, the paper establishes a framework to identify and eliminate low-quality text instances, leading to improved training efficiency for LM models. Experimental results over multiple models and datasets demonstrate the efficacy of this approach, showcasing substantial gains in training effectiveness and highlighting the potential for resource-efficient LM training. For example, we observe an absolute accuracy improvement of 0.9% averaged over 14 downstream evaluation tasks for multiple LM models while using 40% lesser data and training 42% faster when training on the OpenWebText dataset and 0.8% average absolute accuracy improvement while using 20% lesser data and training 21% faster on the Wikipedia dataset.
Reliable Fidelity and Diversity Metrics for Generative Models
Devising indicative evaluation metrics for the image generation task remains an open problem. The most widely used metric for measuring the similarity between real and generated images has been the Fr\'echet Inception Distance (FID) score. Because it does not differentiate the fidelity and diversity aspects of the generated images, recent papers have introduced variants of precision and recall metrics to diagnose those properties separately. In this paper, we show that even the latest version of the precision and recall metrics are not reliable yet. For example, they fail to detect the match between two identical distributions, they are not robust against outliers, and the evaluation hyperparameters are selected arbitrarily. We propose density and coverage metrics that solve the above issues. We analytically and experimentally show that density and coverage provide more interpretable and reliable signals for practitioners than the existing metrics. Code: https://github.com/clovaai/generative-evaluation-prdc.
Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs
We present a new approach for the approximate K-nearest neighbor search based on navigable small world graphs with controllable hierarchy (Hierarchical NSW, HNSW). The proposed solution is fully graph-based, without any need for additional search structures, which are typically used at the coarse search stage of the most proximity graph techniques. Hierarchical NSW incrementally builds a multi-layer structure consisting from hierarchical set of proximity graphs (layers) for nested subsets of the stored elements. The maximum layer in which an element is present is selected randomly with an exponentially decaying probability distribution. This allows producing graphs similar to the previously studied Navigable Small World (NSW) structures while additionally having the links separated by their characteristic distance scales. Starting search from the upper layer together with utilizing the scale separation boosts the performance compared to NSW and allows a logarithmic complexity scaling. Additional employment of a heuristic for selecting proximity graph neighbors significantly increases performance at high recall and in case of highly clustered data. Performance evaluation has demonstrated that the proposed general metric space search index is able to strongly outperform previous opensource state-of-the-art vector-only approaches. Similarity of the algorithm to the skip list structure allows straightforward balanced distributed implementation.
RAGAS: Automated Evaluation of Retrieval Augmented Generation
We introduce RAGAs (Retrieval Augmented Generation Assessment), a framework for reference-free evaluation of Retrieval Augmented Generation (RAG) pipelines. RAG systems are composed of a retrieval and an LLM based generation module, and provide LLMs with knowledge from a reference textual database, which enables them to act as a natural language layer between a user and textual databases, reducing the risk of hallucinations. Evaluating RAG architectures is, however, challenging because there are several dimensions to consider: the ability of the retrieval system to identify relevant and focused context passages, the ability of the LLM to exploit such passages in a faithful way, or the quality of the generation itself. With RAGAs, we put forward a suite of metrics which can be used to evaluate these different dimensions without having to rely on ground truth human annotations. We posit that such a framework can crucially contribute to faster evaluation cycles of RAG architectures, which is especially important given the fast adoption of LLMs.
Rapid Adaptation in Online Continual Learning: Are We Evaluating It Right?
We revisit the common practice of evaluating adaptation of Online Continual Learning (OCL) algorithms through the metric of online accuracy, which measures the accuracy of the model on the immediate next few samples. However, we show that this metric is unreliable, as even vacuous blind classifiers, which do not use input images for prediction, can achieve unrealistically high online accuracy by exploiting spurious label correlations in the data stream. Our study reveals that existing OCL algorithms can also achieve high online accuracy, but perform poorly in retaining useful information, suggesting that they unintentionally learn spurious label correlations. To address this issue, we propose a novel metric for measuring adaptation based on the accuracy on the near-future samples, where spurious correlations are removed. We benchmark existing OCL approaches using our proposed metric on large-scale datasets under various computational budgets and find that better generalization can be achieved by retaining and reusing past seen information. We believe that our proposed metric can aid in the development of truly adaptive OCL methods. We provide code to reproduce our results at https://github.com/drimpossible/EvalOCL.
F-Eval: Asssessing Fundamental Abilities with Refined Evaluation Methods
Large language models (LLMs) garner significant attention for their unprecedented performance, leading to an increasing number of researches evaluating LLMs. However, these evaluation benchmarks are limited to assessing the instruction-following capabilities, overlooking the fundamental abilities that emerge during the pre-training stage. Previous subjective evaluation methods mainly reply on scoring by API models. However, in the absence of references, large models have shown limited ability to discern subtle differences. To bridge the gap, we propose F-Eval, a bilingual evaluation benchmark to evaluate the fundamental abilities, including expression, commonsense and logic. The tasks in F-Eval include multi-choice objective tasks, open-ended objective tasks, reference-based subjective tasks and reference-free subjective tasks. For reference-free subjective tasks, we devise new evaluation methods, serving as alternatives to scoring by API models. We conduct evaluations on 13 advanced LLMs. Results show that our evaluation methods show higher correlation coefficients and larger distinction than other evaluators. Additionally, we discuss the influence of different model sizes, dimensions, and normalization methods. We anticipate that F-Eval will facilitate the study of LLMs' fundamental abilities.
Robustifying and Boosting Training-Free Neural Architecture Search
Neural architecture search (NAS) has become a key component of AutoML and a standard tool to automate the design of deep neural networks. Recently, training-free NAS as an emerging paradigm has successfully reduced the search costs of standard training-based NAS by estimating the true architecture performance with only training-free metrics. Nevertheless, the estimation ability of these metrics typically varies across different tasks, making it challenging to achieve robust and consistently good search performance on diverse tasks with only a single training-free metric. Meanwhile, the estimation gap between training-free metrics and the true architecture performances limits training-free NAS to achieve superior performance. To address these challenges, we propose the robustifying and boosting training-free NAS (RoBoT) algorithm which (a) employs the optimized combination of existing training-free metrics explored from Bayesian optimization to develop a robust and consistently better-performing metric on diverse tasks, and (b) applies greedy search, i.e., the exploitation, on the newly developed metric to bridge the aforementioned gap and consequently to boost the search performance of standard training-free NAS further. Remarkably, the expected performance of our RoBoT can be theoretically guaranteed, which improves over the existing training-free NAS under mild conditions with additional interesting insights. Our extensive experiments on various NAS benchmark tasks yield substantial empirical evidence to support our theoretical results.
Attention in Large Language Models Yields Efficient Zero-Shot Re-Rankers
Information retrieval (IR) systems have played a vital role in modern digital life and have cemented their continued usefulness in this new era of generative AI via retrieval-augmented generation. With strong language processing capabilities and remarkable versatility, large language models (LLMs) have become popular choices for zero-shot re-ranking in IR systems. So far, LLM-based re-ranking methods rely on strong generative capabilities, which restricts their use to either specialized or powerful proprietary models. Given these restrictions, we ask: is autoregressive generation necessary and optimal for LLMs to perform re-ranking? We hypothesize that there are abundant signals relevant to re-ranking within LLMs that might not be used to their full potential via generation. To more directly leverage such signals, we propose in-context re-ranking (ICR), a novel method that leverages the change in attention pattern caused by the search query for accurate and efficient re-ranking. To mitigate the intrinsic biases in LLMs, we propose a calibration method using a content-free query. Due to the absence of generation, ICR only requires two (O(1)) forward passes to re-rank N documents, making it substantially more efficient than generative re-ranking methods that require at least O(N) forward passes. Our novel design also enables ICR to be applied to any LLM without specialized training while guaranteeing a well-formed ranking. Extensive experiments with two popular open-weight LLMs on standard single-hop and multi-hop information retrieval benchmarks show that ICR outperforms RankGPT while cutting the latency by more than 60% in practice. Through detailed analyses, we show that ICR's performance is specially strong on tasks that require more complex re-ranking signals. Our findings call for further exploration on novel ways of utilizing open-weight LLMs beyond text generation.
KPQA: A Metric for Generative Question Answering Using Keyphrase Weights
In the automatic evaluation of generative question answering (GenQA) systems, it is difficult to assess the correctness of generated answers due to the free-form of the answer. Especially, widely used n-gram similarity metrics often fail to discriminate the incorrect answers since they equally consider all of the tokens. To alleviate this problem, we propose KPQA-metric, a new metric for evaluating the correctness of GenQA. Specifically, our new metric assigns different weights to each token via keyphrase prediction, thereby judging whether a generated answer sentence captures the key meaning of the reference answer. To evaluate our metric, we create high-quality human judgments of correctness on two GenQA datasets. Using our human-evaluation datasets, we show that our proposed metric has a significantly higher correlation with human judgments than existing metrics. The code is available at https://github.com/hwanheelee1993/KPQA.
RefVNLI: Towards Scalable Evaluation of Subject-driven Text-to-image Generation
Subject-driven text-to-image (T2I) generation aims to produce images that align with a given textual description, while preserving the visual identity from a referenced subject image. Despite its broad downstream applicability -- ranging from enhanced personalization in image generation to consistent character representation in video rendering -- progress in this field is limited by the lack of reliable automatic evaluation. Existing methods either assess only one aspect of the task (i.e., textual alignment or subject preservation), misalign with human judgments, or rely on costly API-based evaluation. To address this, we introduce RefVNLI, a cost-effective metric that evaluates both textual alignment and subject preservation in a single prediction. Trained on a large-scale dataset derived from video-reasoning benchmarks and image perturbations, RefVNLI outperforms or matches existing baselines across multiple benchmarks and subject categories (e.g., Animal, Object), achieving up to 6.4-point gains in textual alignment and 8.5-point gains in subject consistency. It also excels with lesser-known concepts, aligning with human preferences at over 87\% accuracy.
Automatic Evaluation Metrics for Artificially Generated Scientific Research
Foundation models are increasingly used in scientific research, but evaluating AI-generated scientific work remains challenging. While expert reviews are costly, large language models (LLMs) as proxy reviewers have proven to be unreliable. To address this, we investigate two automatic evaluation metrics, specifically citation count prediction and review score prediction. We parse all papers of OpenReview and augment each submission with its citation count, reference, and research hypothesis. Our findings reveal that citation count prediction is more viable than review score prediction, and predicting scores is more difficult purely from the research hypothesis than from the full paper. Furthermore, we show that a simple prediction model based solely on title and abstract outperforms LLM-based reviewers, though it still falls short of human-level consistency.
Becoming self-instruct: introducing early stopping criteria for minimal instruct tuning
In this paper, we introduce the Instruction Following Score (IFS), a metric that detects language models' ability to follow instructions. The metric has a dual purpose. First, IFS can be used to distinguish between base and instruct models. We benchmark publicly available base and instruct models, and show that the ratio of well formatted responses to partial and full sentences can be an effective measure between those two model classes. Secondly, the metric can be used as an early stopping criteria for instruct tuning. We compute IFS for Supervised Fine-Tuning (SFT) of 7B and 13B LLaMA models, showing that models learn to follow instructions relatively early in the training process, and the further finetuning can result in changes in the underlying base model semantics. As an example of semantics change we show the objectivity of model predictions, as defined by an auxiliary metric ObjecQA. We show that in this particular case, semantic changes are the steepest when the IFS tends to plateau. We hope that decomposing instruct tuning into IFS and semantic factors starts a new trend in better controllable instruct tuning and opens possibilities for designing minimal instruct interfaces querying foundation models.
ConSens: Assessing context grounding in open-book question answering
Large Language Models (LLMs) have demonstrated considerable success in open-book question answering (QA), where the task requires generating answers grounded in a provided external context. A critical challenge in open-book QA is to ensure that model responses are based on the provided context rather than its parametric knowledge, which can be outdated, incomplete, or incorrect. Existing evaluation methods, primarily based on the LLM-as-a-judge approach, face significant limitations, including biases, scalability issues, and dependence on costly external systems. To address these challenges, we propose a novel metric that contrasts the perplexity of the model response under two conditions: when the context is provided and when it is not. The resulting score quantifies the extent to which the model's answer relies on the provided context. The validity of this metric is demonstrated through a series of experiments that show its effectiveness in identifying whether a given answer is grounded in the provided context. Unlike existing approaches, this metric is computationally efficient, interpretable, and adaptable to various use cases, offering a scalable and practical solution to assess context utilization in open-book QA systems.
Which Prompts Make The Difference? Data Prioritization For Efficient Human LLM Evaluation
Human evaluation is increasingly critical for assessing large language models, capturing linguistic nuances, and reflecting user preferences more accurately than traditional automated metrics. However, the resource-intensive nature of this type of annotation process poses significant challenges. The key question driving our work: "is it feasible to minimize human-in-the-loop feedback by prioritizing data instances which most effectively distinguish between models?" We evaluate several metric-based methods and find that these metrics enhance the efficiency of human evaluations by minimizing the number of required annotations, thus saving time and cost, while ensuring a robust performance evaluation. We show that our method is effective across widely used model families, reducing instances of indecisive (or "tie") outcomes by up to 54% compared to a random sample when focusing on the top-20 percentile of prioritized instances. This potential reduction in required human effort positions our approach as a valuable strategy in future large language model evaluations.
AnyLoss: Transforming Classification Metrics into Loss Functions
Many evaluation metrics can be used to assess the performance of models in binary classification tasks. However, most of them are derived from a confusion matrix in a non-differentiable form, making it very difficult to generate a differentiable loss function that could directly optimize them. The lack of solutions to bridge this challenge not only hinders our ability to solve difficult tasks, such as imbalanced learning, but also requires the deployment of computationally expensive hyperparameter search processes in model selection. In this paper, we propose a general-purpose approach that transforms any confusion matrix-based metric into a loss function, AnyLoss, that is available in optimization processes. To this end, we use an approximation function to make a confusion matrix represented in a differentiable form, and this approach enables any confusion matrix-based metric to be directly used as a loss function. The mechanism of the approximation function is provided to ensure its operability and the differentiability of our loss functions is proved by suggesting their derivatives. We conduct extensive experiments under diverse neural networks with many datasets, and we demonstrate their general availability to target any confusion matrix-based metrics. Our method, especially, shows outstanding achievements in dealing with imbalanced datasets, and its competitive learning speed, compared to multiple baseline models, underscores its efficiency.
WaterDrum: Watermarking for Data-centric Unlearning Metric
Large language model (LLM) unlearning is critical in real-world applications where it is necessary to efficiently remove the influence of private, copyrighted, or harmful data from some users. However, existing utility-centric unlearning metrics (based on model utility) may fail to accurately evaluate the extent of unlearning in realistic settings such as when (a) the forget and retain set have semantically similar content, (b) retraining the model from scratch on the retain set is impractical, and/or (c) the model owner can improve the unlearning metric without directly performing unlearning on the LLM. This paper presents the first data-centric unlearning metric for LLMs called WaterDrum that exploits robust text watermarking for overcoming these limitations. We also introduce new benchmark datasets for LLM unlearning that contain varying levels of similar data points and can be used to rigorously evaluate unlearning algorithms using WaterDrum. Our code is available at https://github.com/lululu008/WaterDrum and our new benchmark datasets are released at https://huggingface.co/datasets/Glow-AI/WaterDrum-Ax.
OmniBench-RAG: A Multi-Domain Evaluation Platform for Retrieval-Augmented Generation Tools
While Retrieval Augmented Generation (RAG) is now widely adopted to enhance LLMs, evaluating its true performance benefits in a reproducible and interpretable way remains a major hurdle. Existing methods often fall short: they lack domain coverage, employ coarse metrics that miss sub document precision, and fail to capture computational trade offs. Most critically, they provide no standardized framework for comparing RAG effectiveness across different models and domains. We introduce OmniBench RAG, a novel automated platform for multi domain evaluation of RAG systems. The platform quantifies performance gains across accuracy and efficiency dimensions, spanning nine knowledge fields including culture, geography, and health. We introduce two standardized metrics: Improvements (accuracy gains) and Transformation (efficiency differences between pre RAG and post RAG models), enabling reproducible comparisons across models and tasks. The platform features dynamic test generation, modular evaluation pipelines, and automated knowledge base construction. Our evaluation reveals striking variability in RAG effectiveness, from significant gains in culture to declines in mathematics, highlighting the critical importance of systematic, domain aware assessment. A demonstration video is available at: https://www.youtube.com/watch?v=BZx83QFcTCI. Code and datasets: https://github.com/Garnett-Liang/Omnibench-RAG.
Weighting vectors for machine learning: numerical harmonic analysis applied to boundary detection
Metric space magnitude, an active field of research in algebraic topology, is a scalar quantity that summarizes the effective number of distinct points that live in a general metric space. The {\em weighting vector} is a closely-related concept that captures, in a nontrivial way, much of the underlying geometry of the original metric space. Recent work has demonstrated that when the metric space is Euclidean, the weighting vector serves as an effective tool for boundary detection. We recast this result and show the weighting vector may be viewed as a solution to a kernelized SVM. As one consequence, we apply this new insight to the task of outlier detection, and we demonstrate performance that is competitive or exceeds performance of state-of-the-art techniques on benchmark data sets. Under mild assumptions, we show the weighting vector, which has computational cost of matrix inversion, can be efficiently approximated in linear time. We show how nearest neighbor methods can approximate solutions to the minimization problems defined by SVMs.
Unbabel's Participation in the WMT20 Metrics Shared Task
We present the contribution of the Unbabel team to the WMT 2020 Shared Task on Metrics. We intend to participate on the segment-level, document-level and system-level tracks on all language pairs, as well as the 'QE as a Metric' track. Accordingly, we illustrate results of our models in these tracks with reference to test sets from the previous year. Our submissions build upon the recently proposed COMET framework: We train several estimator models to regress on different human-generated quality scores and a novel ranking model trained on relative ranks obtained from Direct Assessments. We also propose a simple technique for converting segment-level predictions into a document-level score. Overall, our systems achieve strong results for all language pairs on previous test sets and in many cases set a new state-of-the-art.
Comparison of Unsupervised Metrics for Evaluating Judicial Decision Extraction
The rapid advancement of artificial intelligence in legal natural language processing demands scalable methods for evaluating text extraction from judicial decisions. This study evaluates 16 unsupervised metrics, including novel formulations, to assess the quality of extracting seven semantic blocks from 1,000 anonymized Russian judicial decisions, validated against 7,168 expert reviews on a 1--5 Likert scale. These metrics, spanning document-based, semantic, structural, pseudo-ground truth, and legal-specific categories, operate without pre-annotated ground truth. Bootstrapped correlations, Lin's concordance correlation coefficient (CCC), and mean absolute error (MAE) reveal that Term Frequency Coherence (Pearson r = 0.540, Lin CCC = 0.512, MAE = 0.127) and Coverage Ratio/Block Completeness (Pearson r = 0.513, Lin CCC = 0.443, MAE = 0.139) best align with expert ratings, while Legal Term Density (Pearson r = -0.479, Lin CCC = -0.079, MAE = 0.394) show strong negative correlations. The LLM Evaluation Score (mean = 0.849, Pearson r = 0.382, Lin CCC = 0.325, MAE = 0.197) showed moderate alignment, but its performance, using gpt-4.1-mini via g4f, suggests limited specialization for legal textse. These findings highlight that unsupervised metrics, including LLM-based approaches, enable scalable screening but, with moderate correlations and low CCC values, cannot fully replace human judgment in high-stakes legal contexts. This work advances legal NLP by providing annotation-free evaluation tools, with implications for judicial analytics and ethical AI deployment.
Towards Realistic Evaluation of Commit Message Generation by Matching Online and Offline Settings
Commit message generation (CMG) is a crucial task in software engineering that is challenging to evaluate correctly. When a CMG system is integrated into the IDEs and other products at JetBrains, we perform online evaluation based on user acceptance of the generated messages. However, performing online experiments with every change to a CMG system is troublesome, as each iteration affects users and requires time to collect enough statistics. On the other hand, offline evaluation, a prevalent approach in the research literature, facilitates fast experiments but employs automatic metrics that are not guaranteed to represent the preferences of real users. In this work, we describe a novel way we employed to deal with this problem at JetBrains, by leveraging an online metric - the number of edits users introduce before committing the generated messages to the VCS - to select metrics for offline experiments. To support this new type of evaluation, we develop a novel markup collection tool mimicking the real workflow with a CMG system, collect a dataset with 57 pairs consisting of commit messages generated by GPT-4 and their counterparts edited by human experts, and design and verify a way to synthetically extend such a dataset. Then, we use the final dataset of 656 pairs to study how the widely used similarity metrics correlate with the online metric reflecting the real users' experience. Our results indicate that edit distance exhibits the highest correlation, whereas commonly used similarity metrics such as BLEU and METEOR demonstrate low correlation. This contradicts the previous studies on similarity metrics for CMG, suggesting that user interactions with a CMG system in real-world settings differ significantly from the responses by human labelers operating within controlled research environments. We release all the code and the dataset for researchers: https://jb.gg/cmg-evaluation.
How Easily do Irrelevant Inputs Skew the Responses of Large Language Models?
By leveraging the retrieval of information from external knowledge databases, Large Language Models (LLMs) exhibit enhanced capabilities for accomplishing many knowledge-intensive tasks. However, due to the inherent flaws of current retrieval systems, there might exist irrelevant information within those retrieving top-ranked passages. In this work, we present a comprehensive investigation into the robustness of LLMs to different types of irrelevant information under various conditions. We initially introduce a framework to construct high-quality irrelevant information that ranges from semantically unrelated, partially related, and related to questions. Furthermore, our analysis demonstrates that the constructed irrelevant information not only scores highly on similarity metrics, being highly retrieved by existing systems, but also bears semantic connections to the context. Our investigation reveals that current LLMs still face challenges in discriminating highly semantically related information and can be easily distracted by these irrelevant yet misleading contents. Besides, we also find that current solutions for handling irrelevant information have limitations in improving the robustness of LLMs to such distractions. Resources are available at https://github.com/Di-viner/LLM-Robustness-to-Irrelevant-Information.
Improving abstractive summarization with energy-based re-ranking
Current abstractive summarization systems present important weaknesses which prevent their deployment in real-world applications, such as the omission of relevant information and the generation of factual inconsistencies (also known as hallucinations). At the same time, automatic evaluation metrics such as CTC scores have been recently proposed that exhibit a higher correlation with human judgments than traditional lexical-overlap metrics such as ROUGE. In this work, we intend to close the loop by leveraging the recent advances in summarization metrics to create quality-aware abstractive summarizers. Namely, we propose an energy-based model that learns to re-rank summaries according to one or a combination of these metrics. We experiment using several metrics to train our energy-based re-ranker and show that it consistently improves the scores achieved by the predicted summaries. Nonetheless, human evaluation results show that the re-ranking approach should be used with care for highly abstractive summaries, as the available metrics are not yet sufficiently reliable for this purpose.
Measuring Fairness of Text Classifiers via Prediction Sensitivity
With the rapid growth in language processing applications, fairness has emerged as an important consideration in data-driven solutions. Although various fairness definitions have been explored in the recent literature, there is lack of consensus on which metrics most accurately reflect the fairness of a system. In this work, we propose a new formulation : ACCUMULATED PREDICTION SENSITIVITY, which measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features. The metric attempts to quantify the extent to which a single prediction depends on a protected attribute, where the protected attribute encodes the membership status of an individual in a protected group. We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness. It also correlates well with humans' perception of fairness. We conduct experiments on two text classification datasets : JIGSAW TOXICITY, and BIAS IN BIOS, and evaluate the correlations between metrics and manual annotations on whether the model produced a fair outcome. We observe that the proposed fairness metric based on prediction sensitivity is statistically significantly more correlated with human annotation than the existing counterfactual fairness metric.
MaintainCoder: Maintainable Code Generation Under Dynamic Requirements
Modern code generation has made significant strides in functional correctness and execution efficiency. However, these systems often overlook a critical dimension in real-world software development: maintainability. To handle dynamic requirements with minimal rework, we propose MaintainCoder as a pioneering solution. It integrates the Waterfall model, design patterns, and multi-agent collaboration to systematically enhance cohesion, reduce coupling, achieving clear responsibility boundaries and better maintainability. We also introduce MaintainCoder, a benchmark comprising requirement changes and novel dynamic metrics on maintenance efforts. Experiments demonstrate that existing code generation methods struggle to meet maintainability standards when requirements evolve. In contrast, MaintainCoder improves dynamic maintainability metrics by more than 60% with even higher correctness of initial codes. Furthermore, while static metrics fail to accurately reflect maintainability and even contradict each other, our proposed dynamic metrics exhibit high consistency. Our work not only provides the foundation for maintainable code generation, but also highlights the need for more realistic and comprehensive code generation research. Resources: https://github.com/IAAR-Shanghai/MaintainCoder.
Leveraging LLMs for Legacy Code Modernization: Challenges and Opportunities for LLM-Generated Documentation
Legacy software systems, written in outdated languages like MUMPS and mainframe assembly, pose challenges in efficiency, maintenance, staffing, and security. While LLMs offer promise for modernizing these systems, their ability to understand legacy languages is largely unknown. This paper investigates the utilization of LLMs to generate documentation for legacy code using two datasets: an electronic health records (EHR) system in MUMPS and open-source applications in IBM mainframe Assembly Language Code (ALC). We propose a prompting strategy for generating line-wise code comments and a rubric to evaluate their completeness, readability, usefulness, and hallucination. Our study assesses the correlation between human evaluations and automated metrics, such as code complexity and reference-based metrics. We find that LLM-generated comments for MUMPS and ALC are generally hallucination-free, complete, readable, and useful compared to ground-truth comments, though ALC poses challenges. However, no automated metrics strongly correlate with comment quality to predict or measure LLM performance. Our findings highlight the limitations of current automated measures and the need for better evaluation metrics for LLM-generated documentation in legacy systems.
arXiVeri: Automatic table verification with GPT
Without accurate transcription of numerical data in scientific documents, a scientist cannot draw accurate conclusions. Unfortunately, the process of copying numerical data from one paper to another is prone to human error. In this paper, we propose to meet this challenge through the novel task of automatic table verification (AutoTV), in which the objective is to verify the accuracy of numerical data in tables by cross-referencing cited sources. To support this task, we propose a new benchmark, arXiVeri, which comprises tabular data drawn from open-access academic papers on arXiv. We introduce metrics to evaluate the performance of a table verifier in two key areas: (i) table matching, which aims to identify the source table in a cited document that corresponds to a target table, and (ii) cell matching, which aims to locate shared cells between a target and source table and identify their row and column indices accurately. By leveraging the flexible capabilities of modern large language models (LLMs), we propose simple baselines for table verification. Our findings highlight the complexity of this task, even for state-of-the-art LLMs like OpenAI's GPT-4. The code and benchmark will be made publicly available.
Learning from Reference Answers: Versatile Language Model Alignment without Binary Human Preference Data
Large language models~(LLMs) are expected to be helpful, harmless, and honest. In alignment scenarios such as safety, confidence, and general preference alignment, binary preference data collection and reward modeling are resource-intensive but essential for transferring human preference. In this work, we explore using the similarity between sampled generations and high-quality reference answers as an alternative reward function choice for LLM alignment. Similarity reward circumvents binary preference data collection and reward modeling when unary high-quality reference answers are available. We introduce RefAlign, a versatile REINFORCE-style alignment algorithm that does not rely on reference or reward models. RefAlign utilizes similarity metrics, such as BERTScore between sampled generations and reference answers as surrogate rewards. Beyond general human preference optimization, RefAlign can be readily extended to diverse scenarios, such as safety and confidence alignment, by incorporating the similarity reward with task-related objectives. In various scenarios, RefAlign demonstrates comparable performance to previous alignment methods without binary preference data and reward models.
Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery
This paper revisits datasets and evaluation criteria for Symbolic Regression, a task of expressing given data using mathematical equations, specifically focused on its potential for scientific discovery. Focused on a set of formulas used in the existing datasets based on Feynman Lectures on Physics, we recreate 120 datasets to discuss the performance of symbolic regression for scientific discovery (SRSD). For each of the 120 SRSD datasets, we carefully review the properties of the formula and its variables to design reasonably realistic sampling range of values so that our new SRSD datasets can be used for evaluating the potential of SRSD such as whether or not an SR method can (re)discover physical laws from such datasets. As an evaluation metric, we also propose to use normalized edit distances between a predicted equation and the ground-truth equation trees. While existing metrics are either binary or errors between the target values and an SR model's predicted values for a given input, normalized edit distances evaluate a sort of similarity between the ground-truth and predicted equation trees. We have conducted experiments on our new SRSD datasets using five state-of-the-art SR methods in SRBench and a simple baseline based on a recent Transformer architecture. The results show that we provide a more realistic performance evaluation and open up a new machine learning-based approach for scientific discovery. Our datasets and code repository are publicly available.
A Pragmatic Guide to Geoparsing Evaluation
Empirical methods in geoparsing have thus far lacked a standard evaluation framework describing the task, metrics and data used to compare state-of-the-art systems. Evaluation is further made inconsistent, even unrepresentative of real-world usage by the lack of distinction between the different types of toponyms, which necessitates new guidelines, a consolidation of metrics and a detailed toponym taxonomy with implications for Named Entity Recognition (NER) and beyond. To address these deficiencies, our manuscript introduces a new framework in three parts. Part 1) Task Definition: clarified via corpus linguistic analysis proposing a fine-grained Pragmatic Taxonomy of Toponyms. Part 2) Metrics: discussed and reviewed for a rigorous evaluation including recommendations for NER/Geoparsing practitioners. Part 3) Evaluation Data: shared via a new dataset called GeoWebNews to provide test/train examples and enable immediate use of our contributions. In addition to fine-grained Geotagging and Toponym Resolution (Geocoding), this dataset is also suitable for prototyping and evaluating machine learning NLP models.
Not All Metrics Are Guilty: Improving NLG Evaluation by Diversifying References
Most research about natural language generation (NLG) relies on evaluation benchmarks with limited references for a sample, which may result in poor correlations with human judgements. The underlying reason is that one semantic meaning can actually be expressed in different forms, and the evaluation with a single or few references may not accurately reflect the quality of the model's hypotheses. To address this issue, this paper presents a simple and effective method, named Div-Ref, to enhance existing evaluation benchmarks by enriching the number of references. We leverage large language models (LLMs) to diversify the expression of a single reference into multiple high-quality ones to cover the semantic space of the reference sentence as much as possible. We conduct comprehensive experiments to empirically demonstrate that diversifying the expression of reference can significantly enhance the correlation between automatic evaluation and human evaluation. This idea is compatible with recent LLM-based evaluation which can similarly derive advantages from incorporating multiple references. We strongly encourage future generation benchmarks to include more references, even if they are generated by LLMs, which is once for all. We release all the code and data at https://github.com/RUCAIBox/Div-Ref to facilitate research.
Pruner-Zero: Evolving Symbolic Pruning Metric from scratch for Large Language Models
Despite the remarkable capabilities, Large Language Models (LLMs) face deployment challenges due to their extensive size. Pruning methods drop a subset of weights to accelerate, but many of them require retraining, which is prohibitively expensive and computationally demanding. Recently, post-training pruning approaches introduced novel metrics, enabling the pruning of LLMs without retraining. However, these metrics require the involvement of human experts and tedious trial and error. To efficiently identify superior pruning metrics, we develop an automatic framework for searching symbolic pruning metrics using genetic programming. In particular, we devise an elaborate search space encompassing the existing pruning metrics to discover the potential symbolic pruning metric. We propose an opposing operation simplification strategy to increase the diversity of the population. In this way, Pruner-Zero allows auto-generation of symbolic pruning metrics. Based on the searched results, we explore the correlation between pruning metrics and performance after pruning and summarize some principles. Extensive experiments on LLaMA and LLaMA-2 on language modeling and zero-shot tasks demonstrate that our Pruner-Zero obtains superior performance than SOTA post-training pruning methods. Code at: https://github.com/pprp/Pruner-Zero.
Frustratingly Simple Retrieval Improves Challenging, Reasoning-Intensive Benchmarks
Retrieval-augmented Generation (RAG) has primarily been studied in limited settings, such as factoid question answering; more challenging, reasoning-intensive benchmarks have seen limited success from minimal RAG. In this work, we challenge this prevailing view on established, reasoning-intensive benchmarks: MMLU, MMLU Pro, AGI Eval, GPQA, and MATH. We identify a key missing component in prior work: a usable, web-scale datastore aligned with the breadth of pretraining data. To this end, we introduce CompactDS: a diverse, high-quality, web-scale datastore that achieves high retrieval accuracy and subsecond latency on a single-node. The key insights are (1) most web content can be filtered out without sacrificing coverage, and a compact, high-quality subset is sufficient; and (2) combining in-memory approximate nearest neighbor (ANN) retrieval and on-disk exact search balances speed and recall. Using CompactDS, we show that a minimal RAG pipeline achieves consistent accuracy improvements across all benchmarks and model sizes (8B--70B), with relative gains of 10% on MMLU, 33% on MMLU Pro, 14% on GPQA, and 19% on MATH. No single data source suffices alone, highlighting the importance of diversity of sources (web crawls, curated math, academic papers, textbooks). Finally, we show that our carefully designed in-house datastore matches or outperforms web search engines such as Google Search, as well as recently proposed, complex agent-based RAG systems--all while maintaining simplicity, reproducibility, and self-containment. We release CompactDS and our retrieval pipeline, supporting future research exploring retrieval-based AI systems.
Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering
Retriever-augmented instruction-following models are attractive alternatives to fine-tuned approaches for information-seeking tasks such as question answering (QA). By simply prepending retrieved documents in its input along with an instruction, these models can be adapted to various information domains and tasks without additional fine-tuning. While the model responses tend to be natural and fluent, the additional verbosity makes traditional QA evaluation metrics such as exact match (EM) and F1 unreliable for accurately quantifying model performance. In this work, we investigate the performance of instruction-following models across three information-seeking QA tasks. We use both automatic and human evaluation to evaluate these models along two dimensions: 1) how well they satisfy the user's information need (correctness), and 2) whether they produce a response based on the provided knowledge (faithfulness). Guided by human evaluation and analysis, we highlight the shortcomings of traditional metrics for both correctness and faithfulness. We then propose simple token-overlap based and model-based metrics that reflect the true performance of these models. Our analysis reveals that instruction-following models are competitive, and sometimes even outperform fine-tuned models for correctness. However, these models struggle to stick to the provided knowledge and often hallucinate in their responses. We hope our work encourages a more holistic evaluation of instruction-following models for QA. Our code and data is available at https://github.com/McGill-NLP/instruct-qa
Exploring Prompting Large Language Models as Explainable Metrics
This paper describes the IUST NLP Lab submission to the Prompting Large Language Models as Explainable Metrics Shared Task at the Eval4NLP 2023 Workshop on Evaluation & Comparison of NLP Systems. We have proposed a zero-shot prompt-based strategy for explainable evaluation of the summarization task using Large Language Models (LLMs). The conducted experiments demonstrate the promising potential of LLMs as evaluation metrics in Natural Language Processing (NLP), particularly in the field of summarization. Both few-shot and zero-shot approaches are employed in these experiments. The performance of our best provided prompts achieved a Kendall correlation of 0.477 with human evaluations in the text summarization task on the test data. Code and results are publicly available on GitHub.
Familiarity: Better Evaluation of Zero-Shot Named Entity Recognition by Quantifying Label Shifts in Synthetic Training Data
Zero-shot named entity recognition (NER) is the task of detecting named entities of specific types (such as 'Person' or 'Medicine') without any training examples. Current research increasingly relies on large synthetic datasets, automatically generated to cover tens of thousands of distinct entity types, to train zero-shot NER models. However, in this paper, we find that these synthetic datasets often contain entity types that are semantically highly similar to (or even the same as) those in standard evaluation benchmarks. Because of this overlap, we argue that reported F1 scores for zero-shot NER overestimate the true capabilities of these approaches. Further, we argue that current evaluation setups provide an incomplete picture of zero-shot abilities since they do not quantify the label shift (i.e., the similarity of labels) between training and evaluation datasets. To address these issues, we propose Familiarity, a novel metric that captures both the semantic similarity between entity types in training and evaluation, as well as their frequency in the training data, to provide an estimate of label shift. It allows researchers to contextualize reported zero-shot NER scores when using custom synthetic training datasets. Further, it enables researchers to generate evaluation setups of various transfer difficulties for fine-grained analysis of zero-shot NER.
CiteME: Can Language Models Accurately Cite Scientific Claims?
Thousands of new scientific papers are published each month. Such information overload complicates researcher efforts to stay current with the state-of-the-art as well as to verify and correctly attribute claims. We pose the following research question: Given a text excerpt referencing a paper, could an LM act as a research assistant to correctly identify the referenced paper? We advance efforts to answer this question by building a benchmark that evaluates the abilities of LMs in citation attribution. Our benchmark, CiteME, consists of text excerpts from recent machine learning papers, each referencing a single other paper. CiteME use reveals a large gap between frontier LMs and human performance, with LMs achieving only 4.2-18.5% accuracy and humans 69.7%. We close this gap by introducing CiteAgent, an autonomous system built on the GPT-4o LM that can also search and read papers, which achieves an accuracy of 35.3\% on CiteME. Overall, CiteME serves as a challenging testbed for open-ended claim attribution, driving the research community towards a future where any claim made by an LM can be automatically verified and discarded if found to be incorrect.
RoMe: A Robust Metric for Evaluating Natural Language Generation
Evaluating Natural Language Generation (NLG) systems is a challenging task. Firstly, the metric should ensure that the generated hypothesis reflects the reference's semantics. Secondly, it should consider the grammatical quality of the generated sentence. Thirdly, it should be robust enough to handle various surface forms of the generated sentence. Thus, an effective evaluation metric has to be multifaceted. In this paper, we propose an automatic evaluation metric incorporating several core aspects of natural language understanding (language competence, syntactic and semantic variation). Our proposed metric, RoMe, is trained on language features such as semantic similarity combined with tree edit distance and grammatical acceptability, using a self-supervised neural network to assess the overall quality of the generated sentence. Moreover, we perform an extensive robustness analysis of the state-of-the-art methods and RoMe. Empirical results suggest that RoMe has a stronger correlation to human judgment over state-of-the-art metrics in evaluating system-generated sentences across several NLG tasks.
TFG: Unified Training-Free Guidance for Diffusion Models
Given an unconditional diffusion model and a predictor for a target property of interest (e.g., a classifier), the goal of training-free guidance is to generate samples with desirable target properties without additional training. Existing methods, though effective in various individual applications, often lack theoretical grounding and rigorous testing on extensive benchmarks. As a result, they could even fail on simple tasks, and applying them to a new problem becomes unavoidably difficult. This paper introduces a novel algorithmic framework encompassing existing methods as special cases, unifying the study of training-free guidance into the analysis of an algorithm-agnostic design space. Via theoretical and empirical investigation, we propose an efficient and effective hyper-parameter searching strategy that can be readily applied to any downstream task. We systematically benchmark across 7 diffusion models on 16 tasks with 40 targets, and improve performance by 8.5% on average. Our framework and benchmark offer a solid foundation for conditional generation in a training-free manner.
Rank-without-GPT: Building GPT-Independent Listwise Rerankers on Open-Source Large Language Models
Listwise rerankers based on large language models (LLM) are the zero-shot state-of-the-art. However, current works in this direction all depend on the GPT models, making it a single point of failure in scientific reproducibility. Moreover, it raises the concern that the current research findings only hold for GPT models but not LLM in general. In this work, we lift this pre-condition and build for the first time effective listwise rerankers without any form of dependency on GPT. Our passage retrieval experiments show that our best list se reranker surpasses the listwise rerankers based on GPT-3.5 by 13% and achieves 97% effectiveness of the ones built on GPT-4. Our results also show that the existing training datasets, which were expressly constructed for pointwise ranking, are insufficient for building such listwise rerankers. Instead, high-quality listwise ranking data is required and crucial, calling for further work on building human-annotated listwise data resources.
Energy Confused Adversarial Metric Learning for Zero-Shot Image Retrieval and Clustering
Deep metric learning has been widely applied in many computer vision tasks, and recently, it is more attractive in zero-shot image retrieval and clustering(ZSRC) where a good embedding is requested such that the unseen classes can be distinguished well. Most existing works deem this 'good' embedding just to be the discriminative one and thus race to devise powerful metric objectives or hard-sample mining strategies for leaning discriminative embedding. However, in this paper, we first emphasize that the generalization ability is a core ingredient of this 'good' embedding as well and largely affects the metric performance in zero-shot settings as a matter of fact. Then, we propose the Energy Confused Adversarial Metric Learning(ECAML) framework to explicitly optimize a robust metric. It is mainly achieved by introducing an interesting Energy Confusion regularization term, which daringly breaks away from the traditional metric learning idea of discriminative objective devising, and seeks to 'confuse' the learned model so as to encourage its generalization ability by reducing overfitting on the seen classes. We train this confusion term together with the conventional metric objective in an adversarial manner. Although it seems weird to 'confuse' the network, we show that our ECAML indeed serves as an efficient regularization technique for metric learning and is applicable to various conventional metric methods. This paper empirically and experimentally demonstrates the importance of learning embedding with good generalization, achieving state-of-the-art performances on the popular CUB, CARS, Stanford Online Products and In-Shop datasets for ZSRC tasks. \textcolor[rgb]{1, 0, 0}{Code available at http://www.bhchen.cn/}.
Can We Trust Recommender System Fairness Evaluation? The Role of Fairness and Relevance
Relevance and fairness are two major objectives of recommender systems (RSs). Recent work proposes measures of RS fairness that are either independent from relevance (fairness-only) or conditioned on relevance (joint measures). While fairness-only measures have been studied extensively, we look into whether joint measures can be trusted. We collect all joint evaluation measures of RS relevance and fairness, and ask: How much do they agree with each other? To what extent do they agree with relevance/fairness measures? How sensitive are they to changes in rank position, or to increasingly fair and relevant recommendations? We empirically study for the first time the behaviour of these measures across 4 real-world datasets and 4 recommenders. We find that most of these measures: i) correlate weakly with one another and even contradict each other at times; ii) are less sensitive to rank position changes than relevance- and fairness-only measures, meaning that they are less granular than traditional RS measures; and iii) tend to compress scores at the low end of their range, meaning that they are not very expressive. We counter the above limitations with a set of guidelines on the appropriate usage of such measures, i.e., they should be used with caution due to their tendency to contradict each other and of having a very small empirical range.
Simpson's Bias in NLP Training
In most machine learning tasks, we evaluate a model M on a given data population S by measuring a population-level metric F(S;M). Examples of such evaluation metric F include precision/recall for (binary) recognition, the F1 score for multi-class classification, and the BLEU metric for language generation. On the other hand, the model M is trained by optimizing a sample-level loss G(S_t;M) at each learning step t, where S_t is a subset of S (a.k.a. the mini-batch). Popular choices of G include cross-entropy loss, the Dice loss, and sentence-level BLEU scores. A fundamental assumption behind this paradigm is that the mean value of the sample-level loss G, if averaged over all possible samples, should effectively represent the population-level metric F of the task, such as, that E[ G(S_t;M) ] approx F(S;M). In this paper, we systematically investigate the above assumption in several NLP tasks. We show, both theoretically and experimentally, that some popular designs of the sample-level loss G may be inconsistent with the true population-level metric F of the task, so that models trained to optimize the former can be substantially sub-optimal to the latter, a phenomenon we call it, Simpson's bias, due to its deep connections with the classic paradox known as Simpson's reversal paradox in statistics and social sciences.
gec-metrics: A Unified Library for Grammatical Error Correction Evaluation
We introduce gec-metrics, a library for using and developing grammatical error correction (GEC) evaluation metrics through a unified interface. Our library enables fair system comparisons by ensuring that everyone conducts evaluations using a consistent implementation. Moreover, it is designed with a strong focus on API usage, making it highly extensible. It also includes meta-evaluation functionalities and provides analysis and visualization scripts, contributing to developing GEC evaluation metrics. Our code is released under the MIT license and is also distributed as an installable package. The video is available on YouTube.
metric-learn: Metric Learning Algorithms in Python
metric-learn is an open source Python package implementing supervised and weakly-supervised distance metric learning algorithms. As part of scikit-learn-contrib, it provides a unified interface compatible with scikit-learn which allows to easily perform cross-validation, model selection, and pipelining with other machine learning estimators. metric-learn is thoroughly tested and available on PyPi under the MIT licence.
AlphaEval: A Comprehensive and Efficient Evaluation Framework for Formula Alpha Mining
Formula alpha mining, which generates predictive signals from financial data, is critical for quantitative investment. Although various algorithmic approaches-such as genetic programming, reinforcement learning, and large language models-have significantly expanded the capacity for alpha discovery, systematic evaluation remains a key challenge. Existing evaluation metrics predominantly include backtesting and correlation-based measures. Backtesting is computationally intensive, inherently sequential, and sensitive to specific strategy parameters. Correlation-based metrics, though efficient, assess only predictive ability and overlook other crucial properties such as temporal stability, robustness, diversity, and interpretability. Additionally, the closed-source nature of most existing alpha mining models hinders reproducibility and slows progress in this field. To address these issues, we propose AlphaEval, a unified, parallelizable, and backtest-free evaluation framework for automated alpha mining models. AlphaEval assesses the overall quality of generated alphas along five complementary dimensions: predictive power, stability, robustness to market perturbations, financial logic, and diversity. Extensive experiments across representative alpha mining algorithms demonstrate that AlphaEval achieves evaluation consistency comparable to comprehensive backtesting, while providing more comprehensive insights and higher efficiency. Furthermore, AlphaEval effectively identifies superior alphas compared to traditional single-metric screening approaches. All implementations and evaluation tools are open-sourced to promote reproducibility and community engagement.
TIFA: Accurate and Interpretable Text-to-Image Faithfulness Evaluation with Question Answering
Despite thousands of researchers, engineers, and artists actively working on improving text-to-image generation models, systems often fail to produce images that accurately align with the text inputs. We introduce TIFA (Text-to-Image Faithfulness evaluation with question Answering), an automatic evaluation metric that measures the faithfulness of a generated image to its text input via visual question answering (VQA). Specifically, given a text input, we automatically generate several question-answer pairs using a language model. We calculate image faithfulness by checking whether existing VQA models can answer these questions using the generated image. TIFA is a reference-free metric that allows for fine-grained and interpretable evaluations of generated images. TIFA also has better correlations with human judgments than existing metrics. Based on this approach, we introduce TIFA v1.0, a benchmark consisting of 4K diverse text inputs and 25K questions across 12 categories (object, counting, etc.). We present a comprehensive evaluation of existing text-to-image models using TIFA v1.0 and highlight the limitations and challenges of current models. For instance, we find that current text-to-image models, despite doing well on color and material, still struggle in counting, spatial relations, and composing multiple objects. We hope our benchmark will help carefully measure the research progress in text-to-image synthesis and provide valuable insights for further research.
Gradient Episodic Memory for Continual Learning
One major obstacle towards AI is the poor ability of models to solve new problems quicker, and without forgetting previously acquired knowledge. To better understand this issue, we study the problem of continual learning, where the model observes, once and one by one, examples concerning a sequence of tasks. First, we propose a set of metrics to evaluate models learning over a continuum of data. These metrics characterize models not only by their test accuracy, but also in terms of their ability to transfer knowledge across tasks. Second, we propose a model for continual learning, called Gradient Episodic Memory (GEM) that alleviates forgetting, while allowing beneficial transfer of knowledge to previous tasks. Our experiments on variants of the MNIST and CIFAR-100 datasets demonstrate the strong performance of GEM when compared to the state-of-the-art.
Resources for Brewing BEIR: Reproducible Reference Models and an Official Leaderboard
BEIR is a benchmark dataset for zero-shot evaluation of information retrieval models across 18 different domain/task combinations. In recent years, we have witnessed the growing popularity of a representation learning approach to building retrieval models, typically using pretrained transformers in a supervised setting. This naturally begs the question: How effective are these models when presented with queries and documents that differ from the training data? Examples include searching in different domains (e.g., medical or legal text) and with different types of queries (e.g., keywords vs. well-formed questions). While BEIR was designed to answer these questions, our work addresses two shortcomings that prevent the benchmark from achieving its full potential: First, the sophistication of modern neural methods and the complexity of current software infrastructure create barriers to entry for newcomers. To this end, we provide reproducible reference implementations that cover the two main classes of approaches: learned dense and sparse models. Second, there does not exist a single authoritative nexus for reporting the effectiveness of different models on BEIR, which has led to difficulty in comparing different methods. To remedy this, we present an official self-service BEIR leaderboard that provides fair and consistent comparisons of retrieval models. By addressing both shortcomings, our work facilitates future explorations in a range of interesting research questions that BEIR enables.
Measuring and Reducing Gendered Correlations in Pre-trained Models
Pre-trained models have revolutionized natural language understanding. However, researchers have found they can encode artifacts undesired in many applications, such as professions correlating with one gender more than another. We explore such gendered correlations as a case study for how to address unintended correlations in pre-trained models. We define metrics and reveal that it is possible for models with similar accuracy to encode correlations at very different rates. We show how measured correlations can be reduced with general-purpose techniques, and highlight the trade offs different strategies have. With these results, we make recommendations for training robust models: (1) carefully evaluate unintended correlations, (2) be mindful of seemingly innocuous configuration differences, and (3) focus on general mitigations.
QUILL: Quotation Generation Enhancement of Large Language Models
While Large language models (LLMs) have become excellent writing assistants, they still struggle with quotation generation. This is because they either hallucinate when providing factual quotations or fail to provide quotes that exceed human expectations. To bridge the gap, we systematically study how to evaluate and improve LLMs' performance in quotation generation tasks. We first establish a holistic and automatic evaluation system for quotation generation task, which consists of five criteria each with corresponding automatic metric. To improve the LLMs' quotation generation abilities, we construct a bilingual knowledge base that is broad in scope and rich in dimensions, containing up to 32,022 quotes. Moreover, guided by our critiria, we further design a quotation-specific metric to rerank the retrieved quotations from the knowledge base. Extensive experiments show that our metrics strongly correlate with human preferences. Existing LLMs struggle to generate desired quotes, but our quotation knowledge base and reranking metric help narrow this gap. Our dataset and code are publicly available at https://github.com/GraceXiaoo/QUILL.
QAFactEval: Improved QA-Based Factual Consistency Evaluation for Summarization
Factual consistency is an essential quality of text summarization models in practical settings. Existing work in evaluating this dimension can be broadly categorized into two lines of research, entailment-based and question answering (QA)-based metrics, and different experimental setups often lead to contrasting conclusions as to which paradigm performs the best. In this work, we conduct an extensive comparison of entailment and QA-based metrics, demonstrating that carefully choosing the components of a QA-based metric, especially question generation and answerability classification, is critical to performance. Building on those insights, we propose an optimized metric, which we call QAFactEval, that leads to a 14% average improvement over previous QA-based metrics on the SummaC factual consistency benchmark, and also outperforms the best-performing entailment-based metric. Moreover, we find that QA-based and entailment-based metrics can offer complementary signals and be combined into a single metric for a further performance boost.
FreshDiskANN: A Fast and Accurate Graph-Based ANN Index for Streaming Similarity Search
Approximate nearest neighbor search (ANNS) is a fundamental building block in information retrieval with graph-based indices being the current state-of-the-art and widely used in the industry. Recent advances in graph-based indices have made it possible to index and search billion-point datasets with high recall and millisecond-level latency on a single commodity machine with an SSD. However, existing graph algorithms for ANNS support only static indices that cannot reflect real-time changes to the corpus required by many key real-world scenarios (e.g. index of sentences in documents, email, or a news index). To overcome this drawback, the current industry practice for manifesting updates into such indices is to periodically re-build these indices, which can be prohibitively expensive. In this paper, we present the first graph-based ANNS index that reflects corpus updates into the index in real-time without compromising on search performance. Using update rules for this index, we design FreshDiskANN, a system that can index over a billion points on a workstation with an SSD and limited memory, and support thousands of concurrent real-time inserts, deletes and searches per second each, while retaining >95% 5-recall@5. This represents a 5-10x reduction in the cost of maintaining freshness in indices when compared to existing methods.
HEVAL: Yet Another Human Evaluation Metric
Machine translation evaluation is a very important activity in machine translation development. Automatic evaluation metrics proposed in literature are inadequate as they require one or more human reference translations to compare them with output produced by machine translation. This does not always give accurate results as a text can have several different translations. Human evaluation metrics, on the other hand, lacks inter-annotator agreement and repeatability. In this paper we have proposed a new human evaluation metric which addresses these issues. Moreover this metric also provides solid grounds for making sound assumptions on the quality of the text produced by a machine translation.
Efficiency-Effectiveness Reranking FLOPs for LLM-based Rerankers
Large Language Models (LLMs) have recently been applied to reranking tasks in information retrieval, achieving strong performance. However, their high computational demands often hinder practical deployment. Existing studies evaluate the efficiency of LLM-based rerankers using proxy metrics such as latency, the number of forward passes, input tokens, and output tokens. However, these metrics depend on hardware and running-time choices (\eg parallel or not, batch size, etc), and often fail to account for model size, making it difficult to interpret and obscuring the evaluation of the efficiency-effectiveness tradeoff. To address this issue, we propose E2R-FLOPs, for LLM-based rerankers: ranking metrics per PetaFLOP (RPP) for relevance per compute and queries per PetaFLOP (QPP) for hardware-agnostic throughput. Companied with the new metrics, an interpretable FLOPs estimator is built to estimate the FLOPs of an LLM-based reranker even without running any experiments. Based on the proposed metrics, we conduct comprehensive experiments to evaluate a wide range of LLM-based rerankers with different architecture, studying the efficiency-effectiveness trade-off and bringing this issue to the attention of the research community.
TRIQA: Image Quality Assessment by Contrastive Pretraining on Ordered Distortion Triplets
Image Quality Assessment (IQA) models aim to predict perceptual image quality in alignment with human judgments. No-Reference (NR) IQA remains particularly challenging due to the absence of a reference image. While deep learning has significantly advanced this field, a major hurdle in developing NR-IQA models is the limited availability of subjectively labeled data. Most existing deep learning-based NR-IQA approaches rely on pre-training on large-scale datasets before fine-tuning for IQA tasks. To further advance progress in this area, we propose a novel approach that constructs a custom dataset using a limited number of reference content images and introduces a no-reference IQA model that incorporates both content and quality features for perceptual quality prediction. Specifically, we train a quality-aware model using contrastive triplet-based learning, enabling efficient training with fewer samples while achieving strong generalization performance across publicly available datasets. Our repository is available at https://github.com/rajeshsureddi/triqa.
Signal-to-Noise Ratio: A Robust Distance Metric for Deep Metric Learning
Deep metric learning, which learns discriminative features to process image clustering and retrieval tasks, has attracted extensive attention in recent years. A number of deep metric learning methods, which ensure that similar examples are mapped close to each other and dissimilar examples are mapped farther apart, have been proposed to construct effective structures for loss functions and have shown promising results. In this paper, different from the approaches on learning the loss structures, we propose a robust SNR distance metric based on Signal-to-Noise Ratio (SNR) for measuring the similarity of image pairs for deep metric learning. By exploring the properties of our SNR distance metric from the view of geometry space and statistical theory, we analyze the properties of our metric and show that it can preserve the semantic similarity between image pairs, which well justify its suitability for deep metric learning. Compared with Euclidean distance metric, our SNR distance metric can further jointly reduce the intra-class distances and enlarge the inter-class distances for learned features. Leveraging our SNR distance metric, we propose Deep SNR-based Metric Learning (DSML) to generate discriminative feature embeddings. By extensive experiments on three widely adopted benchmarks, including CARS196, CUB200-2011 and CIFAR10, our DSML has shown its superiority over other state-of-the-art methods. Additionally, we extend our SNR distance metric to deep hashing learning, and conduct experiments on two benchmarks, including CIFAR10 and NUS-WIDE, to demonstrate the effectiveness and generality of our SNR distance metric.
Let's Use ChatGPT To Write Our Paper! Benchmarking LLMs To Write the Introduction of a Research Paper
As researchers increasingly adopt LLMs as writing assistants, generating high-quality research paper introductions remains both challenging and essential. We introduce Scientific Introduction Generation (SciIG), a task that evaluates LLMs' ability to produce coherent introductions from titles, abstracts, and related works. Curating new datasets from NAACL 2025 and ICLR 2025 papers, we assess five state-of-the-art models, including both open-source (DeepSeek-v3, Gemma-3-12B, LLaMA 4-Maverick, MistralAI Small 3.1) and closed-source GPT-4o systems, across multiple dimensions: lexical overlap, semantic similarity, content coverage, faithfulness, consistency, citation correctness, and narrative quality. Our comprehensive framework combines automated metrics with LLM-as-a-judge evaluations. Results demonstrate LLaMA-4 Maverick's superior performance on most metrics, particularly in semantic similarity and faithfulness. Moreover, three-shot prompting consistently outperforms fewer-shot approaches. These findings provide practical insights into developing effective research writing assistants and set realistic expectations for LLM-assisted academic writing. To foster reproducibility and future research, we will publicly release all code and datasets.
Unsupervised Discovery of Formulas for Mathematical Constants
Ongoing efforts that span over decades show a rise of AI methods for accelerating scientific discovery, yet accelerating discovery in mathematics remains a persistent challenge for AI. Specifically, AI methods were not effective in creation of formulas for mathematical constants because each such formula must be correct for infinite digits of precision, with "near-true" formulas providing no insight toward the correct ones. Consequently, formula discovery lacks a clear distance metric needed to guide automated discovery in this realm. In this work, we propose a systematic methodology for categorization, characterization, and pattern identification of such formulas. The key to our methodology is introducing metrics based on the convergence dynamics of the formulas, rather than on the numerical value of the formula. These metrics enable the first automated clustering of mathematical formulas. We demonstrate this methodology on Polynomial Continued Fraction formulas, which are ubiquitous in their intrinsic connections to mathematical constants, and generalize many mathematical functions and structures. We test our methodology on a set of 1,768,900 such formulas, identifying many known formulas for mathematical constants, and discover previously unknown formulas for pi, ln(2), Gauss', and Lemniscate's constants. The uncovered patterns enable a direct generalization of individual formulas to infinite families, unveiling rich mathematical structures. This success paves the way towards a generative model that creates formulas fulfilling specified mathematical properties, accelerating the rate of discovery of useful formulas.
The Efficiency Misnomer
Model efficiency is a critical aspect of developing and deploying machine learning models. Inference time and latency directly affect the user experience, and some applications have hard requirements. In addition to inference costs, model training also have direct financial and environmental impacts. Although there are numerous well-established metrics (cost indicators) for measuring model efficiency, researchers and practitioners often assume that these metrics are correlated with each other and report only few of them. In this paper, we thoroughly discuss common cost indicators, their advantages and disadvantages, and how they can contradict each other. We demonstrate how incomplete reporting of cost indicators can lead to partial conclusions and a blurred or incomplete picture of the practical considerations of different models. We further present suggestions to improve reporting of efficiency metrics.
GPT-4V(ision) is a Human-Aligned Evaluator for Text-to-3D Generation
Despite recent advances in text-to-3D generative methods, there is a notable absence of reliable evaluation metrics. Existing metrics usually focus on a single criterion each, such as how well the asset aligned with the input text. These metrics lack the flexibility to generalize to different evaluation criteria and might not align well with human preferences. Conducting user preference studies is an alternative that offers both adaptability and human-aligned results. User studies, however, can be very expensive to scale. This paper presents an automatic, versatile, and human-aligned evaluation metric for text-to-3D generative models. To this end, we first develop a prompt generator using GPT-4V to generate evaluating prompts, which serve as input to compare text-to-3D models. We further design a method instructing GPT-4V to compare two 3D assets according to user-defined criteria. Finally, we use these pairwise comparison results to assign these models Elo ratings. Experimental results suggest our metric strongly align with human preference across different evaluation criteria.
CiteGuard: Faithful Citation Attribution for LLMs via Retrieval-Augmented Validation
Large Language Models (LLMs) have emerged as promising assistants for scientific writing. However, there have been concerns regarding the quality and reliability of the generated text, one of which is the citation accuracy and faithfulness. While most recent work relies on methods such as LLM-as-a-Judge, the reliability of LLM-as-a-Judge alone is also in doubt. In this work, we reframe citation evaluation as a problem of citation attribution alignment, which is assessing whether LLM-generated citations match those a human author would include for the same text. We propose CiteGuard, a retrieval-aware agent framework designed to provide more faithful grounding for citation validation. CiteGuard improves the prior baseline by 12.3%, and achieves up to 65.4% accuracy on the CiteME benchmark, on par with human-level performance (69.7%). It also enables the identification of alternative but valid citations.
Varco Arena: A Tournament Approach to Reference-Free Benchmarking Large Language Models
The rapid advancement of Large Language Models (LLMs) necessitates robust evaluation methodologies. Current benchmarking approaches often rely on comparing model outputs against predefined prompts and reference outputs. Relying on predefined reference outputs hinders flexible adaptation of benchmarks to the rapidly evolving capabilities of LLMs. This limitation necessitates periodic efforts to prepare new benchmarks. To keep pace with rapidly evolving LLM capabilities, we propose a more flexible benchmarking approach. Our method, \textbf{Varco Arena}, provides reference-free benchmarking of LLMs in tournament style. \textbf{Varco Arena} directly compares LLM outputs across a diverse set of prompts, determining model rankings through a single-elimination tournament structure. This direct pairwise comparison offers two key advantages: (1) Direct comparison, unmediated by reference text, more effectively orders competing LLMs, resulting in more reliable rankings, and (2) reference-free approach to benchmarking adds flexibility in updating benchmark prompts by eliminating the need for quality references. Our empirical results, supported by simulation experiments, demonstrate that the \textbf{Varco Arena} tournament approach aligns better with the current Elo model for benchmarking LLMs. The alignment is measured in terms of Spearman correlation, showing improvement over current practice of benchmarking that use reference outputs as comparison anchors.
Automatic Evaluation of Healthcare LLMs Beyond Question-Answering
Current Large Language Models (LLMs) benchmarks are often based on open-ended or close-ended QA evaluations, avoiding the requirement of human labor. Close-ended measurements evaluate the factuality of responses but lack expressiveness. Open-ended capture the model's capacity to produce discourse responses but are harder to assess for correctness. These two approaches are commonly used, either independently or together, though their relationship remains poorly understood. This work is focused on the healthcare domain, where both factuality and discourse matter greatly. It introduces a comprehensive, multi-axis suite for healthcare LLM evaluation, exploring correlations between open and close benchmarks and metrics. Findings include blind spots and overlaps in current methodologies. As an updated sanity check, we release a new medical benchmark--CareQA--, with both open and closed variants. Finally, we propose a novel metric for open-ended evaluations --Relaxed Perplexity-- to mitigate the identified limitations.
Retrieval Augmented Structured Generation: Business Document Information Extraction As Tool Use
Business Document Information Extraction (BDIE) is the problem of transforming a blob of unstructured information (raw text, scanned documents, etc.) into a structured format that downstream systems can parse and use. It has two main tasks: Key-Information Extraction (KIE) and Line Items Recognition (LIR). In this paper, we argue that BDIE is best modeled as a Tool Use problem, where the tools are these downstream systems. We then present Retrieval Augmented Structured Generation (RASG), a novel general framework for BDIE that achieves state of the art (SOTA) results on both KIE and LIR tasks on BDIE benchmarks. The contributions of this paper are threefold: (1) We show, with ablation benchmarks, that Large Language Models (LLMs) with RASG are already competitive with or surpasses current SOTA Large Multimodal Models (LMMs) without RASG on BDIE benchmarks. (2) We propose a new metric class for Line Items Recognition, General Line Items Recognition Metric (GLIRM), that is more aligned with practical BDIE use cases compared to existing metrics, such as ANLS*, DocILE, and GriTS. (3) We provide a heuristic algorithm for backcalculating bounding boxes of predicted line items and tables without the need for vision encoders. Finally, we claim that, while LMMs might sometimes offer marginal performance benefits, LLMs + RASG is oftentimes superior given real-world applications and constraints of BDIE.
An Evaluation Framework for Legal Document Summarization
A law practitioner has to go through numerous lengthy legal case proceedings for their practices of various categories, such as land dispute, corruption, etc. Hence, it is important to summarize these documents, and ensure that summaries contain phrases with intent matching the category of the case. To the best of our knowledge, there is no evaluation metric that evaluates a summary based on its intent. We propose an automated intent-based summarization metric, which shows a better agreement with human evaluation as compared to other automated metrics like BLEU, ROUGE-L etc. in terms of human satisfaction. We also curate a dataset by annotating intent phrases in legal documents, and show a proof of concept as to how this system can be automated. Additionally, all the code and data to generate reproducible results is available on Github.
Assessing the Sensitivity and Alignment of FOL Closeness Metrics
The recent successful paradigm of solving logical reasoning problems with tool-augmented large language models (LLMs) leverages translation of natural language (NL) statements into First-Order Logic~(FOL) and external theorem provers. However, the correctness of FOL statements, comprising operators and text, often go unverified due to the lack of a reliable evaluation metric for comparing generated and ground-truth FOLs. In this paper, we conduct a comprehensive study on the sensitivity of existing NL-, FOL-, and graph-based metrics to capture differences between a sampled FOL and its corresponding ground-truth. We then measure the alignment between a metric-based ranking of FOL outputs and a strong LLM as-a-judge. To do this, we first apply operator and text-based perturbations to ground-truth FOL statements to assess metric sensitivity. We then evaluate metric robustness by comparing the metrics against LLMs judgment. Our empirical findings highlight a clear oversensitivity in the n-gram metric BLEU for text perturbations. The operator perturbation affects the semantic graph metric Smatch++ for structural changes, and the FOL metric for specific operator changes. We observe a closer alignment between BertScore and LLM judgement, proving the importance of semantic evaluation. Additionally, we show that combining metrics enhances both robustness and sensitivity compared to using individual metrics.
Spectrum Projection Score: Aligning Retrieved Summaries with Reader Models in Retrieval-Augmented Generation
Large Language Models (LLMs) have shown improved generation performance through retrieval-augmented generation (RAG) following the retriever-reader paradigm, which supplements model inputs with externally retrieved knowledge. However, prior work often evaluates RAG holistically, assessing the retriever and reader jointly, making it difficult to isolate the true contribution of retrieval, particularly given the prompt sensitivity of LLMs used as readers. We introduce Spectrum Projection Score (SPS), a lightweight, supervision-free metric that allows the reader to gauge the semantic alignment of a retrieved summary with its hidden representation by comparing the area formed by generated tokens from the summary, and the principal directions of subspace in the reader and to measure the relevance. Building on SPS we present xCompress, an inference time controller framework that dynamically samples, ranks, and compresses retrieval summary candidates. Extensive experiments on five QA benchmarks with four open source LLMs show that SPS not only enhances performance across a range of tasks but also provides a principled perspective on the interaction between retrieval and generation.
TrueGL: A Truthful, Reliable, and Unified Engine for Grounded Learning in Full-Stack Search
In the age of open and free information, a concerning trend of reliance on AI is emerging. However, existing AI tools struggle to evaluate the credibility of information and to justify their assessments. Hence, there is a growing need for systems that can help users evaluate the trustworthiness of online information. Although major search engines incorporate AI features, they often lack clear reliability indicators. We present TrueGL, a model that makes trustworthy search results more accessible. The model is a fine-tuned version of IBM's Granite-1B, trained on the custom dataset and integrated into a search engine with a reliability scoring system. We evaluate the system using prompt engineering and assigning each statement a continuous reliability score from 0.1 to 1, then instructing the model to return a textual explanation alongside the score. Each model's predicted scores are measured against real scores using standard evaluation metrics. TrueGL consistently outperforms other small-scale LLMs and rule-based approaches across all experiments on key evaluation metrics, including MAE, RMSE, and R2. The model's high accuracy, broad content coverage, and ease of use make trustworthy information more accessible and help reduce the spread of false or misleading content online. Our code is publicly available at https://github.com/AlgazinovAleksandr/TrueGL, and our model is publicly released at https://huggingface.co/JoydeepC/trueGL.
Self-Alignment Pretraining for Biomedical Entity Representations
Despite the widespread success of self-supervised learning via masked language models (MLM), accurately capturing fine-grained semantic relationships in the biomedical domain remains a challenge. This is of paramount importance for entity-level tasks such as entity linking where the ability to model entity relations (especially synonymy) is pivotal. To address this challenge, we propose SapBERT, a pretraining scheme that self-aligns the representation space of biomedical entities. We design a scalable metric learning framework that can leverage UMLS, a massive collection of biomedical ontologies with 4M+ concepts. In contrast with previous pipeline-based hybrid systems, SapBERT offers an elegant one-model-for-all solution to the problem of medical entity linking (MEL), achieving a new state-of-the-art (SOTA) on six MEL benchmarking datasets. In the scientific domain, we achieve SOTA even without task-specific supervision. With substantial improvement over various domain-specific pretrained MLMs such as BioBERT, SciBERTand and PubMedBERT, our pretraining scheme proves to be both effective and robust.
Performance Scaling via Optimal Transport: Enabling Data Selection from Partially Revealed Sources
Traditionally, data selection has been studied in settings where all samples from prospective sources are fully revealed to a machine learning developer. However, in practical data exchange scenarios, data providers often reveal only a limited subset of samples before an acquisition decision is made. Recently, there have been efforts to fit scaling laws that predict model performance at any size and data source composition using the limited available samples. However, these scaling functions are black-box, computationally expensive to fit, highly susceptible to overfitting, or/and difficult to optimize for data selection. This paper proposes a framework called <projektor>, which predicts model performance and supports data selection decisions based on partial samples of prospective data sources. Our approach distinguishes itself from existing work by introducing a novel *two-stage* performance inference process. In the first stage, we leverage the Optimal Transport distance to predict the model's performance for any data mixture ratio within the range of disclosed data sizes. In the second stage, we extrapolate the performance to larger undisclosed data sizes based on a novel parameter-free mapping technique inspired by neural scaling laws. We further derive an efficient gradient-based method to select data sources based on the projected model performance. Evaluation over a diverse range of applications demonstrates that <projektor> significantly improves existing performance scaling approaches in terms of both the accuracy of performance inference and the computation costs associated with constructing the performance predictor. Also, <projektor> outperforms by a wide margin in data selection effectiveness compared to a range of other off-the-shelf solutions.
Rethinking Automatic Evaluation in Sentence Simplification
Automatic evaluation remains an open research question in Natural Language Generation. In the context of Sentence Simplification, this is particularly challenging: the task requires by nature to replace complex words with simpler ones that shares the same meaning. This limits the effectiveness of n-gram based metrics like BLEU. Going hand in hand with the recent advances in NLG, new metrics have been proposed, such as BERTScore for Machine Translation. In summarization, the QuestEval metric proposes to automatically compare two texts by questioning them. In this paper, we first propose a simple modification of QuestEval allowing it to tackle Sentence Simplification. We then extensively evaluate the correlations w.r.t. human judgement for several metrics including the recent BERTScore and QuestEval, and show that the latter obtain state-of-the-art correlations, outperforming standard metrics like BLEU and SARI. More importantly, we also show that a large part of the correlations are actually spurious for all the metrics. To investigate this phenomenon further, we release a new corpus of evaluated simplifications, this time not generated by systems but instead, written by humans. This allows us to remove the spurious correlations and draw very different conclusions from the original ones, resulting in a better understanding of these metrics. In particular, we raise concerns about very low correlations for most of traditional metrics. Our results show that the only significant measure of the Meaning Preservation is our adaptation of QuestEval.
MetricGrids: Arbitrary Nonlinear Approximation with Elementary Metric Grids based Implicit Neural Representation
This paper presents MetricGrids, a novel grid-based neural representation that combines elementary metric grids in various metric spaces to approximate complex nonlinear signals. While grid-based representations are widely adopted for their efficiency and scalability, the existing feature grids with linear indexing for continuous-space points can only provide degenerate linear latent space representations, and such representations cannot be adequately compensated to represent complex nonlinear signals by the following compact decoder. To address this problem while keeping the simplicity of a regular grid structure, our approach builds upon the standard grid-based paradigm by constructing multiple elementary metric grids as high-order terms to approximate complex nonlinearities, following the Taylor expansion principle. Furthermore, we enhance model compactness with hash encoding based on different sparsities of the grids to prevent detrimental hash collisions, and a high-order extrapolation decoder to reduce explicit grid storage requirements. experimental results on both 2D and 3D reconstructions demonstrate the superior fitting and rendering accuracy of the proposed method across diverse signal types, validating its robustness and generalizability. Code is available at https://github.com/wangshu31/MetricGrids}{https://github.com/wangshu31/MetricGrids.
WeCheck: Strong Factual Consistency Checker via Weakly Supervised Learning
A crucial issue of current text generation models is that they often uncontrollably generate factually inconsistent text with respective of their inputs. Limited by the lack of annotated data, existing works in evaluating factual consistency directly transfer the reasoning ability of models trained on other data-rich upstream tasks like question answering (QA) and natural language inference (NLI) without any further adaptation. As a result, they perform poorly on the real generated text and are biased heavily by their single-source upstream tasks. To alleviate this problem, we propose a weakly supervised framework that aggregates multiple resources to train a precise and efficient factual metric, namely WeCheck. WeCheck first utilizes a generative model to accurately label a real generated sample by aggregating its weak labels, which are inferred from multiple resources. Then, we train the target metric model with the weak supervision while taking noises into consideration. Comprehensive experiments on a variety of tasks demonstrate the strong performance of WeCheck, which achieves a 3.4\% absolute improvement over previous state-of-the-art methods on TRUE benchmark on average.
Bridging the Gap in XAI-Why Reliable Metrics Matter for Explainability and Compliance
This position paper emphasizes the critical gap in the evaluation of Explainable AI (XAI) due to the lack of standardized and reliable metrics, which diminishes its practical value, trustworthiness, and ability to meet regulatory requirements. Current evaluation methods are often fragmented, subjective, and biased, making them prone to manipulation and complicating the assessment of complex models. A central issue is the absence of a ground truth for explanations, complicating comparisons across various XAI approaches. To address these challenges, we advocate for widespread research into developing robust, context-sensitive evaluation metrics. These metrics should be resistant to manipulation, relevant to each use case, and based on human judgment and real-world applicability. We also recommend creating domain-specific evaluation benchmarks that align with the user and regulatory needs of sectors such as healthcare and finance. By encouraging collaboration among academia, industry, and regulators, we can create standards that balance flexibility and consistency, ensuring XAI explanations are meaningful, trustworthy, and compliant with evolving regulations.
AbsenceBench: Language Models Can't Tell What's Missing
Large language models (LLMs) are increasingly capable of processing long inputs and locating specific information within them, as evidenced by their performance on the Needle in a Haystack (NIAH) test. However, while models excel at recalling surprising information, they still struggle to identify clearly omitted information. We introduce AbsenceBench to assesses LLMs' capacity to detect missing information across three domains: numerical sequences, poetry, and GitHub pull requests. AbsenceBench asks models to identify which pieces of a document were deliberately removed, given access to both the original and edited contexts. Despite the apparent straightforwardness of these tasks, our experiments reveal that even state-of-the-art models like Claude-3.7-Sonnet achieve only 69.6% F1-score with a modest average context length of 5K tokens. Our analysis suggests this poor performance stems from a fundamental limitation: Transformer attention mechanisms cannot easily attend to "gaps" in documents since these absences don't correspond to any specific keys that can be attended to. Overall, our results and analysis provide a case study of the close proximity of tasks where models are already superhuman (NIAH) and tasks where models breakdown unexpectedly (AbsenceBench).
Knowledge-Rich Self-Supervision for Biomedical Entity Linking
Entity linking faces significant challenges such as prolific variations and prevalent ambiguities, especially in high-value domains with myriad entities. Standard classification approaches suffer from the annotation bottleneck and cannot effectively handle unseen entities. Zero-shot entity linking has emerged as a promising direction for generalizing to new entities, but it still requires example gold entity mentions during training and canonical descriptions for all entities, both of which are rarely available outside of Wikipedia. In this paper, we explore Knowledge-RIch Self-Supervision (tt KRISS) for biomedical entity linking, by leveraging readily available domain knowledge. In training, it generates self-supervised mention examples on unlabeled text using a domain ontology and trains a contextual encoder using contrastive learning. For inference, it samples self-supervised mentions as prototypes for each entity and conducts linking by mapping the test mention to the most similar prototype. Our approach can easily incorporate entity descriptions and gold mention labels if available. We conducted extensive experiments on seven standard datasets spanning biomedical literature and clinical notes. Without using any labeled information, our method produces tt KRISSBERT, a universal entity linker for four million UMLS entities that attains new state of the art, outperforming prior self-supervised methods by as much as 20 absolute points in accuracy.
BARTScore: Evaluating Generated Text as Text Generation
A wide variety of NLP applications, such as machine translation, summarization, and dialog, involve text generation. One major challenge for these applications is how to evaluate whether such generated texts are actually fluent, accurate, or effective. In this work, we conceptualize the evaluation of generated text as a text generation problem, modeled using pre-trained sequence-to-sequence models. The general idea is that models trained to convert the generated text to/from a reference output or the source text will achieve higher scores when the generated text is better. We operationalize this idea using BART, an encoder-decoder based pre-trained model, and propose a metric BARTScore with a number of variants that can be flexibly applied in an unsupervised fashion to evaluation of text from different perspectives (e.g. informativeness, fluency, or factuality). BARTScore is conceptually simple and empirically effective. It can outperform existing top-scoring metrics in 16 of 22 test settings, covering evaluation of 16 datasets (e.g., machine translation, text summarization) and 7 different perspectives (e.g., informativeness, factuality). Code to calculate BARTScore is available at https://github.com/neulab/BARTScore, and we have released an interactive leaderboard for meta-evaluation at http://explainaboard.nlpedia.ai/leaderboard/task-meval/ on the ExplainaBoard platform, which allows us to interactively understand the strengths, weaknesses, and complementarity of each metric.
signwriting-evaluation: Effective Sign Language Evaluation via SignWriting
The lack of automatic evaluation metrics tailored for SignWriting presents a significant obstacle in developing effective transcription and translation models for signed languages. This paper introduces a comprehensive suite of evaluation metrics specifically designed for SignWriting, including adaptations of standard metrics such as BLEU and chrF, the application of CLIPScore to SignWriting images, and a novel symbol distance metric unique to our approach. We address the distinct challenges of evaluating single signs versus continuous signing and provide qualitative demonstrations of metric efficacy through score distribution analyses and nearest-neighbor searches within the SignBank corpus. Our findings reveal the strengths and limitations of each metric, offering valuable insights for future advancements using SignWriting. This work contributes essential tools for evaluating SignWriting models, facilitating progress in the field of sign language processing. Our code is available at https://github.com/sign-language-processing/signwriting-evaluation.
SemScore: Automated Evaluation of Instruction-Tuned LLMs based on Semantic Textual Similarity
Instruction-tuned Large Language Models (LLMs) have recently showcased remarkable advancements in their ability to generate fitting responses to natural language instructions. However, many current works rely on manual evaluation to judge the quality of generated responses. Since such manual evaluation is time-consuming, it does not easily scale to the evaluation of multiple models and model variants. In this short paper, we propose a straightforward but remarkably effective evaluation metric called SemScore, in which we directly compare model outputs to gold target responses using semantic textual similarity (STS). We conduct a comparative evaluation of the model outputs of 12 prominent instruction-tuned LLMs using 8 widely-used evaluation metrics for text generation. We find that our proposed SemScore metric outperforms all other, in many cases more complex, evaluation metrics in terms of correlation to human evaluation. These findings indicate the utility of our proposed metric for the evaluation of instruction-tuned LLMs.
Representation Tradeoffs for Hyperbolic Embeddings
Hyperbolic embeddings offer excellent quality with few dimensions when embedding hierarchical data structures like synonym or type hierarchies. Given a tree, we give a combinatorial construction that embeds the tree in hyperbolic space with arbitrarily low distortion without using optimization. On WordNet, our combinatorial embedding obtains a mean-average-precision of 0.989 with only two dimensions, while Nickel et al.'s recent construction obtains 0.87 using 200 dimensions. We provide upper and lower bounds that allow us to characterize the precision-dimensionality tradeoff inherent in any hyperbolic embedding. To embed general metric spaces, we propose a hyperbolic generalization of multidimensional scaling (h-MDS). We show how to perform exact recovery of hyperbolic points from distances, provide a perturbation analysis, and give a recovery result that allows us to reduce dimensionality. The h-MDS approach offers consistently low distortion even with few dimensions across several datasets. Finally, we extract lessons from the algorithms and theory above to design a PyTorch-based implementation that can handle incomplete information and is scalable.
Improving Retrieval Augmented Language Model with Self-Reasoning
The Retrieval-Augmented Language Model (RALM) has shown remarkable performance on knowledge-intensive tasks by incorporating external knowledge during inference, which mitigates the factual hallucinations inherited in large language models (LLMs). Despite these advancements, challenges persist in the implementation of RALMs, particularly concerning their reliability and traceability. To be specific, the irrelevant document retrieval may result in unhelpful response generation or even deteriorate the performance of LLMs, while the lack of proper citations in generated outputs complicates efforts to verify the trustworthiness of the models. To this end, we propose a novel self-reasoning framework aimed at improving the reliability and traceability of RALMs, whose core idea is to leverage reasoning trajectories generated by the LLM itself. The framework involves constructing self-reason trajectories with three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process. We have evaluated our framework across four public datasets (two short-form QA datasets, one long-form QA dataset, and one fact verification dataset) to demonstrate the superiority of our method, which can outperform existing state-of-art models and can achieve comparable performance with GPT-4, while only using 2,000 training samples.
SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore
The legality of training language models (LMs) on copyrighted or otherwise restricted data is under intense debate. However, as we show, model performance significantly degrades if trained only on low-risk text (e.g., out-of-copyright books or government documents), due to its limited size and domain coverage. We present SILO, a new language model that manages this risk-performance tradeoff during inference. SILO is built by (1) training a parametric LM on Open License Corpus (OLC), a new corpus we curate with 228B tokens of public domain and permissively licensed text and (2) augmenting it with a more general and easily modifiable nonparametric datastore (e.g., containing copyrighted books or news) that is only queried during inference. The datastore allows use of high-risk data without training on it, supports sentence-level data attribution, and enables data producers to opt out from the model by removing content from the store. These capabilities can foster compliance with data-use regulations such as the fair use doctrine in the United States and the GDPR in the European Union. Our experiments show that the parametric LM struggles on domains not covered by OLC. However, access to the datastore greatly improves out of domain performance, closing 90% of the performance gap with an LM trained on the Pile, a more diverse corpus with mostly high-risk text. We also analyze which nonparametric approach works best, where the remaining errors lie, and how performance scales with datastore size. Our results suggest that it is possible to build high quality language models while mitigating their legal risk.
Ordinal Distance Metric Learning with MDS for Image Ranking
Image ranking is to rank images based on some known ranked images. In this paper, we propose an improved linear ordinal distance metric learning approach based on the linear distance metric learning model. By decomposing the distance metric A as L^TL, the problem can be cast as looking for a linear map between two sets of points in different spaces, meanwhile maintaining some data structures. The ordinal relation of the labels can be maintained via classical multidimensional scaling, a popular tool for dimension reduction in statistics. A least squares fitting term is then introduced to the cost function, which can also maintain the local data structure. The resulting model is an unconstrained problem, and can better fit the data structure. Extensive numerical results demonstrate the improvement of the new approach over the linear distance metric learning model both in speed and ranking performance.
Enabling Large Language Models to Generate Text with Citations
Large language models (LLMs) have emerged as a widely-used tool for information seeking, but their generated outputs are prone to hallucination. In this work, we aim to enable LLMs to generate text with citations, improving their factual correctness and verifiability. Existing work mainly relies on commercial search engines and human evaluation, making it challenging to reproduce and compare with different modeling approaches. We propose ALCE, the first benchmark for Automatic LLMs' Citation Evaluation. ALCE collects a diverse set of questions and retrieval corpora and requires building end-to-end systems to retrieve supporting evidence and generate answers with citations. We build automatic metrics along three dimensions -- fluency, correctness, and citation quality -- and demonstrate their strong correlation with human judgements. Our experiments with state-of-the-art LLMs and novel prompting strategies show that current systems have considerable room for improvements -- for example, on the ELI5 dataset, even the best model has 49% of its generations lacking complete citation support. Our extensive analyses further highlight promising future directions, including developing better retrievers, advancing long-context LLMs, and improving the ability to synthesize information from multiple sources.
Attributed Question Answering: Evaluation and Modeling for Attributed Large Language Models
Large language models (LLMs) have shown impressive results while requiring little or no direct supervision. Further, there is mounting evidence that LLMs may have potential in information-seeking scenarios. We believe the ability of an LLM to attribute the text that it generates is likely to be crucial in this setting. We formulate and study Attributed QA as a key first step in the development of attributed LLMs. We propose a reproducible evaluation framework for the task and benchmark a broad set of architectures. We take human annotations as a gold standard and show that a correlated automatic metric is suitable for development. Our experimental work gives concrete answers to two key questions (How to measure attribution?, and How well do current state-of-the-art methods perform on attribution?), and give some hints as to how to address a third (How to build LLMs with attribution?).
A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems
Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.
No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval
Recent work has shown that small distilled language models are strong competitors to models that are orders of magnitude larger and slower in a wide range of information retrieval tasks. This has made distilled and dense models, due to latency constraints, the go-to choice for deployment in real-world retrieval applications. In this work, we question this practice by showing that the number of parameters and early query-document interaction play a significant role in the generalization ability of retrieval models. Our experiments show that increasing model size results in marginal gains on in-domain test sets, but much larger gains in new domains never seen during fine-tuning. Furthermore, we show that rerankers largely outperform dense ones of similar size in several tasks. Our largest reranker reaches the state of the art in 12 of the 18 datasets of the Benchmark-IR (BEIR) and surpasses the previous state of the art by 3 average points. Finally, we confirm that in-domain effectiveness is not a good indicator of zero-shot effectiveness. Code is available at https://github.com/guilhermemr04/scaling-zero-shot-retrieval.git
UMIC: An Unreferenced Metric for Image Captioning via Contrastive Learning
Despite the success of various text generation metrics such as BERTScore, it is still difficult to evaluate the image captions without enough reference captions due to the diversity of the descriptions. In this paper, we introduce a new metric UMIC, an Unreferenced Metric for Image Captioning which does not require reference captions to evaluate image captions. Based on Vision-and-Language BERT, we train UMIC to discriminate negative captions via contrastive learning. Also, we observe critical problems of the previous benchmark dataset (i.e., human annotations) on image captioning metric, and introduce a new collection of human annotations on the generated captions. We validate UMIC on four datasets, including our new dataset, and show that UMIC has a higher correlation than all previous metrics that require multiple references. We release the benchmark dataset and pre-trained models to compute the UMIC.
Evaluation Metrics for Text Data Augmentation in NLP
Recent surveys on data augmentation for natural language processing have reported different techniques and advancements in the field. Several frameworks, tools, and repositories promote the implementation of text data augmentation pipelines. However, a lack of evaluation criteria and standards for method comparison due to different tasks, metrics, datasets, architectures, and experimental settings makes comparisons meaningless. Also, a lack of methods unification exists and text data augmentation research would benefit from unified metrics to compare different augmentation methods. Thus, academics and the industry endeavor relevant evaluation metrics for text data augmentation techniques. The contribution of this work is to provide a taxonomy of evaluation metrics for text augmentation methods and serve as a direction for a unified benchmark. The proposed taxonomy organizes categories that include tools for implementation and metrics calculation. Finally, with this study, we intend to present opportunities to explore the unification and standardization of text data augmentation metrics.
CiteBART: Learning to Generate Citations for Local Citation Recommendation
Citations are essential building blocks in scientific writing. The scientific community is longing for support in their generation. Citation generation involves two complementary subtasks: Determining the citation worthiness of a context and, if it's worth it, proposing the best candidate papers for the citation placeholder. The latter subtask is called local citation recommendation (LCR). This paper proposes CiteBART, a custom BART pre-training based on citation token masking to generate citations to achieve LCR. In the base scheme, we mask the citation token in the local citation context to make the citation prediction. In the global one, we concatenate the citing paper's title and abstract to the local citation context to learn to reconstruct the citation token. CiteBART outperforms state-of-the-art approaches on the citation recommendation benchmarks except for the smallest FullTextPeerRead dataset. The effect is significant in the larger benchmarks, e.g., Refseer and ArXiv. We present a qualitative analysis and an ablation study to provide insights into the workings of CiteBART. Our analyses confirm that its generative nature brings about a zero-shot capability.
Cheaply Evaluating Inference Efficiency Metrics for Autoregressive Transformer APIs
Large language models (LLMs) power many state-of-the-art systems in natural language processing. However, these models are extremely computationally expensive, even at inference time, raising the natural question: when is the extra cost of deploying a larger model worth the anticipated boost in capabilities? Better understanding this tradeoff fundamentally could benefit from an inference efficiency metric that is both (i) easily comparable across models from different providers, and (ii) representative of the true cost of running queries in an isolated performance environment. Unfortunately, access to LLMs today is largely restricted to black-box text generation APIs and raw runtimes measured through this interface do not satisfy these desiderata: model providers can apply various software and hardware optimizations orthogonal to the model, and models served on shared infrastructure are susceptible to performance contention. To circumvent these problems, we propose a new metric for comparing inference efficiency across models. This metric puts models on equal footing as though they were served (i) on uniform hardware and software, and (ii) without performance contention. We call this metric the idealized runtime, and we propose a methodology to efficiently estimate this metric for autoregressive Transformer models. We also propose cost-aware variants that incorporate the number of accelerators needed to serve the model. Using these metrics, we compare ten state-of-the-art LLMs to provide the first analysis of inference efficiency-capability tradeoffs; we make several observations from this analysis, including the fact that the superior inference runtime performance of certain APIs is often a byproduct of optimizations within the API rather than the underlying model. Our methodology also facilitates the efficient comparison of different software and hardware stacks.
FENICE: Factuality Evaluation of summarization based on Natural language Inference and Claim Extraction
Recent advancements in text summarization, particularly with the advent of Large Language Models (LLMs), have shown remarkable performance. However, a notable challenge persists as a substantial number of automatically-generated summaries exhibit factual inconsistencies, such as hallucinations. In response to this issue, various approaches for the evaluation of consistency for summarization have emerged. Yet, these newly-introduced metrics face several limitations, including lack of interpretability, focus on short document summaries (e.g., news articles), and computational impracticality, especially for LLM-based metrics. To address these shortcomings, we propose Factuality Evaluation of summarization based on Natural language Inference and Claim Extraction (FENICE), a more interpretable and efficient factuality-oriented metric. FENICE leverages an NLI-based alignment between information in the source document and a set of atomic facts, referred to as claims, extracted from the summary. Our metric sets a new state of the art on AGGREFACT, the de-facto benchmark for factuality evaluation. Moreover, we extend our evaluation to a more challenging setting by conducting a human annotation process of long-form summarization.
RaTEScore: A Metric for Radiology Report Generation
This paper introduces a novel, entity-aware metric, termed as Radiological Report (Text) Evaluation (RaTEScore), to assess the quality of medical reports generated by AI models. RaTEScore emphasizes crucial medical entities such as diagnostic outcomes and anatomical details, and is robust against complex medical synonyms and sensitive to negation expressions. Technically, we developed a comprehensive medical NER dataset, RaTE-NER, and trained an NER model specifically for this purpose. This model enables the decomposition of complex radiological reports into constituent medical entities. The metric itself is derived by comparing the similarity of entity embeddings, obtained from a language model, based on their types and relevance to clinical significance. Our evaluations demonstrate that RaTEScore aligns more closely with human preference than existing metrics, validated both on established public benchmarks and our newly proposed RaTE-Eval benchmark.
NBC-Softmax : Darkweb Author fingerprinting and migration tracking
Metric learning aims to learn distances from the data, which enhances the performance of similarity-based algorithms. An author style detection task is a metric learning problem, where learning style features with small intra-class variations and larger inter-class differences is of great importance to achieve better performance. Recently, metric learning based on softmax loss has been used successfully for style detection. While softmax loss can produce separable representations, its discriminative power is relatively poor. In this work, we propose NBC-Softmax, a contrastive loss based clustering technique for softmax loss, which is more intuitive and able to achieve superior performance. Our technique meets the criterion for larger number of samples, thus achieving block contrastiveness, which is proven to outperform pair-wise losses. It uses mini-batch sampling effectively and is scalable. Experiments on 4 darkweb social forums, with NBCSAuthor that uses the proposed NBC-Softmax for author and sybil detection, shows that our negative block contrastive approach constantly outperforms state-of-the-art methods using the same network architecture. Our code is publicly available at : https://github.com/gayanku/NBC-Softmax
AlignScore: Evaluating Factual Consistency with a Unified Alignment Function
Many text generation applications require the generated text to be factually consistent with input information. Automatic evaluation of factual consistency is challenging. Previous work has developed various metrics that often depend on specific functions, such as natural language inference (NLI) or question answering (QA), trained on limited data. Those metrics thus can hardly assess diverse factual inconsistencies (e.g., contradictions, hallucinations) that occur in varying inputs/outputs (e.g., sentences, documents) from different tasks. In this paper, we propose AlignScore, a new holistic metric that applies to a variety of factual inconsistency scenarios as above. AlignScore is based on a general function of information alignment between two arbitrary text pieces. Crucially, we develop a unified training framework of the alignment function by integrating a large diversity of data sources, resulting in 4.7M training examples from 7 well-established tasks (NLI, QA, paraphrasing, fact verification, information retrieval, semantic similarity, and summarization). We conduct extensive experiments on large-scale benchmarks including 22 evaluation datasets, where 19 of the datasets were never seen in the alignment training. AlignScore achieves substantial improvement over a wide range of previous metrics. Moreover, AlignScore (355M parameters) matches or even outperforms metrics based on ChatGPT and GPT-4 that are orders of magnitude larger.
Visual Generation Without Guidance
Classifier-Free Guidance (CFG) has been a default technique in various visual generative models, yet it requires inference from both conditional and unconditional models during sampling. We propose to build visual models that are free from guided sampling. The resulting algorithm, Guidance-Free Training (GFT), matches the performance of CFG while reducing sampling to a single model, halving the computational cost. Unlike previous distillation-based approaches that rely on pretrained CFG networks, GFT enables training directly from scratch. GFT is simple to implement. It retains the same maximum likelihood objective as CFG and differs mainly in the parameterization of conditional models. Implementing GFT requires only minimal modifications to existing codebases, as most design choices and hyperparameters are directly inherited from CFG. Our extensive experiments across five distinct visual models demonstrate the effectiveness and versatility of GFT. Across domains of diffusion, autoregressive, and masked-prediction modeling, GFT consistently achieves comparable or even lower FID scores, with similar diversity-fidelity trade-offs compared with CFG baselines, all while being guidance-free. Code will be available at https://github.com/thu-ml/GFT.
BERT on a Data Diet: Finding Important Examples by Gradient-Based Pruning
Current pre-trained language models rely on large datasets for achieving state-of-the-art performance. However, past research has shown that not all examples in a dataset are equally important during training. In fact, it is sometimes possible to prune a considerable fraction of the training set while maintaining the test performance. Established on standard vision benchmarks, two gradient-based scoring metrics for finding important examples are GraNd and its estimated version, EL2N. In this work, we employ these two metrics for the first time in NLP. We demonstrate that these metrics need to be computed after at least one epoch of fine-tuning and they are not reliable in early steps. Furthermore, we show that by pruning a small portion of the examples with the highest GraNd/EL2N scores, we can not only preserve the test accuracy, but also surpass it. This paper details adjustments and implementation choices which enable GraNd and EL2N to be applied to NLP.
Towards Large Language Model driven Reference-less Translation Evaluation for English and Indian Languages
With the primary focus on evaluating the effectiveness of large language models for automatic reference-less translation assessment, this work presents our experiments on mimicking human direct assessment to evaluate the quality of translations in English and Indian languages. We constructed a translation evaluation task where we performed zero-shot learning, in-context example-driven learning, and fine-tuning of large language models to provide a score out of 100, where 100 represents a perfect translation and 1 represents a poor translation. We compared the performance of our trained systems with existing methods such as COMET, BERT-Scorer, and LABSE, and found that the LLM-based evaluator (LLaMA-2-13B) achieves a comparable or higher overall correlation with human judgments for the considered Indian language pairs.
Visual Explanation for Deep Metric Learning
This work explores the visual explanation for deep metric learning and its applications. As an important problem for learning representation, metric learning has attracted much attention recently, while the interpretation of such model is not as well studied as classification. To this end, we propose an intuitive idea to show where contributes the most to the overall similarity of two input images by decomposing the final activation. Instead of only providing the overall activation map of each image, we propose to generate point-to-point activation intensity between two images so that the relationship between different regions is uncovered. We show that the proposed framework can be directly deployed to a large range of metric learning applications and provides valuable information for understanding the model. Furthermore, our experiments show its effectiveness on two potential applications, i.e. cross-view pattern discovery and interactive retrieval. The source code is available at https://github.com/Jeff-Zilence/Explain_Metric_Learning.
BRIDGE: Bridging Gaps in Image Captioning Evaluation with Stronger Visual Cues
Effectively aligning with human judgment when evaluating machine-generated image captions represents a complex yet intriguing challenge. Existing evaluation metrics like CIDEr or CLIP-Score fall short in this regard as they do not take into account the corresponding image or lack the capability of encoding fine-grained details and penalizing hallucinations. To overcome these issues, in this paper, we propose BRIDGE, a new learnable and reference-free image captioning metric that employs a novel module to map visual features into dense vectors and integrates them into multi-modal pseudo-captions which are built during the evaluation process. This approach results in a multimodal metric that properly incorporates information from the input image without relying on reference captions, bridging the gap between human judgment and machine-generated image captions. Experiments spanning several datasets demonstrate that our proposal achieves state-of-the-art results compared to existing reference-free evaluation scores. Our source code and trained models are publicly available at: https://github.com/aimagelab/bridge-score.
Practical applications of metric space magnitude and weighting vectors
Metric space magnitude, an active subject of research in algebraic topology, originally arose in the context of biology, where it was used to represent the effective number of distinct species in an environment. In a more general setting, the magnitude of a metric space is a real number that aims to quantify the effective number of distinct points in the space. The contribution of each point to a metric space's global magnitude, which is encoded by the {\em weighting vector}, captures much of the underlying geometry of the original metric space. Surprisingly, when the metric space is Euclidean, the weighting vector also serves as an effective tool for boundary detection. This allows the weighting vector to serve as the foundation of novel algorithms for classic machine learning tasks such as classification, outlier detection and active learning. We demonstrate, using experiments and comparisons on classic benchmark datasets, the promise of the proposed magnitude and weighting vector-based approaches.
Linking Surface Facts to Large-Scale Knowledge Graphs
Open Information Extraction (OIE) methods extract facts from natural language text in the form of ("subject"; "relation"; "object") triples. These facts are, however, merely surface forms, the ambiguity of which impedes their downstream usage; e.g., the surface phrase "Michael Jordan" may refer to either the former basketball player or the university professor. Knowledge Graphs (KGs), on the other hand, contain facts in a canonical (i.e., unambiguous) form, but their coverage is limited by a static schema (i.e., a fixed set of entities and predicates). To bridge this gap, we need the best of both worlds: (i) high coverage of free-text OIEs, and (ii) semantic precision (i.e., monosemy) of KGs. In order to achieve this goal, we propose a new benchmark with novel evaluation protocols that can, for example, measure fact linking performance on a granular triple slot level, while also measuring if a system has the ability to recognize that a surface form has no match in the existing KG. Our extensive evaluation of several baselines show that detection of out-of-KG entities and predicates is more difficult than accurate linking to existing ones, thus calling for more research efforts on this difficult task. We publicly release all resources (data, benchmark and code) on https://github.com/nec-research/fact-linking.
A Comparative Study of DSL Code Generation: Fine-Tuning vs. Optimized Retrieval Augmentation
Natural Language to Code Generation has made significant progress in recent years with the advent of Large Language Models(LLMs). While generation for general-purpose languages like C, C++, and Python has improved significantly, LLMs struggle with custom function names in Domain Specific Languages or DSLs. This leads to higher hallucination rates and syntax errors, specially for DSLs having a high number of custom function names. Additionally, constant updates to function names add to the challenge as LLMs need to stay up-to-date. In this paper, we present optimizations for using Retrieval Augmented Generation (or RAG) with LLMs for DSL generation along with an ablation study comparing these strategies. We generated a train as well as test dataset with a DSL to represent automation tasks across roughly 700 APIs in public domain. We used the training dataset to fine-tune a Codex model for this DSL. Our results showed that the fine-tuned model scored the best on code similarity metric. With our RAG optimizations, we achieved parity for similarity metric. The compilation rate, however, showed that both the models still got the syntax wrong many times, with RAG-based method being 2 pts better. Conversely, hallucination rate for RAG model lagged by 1 pt for API names and by 2 pts for API parameter keys. We conclude that an optimized RAG model can match the quality of fine-tuned models and offer advantages for new, unseen APIs.
LLM-Ref: Enhancing Reference Handling in Technical Writing with Large Language Models
Large Language Models (LLMs) excel in data synthesis but can be inaccurate in domain-specific tasks, which retrieval-augmented generation (RAG) systems address by leveraging user-provided data. However, RAGs require optimization in both retrieval and generation stages, which can affect output quality. In this paper, we present LLM-Ref, a writing assistant tool that aids researchers in writing articles from multiple source documents with enhanced reference synthesis and handling capabilities. Unlike traditional RAG systems that use chunking and indexing, our tool retrieves and generates content directly from text paragraphs. This method facilitates direct reference extraction from the generated outputs, a feature unique to our tool. Additionally, our tool employs iterative response generation, effectively managing lengthy contexts within the language model's constraints. Compared to baseline RAG-based systems, our approach achieves a 3.25times to 6.26times increase in Ragas score, a comprehensive metric that provides a holistic view of a RAG system's ability to produce accurate, relevant, and contextually appropriate responses. This improvement shows our method enhances the accuracy and contextual relevance of writing assistance tools.
AceMap: Knowledge Discovery through Academic Graph
The exponential growth of scientific literature requires effective management and extraction of valuable insights. While existing scientific search engines excel at delivering search results based on relational databases, they often neglect the analysis of collaborations between scientific entities and the evolution of ideas, as well as the in-depth analysis of content within scientific publications. The representation of heterogeneous graphs and the effective measurement, analysis, and mining of such graphs pose significant challenges. To address these challenges, we present AceMap, an academic system designed for knowledge discovery through academic graph. We present advanced database construction techniques to build the comprehensive AceMap database with large-scale academic entities that contain rich visual, textual, and numerical information. AceMap also employs innovative visualization, quantification, and analysis methods to explore associations and logical relationships among academic entities. AceMap introduces large-scale academic network visualization techniques centered on nebular graphs, providing a comprehensive view of academic networks from multiple perspectives. In addition, AceMap proposes a unified metric based on structural entropy to quantitatively measure the knowledge content of different academic entities. Moreover, AceMap provides advanced analysis capabilities, including tracing the evolution of academic ideas through citation relationships and concept co-occurrence, and generating concise summaries informed by this evolutionary process. In addition, AceMap uses machine reading methods to generate potential new ideas at the intersection of different fields. Exploring the integration of large language models and knowledge graphs is a promising direction for future research in idea evolution. Please visit https://www.acemap.info for further exploration.
RevisEval: Improving LLM-as-a-Judge via Response-Adapted References
With significant efforts in recent studies, LLM-as-a-Judge has become a cost-effective alternative to human evaluation for assessing the text generation quality in a wide range of tasks. However, there still remains a reliability gap between LLM-as-a-Judge and human evaluation. One important reason is the lack of guided oracles in the evaluation process. Motivated by the role of reference pervasively used in classic text evaluation, we introduce RevisEval, a novel text generation evaluation paradigm via the response-adapted references. RevisEval is driven by the key observation that an ideal reference should maintain the necessary relevance to the response to be evaluated. Specifically, RevisEval leverages the text revision capabilities of large language models (LLMs) to adaptively revise the response, then treat the revised text as the reference (response-adapted reference) for the subsequent evaluation. Extensive experiments demonstrate that RevisEval outperforms traditional reference-free and reference-based evaluation paradigms that use LLM-as-a-Judge across NLG tasks and open-ended instruction-following tasks. More importantly, our response-adapted references can further boost the classical text metrics, e.g., BLEU and BERTScore, compared to traditional references and even rival the LLM-as-a-Judge. A detailed analysis is also conducted to confirm RevisEval's effectiveness in bias reduction, the impact of inference cost, and reference relevance.
Copilot Evaluation Harness: Evaluating LLM-Guided Software Programming
The integration of Large Language Models (LLMs) into Development Environments (IDEs) has become a focal point in modern software development. LLMs such as OpenAI GPT-3.5/4 and Code Llama offer the potential to significantly augment developer productivity by serving as intelligent, chat-driven programming assistants. However, utilizing LLMs out of the box is unlikely to be optimal for any given scenario. Rather, each system requires the LLM to be honed to its set of heuristics to ensure the best performance. In this paper, we introduce the Copilot evaluation harness: a set of data and tools for evaluating LLM-guided IDE interactions, covering various programming scenarios and languages. We propose our metrics as a more robust and information-dense evaluation than previous state of the art evaluation systems. We design and compute both static and execution based success metrics for scenarios encompassing a wide range of developer tasks, including code generation from natural language (generate), documentation generation from code (doc), test case generation (test), bug-fixing (fix), and workspace understanding and query resolution (workspace). These success metrics are designed to evaluate the performance of LLMs within a given IDE and its respective parameter space. Our learnings from evaluating three common LLMs using these metrics can inform the development and validation of future scenarios in LLM guided IDEs.
Metric3D: Towards Zero-shot Metric 3D Prediction from A Single Image
Reconstructing accurate 3D scenes from images is a long-standing vision task. Due to the ill-posedness of the single-image reconstruction problem, most well-established methods are built upon multi-view geometry. State-of-the-art (SOTA) monocular metric depth estimation methods can only handle a single camera model and are unable to perform mixed-data training due to the metric ambiguity. Meanwhile, SOTA monocular methods trained on large mixed datasets achieve zero-shot generalization by learning affine-invariant depths, which cannot recover real-world metrics. In this work, we show that the key to a zero-shot single-view metric depth model lies in the combination of large-scale data training and resolving the metric ambiguity from various camera models. We propose a canonical camera space transformation module, which explicitly addresses the ambiguity problems and can be effortlessly plugged into existing monocular models. Equipped with our module, monocular models can be stably trained with over 8 million images with thousands of camera models, resulting in zero-shot generalization to in-the-wild images with unseen camera settings. Experiments demonstrate SOTA performance of our method on 7 zero-shot benchmarks. Notably, our method won the championship in the 2nd Monocular Depth Estimation Challenge. Our method enables the accurate recovery of metric 3D structures on randomly collected internet images, paving the way for plausible single-image metrology. The potential benefits extend to downstream tasks, which can be significantly improved by simply plugging in our model. For example, our model relieves the scale drift issues of monocular-SLAM (Fig. 1), leading to high-quality metric scale dense mapping. The code is available at https://github.com/YvanYin/Metric3D.
APIGen: Generative API Method Recommendation
Automatic API method recommendation is an essential task of code intelligence, which aims to suggest suitable APIs for programming queries. Existing approaches can be categorized into two primary groups: retrieval-based and learning-based approaches. Although these approaches have achieved remarkable success, they still come with notable limitations. The retrieval-based approaches rely on the text representation capabilities of embedding models, while the learning-based approaches require extensive task-specific labeled data for training. To mitigate the limitations, we propose APIGen, a generative API recommendation approach through enhanced in-context learning (ICL). APIGen involves two main components: (1) Diverse Examples Selection. APIGen searches for similar posts to the programming queries from the lexical, syntactical, and semantic perspectives, providing more informative examples for ICL. (2) Guided API Recommendation. APIGen enables large language models (LLMs) to perform reasoning before generating API recommendations, where the reasoning involves fine-grained matching between the task intent behind the queries and the factual knowledge of the APIs. With the reasoning process, APIGen makes recommended APIs better meet the programming requirement of queries and also enhances the interpretability of results. We compare APIGen with four existing approaches on two publicly available benchmarks. Experiments show that APIGen outperforms the best baseline CLEAR by 105.8% in method-level API recommendation and 54.3% in class-level API recommendation in terms of SuccessRate@1. Besides, APIGen achieves an average 49.87% increase compared to the zero-shot performance of popular LLMs such as GPT-4 in method-level API recommendation regarding the SuccessRate@3 metric.
Citegeist: Automated Generation of Related Work Analysis on the arXiv Corpus
Large Language Models provide significant new opportunities for the generation of high-quality written works. However, their employment in the research community is inhibited by their tendency to hallucinate invalid sources and lack of direct access to a knowledge base of relevant scientific articles. In this work, we present Citegeist: An application pipeline using dynamic Retrieval Augmented Generation (RAG) on the arXiv Corpus to generate a related work section and other citation-backed outputs. For this purpose, we employ a mixture of embedding-based similarity matching, summarization, and multi-stage filtering. To adapt to the continuous growth of the document base, we also present an optimized way of incorporating new and modified papers. To enable easy utilization in the scientific community, we release both, a website (https://citegeist.org), as well as an implementation harness that works with several different LLM implementations.
Vidi: Large Multimodal Models for Video Understanding and Editing
Humans naturally share information with those they are connected to, and video has become one of the dominant mediums for communication and expression on the Internet. To support the creation of high-quality large-scale video content, a modern pipeline requires a comprehensive understanding of both the raw input materials (e.g., the unedited footage captured by cameras) and the editing components (e.g., visual effects). In video editing scenarios, models must process multiple modalities (e.g., vision, audio, text) with strong background knowledge and handle flexible input lengths (e.g., hour-long raw videos), which poses significant challenges for traditional models. In this report, we introduce Vidi, a family of Large Multimodal Models (LMMs) for a wide range of video understand editing scenarios. The first release focuses on temporal retrieval, i.e., identifying the time ranges within the input videos corresponding to a given text query, which plays a critical role in intelligent editing. The model is capable of processing hour-long videos with strong temporal understanding capability, e.g., retrieve time ranges for certain queries. To support a comprehensive evaluation in real-world scenarios, we also present the VUE-TR benchmark, which introduces five key advancements. 1) Video duration: significantly longer than existing temporal retrival datasets, 2) Audio support: includes audio-based queries, 3) Query format: diverse query lengths/formats, 4) Annotation quality: ground-truth time ranges are manually annotated. 5) Evaluation metric: a refined IoU metric to support evaluation over multiple time ranges. Remarkably, Vidi significantly outperforms leading proprietary models, e.g., GPT-4o and Gemini, on the temporal retrieval task, indicating its superiority in video editing scenarios.
ReALM: Reference Resolution As Language Modeling
Reference resolution is an important problem, one that is essential to understand and successfully handle context of different kinds. This context includes both previous turns and context that pertains to non-conversational entities, such as entities on the user's screen or those running in the background. While LLMs have been shown to be extremely powerful for a variety of tasks, their use in reference resolution, particularly for non-conversational entities, remains underutilized. This paper demonstrates how LLMs can be used to create an extremely effective system to resolve references of various types, by showing how reference resolution can be converted into a language modeling problem, despite involving forms of entities like those on screen that are not traditionally conducive to being reduced to a text-only modality. We demonstrate large improvements over an existing system with similar functionality across different types of references, with our smallest model obtaining absolute gains of over 5% for on-screen references. We also benchmark against GPT-3.5 and GPT-4, with our smallest model achieving performance comparable to that of GPT-4, and our larger models substantially outperforming it.
Revisiting Metric Reliability for Fine-grained Evaluation of Machine Translation and Summarization in Indian Languages
While automatic metrics drive progress in Machine Translation (MT) and Text Summarization (TS), existing metrics have been developed and validated almost exclusively for English and other high-resource languages. This narrow focus leaves Indian languages, spoken by over 1.5 billion people, largely overlooked, casting doubt on the universality of current evaluation practices. To address this gap, we introduce ITEM, a large-scale benchmark that systematically evaluates the alignment of 26 automatic metrics with human judgments across six major Indian languages, enriched with fine-grained annotations. Our extensive evaluation, covering agreement with human judgments, sensitivity to outliers, language-specific reliability, inter-metric correlations, and resilience to controlled perturbations, reveals four central findings: (1) LLM-based evaluators show the strongest alignment with human judgments at both segment and system levels; (2) outliers exert a significant impact on metric-human agreement; (3) in TS, metrics are more effective at capturing content fidelity, whereas in MT, they better reflect fluency; and (4) metrics differ in their robustness and sensitivity when subjected to diverse perturbations. Collectively, these findings offer critical guidance for advancing metric design and evaluation in Indian languages.
Emergent Asymmetry of Precision and Recall for Measuring Fidelity and Diversity of Generative Models in High Dimensions
Precision and Recall are two prominent metrics of generative performance, which were proposed to separately measure the fidelity and diversity of generative models. Given their central role in comparing and improving generative models, understanding their limitations are crucially important. To that end, in this work, we identify a critical flaw in the common approximation of these metrics using k-nearest-neighbors, namely, that the very interpretations of fidelity and diversity that are assigned to Precision and Recall can fail in high dimensions, resulting in very misleading conclusions. Specifically, we empirically and theoretically show that as the number of dimensions grows, two model distributions with supports at equal point-wise distance from the support of the real distribution, can have vastly different Precision and Recall regardless of their respective distributions, hence an emergent asymmetry in high dimensions. Based on our theoretical insights, we then provide simple yet effective modifications to these metrics to construct symmetric metrics regardless of the number of dimensions. Finally, we provide experiments on real-world datasets to illustrate that the identified flaw is not merely a pathological case, and that our proposed metrics are effective in alleviating its impact.
Large Language Models Are State-of-the-Art Evaluators of Code Generation
Recent advancements in the field of natural language generation have facilitated the use of large language models to assess the quality of generated text. Although these models have shown promising results in tasks such as machine translation and summarization, their applicability in code generation tasks remains limited without human involvement. The complexity of programming concepts required for such tasks makes it difficult to develop evaluation metrics that align with human judgment. Token-matching-based metrics, such as BLEU, have demonstrated weak correlations with human practitioners in code generation tasks. Moreover, the utilization of human-written test suites to evaluate functional correctness can be challenging in domains with low resources. To overcome these obstacles, we propose a new evaluation framework based on the GPT-3.5 (GPT-3.5-turbo), for code generation assessments. Our framework addresses the limitations of existing approaches by achieving superior correlations with functional correctness and human preferences, without the need for test oracles or references. We evaluate the efficacy of our framework on two different tasks and four programming languages, comparing its performance with the state-of-the-art CodeBERTScore metric, which relies on a pre-trained model. Our results demonstrate that our framework surpasses CodeBERTScore, delivering high levels of accuracy and consistency across various programming languages and tasks. We also make our evaluation framework and datasets available to the public at https://github.com/terryyz/llm-code-eval, encouraging further research in the evaluation of code generation.
ProcSim: Proxy-based Confidence for Robust Similarity Learning
Deep Metric Learning (DML) methods aim at learning an embedding space in which distances are closely related to the inherent semantic similarity of the inputs. Previous studies have shown that popular benchmark datasets often contain numerous wrong labels, and DML methods are susceptible to them. Intending to study the effect of realistic noise, we create an ontology of the classes in a dataset and use it to simulate semantically coherent labeling mistakes. To train robust DML models, we propose ProcSim, a simple framework that assigns a confidence score to each sample using the normalized distance to its class representative. The experimental results show that the proposed method achieves state-of-the-art performance on the DML benchmark datasets injected with uniform and the proposed semantically coherent noise.
Benchmarking Biopharmaceuticals Retrieval-Augmented Generation Evaluation
Recently, the application of the retrieval-augmented Large Language Models (LLMs) in specific domains has gained significant attention, especially in biopharmaceuticals. However, in this context, there is no benchmark specifically designed for biopharmaceuticals to evaluate LLMs. In this paper, we introduce the Biopharmaceuticals Retrieval-Augmented Generation Evaluation (BRAGE) , the first benchmark tailored for evaluating LLMs' Query and Reference Understanding Capability (QRUC) in the biopharmaceutical domain, available in English, French, German and Chinese. In addition, Traditional Question-Answering (QA) metrics like accuracy and exact match fall short in the open-ended retrieval-augmented QA scenarios. To address this, we propose a citation-based classification method to evaluate the QRUC of LLMs to understand the relationship between queries and references. We apply this method to evaluate the mainstream LLMs on BRAGE. Experimental results show that there is a significant gap in the biopharmaceutical QRUC of mainstream LLMs, and their QRUC needs to be improved.
Out of the BLEU: how should we assess quality of the Code Generation models?
In recent years, researchers have created and introduced a significant number of various code generation models. As human evaluation of every new model version is unfeasible, the community adopted automatic evaluation metrics such as BLEU to approximate the results of human judgement. These metrics originate from the machine translation domain and it is unclear whether they are applicable for the code generation tasks and how well they agree with the human evaluation on this task. There are also other metrics, CodeBLEU and RUBY, developed to estimate the similarity of code, that take into account the properties of source code. However, for these metrics there are hardly any studies on their agreement with the human evaluation. Despite all that, minimal differences in the metric scores have been used in recent papers to claim superiority of some code generation models over the others. In this paper, we present a study on the applicability of six metrics -- BLEU, ROUGE-L, METEOR, ChrF, CodeBLEU, and RUBY -- for evaluation of code generation models. We conduct a study on two different code generation datasets and use human annotators to assess the quality of all models run on these datasets. The results indicate that for the CoNaLa dataset of Python one-liners, none of the metrics can correctly emulate human judgement on which model is better with >95% certainty if the difference in model scores is less than 5 points. For the HearthStone dataset, which consists of classes of a particular structure, a difference in model scores of at least 2 points is enough to claim the superiority of one model over the other. Our findings suggest that the ChrF metric is a better fit for the evaluation of code generation models than the commonly used BLEU and CodeBLEU. Yet, finding a metric for code generation that closely agrees with humans requires additional work.
LLM-based User Profile Management for Recommender System
The rapid advancement of Large Language Models (LLMs) has opened new opportunities in recommender systems by enabling zero-shot recommendation without conventional training. Despite their potential, most existing works rely solely on users' purchase histories, leaving significant room for improvement by incorporating user-generated textual data, such as reviews and product descriptions. Addressing this gap, we propose PURE, a novel LLM-based recommendation framework that builds and maintains evolving user profiles by systematically extracting and summarizing key information from user reviews. PURE consists of three core components: a Review Extractor for identifying user preferences and key product features, a Profile Updater for refining and updating user profiles, and a Recommender for generating personalized recommendations using the most current profile. To evaluate PURE, we introduce a continuous sequential recommendation task that reflects real-world scenarios by adding reviews over time and updating predictions incrementally. Our experimental results on Amazon datasets demonstrate that PURE outperforms existing LLM-based methods, effectively leveraging long-term user information while managing token limitations.
Using LLMs to Establish Implicit User Sentiment of Software Desirability
This study explores the use of LLMs for providing quantitative zero-shot sentiment analysis of implicit software desirability, addressing a critical challenge in product evaluation where traditional review scores, though convenient, fail to capture the richness of qualitative user feedback. Innovations include establishing a method that 1) works with qualitative user experience data without the need for explicit review scores, 2) focuses on implicit user satisfaction, and 3) provides scaled numerical sentiment analysis, offering a more nuanced understanding of user sentiment, instead of simply classifying sentiment as positive, neutral, or negative. Data is collected using the Microsoft Product Desirability Toolkit (PDT), a well-known qualitative user experience analysis tool. For initial exploration, the PDT metric was given to users of two software systems. PDT data was fed through several LLMs (Claude Sonnet 3 and 3.5, GPT4, and GPT4o) and through a leading transfer learning technique, Twitter-Roberta-Base-Sentiment, and Vader, a leading sentiment analysis tool. Each system was asked to evaluate the data in two ways, by looking at the sentiment expressed in the PDT word/explanation pairs; and by looking at the sentiment expressed by the users in their grouped selection of five words and explanations, as a whole. Each LLM provided a sentiment score, its confidence (low, medium, high) in the score, and an explanation of the score. All LLMs tested were able to statistically detect user sentiment from the users' grouped data, whereas TRBS and Vader were not. The confidence and explanation of confidence provided by the LLMs assisted in understanding user sentiment. This study adds deeper understanding of evaluating user experiences, toward the goal of creating a universal tool that quantifies implicit sentiment.
Understanding Multimodal Hallucination with Parameter-Free Representation Alignment
Hallucination is a common issue in Multimodal Large Language Models (MLLMs), yet the underlying principles remain poorly understood. In this paper, we investigate which components of MLLMs contribute to object hallucinations. To analyze image representations while completely avoiding the influence of all other factors other than the image representation itself, we propose a parametric-free representation alignment metric (Pfram) that can measure the similarities between any two representation systems without requiring additional training parameters. Notably, Pfram can also assess the alignment of a neural representation system with the human representation system, represented by ground-truth annotations of images. By evaluating the alignment with object annotations, we demonstrate that this metric shows strong and consistent correlations with object hallucination across a wide range of state-of-the-art MLLMs, spanning various model architectures and sizes. Furthermore, using this metric, we explore other key issues related to image representations in MLLMs, such as the role of different modules, the impact of textual instructions, and potential improvements including the use of alternative visual encoders. Our code is available at: https://github.com/yellow-binary-tree/Pfram.
PoSh: Using Scene Graphs To Guide LLMs-as-a-Judge For Detailed Image Descriptions
While vision-language models (VLMs) have advanced into detailed image description, evaluation remains a challenge. Standard metrics (e.g. CIDEr, SPICE) were designed for short texts and tuned to recognize errors that are now uncommon, such as object misidentification. In contrast, long texts require sensitivity to attribute and relation attachments and scores that localize errors to particular text spans. In this work, we introduce PoSh, a metric for detailed image description that uses scene graphs as structured rubrics to guide LLMs-as-a-Judge, producing aggregate scores grounded in fine-grained errors (e.g. mistakes in compositional understanding). PoSh is replicable, interpretable and a better proxy for human raters than existing metrics (including GPT4o-as-a-Judge). To validate PoSh, we introduce a challenging new dataset, DOCENT. This novel benchmark contains artwork, paired with expert-written references, and model-generated descriptions, augmented with granular and coarse judgments of their quality from art history students. Thus, DOCENT enables evaluating both detailed image description metrics and detailed image description itself in a challenging new domain. We show that PoSh achieves stronger correlations (+0.05 Spearman rho) with the human judgments in DOCENT than the best open-weight alternatives, is robust to image type (using CapArena, an existing dataset of web imagery) and is a capable reward function, outperforming standard supervised fine-tuning. Then, using PoSh, we characterize the performance of open and closed models in describing the paintings, sketches and statues in DOCENT and find that foundation models struggle to achieve full, error-free coverage of images with rich scene dynamics, establishing a demanding new task to gauge VLM progress. Through both PoSh and DOCENT, we hope to enable advances in important areas such as assistive text generation.
PiCO: Peer Review in LLMs based on the Consistency Optimization
Existing large language models (LLMs) evaluation methods typically focus on testing the performance on some closed-environment and domain-specific benchmarks with human annotations. In this paper, we explore a novel unsupervised evaluation direction, utilizing peer-review mechanisms to measure LLMs automatically. In this setting, both open-source and closed-source LLMs lie in the same environment, capable of answering unlabeled questions and evaluating each other, where each LLM's response score is jointly determined by other anonymous ones. To obtain the ability hierarchy among these models, we assign each LLM a learnable capability parameter to adjust the final ranking. We formalize it as a constrained optimization problem, intending to maximize the consistency of each LLM's capabilities and scores. The key assumption behind is that high-level LLM can evaluate others' answers more accurately than low-level ones, while higher-level LLM can also achieve higher response scores. Moreover, we propose three metrics called PEN, CIN, and LIS to evaluate the gap in aligning human rankings. We perform experiments on multiple datasets with these metrics, validating the effectiveness of the proposed approach.
